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Set-up
Consider a long train line where fares between stations are priced
dynamically, varying by day. Let

Fi.+ = Fare for station, — stations,; on day t.

Assume Fy; ~ A are i.i.d.
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Suppose we know all of the
prices in advance. We're
interested in the quantity

S

L(z,d) = Ogtlgmjgtsgdkzﬂ Fit,
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which is the optimal price to get
to station z in at most d days.
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As an FPP problem

This is secretly a variant of directed first passage percolation:
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The existence of a deterministic time constant, how much we can
expect to pay for each fare on the optimal route, is well known:

L(nz,nd) = né(z,d) + o(n) as n — oo.



As an IPS

There's also a mapping to the following system (which | won't
explain here):
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As an IPS

There's also a mapping to the following system (which | won't
explain here):
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Many-station regime

In general we can't say much about ¢(z, d), but two limiting
regimes are tractable. Bodineau and Martin [Martin 2004; Bodineau
and Martin 2005] found the leading terms of £ and Tracy-Widom
fluctuations in the many-station regime:

Theorem
When d is small,

Uz,d) = z(u — 20Vd) + o(Vd),
and for 0 < o < 3/7,

L(n, n®) — nu 4 20n(+e)/2
onl/2—a/6

= TWGUE~

Their proof of the latter goes through a Gaussian approximation
and uses the KMT embedding.



Many-day regime

The many-days regime is also interesting and depends on the
shape of A near its minimum. To state things more easily, suppose
A = Unif[0, 1]

Theorem

When z is small, )

Uz,d) = - +o(2),

and for 0 < o < 3/5,

L(n®, n) —n?>*"1/4
cnta/3-1

= TWGUE‘

1Or any distribution with minsupp A = 0, a density f near 0, with f(0) = 1
and f Lipschitz on a small interval [0, €)



The integrable scaling limit
It's easy to check that

n-| min F = Exp(1).
(O<t<n O’t> p(1)
This extends to a continuous time process level limit

{nL(z, [nt])} = {M(z, t)},
where M(z, t) is defined in terms of homogeneous Poisson
processes.
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Namely, for each z let X, be an

intensity 1 PPP on R x [0, c0), o X.
and let e
U;(a, b) = Bottom(X;N[a, b) XR). e i, .
Then define *: ¢ ¢
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RMT inputs
This M(z, t) is scale invariant with M(z, at) < a~1M(z, t) and has
RMT marginals:
P(M(z,1) > x/4) = det(l = K& | 20,4)),

where K@) is the Bessel kernel with parameter z. This follows
from the results of [Draief, Mairesse, and O’Connell 2005; Forrester 1993].
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This M(z, t) is scale invariant with M(z, at)
RMT marginals:

P(M(z,1) = x/4) = det(l = K& | 2(0.1));

2 271M(z, t) and has

where K@) is the Bessel kernel with parameter z. This follows
from the results of [Draief, Mairesse, and O’Connell 2005; Forrester 1993].
Let m(z,t) be the time constant here. We can borrow RMT
results to get:

Proposition
For all z > 0,
22
t) = —
m(z, 1) = =
and . A
7(’1’ n) _ n/ = TWGUE-
Cn1/3

The line ensemble, Busemann process, etc. associated to
{M(z, t)} have nice descriptions.



Control of the geodesics

We prove the near-edge results for our train problem by producing
a strong coupling to the M process which works well on thin
rectangles [n®] x [n], 0 < a < 3/5.
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Geodesic in original
environment

Actually, if & < 1/5, we get control of
the optimal paths: with high probability
they stay close to geodesics of the
coupled M.

Neargededc in the realed - \We should be able to leverage this to

get the correct order of transversal
fluctuations, and perhaps the Directed
Landscape limit, once these are known
n® for M.




Thanks for listening!
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