Two Cute Results in Directed FPP

Sam McKeown

University of Wisconsin-Madison

Seminar on Stochastic Processes 2025 Indiana University, Bloomington 21 March 2025

Definitions

First passage percolation (FPP) is a natural way to define a random (psuedo-)metric on \mathbb{Z}^d :

- ▶ Independent weights on edges $\omega(e)$,
- Weight of path is sum of weights on edges $L(\pi) = \sum_{e \in \pi} \omega(e)$,
- Distance between vertices is the minimum over paths $L(x, y) = \min_{\pi: x \sim y} L(\pi)$.

Many basic questions still open, such as: what do the balls in this metric look like? (We won't answer this.)

In general, "more restricted paths" \approx "more tractable". We look at directed FPP.

Clustering of highways

Consider the tree of geodesics from the origin. At least some go off to ∞ – these are *highways*. An old problem is to describe the density of the highways. Settled for expected density but almost sure is harder.

Put i.i.d Exp(1) weights on horizontal edges and 0 on verticals. This model is solvable - explicit expressions for many quantities of interest.

Theorem

Let $A_k(n)$ be the proportion of highways in $[k-1,k] \times [0,n]$. Then

$$\liminf_{n\to\infty} \frac{A_k(n)}{n} = 0, \ \limsup_{n\to\infty} \frac{A_k(n)}{n} = 1 \ \text{a.s.}$$

SJR limit shape decomposition

Balls in FPP converge a deterministic *limit shape*, the level sets of the *time constant*:

$$\lim_{n\to\infty}L(0,(nx,ny))=f(x,y) \text{ a.s.}$$

The limiting ball is $B = \{f(x, y) \le 1\}$.

In the SJR model each vertex has at most one non-zero weight on the edges coming *into* it.

Theorem

Let f_1 be the time constant for the model with the same horizontal weights but zero vertical weights, and B_1 the corresponding ball (and f_2 , B_2 the same but with vertical weights). Then

$$B=B_1\cap B_2$$
.