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Set-up
Consider a long train line where fares between stations are priced
dynamically, varying by day. Let

Fk,t = Fare for stationk → stationk+1 on day t.

Assume Fk,t ∼ λ are i.i.d.

Suppose we know all of the
prices in advance. We’re
interested in the quantity

L(z , d) = min
0≤t1≤···≤ts≤d

s∑
k=1

Fk,tk ,

which is the optimal price to get
to station z in at most d days.
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As an FPP problem
This is secretly a variant of directed first passage percolation:

π
L(x, y) =
minπ

∑
e∈π WeL(z, d) =

min
π:0↗(z,d)

∑
e∈π

Fe

Stations
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s

Fe

(z, d)

The existence of a deterministic time constant, how much we can
expect to pay for each fare on the optimal route, is well known:

L(nz , nd) = nℓ(z , d) + o(n) as n → ∞.
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Many-station regime

In general we can’t say much about ℓ(z , d), but two limiting
regimes are tractable. Bodineau and Martin [Martin 2004; Bodineau
and Martin 2005] found the leading terms of ℓ and Tracy-Widom
fluctuations in the many-station regime:

Theorem
When d is small,

ℓ(z , d) = z(µ − 2σ
√

d) + o(
√

d),

and for 0 < α < 3/7,

L(n, nα) − nλ + 2σn(1+α)/2

σn1/2−α/6 ⇒ TWGUE .

Their proof of the latter goes through a Gaussian approximation
and uses the KMT embedding.



Many-day regime

The many-days regime is also interesting and depends on the
shape of λ near its minimum. Assume:
▶ min supp λ = 0,
▶ λ has a density f near 0, that f (0) = 1, and that f is

Lipschitz on a small interval [0, ϵ).
For example, λ = Unif[0, 1] or λ = Exp(1).

Theorem
When z is small,

ℓ(z , d) = z2

4d + o(z2),

and for 0 ≤ α < 3/5,

L(nα, n) − n2α−1/4
cn4α/3−1 ⇒ TWGUE .
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The integrable scaling limit
It’s easy to check that

n
(

min
0≤t≤n

F0,t

)
⇒ Exp(1).

This extends to a continuous time process level limit
{nL(z , ⌊nt⌋)} ⇒ {M(z , t)},

where M(z , t) is defined in terms of homogeneous Poisson
processes.

Namely, for each z let Xz be an
intensity 1 PPP on R × [0, ∞),
and let

Uz(a, b) = Bottom(Xz∩[a, b)×R).

Then define

M(z , t) = min
0≤t1≤···≤tz ≤d

z∑
k=1

Uz(tk−1, tk). a b

Uz(a, b)

Xz
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RMT inputs
This M(z , t) is scale invariant with M(z , at) d= a−1M(z , t) and has
RMT marginals:

P(M(z , 1) ≥ x/4) = det(I − K (z) |L2(0,x)),

where K (z) is the Bessel kernel with parameter z . This follows
from the results of [Draief, Mairesse, and O’Connell 2005; Forrester 1993].

Let m(z , t) be the time constant here. We can borrow RMT
results to get:
Proposition
For all z ≥ 0,

m(z , t) = z2

4t
and

L(n, n) − n/4
cn1/3 ⇒ TWGUE .

The line ensemble, Busemann process, etc. associated to
{M(z , t)} have nice descriptions.
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Control of the geodesics
We prove the near-edge results for our train problem by producing
a strong coupling to the M process which works well on thin
rectangles [nα] × [n], 0 ≤ α < 3/5.

Near-geodesic in the rescaled
integrable environment

Geodesic in original
environment

nα

n

Actually, if α < 1/5, we get control of
the optimal paths: with high probability
they stay close to geodesics of the
coupled M.

We should be able to leverage this to
get the correct order of transversal
fluctuations, and perhaps the Directed
Landscape limit, once these are known
for M.
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Thanks for listening!
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