# Solvability in a restricted first passage percolation

Sam McKeown

University of Wisconsin-Madison

Short Talk Cornell Probability Summer School, July 2024

## Strict-weak first passage percolation

Strict-weak first passage percolation (SWFPP) is an FPP model where we consider only directed paths and fix edge weights in one direction to be zero.

On the plane, let  $(\omega_x)_{x\in\mathbb{Z}^2}$  be i.i.d weights. If  $x,y\in\mathbb{Z}^2$ ,  $x\geq y$ , and  $\pi$  is an up-right path  $x\to y$ , define the weight of the path as

$$G(\pi) = \sum_{z \in \pi} \omega_z \mathbb{1}\{\pi \text{ has horizontal edge at } z\}.$$

The SWFPP passage time between x and y is the minimum weight over such  $\pi$  and is denoted G(x,y). Minimising paths are called geodesics.

### Explicit limit shapes

The passage times in these models obey a law of large numbers. For a fixed direction  $(x, y) \in (\mathbb{R}^{\geq 0})^2$ :

$$\lim_{n\to\infty}\frac{G(0,(\lfloor nx\rfloor,\lfloor ny\rfloor))}{n}=g(x,y) \text{ a.s.}$$

This g(x, y) is called the *time constant*. The level sets are called the *limit shape*.

For certain distributions we have explicit formulas. The simplest is  $\omega_x \sim \operatorname{Exp}(1)$ , where

$$g(x,y) = (\sqrt{x+y} - \sqrt{y})^2.$$

We call these special choices solvable.

### Coalescence of geodesics



Geodesics tend to overlap for much of their run. Geodesics join *highways* going in their direction, then exit near their destination.

### Geodesic trees





We can study the highway phenomenon through the graph of geodesics with a fixed start point. When the weight distribution is continuous, this is a tree.

We are interested in the (semi-)infinite geodesics.

### Busemann functions

The main tool in answering these questions is the *Busemann* process, the collection of (random) limits

$$B^{\xi}(x,y) = \lim_{n \to \infty} G(y,v_n) - G(x,v_n),$$

where  $(v_n)_{n\in\mathbb{N}}$  is a sequence of vertices with  $\lim_n v_n/|v_n|$  parallel to  $(1,\xi)$ .

With the Busemann process in hand, one can produce infinite geodesics with arbitrary starting point and direction.

### Busemann functions for SWFPP

The same techniques used in LPP can be adapted to SWFPP. A key input is the existance of "generalised Busemann functions" established by Groathouse-Janjigian-Rassoul-Agha '23. There are immediate consequences for the existance of infinite geodesics.

#### **Theorem**

Suppose  $\mathbb{E}[|\omega|^{2+\epsilon}] < \infty$  and let  $\mathscr{D}$  be the set of directions at which the limit shape is strictly convex. Then almost surely, there is for each  $\xi \in \mathscr{D}$  at least one  $\xi$ -directed infinite geodesic starting at 0.

In the solvable models, Busemann functions along a line are *independent*. Computations become tractable.

## Highways and byways

The highways and byways problem asks about the density of highways among the lattice points.

Let  $S_x$  be the event that x lies on an infinite geodesic beginning at the origin. It has been shown for FPP (Ahlberg-Hanson-Hoffman '22) and (under more restrictive assumptions) for LPP (Coupier '15) that

$$\lim_{x\to\infty}\mathbb{P}(S_x)=0.$$

As a consequence, the lower density of the set of highways is 0 almost surely.

# Highways near the axis (1)

The Busemann functions in the exponential model have exponential marginals, so we can easily compute:

$$\mathbb{P}(\mathsf{The\ path\ }(0,0)\to(0,n)\to(1,n)\ \mathsf{is\ part\ of\ an\ infinite\ geodesic})\\ \geq \frac{e^{-1}+o(1)}{n+1}.$$

The above path is already a geodesic with probability 1/(n+1), of the same order.

# Highways near the axis (2)

#### Lemma

Under exponential weights we have  $\mathbb{P}(S_{(1,n)}) \geq c$ , for some c > 0 uniform in n.

Fix 
$$k \ge 1$$
 and rectangles  $A_n = [1, k] \times [1, n]$ . Write  $D(A) = |A|^{-1} \sum_{x \in A} \mathbb{1}_{S_x}$ .

#### **Theorem**

Under exponential weights, we have almost surely that  $\liminf_{n\to\infty} D(A_n) = 0$  and with positive probability that  $\limsup_{n\to\infty} D(A_n) > 0$ .

In particular, with positive probability the set of highways fails to have a natural density with respect to the  $A_n$ .