
The Busemann process in planar directed first-passage

percolation

Sam McKeown

October 13, 2024

Contents

0.1 Uniform convergence to the limit shape . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Generalised Busemann functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.3 As gradients of passage times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
We will use the results of [GJR23] to establish the existence of the Busemann process for

fairly general directed edge weight percolation models on the plane.
Write E(Z2) to denote the collection of nearest-neighbour edges on the integer lattice, and

take a collection of weights (ω(e))e∈E(Z2) ∈ Ω = RE(Z2) indexed by the edges. For brevity,
we will write ω({x, x + ei}) = ω(x, x + ei) = ωi(x). If x, y ∈ Z2 are points with x ≤ y and
π = (x = π0, π1, . . . , πn = y) is a nearest neighbour up-right path between them, we define the
passage time of the path to be

G(π) =

n−1∑
i=0

ω(π(i), π(i+ 1)). (0.1)

Let Π(x, y) be the set of such paths. When the first vertex is zero we abbreviate to Π(y) = Π(0, y).
The (first-)passage time from x to y is the minimal passage time among directed paths:

G(x, y) = min
π∈Π(x,y)

G(π). (0.2)

Note that last passage percolation is recovered by negating the signs of the weights. We will
primarily be concerned with passage times from the origin, and so we abbreviate G((0, 0), x) =
G(x).

So as to have uniform convergence to the limit shape and to fit under Condition 3.2(c) of
[GJR23], we make the following assumption on the weights:

Assumption 0.1. Assume that the pairs {(ω1(x), ω2(x))}x∈Z2 are i.i.d, and that E[|ωi(x)|2+ϵ] <
∞ for i = 1, 2 and some ϵ > 0.

The assumption will be implicit in every statement below. Note that we don’t need the
weights on edges originating from a given vertex to be independent of one another.

0.1 Uniform convergence to the limit shape

Uniform convergence to the limit shape will be needed later in establishing the Busemann limits.
The statement for the edge weight model is a small extension of Theorem 5.1 in [Mar04]. Here
gpp is the limit shape, which exists very generally, as in [GRS16, Theorem 2.4].
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Theorem 0.2. Almost surely

lim
n→0

1

n
max

x∈Z2
+,|x|1=n

|G(0, x)− gpp(0, x)| = 0. (0.3)

The argument in [Mar04] deals with vertex weights, but can be carried out in the same fashion
for edge weights. It relies essentially on only two facts: that in a directed model the number of
steps (in each direction) in a geodesic is deterministic; and that one has a powerful concentration
inequality for passage times of bounded weights[Tal95, Theorem 8.1.1].

The proof goes through a number of lemmas, which we restate for our edge-weight FPP setup.
The arguments for the most part require very little modification. The only subtlety is in Martin’s
Lemma 3.1, which is the statement of the concentration inequality relied on . The statement in
our context is:

Lemma 0.3. Let Xi, i ∈ I, be a finite collection of independent random variables taking values
in [0, L]d and write Xi,k for the k-th component of Xi. Let C be a set of subsets of I × [d], such
that

max
C∈C

|C| ≤ R, (0.4)

and additionally such that if C ∈ C and (i, k1), (i, k2) ∈ C, then k1 = k2. Set

Z = max
C∈C

∑
(i,k)∈C

Xi,k. (0.5)

Then for any u > 0,

P(|Z − E[Z]| > u) ≤ exp

(
− u2

64RL2
+ 64

)
. (0.6)

The proof in [Mar02, Lemma 5.1] is a direct application of an inequality due to Talagrand’s
inequality[Tal95, Theorem 8.1.1] on the concentration of passage times, which itself is a quick
consequence of his isoperimetric inequality, as stated in [Tal95, Theorem 4.1.1]. An appropriate
vector-valued version of the isoperimetric inequality, such as the one found in Section 7.6 of
[AS16], gives the corresponding vector-valued version of his passage time inequality.

Theorem 0.4. Let (Xi)i≤N be a collection of independent random variables with Xi ∈ [0, 1]di ,
and for 1 ≤ k ≤ di write Xi,k for the k-th component of Xi. Consider a family F of N -tuples of
pairs (αi, ki)i≤N , where αi ≥ 0 is a non-negative coefficient and ki is an index with 1 ≤ ki ≤ di.
Set σ = sup(α,k)∈F∥α∥2. Define a maximum over this family

Z = sup
(α,k)∈F

∑
i≤N

αiXi,ki
. (0.7)

If M is the median of Z, then for all u > 0 we have

P(|Z −M | ≥ u) ≤ 4 exp

(
− u2

4σ2

)
. (0.8)

Now Lemma 0.3 can be proved in precisely the same way as in [Mar02, Lemma 5.1].
One can use the strong control in the bounded case to prove Theorem 0.2 for these weights.

We follow Martin and begin with continuity of the limit shape.
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Lemma 0.5. Let Xi, i ∈ I, be a finite collection of independent random variables taking values
in [0, L]d and take ϵ > 0. Then there is δ > 0 such that if x ∈ Rd

+ and ∥x∥ ≤ 1, with x1 = 0, then

|g(x+ he1)− g(x)| < ϵ (0.9)

for all 0 ≤ h ≤ δ.

Lemma 0.6. Suppose |ωi(x)| < L for some L > 0. Then g is continuous on R2
+.

The proofs of [Mar04, Lemmas 3.2, 3.3] go through word-for-word1.
We now give Theorem 0.2 for bounded weights. This is a combination of This is a combination

of Lemmas 5.3, 5.4 in [Mar04]. The proofs go through word-for-word2.

Lemma 0.7. Suppose |ωi(x)| < L for some L > 0, and let ϵ > 0 be given. Then almost surely,
we have for all but finitely many z ∈ Z2

+ that

|G(z)− g(z)| ≤ ϵ∥z∥. (0.10)

Having proved these lemmas for bounded weights, Martin proceeds to generalise to unbounded
distributions satisfying a certain decay assumption. Namely, we need

∫∞
0

(1− F (s))1/2 ds <∞,
where F is the distribution of the vertex weights in the LPP model Martin considers. After taking

negatives to bring us into FPP, the condition becomes
∫ 0

−∞ F (s)1/2 ds < ∞. This condition is
automatically implied by the existence of 2 + ϵ moments.

As our inequalities do not have to be especially sharp, we bound our edge-weight model
between vertex-weight models and apply the Martin’s results to these. Given a directed path
π = (x = π0, π1, . . . , πn = y), define upper and lower vertex passage times

Ḡ(π) =

n−1∑
i=0

ω(πi)1 ∨ ω(πi)2, (0.11)

G(π) =

n−1∑
i=0

ω(πi)1 ∧ ω(πi)2. (0.12)

Then Ḡ(x, y), G(x, y) are defined as minimums over admissible paths, as before.

Lemma 0.8. In the notation above,

G(x, y) ≤ G(x, y) ≤ Ḡ(x, y). (0.13)

Proof. Let π be a minimising path for Ḡ(x, y). Then

Ḡ(π) =

n−1∑
i=0

ω(πi)1 ∨ ω(πi)2 ≥
n−1∑
i=0

ω(π(i), π(i+ 1)) = G(π), (0.14)

and in turn G(π) ≥ G(x, y). Similarly for G(x, y).

Let Fi be the distribution function for ω(0)i. Write F̄ , F for the distributions of ω(0)1 ∨ω(0)2
and ω(0)1 ∧ ω(0)2, respectively. These again have finite 2 + ϵ moments.

Lemma 0.9. There exists c (independent of the weight distribution) such that:

1Martin uses T for the passage times in place of G and has weights X(v) rather than ω(e).
2With the same transpositions as before.
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(i) for all z ∈ Z2
+,

E[G(z)] ≥ −c∥z∥
∫ 0

−∞
F (s)1/2 ds. (0.15)

(ii) with probability 1,

lim inf
n→∞

1

n
min

∥z∥1≤n
G(z) ≥ −c

∫ 0

−∞
F (s)1/2 ds. (0.16)

(iii) for all x ∈ R2
+,

2∑
i=1

⟨x, ei⟩E[ω(0)i] ≥ g(x) ≥ −c∥x∥
∫ 0

−∞
F (s)1/2 ds. (0.17)

Proof. The lower bounds all follow from taking negatives in [Mar04, Lemma 3.5] and applying
the statement to the lower vertex passage times G. For the upper bound in (iii) we need only
follow Martin’s calculation. Let π̃ be some path connecting z to the origin. Then

E[G(z)] = E[max
π

∥z∥−1∑
i=0

ω(πi, πi+1)] (0.18)

≤ E[
∥z∥−1∑
i=0

ω(π̃i, π̃i+1)] (0.19)

=
∑

πi+1−π(i)=e1

E[ω(0)1] +
∑

πi+1−π(i)=e2

E[ω(0)2] (0.20)

= ⟨z, e1⟩E[ω(0)1] + ⟨z, e2⟩E[ω(0)2]. (0.21)

Take L ≥ 0 and consider the environment of truncated weights {ω(L)(x)i}, where ω(L)(x)i =
(ω(x)i ∨ (−L)) ∧ L. Let G(L), g(L) be the passage times and limit shape under the truncated
weights. The next lemma quantifies the rate at which g(L) → g as L→ ∞.

Lemma 0.10. For any x ∈ R2
+,

g(L)(x)− c∥x∥
∫ −L

−∞
F (s)1/2 ds ≤ g(x) ≤ g(L)(x) + ∥x∥

∫ ∞

L

1− F̄ (s) ds. (0.22)

In particular, for any R > 0,

sup
x∈R2

+,∥x∥≤R

|g(x)− g(L)(x)| −→
L→∞

0. (0.23)

Proof. The argument is largely identical to [Mar04, Lemma 3.6]. For lower bound, take x ∈ R2
+.
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We have

g(x)− g(L)(x) = lim
n→∞

n−1E[G(⌊nx⌋)]− lim
n→∞

n−1E[G(L)(⌊nx⌋)]

= lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

∑
e∈π

ω(e)− min
π∈Π(0,⌊nx⌋)

]
∑
e∈π

ω(L)(e)

≥ lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

ω(e)− ω(L)(e)]

= lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

(ω(e)− L)+]

≥ −c∥x∥
∫ −L

−∞
F (s)1/2 ds.

The last inequality comes from applying Lemma 0.9.(iii) to the weights {(ω(x)i − L)+}.
We need an auxiliary calculation before the upper bound. For the other side, take z ∈ Z2

+ and

let π∗ be the rightmost geodesic for G(L)(z). One sees that the presence of an edge e ∈ E(Z2
+) in

π∗ is a nonincreasing function of ω(e). The probability that ω(e) is truncated above can only
decrease when we condition on it belonging to π∗:

P(ω(e) ≥ L | e ∈ π∗) ≤ P(ω(e) ≥ L). (0.24)

Conditional on {ω(e) ≥ L}, the event e ∈ π∗ is independent of ω(e) (since under this
conditioning, ω(L)(e) = L is constant). So

E[(ω(e)− L)+ | e ∈ π∗] = E[(ω(e)− L)+ | ω(e) ≥ L]P(ω(e) ≥ L | e ∈ π∗) (0.25)

≤ E[(ω(e)− L)+ | ω(e) ≥ L]P(ω(e) ≥ L) (0.26)

= E[(ω(e)− L)+] (0.27)

≤
∫ ∞

L

1− F̄ (s) ds. (0.28)

Now

E[G(z)] = E[min
π

∑
e∈π

ω(e)] (0.29)

≤ E[min
π

∑
e∈π

ω(L)(e) + (ω(e)− L)+] (0.30)

≤ E[
∑
e∈π∗

ω(L)(e)] + E[
∑
e∈π∗

(ω(e)− L)+] (0.31)

= E[G(L)(z)]−
∑

e∈E(Z2
+)

P(e ∈ π∗)E[(ω(e)− L)+ | e ∈ π∗] (0.32)

≤ E[G(L)(z)] +

∫ ∞

L

1− F̄ (s) ds
∑

e∈E(Z2
+)

P(e ∈ π∗) (0.33)

= E[G(L)(z)] + ∥z∥
∫ ∞

L

1− F̄ (s) ds. (0.34)

Putting z = ⌊nx⌋ and taking the limit, we arrive at the upper bound.

There are two final lemmas establishing uniform convergence of the truncated passage times
and limit shape to the untruncated counterparts.
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Lemma 0.11. Let ϵ > 0 be given. Then there is L large enough such that almost surely, we have
for all but finitely many z ∈ Z2

+ that

|G(z)−G(L)(z)| ≤ ϵ∥z∥. (0.35)

Lemma 0.12. Let ϵ > 0 be given. Then there is L large enough such that almost surely, we have
for all but finitely many z ∈ Z2

+ that

|g(z)− g(L)(z)| ≤ ϵ∥z∥. (0.36)

Of these, Lemma 0.12 is immediate from Lemma 0.10.

Proof of Lemma 0.11. Except for swapping signs and the need to involve F , F̄ due to their
appearance in Lemma 0.9, we can largely follow Martin’s argument unchanged. Choose L so that

c
∫ −L

−∞ F 1/2 ds < ϵ and c
∫∞
L

(1− F̄ )1/2 ds < ϵ.

Take z ∈ Z2
+. There is some path π ∈ Π(z) which is a geodesic under both {ω(e)} and

{ω(L)(e)}:
G(z)−G(L)(z) =

∑
e∈π∗

ω(e)− ω(L)(e). (0.37)

Then we can estimate the difference by

|G(z)−G(L)(z)| ≤
∑
e∈π∗

(ω(e)− L)+ +
∑
e∈π∗

(−L− ω(e))+ (0.38)

≤ − min
π∈Π(z)

∑
e∈π

V (L)(e)− min
π∈Π(z)

∑
e∈π

W (L)(e). (0.39)

Here we set V (L)(e) = −(ω(e)− L)+ and W (L)(e) = −(−L− ω(e))+.

Observe that the {V (L)(e)} and {W (L)(e)} fall under Assumption 0.1. Write F
(L)
V,i for the

distribution of V (L)(0)i, and F
(L)
V for the distribution of V (L)(0)1 ∧ V (L)(0)2. Then F

(L)
V (s) =

1− F̄ (L− s) on s ≤ 0, and F
(L)
V (s) = 1 elsewhere. We apply Lemma 0.9.(ii) to find that almost

surely

lim inf
n→∞

1

n
min

∥z∥1≤n
min

π∈Π(z)

∑
e∈π

V (L)(e) ≥ −c
∫ 0

−∞
F

(L)
V (s)1/2 ds (0.40)

= −c
∫ 0

−∞
(1− F̄ (L− s)1/2 ds (0.41)

= −c
∫ ∞

L

(1− F̄ (s))1/2 ds (0.42)

≥ −ϵ/2. (0.43)

Then there are only finitely many z for which

− min
π∈Π(z)

∑
e∈π

V (L)(e) ≥ ϵ

2
∥z∥. (0.44)
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We can do the same for the {W (L)(e)} to find

lim inf
n→∞

1

n
min

∥z∥1≤n
min

π∈Π(z)

∑
e∈π

W (L)(e) ≥ −c
∫ 0

−∞
F

(L)
W (s)1/2 ds (0.45)

= −c
∫ −L

−∞
F (s)1/2 ds (0.46)

≥ −ϵ/2, (0.47)

so that there are only finitely many z with

− min
π∈Π(z)

∑
e∈π

W (L)(e) ≥ ϵ

2
∥z∥. (0.48)

Looking back now at (0.38), we find that only finitely many z have

|G(z)−G(L)(z)| ≥ ϵ∥z∥. (0.49)

This is what we wanted.

Combining Lemmas 0.7, 0.11 and 0.12 gives Theorem 0.2.

0.2 Generalised Busemann functions

Under Assumption 0.1, the results of [GJR23] apply to give the existence of generalised Busemann
functions. In what follows, let U = {(t, 1− t) : 0 < t < 1} be the set of directions into the first
quadrant, and let U0 be some countable subset (which can be assumed to be dense). Denote by
Tx translations of the environment Tx(ωy) = ωy−x.

Below is essentially a restatement of Theorem 4.4 of [GJR23], but specialised to β = ∞
and the face A ∈ A being the entire limit shape. The m in their statement is a member of a
superdifferential of the limit shape, and here the role is taken by (ζ,±).

Theorem 0.13. There exists a probability space (Ω̂, B̂, P̂) with a measurable projection onto
Ω, and real-valued measurable functions Bξ(ω̂, x, y) of (ω̂, ξ, x, y) ∈ Ω̂ × U0 × Z2 × Z2 and a

translation invariant Borel probability measure P̂ on (Ω̂, B̂), such that the following properties
hold:

(i) (Consistency) Under P̂, the marginal distribution of the configuration ω is i.i.d with the
specified marginals. For each ξ ∈ U0, the R3-valued process {ψξ

x}x∈Z2 defined by

ψξ
x(ω̂) = (ωx, B

ξ(ω̂, x, x+ e1), B
ξ(ω̂, x, x+ e2)) (0.50)

is stationary under translations Tx. For any I ⊆ Z2, the variables{
(ωx, B

ξ(ω̂, x, x+ ei)) : x ∈ I, ξ ∈ U0, i ∈ {1, 2}
}

(0.51)

are independent of {ωx : x ∈ I<}.
(ii) (Adaptedness) For a fixed ξ ∈ U0, the process Bξ = {Bξ(x, y)}x,y∈Z2 is a stationary L1(P̂)

cocycle (in the sense of [GRS16]) that recovers the potential:

min
i∈{1,2}

Bξ(x, x+ ei)− ω(x, x+ ei) = 0. (0.52)
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(iii) (Distinct means) The mean vectors h(ξ) = h(Bξ) defined by

h(ξ) · ei = E[Bξ(0, ei)] (0.53)

satisfy
h(ξ) = ∇gpp(ξ). (0.54)

If h(ξ) = h(ζ) then Bξ(x, y) = Bζ(x, y) a.s.

Remark 0.14. The generalised Busemann functions are related to the underlying environment
only through the adaptedness property. Thus, any proof which takes the above as its starting
point and produces these objects as functions of the environment must use adaptedness in an
essential way. The utility of this property was identified in [GRS16], where it is connected to
maximisers of variational formulas for the limit shape.

The property has been called recovery in the context of vertex-weight LPP[Sep18], referring to
the fact that one can completely recover the weight configuration from the collection of Busemann
functions in a fixed direction. In edge weight LPP we have only this weaker statement: if U0

is dense, then almost surely the weight configuration is determined by the full collection of
generalised Busemann functions.

We are interested in showing that these functions arise as limiting differences of the pas-
sage times, and moreover that they extend to a full-fledged Busemann process indexed by U .
Specifically, for a direction ξ ∈ U and x, y ∈ Z2, we look at limits

Bξ(x, y) = lim
n→∞

G(x, vn)−G(y, vn), (0.55)

where (vn)n∈Z≥0
⊂ Z2 is a sequence of vertices with limiting direction ξ and |vn| → ∞.

This task has been carried out in [JR20] for planar edge weight models. The extension to the
remaining directions relies on the “path crossing trick” to give monotonicity, after which limits
can be taken. The relevant statement for our setup is below.

Lemma 0.15 (Path-crossing trick). Suppose |u|1 = |v|1 and u1 ≤ v1. Then

G(0, u)−G(e1, u) ≤ G(0, v)−G(e1, v) (0.56)

and
G(0, u)−G(e2, u) ≥ G(0, v)−G(e2, v), (0.57)

whenever these passage times are defined.

Proof. We prove (0.56). This holds trivially if u1 = v1, so assume u1 < v1. This implies u2 > v2.
Fix a geodesic connecting e1 to u and 0 to v. The relative positions of u and v ensure that the
geodesic (or any other directed path) connecting e1 to u must cross the geodesic connecting 0 to
v. Let x be the first point of intersection. Passage times are sub-additive, hence

G(0, x) +G(x, u) ≥ G(0, u), G(e1, x) +G(x, v) ≥ G(e1, v). (0.58)

These can be combined and rearranged to give

G(0, u)−G(e1, x)−G(x, u) ≤ G(0, x) +G(x, v)−G(e1, v). (0.59)

That x lies on both geodesics means G(e1, x)+G(x, u) = G(e1, u) and G(0, x)+G(x, v) = G(0, v).
Thus we arrive at

G(0, u)−G(e1, u) ≤ G(0, v)−G(e1, v). (0.60)
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It is then quite transparent from the construction of the generalised Busemann functions in
[GJR23] that we have the following additional property:

Lemma 0.16. There exists an event Ω̂0 with P̂(Ω̂0) = 1 and such that if ξ, ζ ∈ U with ξ ·e1 < ζ ·e1,
then

Bξ(ω̂, x, x+ e1) ≤ Bζ(ω̂, x, x+ e1) (0.61)

and
Bξ(ω̂, x, x+ e2) ≥ Bζ(ω̂, x, x+ e2). (0.62)

It now makes sense to define for ξ ∈ U

Bξ+(ω̂, x, y) = lim
ζ·e1↘ξ·e1

Bζ(ω̂, x, y), (0.63)

Bξ−(ω̂, x, y) = lim
ζ·e1↗ξ·e1

Bζ(ω̂, x, y). (0.64)

The limits are taken through ζ ∈ U0. That these limits exist follows from monotonicity and the
cocycle property.

Finally, we summarise the properties of the collection of these extended generalised Busemann
functions.

Theorem 0.17. Let (Ω̂, B̂, P̂) be as in Theorem 0.13. There are functions Bξ±(ω̂, x, y) of
(ω̂, ξ, x, y) ∈ Ω̂× U × Z2 × Z2, such that the following properties hold:

(i) (Consistency) Under P̂, the marginal distribution of the configuration ω is i.i.d with the
specified marginals. For each ξ ∈ U , the R3-valued process {ψξ±

x }x∈Z2 defined by

ψξ±
x (ω̂) = (ωx, B

ξ±(ω̂, x, x+ e1), B
ξ±(ω̂, x, x+ e2)) (0.65)

is stationary under translations Tx. For any I ⊆ Z2, the variables{
(ωx, B

ξ+(ω̂, x, x+ ei), B
ξ−(ω̂, x, x+ ei)) : x ∈ I, ξ ∈ U0, i ∈ {1, 2}

}
(0.66)

are independent of {ωx : x ∈ I<}.
(ii) (Adaptedness) For a fixed ξ ∈ U , the process Bξ± = {Bξ±(x, y)}x,y∈Z2 is a stationary L1(P̂)

cocycle satisfying
max

i∈{1,2}
Bξ(x, x+ ei)− ω(x, x+ ei) = 0. (0.67)

(iii) There exists an event Ω̂0 with P̂(Ω̂0) = 1 and such that the following hold for all ω̂ ∈ Ω̂0,
x, y ∈ Z2 and ξ, ζ ∈ U .

(a) (Monotonicity) If ξ · e1 < ζ · e1, then

Bξ−(ω̂, x, x+ e1) ≤ Bξ+(ω̂, x, x+ e1) ≤ Bζ−(ω̂, x, x+ e1) (0.68)

and
Bξ−(ω̂, x, x+ e2) ≥ Bξ+(ω̂, x, x+ e2) ≥ Bζ−(ω̂, x, x+ e2). (0.69)

(b) (One-sided continuity) If ξn · e1 ↘ ζn · e1, then

lim
n→∞

Bξn±(ω̂, x, y) = Bζ+(ω̂, x, y). (0.70)

Similarly, if ξn · e1 ↗ ζn · e1, then

lim
n→∞

Bξn±(ω̂, x, y) = Bζ−(ω̂, x, y). (0.71)
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(iv) (Distinct means) The mean vectors h(ξ±) = h(Bξ±) defined by

h(ξ±) · ei = E[Bξ±(0, ei)] (0.72)

satisfy
h(ξ±) = ∇gpp(ξ±). (0.73)

If h(ξ+) = h(ζ−) then Bξ+(x, y) = Bζ−(x, y) a.s. Similarly for h(ξ+) = h(ζ+) and
h(ξ−) = h(ζ−).

0.3 As gradients of passage times

It remains to see that these objects are genuine Busemann functions given by the limits of (0.55).
We will go through the lemmas of Section 6 in [GRS17], noting where the details differ. To that
end, fix a v ∈ Z2 and for x ≤ v − e1, y ≤ v − e2, define increments

I(x, v) = G(x, v)−G(x+ e1, v) (0.74)

and J(y, v) = G(y, v)−G(y + e2, v). (0.75)

The path crossing trick applies to give relations:

Lemma 0.18.

I(x, v + e2) ≤ I(x, v) ≤ I(x, v + e1) (0.76)

and J(x, v + e2) ≥ J(x, v) ≥ J(x, v + e1). (0.77)

The next lemma links the Busemann functions to limiting directions of the LPP, but requires
quite a bit of notation. Recalling that gpp is the limit shape of our model, set γ(s) = gpp(1, s).
Note that gpp won’t in general be symmetric. The convexity of gpp ensures the existence of
one-sided derivatives for γ. Fix ζ ∈ U and a cocycle B = Bζ±. Take the (inverse) slope
r = ζ · e1/ζ · e2, so that α = γ′(r±) (the same choice of sign as for B) satisfies

α = Ê[B(0, e1)]. (0.78)

This is Theorem 0.17.(iv). Define f(α) by

f(α) = Ê[B(0, e2)]. (0.79)

Fix for the moment some v ∈ Z2 and define, for u ≤ v,

GNE(u, v) =

{
B(u, v), v − u = kei, k ∈ Z+, i ∈ {1, 2}
(ω(u, u+ e1) +GNE(u+ e1, v)) ∧ (ω(u, u+ ew) +GNE(u+ ew, v)), otherwise.

(0.80)

These are the passage times with the generalised Busemann functions as initial conditions along
the northeast boundary.

Write GNE
v−ei∈π(0, v) for the minimal passage time among paths which reach v through the

edge {v − ei, v} (where we use in the definition the corresponding weights for GNE, which can be
recovered uniquely from the definition above).
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Lemma 0.19. Fix 0 < s, t < ∞. Let vn ∈ Z2 be such that vn/|vn|1 → (s, t)/(s+ t) as n → ∞
and such that |vn| ≥ η0n for some η0 > 0. Then the following limits hold almost surely:

|vn|−1
1 GNE

vn−e1∈π(0, vn) −→
n→∞

(s+ t)−1 max
0≤τ≤s

{gpp(s− τ, t) + ατ} (0.81)

and
|vn|−1

1 GNE
vn−e2∈π(0, vn) −→

n→∞
(s+ t)−1 min

0≤τ≤s
{gpp(s, t− τ) + f(α)τ}. (0.82)

Proof. The proof can be carried out as in [GRS17] after minor modifications to the estimates. The
symmetry of the setup means that it is enough to look at the e1-axis. Fix ϵ > 0, let M = ⌊ϵ−1⌋,
and define steps

qnj = j

⌊
ϵ|vn|1s
s+ t

⌋
, for 0 ≤ j ≤M − 1, and qnM = vn · e1. (0.83)

Notice that for n large we have qnM−1 < vn · e1 = qnM .
Suppose a minimal path for GNE

v−e1∈π(0, v) enters the north boundary at the point vn − (l, 0)
and choose j so that qnj < l ≤ qnj+1 . Write m0 = E[ω1(x)]. We have a bound

GNE
v−e1∈π(0, v) = G(0, vn − (l, 1)) + ω2(vn − (l, 1)) +B(vn − (l, 1), vn) (0.84)

≥ G(0, vn − (qnj , 1)) + qnj α+ ω2(vn − (l, 1)) +

l∑
k=qnj +1

(ω1(vn − (k, 1))−m0)

+ (l − 1− qnj )m0 + (B(vn − (l, 1), vn)− lα) + (l − qnj )α.

(0.85)

Proceeding in the same way, define F (x, y) = h(B) · (x− y)−B(x, y), which has

B(vn − (l, 0), vn)− lα = F (0, vn − (l, α))− F (0, vn). (0.86)

Here the adaptedness property is 0 = (B(0, e1)−ω1(0))∨ (B(0, e2)−ω2(0)). The resulting bound
on the centred co-cycle is

F (0, ei) ≤ α ∧ f(α)− ω1(0) ∨ ω2(0). (0.87)

By Assumption 0.1, the variables {ω1(x) ∨ ω2(x)}x∈Z2 are i.i.d with 2 + ϵ moments, and so

[GRS17, Theorem A.1] applies to F . Writing Sn
j,m =

∑qnj +m

l=qnj +1(ω1(vn − (k, 1))−m0) and C for

some constant, then maximising over j in our bound above,

GNE
v−e1∈π(0, v) ≥ max

0≤j≤M−1

{
G(0, vn − (qnj , 1)) + qnj α+ max

qnj ≤l≤qnj+1

|ω2(vn − (l, 1))|+ max
0≤m≤qnj+1−qnj

|Sn
j,m+1|

+ max
qnj ≤l≤qnj+1

(|F (0, vn − (l, 0))|+ |F (0, vn)|)

}
.

(0.88)
Divide through by |vn|1 and let n → ∞. Each of these terms converges as in [GRS17], except
that we have an additional term

|vn|−1
1 max

0≤l≤vn·e1
|ω2(vn − (l, 1))|. (0.89)
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But the finite variance of the weights is enough to ensure that this term too goes to zero almost
surely. This gives the upper bound

lim sup
n→∞

|vn|−1
1 GNE

vn−e1∈π(0, vn) ≥ (s+ t)−1 max
0≤τ≤s

{gpp(s− τ, t) + ατ} (0.90)

The argument for the upper bound is completely identical to the one in [GRS17] (after swapping
signs).

Lemma 0.20. Let s ∈ (r,∞). Let vn ∈ Z2 be such that vn/|vn|1 → (s, t)/(s+ t) as n→ ∞ and

such that |vn| ≥ η0n for some η0 > 0. Assume that γ′(r+) > γ′(s−). Then P̂- a.s there exists a
random n0 <∞ such that for all n ≥ n0

GNE(0, vn) = GNE
vn−e1∈π(0, vn). (0.91)

The proof in [GRS17] makes no mention of the weights and goes through word-for-word, so
we skip it.

There are some final definitions before the theorem. Write

D = {ξ ∈ U : gpp is differentiable at ξ}. (0.92)

For a direction ξ ∈ U , consider the maximal line segments of gpp to which ξ belongs:

Uξ± = {ζ ∈ U : gpp(ζ)− gpp(ξ) = ∇gpp(ξ±) · (ζ − ξ)}. (0.93)

Let
Uζ = Uξ− ∪ Uξ+ = [ξ, ξ], where ξ · e1 ≤ ξ · e1. (0.94)

Theorem 0.21. Fix a possibly degenerate segment [ζ, η] ⊆ U . Assume that either [ζ, η] consists
of a single exposed point ξ such that ξ = ξ = ξ = ζ = η, or that [ζ, η] is a maximal, non-degenerate

linear segment of gpp so that [ζ, η] = [ξ, ξ] for all ξ ∈ (ζ, η). Then there exists an event Ω̂0 with

P̂(Ω̂0) = 1 such that for each ω̂ ∈ Ω̂0 and for any sequence vn ∈ Z2
+ with

|vn|1 → ∞ and ζ · e1 ≤ lim inf
n→∞

vn · e1
|vn|1

≤ lim sup
n→∞

vn · e1
|vn|1

≤ η · e1, (0.95)

we have for all x ∈ Z2
+

Bζ−(ω̂, x, x+ e1) ≤ lim inf
n→∞

(G(ω, x, vn)−G(ω, x+ e1, vn)) (0.96)

≤ lim sup
n→∞

(G(ω, x, vn)−G(ω, x+ e1, vn)) ≥ Bη−(ω̂, x, x+ e1) (0.97)

and

Bη+(ω̂, x, x+ e2) ≤ lim inf
n→∞

(G(ω, x, vn)−G(ω, x+ e2, vn)) (0.98)

≤ lim sup
n→∞

(G(ω, x, vn)−G(ω, x+ e2, vn)) ≤ Bζ−(ω̂, x, x+ e2). (0.99)

After the appropriate redefinition of the GN passage times, the proof is identical. Finally, we
arrive at
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Corollary 0.22. Assume ξ, ξ, ξ ∈ D. Then there exists an event Ω̂0 with P̂(Ω̂0) = 1 such that

for each ω̂ ∈ Ω̂0, x, y ∈ Z2
+, and for any sequence vn ∈ Z2

+ with

|vn|1 → ∞ and ξ · e1 ≤ lim inf
n→∞

vn · e1
|vn|1

≤ lim sup
n→∞

vn · e1
|vn|1

≤ ξ · e1, (0.100)

we have
Bξ(ω̂, x, x+ e1) = lim

n→∞
(G(ω, x, vn)−G(ω, y, vn)). (0.101)

The corollary shows in particular that when the limit shape is differentiable, the Busemann
process is a function of the weights and so is B-measurable.
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