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Abstract

We consider the Busemann process in planar directed first passage percolation. We extend
existing techniques to establish the existence of the process in our setting and determine
its distribution in a number of integrable models. As examples of their utility, we show
how these explicit distributions may be used to quantify the semi-infinite geodesics passing
through thin rectangles, and the clustering phenomenon observed in competition interface
angles. There is a natural connection with various particle systems, and in particular we
obtain the multi-class invariant distributions for discrete-time TASEP with parallel updates.
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1 Introduction

First passage percolation (FPP) is a natural model of a random metric on a graph, which assigns
distances, or passage times, between vertices as the minimal sum of weights along paths connecting
those points. We will restrict ourselves to the graph Z2. One tool in understanding the long
geodesics (minimising paths), and thus the large scale behaviour of the model, is the Busemann
process. Writing L(x, y) for the (random) passage time between vertices x, y ∈ Z2, this is the
collection of (random) limits

Bξ(x, y) = lim
v→ξ·∞

L(x, v)− L(y, v), (1.1)

where by v → ξ · ∞ we mean that |v| → ∞ and v/|v| → ξ ∈ R2. Such limits were introduced by
Newman [New95] and the program continued in [LN96; Hof08], wherein they were used to study
the large-scale geometry of FPP and derive many properties of (semi-)infinite geodesic rays, such
as their existence and limiting directions, under certain unproved assumptions.

The full, unconditional existence of the limits in (1.1) is available only under a directedness
assumption on the geodesics and was proven in the case of last passage percolation (LPP) in
[GRS17b]. So-called “generalised Busemann functions” have been shown to exist in broad
generality by [GJR23], serving much the same purpose as the Busemann process and in particular
giving the existence of geodesic rays in fixed directions. Their construction as weak limits, however,
makes questions such as ergodicity much harder, despite being immediate when we start with the
representation in (1.1).

Apart from trying to understand the general picture, it is possible also to pin down the exact
distribution of the Busemann process in a handful of solvable (or integrable) models, which has
yielded a much finer picture of their geometry. In particular, the distribution of the process has
been done for exponential LPP in [FS20] and for the inverse-gamma directed polymer — its
positive temperature relative — in [BFS25]. This understanding has also been extended, not
without technical difficulty, to their various scaling limits. See [SS23; Bus24a; BSS24; Gro+25].

We give the existence of the Busemann limits in the same terms as [GRS17b], but in the
context of a more flexible edge-weight FPP. We then determine their joint distributions for certain
models with Bernoulli-exponential and Bernoulli-geometric weights, of the type considered in
[Mar09; MP10]. Our description relies, as does much prior work, on variations of the multi-line
process developed by Ferrari and Martin in their influential series of papers [FM07; FM06; FM09].

We give an application to the highways and byways problem of Hammersley and Welsh [HW65].
This is the problem of determining the limiting expected density of semi-infinite geodesics
within the tree of geodesics, and has been resolved in its original formulation by [AHH22], then
quantitatively in [DEP24]. We give what appears to be the first almost sure result in this direction,
albeit under very specific assumptions on the weights and the subsets through which we take the
limit.

Finally, we find the asymptotic density of the convoys of our model. We must defer the
definitions until after we have properly introduced the model, but readers may be familiar with
the phenomenon by the same name which has been observed in TASEP. See [AAV11].
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2 Definitions and main results

2.1 The model

Our setting throughout is the integer lattice Z2. Write e1 for the horizontal edge emanating from
the origin, or interchangeably as the point (1, 0), and similarly for e2 = (0, 1). For each pair
x ≤ y ∈ Z2 (where (x1, x2) ≤ (y1, y2) if x1 ≤ y1 and x2 ≤ y2), let Π(x, y) be the set of directed
nearest neighbour paths connecting x to y. A path π ∈ Π(x, y) is represented by a sequence
of vertices x = π0 ≤ π1 · · · ≤ πn = y, where πi − πi−1 ∈ {e1, e2}, 1 ≤ i ≤ n. To lighten the
notational load we also consider π to consist of the edges (πi−1, πi).

The random environment consists of weights {W (e)}e∈E(Z2) living on the edges of the lattice.
These weights are used to assign to each path π ∈ Π(x, y) a passage time L(π), by summing the
weights along the edges taken:

L(π) =
∑
e∈π

W (e). (2.1)

The minimal passage time among Π(x, y) is the point-to-point passage time L(x, y), and the
path attaining this minimal passage time is called a geodesic. Observe that when the weight
distribution is continuous, the geodesic is almost surely unique.

Overloading notation to write 0 ∈ Z2 for the origin, we will abbreviate Π(x) = Π(0, x) and
L(x) = L(0, x). Also abbreviate W ((x− ei, x)) = Wi(x). Write λ be the joint distribution of
(W (0; 1),W (0; 2)) and λi for the marginal of W (0; i). The following blanket assumption will be
implicit in the sequel.

Assumption 2.1. Assume that the pairs {(W (x; 1),W (x; 2))}x∈Z2 are i.i.d with non-trivial
distribution, and that E|W (0; i)|2+ϵ < ∞ for i ∈ {1, 2} and some ϵ > 0. Assume also that
(0, 0) ∈ supp(λ).

Remark 2.2. Insisting that (0, 0) lie in the support of our weights is no restriction in the directed
setting. A directed path connecting x to y has exactly ⟨y− x, e1⟩ horizontal edges and ⟨y− x, e2⟩
vertical edges. Shifting the distribution of the weights by a constant affects the passage times by
a linear shift and is of no consequence.

Those specialisations of the model for which there is only one random weight per vertex
often admit a queueing or interacting particle representation. Taking W (x; 1) = W (x; 2) gives
vertex-weight FPP (or the familiar LPP, after swapping signs), with its well-known correspondence
to the G/G/1 queue and to TASEP (see for example [DMO05]). If we take instead W (x; 2) = 0
and insist that the remaining horizontal edges are non-negative, then we call the model strict-weak
first passage percolation (SWFPP). SWFPP with Bernoulli weights model has been studied under
the name of the Seppäläinen-Johansen model.

SWFPP can be seen a degenerate case of what we will call the Seppäläinen-Johansen-Ransford
(SJR) model, introduced in [Ran24b]. Here we associate to each vertex x an i.i.d Bernoulli

switching variable S(x), and set W (x; 1) = S(x)W̃ (x; 1), W (x; 2) = (1− Sx)S(x)W̃ (x; 2). Here

(S(x)W̃ (x; 1), S(x)W̃ (x; 2)) are weights satisfying Assumption 2.1. The SJR model may be seen
as a random directed metric on a tree of coalescing random walks, in the sense described in
[VV23].

We mention an undirected relative of SWFPP, where vertical edges are given a shared constant
weight and horizontal weights remain random. This model was introduced in [Has25] and we will
refer to results on the limit shape established for this model.
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2.1.1 The store model

A useful perspective in analysing SWFPP is that of a discrete-time queuing model. So as to
avoid confusion with the better known G/G/1 queue, we will follow [DMO05] and hereafter call
it the store model. In this model, we consider a tandem of Z-indexed storage bins and let (Yi)i∈Z
denote the (nonnegative) amounts of material in bin i. Given a sequence of nonnegative service
amounts (Wi)i∈Z, we update the store, producing new quantities (Y ′

i )i∈Z by setting

Y ′
i = (Yi −Wi)

+ + (Yi−1 ∧Wi−1). (2.2)

This amounts to removing up to Wi from bin i, simultaneously for all i. Then the removed
amount is transferred to the bin to the right. The amount removed, Yi ∧Wi, is the output of bin
i and the input into bin i+ 1.

As well as the post-input store amounts (Yi), we may also look at pre-input store amounts
(Xi), and the store outputs (Ii). We define three maps capturing the evolution of these quantities:

� The map A(Y,W ) takes a sequence of post-input amounts for the bins Y , reduces these
amounts simultaneously with service W , and adds the amount removed from each bin into
the next bin. If Yk is the initial amount in bin k before service, then Yk ∧Wk is removed,
then Yk−1 ∧Wk−1 is added.

� The map V (X,W ) takes a sequence of pre-input quantities X, adds the output from the
previous bin in the tandem, and then applies service W . If Xk is the initial amount in
bin k before input, then the output from bin k − 1, call it Ik, is added to Xk, and the bin
outputs Ik+1 = (Xk + Ik−1) ∧Wk.

� The map H(I,W ) takes a sequence of inputs I into a particular bin and a sequence of
services W for that bin, and gives the corresponding sequence of outputs. Unlike the other
two maps, whose arguments are indexed by the bins, this map looks at a single bin and has
arguments indexed by time. If Xk is the amount initially in the bin at time k, then we add
Ik and remove (Ik +Xk) ∧Wk.

The rationale for the naming is that A, V , and H will capture the evolution of the Busemann
functions along antidiagonal, vertical, and horizontal lines, respectively.

A more thorough picture of this model can be found in either [DMO05] or [Mar09]. The
precise definitions of these maps and particle system interpretations will be given in Section 3.1.

2.1.2 The limit shape

We call a function l : R2
≥0 → R the time constant, or sometimes by conflating it with its level

sets, the limit shape, if we have

ℓ(s, t) = lim
n→∞

L(⌊ns⌋, ⌊nt⌋)
n

a.s. (2.3)

Such limit shapes exist under much weaker assumptions than we take here. The now classical
Cox-Durrett theorem remains the best we can say in total generality.

Theorem 2.3 (Cox-Durrett [CD81]). There exists a deterministic, convex function ℓ : R2
≥0 → R

such that for each (x1, x2) ∈ R2
≥0,

lim
n→∞

n−1L(⌊nx1⌋, ⌊nx2⌋) = ℓ(x1, x2), (2.4)

almost surely and in L1. Moreover, almost surely the limit of (2.4) holds simultaneously for all
(x1, x2) ∈ R2

≥0.

We once again abbreviate ℓ(0, x) = ℓ(x).
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2.2 Existence of the Busemann process

Our first set of results extend those of [GRS17b] to our setting. Their argument makes use of
a stronger convergence to the limit shape than guaranteed by Theorem 2.3, namely a uniform
convergence across all directions which was proved by Martin in [Mar04] for vertex-weight last
passage. It may be of independent interest to note that such convergence holds in out set up too.

Theorem 2.4. The limit shape ℓ is continuous on R2
≥0, and almost surely,

lim
n→0

1

n
max

x∈Z2
+,|x|=n

|L(x)− ℓ(x)| = 0. (2.5)

In fact, Martin’s results go further in the planar case to give universal asymptotics for the
limit shape near the axis [Mar04, Theorem 2.4]. An extension of his argument yields the same
asymptotics for edge weights (or indeed on the directed triangular lattice), albeit with a subtlety
when weights is one direction are taken to be constant. Such a discussion would lead us too far
astray, however.

The theorem below summarises our knowledge of the Busemann process when ℓ is assumed
to be differentiable and strictly convex. This remains unproven in any level of generality, but
can be directly verified for the models we treat in the remainder of the paper, where explicit
representations exist. The most general statement (and the attendant notation) are given in
Appendix B.

In the following, U = {(t, 1− t) : t ∈ [0, 1]} is the set of directions into the first quadrant. Let

Θz : RZ2 → RZ2

be the shift of the environment by z ∈ Z2. That is, Θz(W (x)) =W (x− z).

Theorem 2.5. With probability 1, there is a (random) subset U0 ⊆ U with countable complement,
such that for all ξ ∈ U0, the limits

Bξ(x, y) = lim
vn→ξ·∞

L(x, vn)− L(y, vn) (2.6)

exist for all x, y ∈ Z2, where (vn) ⊆ Z2 is a sequence with ∥vn∥ → ∞ and vn/∥vn∥ → ξ. Moreover,
for all ξ ∈ U , the limits

Bξ+(x, y) = lim
ζ→ξ+

ζ∈U0

Bζ(x, y), Bξ−(x, y) = lim
ζ→ξ−

ζ∈U0

Bζ(x, y) (2.7)

exist.
Let x, y, z ∈ Z2 be arbitrary vertices. The random functions Bξ±(x, y) satisfy the following

properties:

(i) (Cocycle) We have the identity

Bξ±(x, y) = Bξ±(x, z) +Bξ±(z, y). (2.8)

(ii) (Ergodicity) The R3-valued process {ψξ±
x }x∈Z2,ξ∈U defined by

ψξ±
x = (W (x), Bξ±(x, x+ e1), B

ξ±(x, x+ e2)) (2.9)

is stationary under translations Θz, and moreover is jointly ergodic under these translations.

(iii) (Measurability) The values Bξ+(x, y), Bξ−(x, y) are measurable with respect to {W (z) : z ≥
x or z ≥ y}, and hence independent of all other weights.
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(iv) (Adaptedness) We have

max
i∈{1,2}

(
Bξ±(x, x+ ei)− ω(x, x+ ei)

)
= 0. (2.10)

(v) (Monotonicity) If ξ · e1 < ζ · e1, then

Bξ−(x, x+ e1) ≤ Bξ+(x, x+ e1) ≤ Bζ−(x, x+ e1) (2.11)

and
Bξ−(x, x+ e2) ≥ Bξ+(x, x+ e2) ≥ Bζ−(x, x+ e2). (2.12)

(vi) (One-sided continuity) If ζn · e1 ↘ ξ · e1, then

lim
n→∞

Bζn±(x, y) = Bxi+(x, y). (2.13)

Similarly, if ζn · e1 ↗ ξ · e1, then

lim
n→∞

Bζn±(x, y) = Bξ−(x, y). (2.14)

When ξ ∈ U0, these limits coincide and the map ξ 7→ Bξ(x, y) is continuous here.

(vii) (Distinct means) The mean vectors h(ξ±) = h(Bξ±) defined by

h(ξ±) · ei = E[Bξ±(0, ei)] (2.15)

satisfy
h(ξ±) = ∇ℓ(ξ±). (2.16)

If h(ξ+) = h(ζ−) then Bξ+(x, y) = Bζ−(x, y) a.s. Similarly for h(ξ+) = h(ζ+) and
h(ξ−) = h(ζ−).

From the cocycle property in (2.8), we see that it is enough to consider nearest neighbour

Busemann. We abbreviate Bξ
i (x) = Bξ(x, x+ ei).

Remark 2.6. For a fixed ξ ∈ U , the above theorem tells us that the Busemann limit exists almost
surely and we may construct Busemann geodesics by the following procedure. Starting from any
x ∈ Z2, we look at Bξ(x, x+ ei), i1 ∈ {1, 2}, and take i such that Bξ(x, x+ ei1) =W ((x, x+ ei1))
(such a choice may not be unique). Then we repeat this process at x+ ei1 . The resulting infinite
path is a semi-infinite geodesic in direction ξ. This is the standard method of producing geodesics
from the Busemann process, and proofs can be found, for example, in [ADH17, Section 5.3] or
[Ras18, Section 8].

There is a pleasing simplification in SWFPP: to produce a geodesic from Bξ, we need only look
at Bξ(x, x+ e2). If it’s zero, we can take an up step, and otherwise go right. That the decision
may be done without reference to the horizontal increments or the environment of weights allows
us to perform direct computations which would be quite unwieldy in exponential LPP. Some
results of this type are in Sections 2.6 and 2.7.

Remark 2.7. The functions defined in Theorem 2.5 are north-east Busemann functions, in the
sense that the sequence of points vn in the definition eventually lie in the top-right quadrant. We
may equivalently consider south-west Busemann functions, of the form

Bξ(x, y) = lim
vn→−ξ·∞

L(vn, x)− L(vn, y). (2.17)

In fact, it is these functions whose joint distribution we identify in Corollary 2.10. The distribution
of the north-east Busemann process is then the result of applying a reflection about the origin.
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2.3 Exact distributions for Bernoulli-exponential weights

In [FS20], the joint distributions of the Busemann functions in exponential LPP are characterised
as the unique interarrival distribution fixed under the M/M/1 queue. This is then identified
as the distribution of the multi-line process, studied by Ferrari and Martin in the context of
TASEP [FM07]. We follow the same route, although now with a slightly expanded set of weight
distributions, namely Bernoulli-exponential (and Bernoulli-geometric) variables. These are merely
products of independent Bernoulli and exponential / geometric variables. By W ∼ Ber(p)Exp(λ),
we mean that

P(W ≥ x) = (1− p)1(x = 0) + pe−λx. (2.18)

These variables arise naturally when working with exponentials: for example if X ∼ Exp(λ) and
Y ≥ 0, then (X −Y )+ ∼ Ber(p)Exp(λ) for some p. Taking p = 1 gives us an exponential variable.

We denote by Geom+(α) a geometric variable with non-negative support , and by Geom0(α)
one with positive support. The Bernoulli-geometric distribution is defined in the obvious way, as
Ber(p)Geom+(α). Observe that p = 1 gives a Geom+(α) variable and p = 1−α gives a Geom0(α)
variable.

For concreteness, let us consider only Ber(p)Exp(1) weights, 0 < p ≤ 1, and let λ be the
distribution on RZ whose components are i.i.d Ber(p)Exp(1) distributed. For ρ1 < p, let νρ1

H have
instead i.i.d Ber(q)Exp(λ) components, where q, λ satisfy

ρ1 =
q

λ
,

qλ

1− q
=

p

1− p
. (2.19)

When p = 1, we simply fix q = 1. These equations can be solved to give rather complicated
expression:

q =
2
√
pρ1

√
pρ1 +

√
4(1− p) + pρ1

, λ =
q

ρ1
. (2.20)

Observe that ρ1 is the mean of the components of νρ1

H .
Now let ρ = (ρ1, . . . , ρn) be a vector of means with p > ρ1 > · · · > ρn, and write νρH =

νρ1

H ⊗ · · · ⊗ ν
ρn

H . Take (I1, . . . , In) ∼ νρH and consider the following procedure. Set J1 = I1, and
for k ≥ 2 let Jk = H(Ik, Jk−1). Finally, write µρ

H for the distribution of (J1, . . . , Jn). The
coupled increments produced by such an iterative procedure are called a multi-line process, and
have been shown to yield multi-class invariant measures in a remarkable number of models. See
[FM06] for examples. In particular, Martin and Prabhakar [MP10] have shown the following:

Theorem 2.8 (Theorem 7.1 of [MP10]). Let W ∼ ν and (J1, . . . , Jn) ∼ µρ
H . Then:

(i) The marginal distributions are Jk ∼ νρk

H .

(ii) We have component-wise monotonicity: J1 ≥ J2 ≥ · · · ≥ Jn.

(iii) The distribution µρ
H is jointly invariant under H:

(H(J1,W ), . . . ,H(Jn,W ))
d
= (J1, . . . , Jn). (2.21)

When the parameters are suitably adjusted, the same construction produces the multi-class
invariant measures for the A and V maps of Section 3.1. Let us define these now. Let ρ1 > 0 be
arbitrary and let νρ1

A have i.i.d Ber(r)Exp(γ) entries, where r, γ satisfy

ρ1 =
r

γ
, r =

1

1 + (1− p)γ
. (2.22)
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These can once again be solved but lead to messy and uninformative expressions. Also define νρ1

V ,
where the marginals are Ber(r′)Exp(γ′), and the parameters satisfy

ρ1 =
r′

γ′
, r′ =

1

1 + γ′
. (2.23)

These constraints were derived in [Mar09].
As before, define νρA = νρ1

A ⊗ · · · ⊗ νρn

A , and νρV analogously. Let µρ
A (resp. µρ

V ) be the
distributions after iteratively applying H to νρA, (resp. ν

ρ
V ), as in the definition of µρ

H . It is
curious to note that the maps A and V do not appear in the constructions of their respective
multi-line processes.

With these distributions in hand, we have an expanded version of Theorem 2.8.

Theorem 2.9. Take U ∈ {H,A, V }, and let ρ = (ρ1, . . . , ρn) be a vector of positive means with
ρ1 > · · · > ρn > 0 (and ρ1 < p when U = H). Suppose W ∼ ν and (J1, . . . , Jn) ∼ µρ

U . Then

1. The marginal distributions are Jk ∼ νρk

U .

2. We have component-wise monotonicity: J1 ≥ J2 ≥ · · · ≥ Jn.

3. The distribution µρ
U is jointly invariant under U :

(U(J1,W ), . . . , U(Jn,W ))
d
= (J1, . . . , Jn). (2.24)

Corollary 2.10. Set eH = e1, eA = e1 − e2 and eV = −e2 and take U ∈ {H,A, V }. If
ξ1 > · · · > ξn is a sequence of directions and ρi = E[Bξi(0, eU )], where here our Busemann
functions are taken to be south-west. Then(

Bξ1(keU , (k + 1)eU ), . . . , B
ξn(keU , (k + 1)eU )

)
k∈Z ∼ µ

ρ
U . (2.25)

A surprising but straightforward fact is that when p = 1 and our weights are simply rate 1
exponential, the distributions µρ

H and µρ
A coincide when the choice of ρ is valid for each, and

moreover are related to the distribution µρ described by [FS20] in the context of exponential LPP.

Proposition 2.11. Denote by B the south-west Busemann process for exponential SWFPP, and
by B the north-east Busemann process for exponential LPP. For a parameter 0 < ρ < 1, let ξ(ρ)

be the angle such that E[Bξ(ρ)(e2, e1)] = ρ−1 and ξ(ρ) the angle such that E[B̃ξ(ρ)(e2, 0)] = ρ−1.
Then

{Bξ(ρ)±(k(e1−e2), (k+1)(e1−e2)) : k ∈ Z, 0 < ρ < 1} d
= {Bξ(ρ)±

((k+1)e2, ke2) : k ∈ Z, 0 < ρ < 1}
(2.26)

Much is known about the Busemann functions in exponential LPP, and we can, for example,
observe that the results of [SS23; Bus24a] imply convergence of our SWFPP Busemann process
to the stationary horizon when p = 1. One expects that the stationary horizon appears as a limit
of the Busemann process for all choices of p > 0, though we avoid the necessary verifications here.
Indeed, this convergence has already been shown for Bernoulli weights in [BSS23].

2.4 Parallel TASEP

As byproduct of Theorem 2.9, we can also answer a question found in [FM07; MS11] concerning
the parallel TASEP. We will be more explicit with our definition in Section 3.1, but informally,
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this is a discrete-time TASEP wherein all of the particles moving at a given time step move
simultaneously. In particular, if a particle is to move forward on a given time step, then the space
in front of the particle must be vacant before that time step. The multi-line distribution in the
following statement should be chosen according to the step distributions of the particles.

Corollary 2.12. The multi-class distribution on {0, 1}Z whose inter-particle distances are given
by µρ

A is invariant for parallel TASEP.

2.5 The SJR model

Lastly, we consider the Busemann process of the SJR model. As it turns out, the distribution in
this case largely reduces to the question for SWFPP.

Theorem 2.13. Let the switching variables of our SJR model be Ber(α)-distributed and let
ξ∗ = (1 − α, α) be the percolation angle. Let ξ1 > · · · > ξn > ξ∗ be a sequence of angles and

let (Bξ1 , . . . , Bξn) be the associated Busemann functions. Consider now (Bξ1
0 , . . . , B

ξn
0 ), the

Busemann functions for the SWFPP model whose horizontal weights are identical to that of our
original model, but whose vertical weights are all zero. Then

(Bξ1 , . . . , Bξn)
d
= (Bξ1

0 , . . . , B
ξn
0 ). (2.27)

In particular, we have a near-complete description of the Busemann process when the weights
are Bernoulli-exponential, although we still cannot say much about the joint distribution of
(Bξ1 , Bξ2), when ξ1 > ξ∗ > ξ2. Two special cases are the river delta model [BR19] with
exponential weights, and the degenerate model wherein each vertex has weight 1 on a random
incoming edge and 0 on the other.

Remark 2.14. That we have a distributional equality in (2.27) implies that there is a coupling
of the two models (the SJR and the SWFPP) witnessing this equality. Curiously, this is not the
natural coupling.

The connection between the Busemann process and the limit shape contained in theo-
rem 2.5.(vii) gives a decomposition in terms of two SWFPP limit shapes.

Corollary 2.15 (Theorem 1 of [Ran24b]). Let ℓ be the time constant for an SJR model, and
ℓH (resp. ℓV ) be the time constant for the SWFPP whose horizontal (resp. vertical) weights are
unchanged but whose vertical (resp. horizontal) weights are constant zero. Then

ℓ = ℓH ∨ ℓV . (2.28)

Ransford’s original proof is considerably more direct and avoids the Busemann machinery,
but both Ransford’s proof and our own proof of Theorem 2.13 have as their essential ingredient
the observation contained in Lemma 2 of [Ran24b], which implies that SJR and an appropriate
SWFPP are indistinguishable in stationarity.

2.6 Highways and byways

The immediate purpose of Newman’s introduction of Busemann functions to FPP [New95] was to
study the existence and structure of semi-infinite geodesics. The existence of the Busemann limits
and their ability to produce semi-infinite geodesics in a given direction immediately implies the
following general theorem. This is a direct analogue of Theorem 2.1 of [GRS17a] in our slightly
more general setting, and is largely contained in Theorem 5.8 of [GJR23].
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Corollary 2.16. Consider directions ξ ∈ U at which the limit shape is differentiable and strictly
convex. Then

(i) Almost surely, simultaneously for all such ξ, there is at least on geodesic ray from the origin
in direction ξ.

(ii) For a fixed ξ, almost surely the geodesic ray from the origin is unique.

(iii) For fixed ξ, almost surely all geodesic rays (and not just those from the origin) in direction
ξ coalesce.

With the explicit descriptions of the Busemann process for the Bernoulli-exponential SWFPP
described above, we may hope for finer information on the nature of the semi-infinite geodesics.
Let Γ be the tree of (right-)geodesics rooted at 0 and let Γ∞ be the subtree formed by its infinite
branches. We identify Γ∞ with its set of vertices. The subtree trivially contains the axes, and
from Corollary 2.16 we see that it contains a continuum of topological ends.

We call the edges (and by abuse of language, also the vertices) of Γ∞ highways. The underlying
analogy is that one expects a geodesic between distant points to first travel to seek out a path
of highly favourable edges going in the desired direction, travel with this path for most of the
journey, and then turn off only when close to its destination. These highly favourable edges form
the semi-infinite geodesics. The highways-and-byways problem mentioned in the introduction
maybe understood as determining the asymptotics of

E

[∣∣Γ∞ ∩ ([0, n]× [0, n])
∣∣

n2

]
, (2.29)

which is the expected proportion of vertices inside an n× n square footed at the origin which lie
on a highway from the origin. The specific question found in [HW65] is whether this proportion
goes to zero. While this has been answered by [AHH22; DEP24], one may ask: rather than look at
the limit in expectation, is there anything to be said of the almost sure limit? That the expected
proportion in (2.29) goes to zero immediately implies by Fatou’s lemma that the limit infimum
of the portion is zero almost surely, but doesn’t rule out a priori some intermittent explosive
branching in the tree producing large clusters of highways.

We don’t provide an answer to the question outlined above, but can say something in this
spirit. Namely, we consider the intersection of Γ∞ not with a square but with a thin rectangle,
and find that there is nontrivial behaviour. The following are stated for SWFPP with rate 1
exponential weights.

Theorem 2.17. Write Ak(n) for the cardinality of Γ∞ ∩ ({k} × [0, n]). Then for any k ≥ 1, we
have

lim inf
n→∞

Ak(n)

n
= 0, lim sup

n→∞

Ak(n)

n
= 1 a.s. (2.30)

Theorem 2.18. Write B(n) for the number of branches of Γ∞ along the vertical axis up to
height n — that is, the number of connected components of Γ∞ ∩ ({1} × [0, n]). Then there exist
constants 0 < C1 ≤ C2 < 1, such that for all n large enough we have

C1 log n ≤ B(n) ≤ C2 log n. (2.31)

This second statement is conditional on a claimed result in [MS11] concerning collisions in a
discrete-time TASEP speed process, for which the authors do not provide a proof. Without this
input, our statement still holds, except weakened to have C2 ≤ 1 only.
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2.7 The competition interface

The geodesic connecting the origin to x ∈ Z2
≥0, if it is unique, must go through exactly one of

e1 or e2. Write R1 = {x ∈ Z2
≥0 : x ̸= 0, e1 ∈ γx}, and R2 the same. These sets are disjoint and

their boundary is called the competition interface for the tree rooted at the origin. The interface
is known to be asymptotically linear in LPP under mild assumptions on the limit shape [GRS17a,
Theorem 2.6]. To state the analogous result here, let rn = max{r ≥ 0 : (r, n) ∈ R1} be the
horizontal position of the interface at height n.

Proposition 2.19. Suppose our weights are distributed continously and that ℓ is differentiable
everywhere. Then the limit

ξ∗ = lim
n→∞

rn
rn + n

(2.32)

exists almost surely, and ℓ has an exposed point in direction ξ∗.

This ξ∗ is the critical angle at the origin. We may define ξ∗(x) in the same way, using the
tree of geodesics rooted at x.

The critical angle is intimately related to the discontinuity points of the Busemann process.

Proposition 2.20. In SWFPP and under the assumptions of Proposition 2.19, we may alterna-
tively define the critical angle as

ξ∗ = sup{ξ : Bξ(0, e2) = 0}. (2.33)

In particular, by monotonicity,

P(ξ∗ ≥ ξ) = P(Bξ(0, e2) = 0). (2.34)

The joint distributions of critical angles along a line are, morally, related to the distribution of
speeds in a corresponding speed process. For exponential LPP, this is the TASEP speed process
[AAV11], while the integrable models in SWFPP are closely related to the discrete-time particle
systems considered in [MS11]. There is some nontrivial correlation between the speeds of each
particle, and the formation of “convoys” is observed. These are sets of particles sharing the same
speed, which after a long time eventually meet and travel together. This is surprising in light of
the fact that the speeds have continuous marginal distributions. A description of a single convoy
is found in [AAV11, Theorem 1.8], and here we give the analogue in SWFPP.

Theorem 2.21. Consider Bernoulli or Bernoulli-Exponential weights.

(i) The ordering of adjacent competition interfaces has

P(ξ∗(0) > ξ∗(e2)) =
1

3
, (2.35)

P(ξ∗(0) = ξ∗(e2)) =
1

6
, (2.36)

P(ξ∗(0) < ξ∗(e2)) =
1

2
. (2.37)

(ii) For fixed ξ1 ∈ U , the set {k : ξ∗(ke2) ≥ ξ1} is a Bernoulli process with density p1 =
P(Bξ1(0, e2) = 0). If ξ2 > ξ1, then the set {k : ξ1 ≤ ξ∗(ke2) ≤ ξ2} is a renewal process
whose holding times have mean (p1 − p2)−1.

11



(iii) Write α = ξ∗(0). Then Cα = {k : ξ∗(ke2) = α} is a renewal process whose holding times
have infinite mean, and asymptotically satisfies

lim
n→∞

|Cα ∩ [0, n]|√
n

→ cα, (2.38)

where cα is an explicit constant depending on α. In particular, almost surely every convoy
along the vertical axis is infinite.

Of these, theorem 2.21.(i) is a straightforward computation using the multi-line process, and
we refer to [AAV11, Theorem 1.7] for an example. To our knowledge, the asymptotic density for
a convoy in the TASEP speed process (in the sense of (2.38)) has not appeared explicitly, but
our calculation may be followed with little modification to produce the leading order term.

2.8 Outline of the paper

In Section 3 we give the background on the queuing maps which underlie the proofs in the
integrable cases and prove the uniqueness of their fixed points. That the multi-line process
produces such fixed points is verified in Section 4. The calculations behind the results on semi-
infinite geodesics and competition interfaces are given in Section 5. The extension of Martin’s
uniform limit shape convergence to our setting forms Appendix A, and the piecing together of
the elements of [GRS17b] and [GJR23] to establish the convergence of the Busemann limits is in
Appendix B.
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3 Update maps and their fixed points

As well as point-to-point passage times L(x, y), we may also consider line-to-point passage times
LΓ(x) from a path Γ ⊆ Z2. We must specify a function g : Γ→ R representing passage times on
the path, and then define

LΓ(x) = min
p∈Γ

g(p) + L(p, x). (3.1)

Observe that if Γ ⊆ Z2
≥0 is a down-right path (one consisting of only of steps e1 and −e2), then

by setting g(p) = L(p), we have that the passage times L(x) and LΓ(x) are equal whenever both
are defined.

Shifting g by a constant will merely shift the resulting passage times LΓ(x) by the same
constant, so we may consider the passage times to be instead defined, up to a constant, by the
increments I = ∆g = {g(pi+1)− g(pi) : i ∈ Z, (pi, pi+1) ∈ Γ}. In this indexing, the points of our
path are ordered from top-left to bottom-right.

Suppose we translate our path forward to Γ + e1 and look at g′ : Γ → R given by g′(p) =
LΓ(p+ e1). The resulting map on the increments taking ∆g = I 7→ I ′ = ∆g′ is called an update
map. Since this map depends on the weights on edges above or to the right of vertices of Γ, we
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denote this set of weights by W and write I ′ = UΓ(I,W, e1). We can of course replace e1 by any
vector in Z2

≥0.
This map is not well-defined for arbitrary sequences I, W , so for the time being let us call

these sequences admissible if the map makes sense. We will give precise constraints when we
consider specific examples of update maps below.

A useful property that holds in complete generality is that update maps are monotonic in the
first two arguments.

Lemma 3.1. Let Γ ⊆ Z2 be an arbitrary down-right path and take v ∈ Z2
≥0. If I, I ′ are sequences

of increments along Γ and W, W ′ are sets of weights adjacent to Γ, all admissible, then I ≥ I ′
and W ≥W ′ implies

UΓ(I ′,W ′, e1) ≥ UΓ(I ′,W ′, v). (3.2)

Here the comparisons are made component-wise.

Our interest is less so in the update maps themselves, but rather in their fixed points. We call
a distribution µ a fixed point of the update map if when I ∼ ρ and W ∼ λ, we get UΓ(I,W, v) ∼ ρ
(either for some fixed v or all v ∈ Z2

≥0 — clearly having this for all v ∈ {e1, e2} is enough to imply
the latter). The Busemann process provides a source of particularly strong fixed points. In the
statement below, it is important to consider south-west Busemann functions.

Proposition 3.2. Let ξ1 > · · · > ξn ∈ U be a sequence of directions and consider Ik =
{Bξk(pi+1, pi) : i ∈ Z, (pi, pi+1}. Then if W is the set of weights adjacent to Γ,

UΓ(Ik,W, v) = (I ′)k, (3.3)

where the right sequence consists of the Busemann functions evaluated along the shifted path
Π+ v.

In particular (
UΠ(I1,W, v), . . . , UΠ(In,W, v)

) d
= (I1, . . . , In). (3.4)

and the distributions (I1, . . . , In) are jointly ergodic under applications of the update map.

The first claim may be seen directly from the definition of the Busemann limits in (2.17). The
second claim follows from the stationarity in Theorem 2.5.

3.1 Update maps in SWFPP

As one might expect, the update maps associated with the horizontal and vertical lines, as well
the antidiagonal, have especially simple explicit expressions and are quite tractable. This is even
more true when we restrict ourselves to SWFPP. For each choice of path, let us define the maps
in terms of increments and weights, and see how they may be recast in terms of the store model
introduced in Section 2.1 and as the dynamics of various interacting particle systems.

We quickly note that passage times in SWFPP possesses a monotonicity not found in general
edge-weight FPP. Recall that in SWFPP, horizontal edges are non-negative and vertical edges
are zero.

Lemma 3.3. Take y ≤ x ∈ Z2
≥0 and suppose we are in the setting of SWFPP. Then

L(y, x+ e2) ≤ L(y, x) ≤ L(y, x+ e1). (3.5)

If the horizontal weights satisfy W (x, x+ e1) > 0, then the right inequality is strict and the left
has equality if and only if the geodesic γ(y, x+ e2) goes through x.

It will be convenient in this context to write W (x− e1, x) =W (x; 1) =W (x).
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3.1.1 The antidiagonal update

Let Γ = {k(e1 − e2) : k ∈ Z} be the antidiagonal. We can happily take our increments I to be
completely arbitrary non-negative sequences, but it will be enough for us to consider those in the
set

SA =
{
(Yk) ∈ RZ

≥0 : lim
1

n

k+n−1∑
j=k

Yj = µ, for some µ ≥ 0 and all k ∈ Z
}
. (3.6)

This is simply the set of non-negative sequences with a well-defined average value. This average
value is a conserved quantity (see Lemma 3.8), and so it is natural to impose this restriction. The
same restriction is imposed in [FS20], and is the discrete version of the slope condition which
appears in the context of the KPZ equation and other continuous models [Gro+25].

Let g : Γ→ R be passage times along the boundary. Write Wk =W (k(e1 − e2) + e1). Then
if xk = k(e1 − e2) ∈ Γ, the passage time of x+ e1 is simply

LΓ(xk + e1) = (g(xk) +Wk) ∧ g(xk+1). (3.7)

If Y = ∆g and Y ′ is the sequence increments along Γ + e1, then

Y ′
k = (Yk −Wk)

+ + Yk−1 ∧Wk−1. (3.8)

Define A(Y,W ) = Y ′ to represent this updating of the sequence Y .
Recall the store model from earlier, where there are Z-indexed bins which receive input from

their lower-indexed neighbour and output to their higher-indexed neighbour. At each time step,
each bin in given an amount of service, and will move the lesser of the service amount, or the
entire amount in the bin. Let Yk represent the amount in bin k at a particular time, and imagine
that we apply the services Wk starting from the higher-indexed bins and working down. Then
when bin k has its service, it has not yet received any input from bin k − 1. It outputs Yk ∧Wk

and has (Yk −Wk)
+ remaining. Then bin k − 1 has its service, and the total in bin k comes to

(Yk −Wk)
+ + Yk−1 ∧Wk−1, matching the expression in (3.8).

For another perspective, consider the boundary passage times g(xk) as being the position of a
particle ηk on the real line. These particles then move according to a simple rule: particle ηk will
attempt to move forward by Wk but stops upon hitting particle ηk+1. If we update the particles
with lower index first, then the new positions η′k are

η′k = (ηk +Wk) ∧ ηk+1, (3.9)

which we see is precisely the same relation as in (3.7). We might consider applying the update in
(3.9) repeatedly, to arrive at a discrete-time interacting particle system. If the initial positions
are {ηk,0}, then denote by {ηk,t} the position after t steps, using weights {Wk,s}. With Bernoulli
and geometric weights, this is the parallel TASEP of [FM06] and R2 of [MS11], respectively.

The point-to-point passage times can be seen as line-to-point passage times with appropriate
boundary conditions.

Lemma 3.4. Let ηk,0 = 0 for k ≤ 0 and ηk,0 =∞ for k ≥ 1. Consider SWFPP passage times
with horizontal weights {W (x)}. Then if we set Wk,t =W ((t+ 1)e1 + k(e1 − e2)), we have the
identity

ηk,t = L(0, te1 + k(e1 − e2)) (3.10)

for all k ≤ 0.
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3.1.2 The vertical update

Now let Γ = {−ke2 : k ∈ Z} be the vertical axis oriented downward. We would again like our
sequences to have a well-defined average, but now this average must be positive to ensure the
update is well-defined. Set

SV =
{
(Xk) ∈ RZ

≥0 : lim
1

n

k+n−1∑
j=k

Xj = µ, for some µ > 0 and all k ∈ Z
}
. (3.11)

As a means of distinguishing the two settings, we use X = (Xk) to denote the increments here.
As before, let g : Γ→ R be passage times along the boundary and write Wk =W (−ke2 + e1).

Letting xk = −ke2 ∈ Γ,
LΓ(xk + e1) = min

l≥k

(
g(xl) +Wl

)
. (3.12)

The expression on the increment side is more complicated:

X ′
k = (Xk + Jk −Wk)

+, (3.13)

where Jk = minl≥kWl +
∑l−1

j=kXj . This minimum exists for X ∈ SV almost surely, precisely
because we require the average µ appearing (3.11) to be non-zero. Write V (X,W ) = X ′.

This map can be interpreted in the same ways as as the antidiagonal map. Now the tandem
of bins is updated from the lower-indexed bins up, so that the output from bin k − 1 is added to
the quantity in bin k before the service is processed. Similarly, in the interacting particle system,
we move the particles beginning with the lowest index. With Bernoulli weights, this is sequential
TASEP of [FM06], or alternatively the R1 of [MS11].

Remark 3.5. TASEP enjoys a symmetry under exchanging particles and holes: as particles in
TASEP move rightwards, the holes move leftwards under the same dynamics. This symmetry
breaks down in discrete-time TASEP, but there remains some particle-hole duality. If we consider
sequential TASEP with Bernoulli jumps, then the holes undergo parallel TASEP with geometric
jumps. Using this duality, we may write passage times under Bernoulli weights as a function of
passage times under a coupled geometric-weight model, and vice versa. In this sense, it is natural
that both Bernoulli and geometric / exponential weights give rise to solvable SWFPP models,
and that interpolations in the form of Bernoulli-geometric weights remain tractable.

3.1.3 The horizontal update

The last map to consider is that for the horizontal line Γ = {ke1 : k ∈ Z}. For a fixed sequence of
weights W , we require our increments to be smaller on average than the weights, in the sense of
belonging to the set

SH =
{
(Ik) ∈ RZ

≥0 : lim
1

n

k+n−1∑
j=k

Ij = µ < lim sup
1

n

k+n−1∑
j=k

Wj for all k ∈ Z
}
. (3.14)

With g : Γ→ R the passage times along Γ with increments ∆g = I ∈ SH and xk = ke1 ∈ Γ,
we have

LΓ(xk + e2) = min
l≤k

(
g(xl) +

k∑
j=l+1

Wj

)
. (3.15)

For the increments, the update is

I ′k = (Ik + Jk) ∧Wk, (3.16)
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I

W

H(I,W )

←−
D(W, I)

Figure 1: An illustration of a particle interpretation of the H map. On the left are the arguments
to the map. The inter-particle distances on the top row are given by the sequence I and on the
bottom by W . The particles on the bottom row are matched to a particle ahead of and above
them. The unmatched particles on the top row stay where they are, and the matched particles
move back, switching places with their match. The result is H(I,W ). The leftover particles are
themselves interesting and give the output of a G/G/1 queue. Compare with [FM07, Figure 2].

where Jk = maxl≤k

∑k−1
j=l (Ij −Wj). The existence of the maximum is where we need I ∈ SH .

Write H(X,W ) = I ′.
This map H is precisely the D map considered in [MP10]1. Indeed, that the measures µρ

H are
multi-class invariant measures for this map was already proved in that work.

We do not make use of the particle system representation for H, but we provide an illustration
in Fig. 1. The picture makes clear a connection to the G/G/1 queue, particularly the graphical
representation found in [FM07, Figure 2]. We come back to this comparison in Section 4.4, where
we show that our H map is dual in some sense to the D map of [FS20], which can be seen as the
output of an G/G/1 queue.

3.2 Uniqueness of fixed points

The strategy for identifying the distribution of the Busemann process, which we borrow from
[FS20], requires that the maps we defined above have unique ergodic fixed points. We introduce
some notation before stating the theorem. Fix n and draw weights (W (x))x∈Z2 from λ and let
MV be the set of measures on (SV )n which are jointly stationary and ergodic under shifts in
the index and under applications of V (·,W ). That is, if X(0) = ((X1

0,k), . . . , (X
n
0,k)) ∼ µ ∈MV

and X((t+1)) = V (X(t), (Wt,k)k∈Z), we would like the tuples (X1
t,k, . . . , X

n
t,k) to be stationary and

ergodic under shifts in t and k, λ-a.s. Define MA and MH analogously.

Theorem 3.6. For a map U ∈ {A, V,H}, the elements of MU are uniquely determined by their
mean vectors, provided we are in one of the following situations:

(i) For each choice of c, ϵ > 0, either P(W (0; 1) > c, 0 ≤ W (0; 2) < ϵ) > 0, or this condition
holds with the axes swapped.

(ii) The weights are non-negative and W (0; 2) = 0 a.s, or this condition holds with the axes
swapped. That is, we are in SWFPP.

(iii) The weights are non-negative and W (0; 1) ∧W (0; 2) = 0 a.s. That is, we are in the SJR
model.

We will not need theorem 3.6.(iii) in the sequel and merely note that it may be proved along
the lines of [Cha94], following [FS20].

We have only given explicit descriptions in the case of SWFPP, each of the update maps
makes sense in our most general setting (that of Assumption 2.1). Of the three, the A map is

1Except that in Section 2, they use D to refer to the G/G/1 queue instead.
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always the simplest, owing to its finite range of dependence. The following proposition shows
that it is enough to establish uniqueness for A.

Proposition 3.7. Then there are bijections MV ↔MA ↔MH . Moreover, if mV is the set of
mean vectors for measures in MV , and mA, mH are analogous, then these bijections restrict to
bijections mV ↔ mA ↔ mH .

An immediate consequence is that if suitably ergodic invariant measures for one map are
determined by their mean, then this is true for the other maps.

Proof. This is mostly obvious once we pass to the FPP setting, but for lightness of notation let
us take n = 1 and just look at the relationship between V and H. Suppose X(0) ∼ µ ∈MV and
set Γ(0) = {−ke2 : k ∈ Z}. Denote by L(0)((t, k)) the passage time on the right half-plane with
boundary increments X. Recall that we defined such passage times in (3.1). Then the X(t) in
the statement is merely the sequence consisting of increments

Xt,k = L(0)((t,−k − 1))− L(0)((t,−k)). (3.17)

By stationarity, we may find increments X(−1) ∼ µ such that the corresponding passage times
L(−1)(x) with boundary {−e1 − ke2 : k ∈ Z} satisfy

Xt,k = L(−1)((t,−k − 1))− L(−1)((t,−k)). (3.18)

for all t ≥ −1, k ∈ Z. Continuing in this way, we may define L(−s) for all s ≥ 0, and from this a
consistent set of increments {Xt,k : t ∈ Z, k ∈ Z}, valid for all t ∈ Z.

Next define horizontal increments

Ik,t = L(−s)((k + 1, t))− L(−s)((k, t)), (3.19)

where −s ≤ t. Since the vertical increments are stationary and ergodic under vertical and
horizontal shifts, it is easy to see the horizontal increments are also. Denote by ν the distribution
of I(0) = (Ik,0). Then we take ν to be the image of µ in MH under our map. It is easy to see
that we may go the other way: starting with horizontal increments and using the same weights,
we may recover the distribution of the vertical increments.

For the statement about means, it is enough to show that this map is well-defined. That
is, two measures of MV with the same mean will be mapped to measures measures with the
same mean. Injectivity will follow by reversing the roles of V and H. Suppose X ∼ µ ∈ MV

and X̃ ∼ µ̃ ∈ MV , with E[X0] = E[X̃0] = α. Let ν, ν̃ ∈ MH be the corresponding horizontal

increment distributions, with means β, β̃. Let LX , LX̃ be passage times with X, X̃ as boundary
increments. Stationarity of the increments gives us the law of large numbers for these passage
times:

lim
n→∞

1

n
LX((n, n)) = β − α, lim

n→∞

1

n
LX̃((n, n)) = β̃ − α. (3.20)

On the other hand, if ℓ is the time constant for the passage times without boundary, then

lim
n→∞

1

n
LX((n, n)) = min

0≤t≤1
(ℓ(1, t) + (1− t)α), (3.21)

and the same expression for X̃. Hence both quantities in (3.20) are equal, and we get β = β̃. For
another example of this computation, see [Sep18, Section 3].
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3.2.1 Uniqueness in SWFPP

In this section, Y ∈ (R≥0)
Z is a sequence of store quantities and W ∈ (R≥0)

Z is the service. We
write Y ′ for A(Y,W ), the result of applying the service. We begin with some easy lemmas.

Lemma 3.8. With the notation above and l < k ∈ Z:
k∑

i=l

Y ′
i =

k∑
i=l

Yi + (Yl−1 ∧Wl−1)− (Yk ∧Wk). (3.22)

Proof. This follows from observing (Yi −Wi)
+ + (Yi ∧Wi) = Yi and summing.

Lemma 3.9. If Ỹ is another sequence of quantities such that Y ≥ Ỹ component-wise, then
Y ′ ≥ Ỹ ′ (where we apply the same service W to both).

Proof. This is just the statement of Lemma 3.1 adapted to our setting.

Lemma 3.10. Suppose W consists of i.i.d random variables and Y ∼ µ, where µ is stationary
and ergodic under shifts, with finite mean. Then E[Y ′

0 ] = E[Y0].

Proof. Being a function of Y and W , Y ′ is itself stationary and ergodic. With full probability
then

E[Y ′
0 ] = lim

k→∞

1

k

k∑
i=0

Y ′
i . (3.23)

But by Lemma 3.8, this can be rewritten as

E[Y ′
0 ] = lim

k→∞

1

k

k∑
i=0

Yi + lim
k→∞

Y−1 ∧W−1

k
− lim

k→∞

Yk ∧Wk

k
. (3.24)

The first limit is E[Y0] almost surely, by ergodicity, and the second is zero trivially. Rearranging
then,

E[Y0]− E[Y ′
0 ] = lim

k→∞

Yk ∧Wk

k
. (3.25)

Thus the limit on the right exists almost surely and is deterministic. As the Wk are i.i.d, we can
easily extract a subsequence which converges to zero, forcing the full limit to be zero. Hence
E[Y ′

0 ] = E[Y0], as needed.

Now we proceed along a contraction argument, following [Cha94]. We will show that ergodic
fixed points are unique in the single class case, when n = 1. This extends to general n along the
lines of [FS20]. The central tool will be the ρ metric on stationary sequences. Given stationary
measures ν, µ, define

ρ(ν, µ) = inf
(X,Y )∈M

E|X0 − Y0|, (3.26)

whereM consists of the jointly stationary couplings of (X,Y ), where X ∼ ν, Y ∼ µ. When η, µ
are ergodic, this is equal to the infimum over jointly ergodic and stationary couplings [Gra09,
Theorem 8.3.1].

Chang proceeds by showing that the update map is strictly contractive for the ρ metric,
under the assumption that the weights W are unbounded. We are unable to show this strict
contractivity here, we but find a weaker statement sufficient for our purposes.

In the following, let µ′ be the distribution of Y ′ when Y ∼ µ. Write µ(N) for the result of
applying this procedure N times (with fresh, independent realisations of the weights W ).
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Proposition 3.11. Let ν, µ be ergodic and stationary measures on RZ
≥0 with finite mean.

(i) We have ρ(ν′, µ′) ≤ ρ(ν, µ).

(ii) Suppose also that ν, µ are distinct distributions but with the same mean, and that the support
of λ contains, but is not equal to, 0. Then there is N ≥ 1 such that ρ(ν(N), µ(N)) < ρ(ν, µ).

Proof. Fix some jointly ergodic and stationary coupling of (ν, µ) and take sample sequences X, Y .

To prove (i), we need to show that E|X ′
0 − Y ′

0 | ≤ E|X0 − Y0|. Set Zi = Xi ∨ Yi and Z̃i = X ′
i ∨ Y ′

i ,

and write Z ′ for the output of A(Z,W ). By Lemma 3.9, we see that Z ′
i ≥ Z̃i.

Observe
|X0 − Y0| = 2Z0 −X0 − Y0. (3.27)

On the other side,
|X ′

0 − Y ′
0 | = 2Z̃0 −X ′

0 − Y ′
0 ≤ 2Z ′

0 −X ′
0 − Y ′

0 . (3.28)

Now by Lemma 3.10, we take expectations on both sides to find

E|X ′
0 − Y ′

0 | ≤ 2E|Z ′
0| − E|X ′

0| − E|Y ′
0 | = 2E|Z0| − E|X0| − E|Y0| = E|X0 − Y0|. (3.29)

For (ii), we would like to identify an event on which Z̃0 < Z ′
0, which will in turn make the

inequality in (3.29) strict. In words, we would like to demonstrate a situation in which taking the
maximum of the two tandems before the update leaves us with more material than taking the
maximum after updating them separately.

Following Chang, the ergodicity, equal means, and the distributions being distinct together
imply that a crossing occurs with positive probability. That is, there is k ≥ 1, c > 0 such that
the event

A = {X0 < Y0, X1 = Y1, . . . , Xk−1 = Yk−1, Xk > Yk, Xi, Yi ≤ c, for 0 ≤ i ≤ k} (3.30)

has P(A) > 0.
For the sake of simplicity, assume P(W = 0) > 0. Choose d > 0 such that P(W ≥ d) > 0

and set q = ⌈c/d⌉. As we will be iterating the process, let (W r
i )i∈Z be the weights for the r-th

iteration, all i.i.d. Set N = q(k + 1) and consider the event

B = {W r
−1 =W r

n = 0,W r
i ≥ d for 1 ≤ r ≤ N, 1 ≤ i ≤ k − 1}. (3.31)

Our assumptions ensure P(B) > 0, and independence means that also P(A ∩B) > 0. On A ∩B
and with initial amounts given by X, no material enters bin 0 and no material leaves bin k over N
iterations. All of the material is eventually moved to bin k, which is left with

∑k
i=0Xi. Similarly,

starting from Y leaves bin k with
∑k

i=0 Yi, and from Z with
∑k

i=0 Zi. The crossing means that

k∑
i=0

Zi > max(

k∑
i=0

Xi,

k∑
i=0

Yi), (3.32)

which is what we wanted.
When P(W = 0) = 0, we add an additional parameter ϵ > 0 to the crossing event and make it

A = {X0 ≤ Y0 − ϵ, X1 = Y1, . . . , X1 = Y1, Xk ≥ Yk + ϵ, Xi, Yi ≤ c, for 0 ≤ i ≤ k}. (3.33)

Then we set

B = {W r
−1, W

r
n < ϵ/3N,W r

i ≥ d, for 1 ≤ r ≤ N, 1 ≤ i ≤ k − 1}. (3.34)

The argument proceeds in the same way.
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Proof of theorem 3.6.(i). We prove only the case n = 1. If µ, ν are two shift ergodic measures
invariant under A with the same mean, then in the above notation, µ(N) = µ for all N , and
simililarly for ν. Thus

ρ(ν(N), µ(N)) = ρ(ν, µ) (3.35)

for all N . But by proposition (ii), if they were distinct measures then this would eventually be
strict inequality. Hence µ = ν. Generalising to n ≥ 2 is straightforward, see [FS20].

We’ve actually proved theorem 3.6.(i) under weaker assumptions - we didn’t need ergodicity
under applications of A here.

3.2.2 Extension to SJR

The SJR model is a modest generalisation of SWFPP: instead of weights on horizontals and
zeros on verticals, we allow the roles to swap independently on each vertex. It might then be
unsurprising that the store and particle system pictures valid in SWFPP can be adapted to
accommodate this generalisation. In the store picture, the correct thing to do is to allow both
positive and negative material, one annihilating the other. The positive material behaves as
before, but the negative material obeys different dynamics.2

As before, we consider Z-indexed tandem of storage bins which push material forward,
simultaneously at each time step. We take a sequence Y ∈ (R)Z of real-valued quantities, and real-
valued weights W ∈ (R)Z. That we allow the Y to be negative reflects the failure of monotonicity
in the SJR model (Lemma 3.3 need not hold in general). The signs of our weights reflect whether
the weight lives on a horizontal or vertical edge. If Yi ≥ 0, the i-th bin contains positive material
and we move up to W+

i to the next bin. If Yi < 0, then we have negative material, and W−
i

tells us how much material to keep, moving the remainder to the next bin. Positive and negative
material in the same bin annihilate one another (i.e., we add the quantities). The update can be
written succinctly as

Y ′
i = (Y +

i −W
+
i )+ + (−Y −

i ∨W
−
i ) + (Y +

i−1 ∧W
+
i−1)− (−Y −

i−1 −W
−
i−1)

−. (3.36)

Observe that if Y ≥ 0, then this is the same as A(Y,W+), and the expression reduces to that for
SWFPP.

The similarity of (3.36) to (2.2) leads to immediate generalisations of Lemmas 3.8 to 3.10.
Monotonicity and stability of the mean are as before, and the conservation of mass is adjusted as
follows.

Lemma 3.12 (Conservation of mass). With l < k ∈ Z:

k∑
i=l

Y ′
i =

k∑
i=l

Yi(Y
+
l−1 ∧W

+
l−1)− (−Y −

l−1 −W
−
l−1)

− − (Y +
k ∧W

+
k ) + (−Y −

k −W
−
k )−. (3.37)

More importantly, it is apparent from the description that positive material and negative
material are separately conserved, unless they meet in a single bin. In that case, the amount of
each material decreases. This suggests that only one type of material may exist in stationarity.

We adjust the notation for the next proof. Consider a double-indexed collection of weights
{Wi,t}i, t∈Z2 , all i.i.d with distribution λ. At the time t update we use {Wi,t}i∈Z as the weights.
We write Yi,0 for the initial amount in bin i, and Yi,t for the amount after t iterations.

2The generalisation of the particle picture is less natural: particles may have some random width and we allow
some form of limited overtaking.
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Proposition 3.13. Let (Yi,0) ∼ µ, with µ a stationary, invariant distribution for A which is
suitably ergodic in the sense of Theorem 3.6 and has E|Y0,0| <∞. Then either Y0,0 ≥ 0 a.s or
Y0,0 ≤ 0 a.s.

Proof. Consider Oi,t = Y −
i,t∧W

−
i,t, the negative material output by the i-th bin at time t. The Oi,t

form a stationary sequence ergodic in both indices. Moreover, Oi,t ≤ |Yi,t|, and so E[O0,0] <∞.
Thus by stationarity and ergodicity in time, we have almost surely that for all i,

lim
T→∞

1

T

T−1∑
t=0

Oi,t = E[O0,0]. (3.38)

This is to say that the asymptotic rate of negative material leaving each bin, and hence entering
each bin, is the same. This implies that only a vanishing proportion of negative material is
annihilated at each time step.

Toward a contradiction, suppose that under µ, both P(Y0,0 > 0) and P(Y0,0 < 0) are positive.
Now ergodicity and stationarity in the first index imply that there is k ≥ 1, c > 0 such that the
event

A = {Y0,0 < −c, Y1,0 = · · ·Yk−1,0 = 0, Yk,0 > c} (3.39)

occurs with positive probability. For simplicity assume again that P(W0,0 = 0) > 0 and consider
the event

B = {Wi,t = 0 for − 1 ≤ i ≤ k, 0 ≤ t ≤ k − 1}. (3.40)

Then P(A ∩B) > 0, and on this event the negative material from bin 0 is brought to bin k − 1
over k time steps. It follows, making use of stationarity and invariance, that the event

A′ = {Y0,0 < −c, Y1,0 > c, W0,0 =W0,1 = 0} (3.41)

happens with positive probability. On this event we will get Y1,1 = Y0,0 + Y1,0, and |Y1,1| <
|Y0,0|∧ |Y0,1|−c. Write α = P(A′). We use now the assumption of joint ergodicity, which allows us
to conclude that negative material is annihilated in bin 1 at a rate of at least cα. This contradicts
the condition we derived in the first paragraph.

The case when P(W = 0) = 0 can be handled as in Proposition 3.11.

Corollary 3.14. Suppose µ, ν are invariant for A(·,W ) and have equal means. Then µ = ν.

Proof. Suppose the common mean is non-negative. Then Proposition 3.13 shows that they are
supported on non-negative sequences. The remark following (3.36) shows that they are then
invariant for A(·,W+). By our uniqueness statement for SWFPP, µ = ν.

This is essentially theorem 3.6.(ii).

Remark 3.15. Nothing stops us from defining SWFPP and SJR in higher dimensions. For the
former, we fix a direction and the edges in all other directions are constrained to have zero weight.
For the latter we choose independently at each vertex the incoming edge to hold a nonzero weight.
We should expect the invariant measures of the SJR to be those of an appropriate SWFPP. One
direction is easy - an invariant measure for SWFPP is also invariant for SJR. Our proof in the
other direction for two dimensions relied on a representation is terms of positive and negative
material moving through stores, which doesn’t appear to be available in general.
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4 The multi-line process as a fixed point

4.1 Single-class fixed points

Here we make a note of the single-class fixed points of our maps under the integrable weights.
These all turn out to be product measures, and so we need only describe the marginals. We
collect the results of [Mar09] and take various limits suggested there, and arrive at Table 1.

First, we say that the distributions Ber(p)Exp(α) and Ber(q)Exp(β) are compatible if the
parameters satisfy

αp

1− p
=

βq

1− q
. (4.1)

One consequence of compatibility is that q ≤ p implies β ≥ α, and that for a fixed p, α, there is
only one choice of q, β producing a distribution with a given mean. Their discrete counterparts
Ber(p)Geom+(a) and Ber(q)Geom+(b) are compatible if

a

1− a
p

1− p
=

b

1− b
q

1− q
. (4.2)

For a fixed weight distribution, we can check that the one parameter families of distributions
appearing in Table 1 are compatible for different values of ρ and c. From this it is clear that the
measures defined in Section 2.3 by iterated application of the update maps do indeed have the
claimed marginals.

W H(·,W ) V (·,W ) A(·,W )

Ber(p)Exp(α) Ber
(

αp
α+(1−p)ρ

)
Exp(α+ ρ) Ber

(
α

α+ρ

)
Exp(ρ) Ber

(
α

α+(1−p)ρ

)
Exp(ρ)

Ber(p)Geom+(a) Ber(q(p, a, c))Geom+(a(1− c) + c) Ber(r(p, a, c))Geom+(c) Ber(s(p, a, c))Geom+(c)

Ber(p) Ber
( (1−c)p

1−cp

)
Geom0(c) Ber(1− c+ cp)Geom+(c)

Table 1: When W is a sequence of i.i.d Bernoulli-exponential, Bernoulli-geometric, or Bernoulli
variables, the invariant measures for the update maps are product measures with marginals given
in the table. We get a valid distribution for any choice of ρ ≥ 0 or c ∈ [0, 1]. In the second row,

we take q(p, a, c) = a(1−c)p
a(1−c)+c(1−p) , r(p, a, c) =

a(1−c)
a(1−c)+c , and s(p, a, c) =

a(1−c)+cp
a(1−c)+c .

The following is part of Theorem 4.1 of [Mar09] and will be useful in making calculations.

Lemma 4.1. Consider an i.i.d sequence of service W , whose marginals appear in the left column
of Table 1, and suppose we have inputs I which follow the corresponding distribution in the second
column. Then if we consider the store with inputs I and service W and look at the store size at
time 0 before and after input, but before service, then these quantities will follow the distribution
in the third and fourth columns, respectively.

Similarly, if we have a sequences X and Y of store quantities for a tandem, before and after
input, following the respective distributions in Table 1, then the output from store 0 will follow
the distribution in the second column of the table.

This description of the single-class fixed points tells us in particular the distribution of the
Busemann functions in a fixed direction.
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Proposition 4.2. Suppose the weight distribution λ is among the first column of Table 1. Then
for each direction ξ ∈ U , the collections

{Bξ(ke1, (k+1)e1) : k ∈ Z}, {Bξ(−ke2,−(k+1)e1) : k ∈ Z}, {Bξ(k(e1−e2), (k+1)(e1−e2)) : k ∈ Z}
(4.3)

are distributed as sequences of independent random variables with marginals given by the second,
third, and fourth columns of Table 1, respectively, for some choice of parameters ρ and c.

The link between the parameters ρ and c is in theorem 2.5.(vii): if we know the gradients
of the limit shape in a given direction, then we may equate it to the mean of the Busemann
function and solve for the parameters. The limit shape may be determined explicitly in each of
the integrable cases and we refer to [Ran24a, Section 5] for a complete list. All of our explicit
calculations will be performed where the expression is easiest, namely when the weights are
Exp(1). Then g(x, y) = (

√
x+ y −√y)2, and if ρ > 0, the corresponding direction is

ξ(ρ) =

(
1− ρ2

(1 + ρ)2
,

ρ2

(1 + ρ)2

)
. (4.4)

From this, finding the distribution of the critical angle ξ∗ requires no great leap. Recall
that the critical angle is the asymptotic direction of the competition interface, the angle below
which taking an initial e1 step is always favourable. We observed in Proposition 2.20 that
ξ∗ = sup{ξ : Bξ(0, e2) = 0}. If ξ∗ = ξ(ρ∗), then this becomes

ρ∗ = inf{ρ : Bξ(ρ)(0, e2) = 0}. (4.5)

The distribution of Bξ(ρ)(0, e2) can be seen from Table 1 to be −Ber((1 + ρ)−1)Exp(ρ), so

P(ρ∗ ≤ ρ) = P(Bξ(ρ)(0, e2) = 0) =
ρ

1 + ρ
. (4.6)

Some calculation shows that in contrast to LPP, the distribution of the critical angle is not
symmetric about (1/2, 1/2). Indeed, here we have E[ξ∗] = (1/3, 2/3).

4.2 Reversibility and reverse weights

The key observation made by the authors of [MP10] is the central role of reversibility in analysing

the integrable cases of this model. In what follows, we let
←−
I = (I−k)k∈Z the reversal of a sequence

I, and
←−
U (I,W ) =

←−−−−−−−−(
U(
←−
I ,
←−
W )
)
be the result of running an update map U “in reverse”.

Proposition 4.3 (Theorem 7.1 of [MP10]). Let I1, I2 be sequences whose distributions belong
to one of the families in the second column of Table 1, and assume that E[I10 ] ≥ E[I20 ]. Let
O2 = H(I2, I1). Then:

(i) The input and output of the store are reversible in the sense that (I2, O2)
d
= (
←−
O 2,
←−
I 2).

(ii) There is a sequence O1 living on the same probability space such that (I1, I2, O2)
d
=

(
←−
O 1,
←−
I 2,
←−
O 2), and in particular I1 =

←−
H (O1, O2).

(iii) For any sequence I3 for which the maps makes sense, we have a deterministic equality

H(H(I3, I2), I1) = H(H(I3, O1), O2). (4.7)
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We would like to find a version of this result for the maps A and V . From this, the arguments
of [MP10] can be recycled to prove Theorem 2.9.

Our arguments rely on a local form of reversibility. To set this up, let Γ be a boundary of the
sort considered in Section 3, containing the origin. Suppose LΓ(e2) = 0, and define X and I by
LΓ(0) = X, LΓ(e1) = I +X. Recall that SWFPP passage times decrease as the end point moves
up, so I ≥ 0. Let W =W (e1 + e2). Then L

Γ(e1 + e2) = (I +X) ∧W . This is the local rule for
computing passage times on a square, from which we get updated increments

I ′ = LΓ(e1 + e2)− LΓ(e2) = (I +X) ∧W, X ′ = LΓ(e1)− LΓ(e1 + e2) = (I +X −W )+. (4.8)

This operation is illustrated in ??.
We may also look at a diamond. Now let LΓ(e2 − e1) = 0, and LΓ(0) = Y, LΓ(e1) = I + Y ,

and set W =W (e2). The passage time to e2 is LΓ(e2) = Y ∧W , and we have increments

I∗ = LΓ(e2)− LΓ(e2 − e1) = Y ∧W, Y ∗ = LΓ(e1)− LΓ(e2) = I + (Y −W )+. (4.9)

Proposition 4.4. Let W, I, X, Y be independent (scalar) variables with distributions in the first,
second, third and fourth columns, respectively, of Table 1 (in the same row and with the same

choice of parameters). Then (I,X, I ′, X ′)
d
= (I ′, X ′, I,X) and (I, Y, I∗, Y ∗)

d
= (I∗, Y ∗, I, Y ).

Proof. For each family of distributions, one may explicitly (and laboriously) compute the Laplace
transform

ϕ(s, t, s′, t′) = E[esI+tX+s′((I+X)∧W )+t′(I+X−W )+ ] (4.10)

and verify that ϕ(s, t, s′, t′) = ϕ(s′, t′, s, t). Similarly for the other set of increments.

An immediate consequence is that there is a W ′ such that (I ′, X ′,W ′)
d
= (I,X,W ) and

I = (I ′ +X ′) ∧W ′, X = (I ′ +X ′ −W ′)+. (4.11)

This is again true of the increments around the diamond, with some W ∗. We call these reverse
weights, and they feature prominently in, for example, [FM06; FS20; SS23].

As it will sometimes be necessary to be precise, we make a fixed choice of function f ′ : R4 → R
for each choice of distribution on the other variables, such that W ′ = f ′(I,X,W, ω). Here ω ∈ R
is an auxiliary variable providing an additional source of randomness, always assumed to be
independent of everything else. For the reverse weights on the diamond we may choose some
f∗ serving the same function. In certain cases we can write down these functions. For example,
when W ∼ Ber(p) we can take f ′(I,X,W ) = (W − (I +X))+, and when W ∼ Exp(1) we can
take f∗(I, Y,W ) = I + (W − Y )+. For an example where the additional randomness is needed,
see [CG19]. In general, we do not expect to have a neat expression.

Proposition 4.5. Let W, X, Y be i.i.d sequences following distributions from the first, third and
fourth columns of Table 1 and consider X ′ = V (X,W ), Y ∗ = A(Y,W ). Then there is a sequence

W ′ living on the same probability space such that (W,X,X ′)
d
= (
←−
W ′,
←−
X ′,
←−
X ), and a sequence W ∗

such that (W,Y, Y ∗)
d
= (
←−
W ∗,
←−
Y ∗,
←−
Y ). Hence

X =
←−
V (X ′,W ′) and Y =

←−
A (Y ∗,W ∗). (4.12)

Proof. We prove this just for the V map, as this is the harder case. Consider the entries of X as
the increments of passage times along the line Γ = {ke2 : k ∈ Z}, so that LΓ(ke2) = −

∑k
j=1Xk

for k ≥ 0, and LΓ(−ke2) =
∑k−1

j=0 X−k. The sequence X ′ consists of the increments X ′
k =
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LΓ(e1 + (k − 1)e2)− LΓ(e1 + ke2), and we may define Ik = LΓ(e1 + (k − 1)e2)− LΓ((k − 1)e2).
Their realisation as passage times means that

Ik+1 = (Ik +Xk) ∧Wk, X ′
k = (Ik +Xk −Wk)

+. (4.13)

Then from our discussion above, we may find a W ′
k such that

(Ik+1, X
′
k,W

′
k)

d
= (Ik, Xk,Wk), (4.14)

with W ′
k independent of the rest of our variables, conditional on Ik and Xk.

To show that this equality holds for the joint distributions of the entire sequences, we must

show that X ′ and W ′ are independent as sequences, and that X =
←−
V (X ′,W ′). The independence

will follow if we show that S1 = {Ij : j ≥ k} is independent of S2 = {(X ′
j ,W

′
j) : l ≤ j ≤ k − 1},

for any pair of indices l < k. To see why this is enough, observe that the only dependence between
{(X ′

j ,W
′
j) : j ≥ k − 1} and {(X ′

j ,W
′
j) : j ≥ k} is through Ik, since otherwise the latter is a

function of fresh, independent variables.
Now, it is clear that S1 and S2 are independent conditional of Ik, again since the elements of

the former set are functions of Ik and new variables. So we need only show that S2 is independent
of Ik. Consider starting from Il and {(Xj ,Wj) : l ≤ j ≤ k − 1}, all independent. By (4.14), The
pair (X ′

l ,W
′
l ) is independent of Il+1, and thus of Ij for all j ≥ l + 1. The next pair (X ′

l+1,W
′
l+1)

is in turn independent of (X ′
l ,W

′
l ) and Ij , j ≥ l + 2. We continue and find that all of S1 is

independent of Ik.

Now we show that the original sequence X can be recovered as X =
←−
V (X ′,W ′), or equivalently

that
←−
X = V (

←−
X ′,
←−
W ′). Consider the “reversed” situation, where we have increments X ′ along

the line Γ′ = {e1 + ke2} and weights W ′, and look at down-left geodesics rather than up-
right geodesics. Let LΓ′

be the passage times here, normalised so that LΓ′
(e1) = 0. Let

Ĩk = LΓ′
(ke2)− LΓ′

(e1 + ke2) be the sequence of horizontal increments (note the shift relative to
the definition of Ik). These variables are related by

Ĩk−1 = (Ĩk +X ′
k) ∧W ′

k. (4.15)

To show that
←−
X = V (

←−
X ′,
←−
W ′) in this picture is just to show that the increments of the reverse

passage times LΓ′
along our original line Γ = {ke2 : k ∈ Z} are the sequence X we started with.

If this is the case, the horizontal increments Ĩ will also equal the original Ĩ, up to a shift in
indexing. To show this, let k be a time such that Ik ≥ Wk and Xk > 0, so that the geodesic
from Γ to e1 + ke2 under the “forward” passage times LΓ has its horizontal step at height k. In
the store picture, this says that store k initially has material, and that the amount of material
increases after the update.

Now look at (4.8) and (4.11) to see what can be said of W ′
k. We know that Ik +Xk ≥Wk, so

Ik+1 =Wk and X ′
k = (Ik +Xk −Wk). They satisfy Xk = (Ik+1 +X ′

k −W ′
k)

+, which combined
with Xk > 0, implies that W ′

k = Ik. Moreover, X ′
k ≥ W ′

k. Feeding this in to (4.15) gives the

equality Ĩk−1 =W ′
k = Ik. So we have that the horizontal increments are equal at height k. From

(4.11), we know that we can recover Ik−1 given Ik, X
′
k−1 and W ′

k−1, and comparing to (4.15)

(after a shift of index) we see that in fact Ik−1 = Ĩk−2. Continuing in this way, we have Ij = Ĩj−1

once j ≤ k. But our assumptions on k hold infinitely often by ergodicity, so in fact Ij = Ĩj−1 for
all j.
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To conclude, we use the local update rule from (4.8) and get

LΓ′
((k − 1)e2)− LΓ′

(ke2) = (Ĩk +X ′
k −W ′

k)
+ (4.16)

= (Ik+1 +X ′
k −W ′

k)
+ (4.17)

= Xk, (4.18)

the last part from (4.11), again. Thus the Xk are the vertical increments in the reversed picture

(with the indexing reversed), which is to say that
←−
X = V (

←−
X ′,
←−
W ′).

Although we don’t have an expression for W ′ and W ∗ in general, we can read off some
properties from this reversibility.

Corollary 4.6. In the setting of Proposition 4.5, we have

(i) W ′
k ≥ (Xk + Ik) ∧Wk, with equality if Xk−1 > 0.

(ii) W ∗
k ≥ Yk ∧Wk, with equality if Wk−1 ≤ Yk−1.

4.3 Intertwining and multi-class fixed points

This section will be spent showing counterparts of (4.7) for A and V . Following [FS20], we call
these “intertwining indentities”. From these identities we show how to quickly derive Theorem 2.9.

Proposition 4.7. Let X1, X2, X3 be independent sequences whose distributions belong to
one of the families in the third column of Table 1 and assume E[X1

0 ] ≥ E[X2
0 ] > E[X3

0 ]. Let
Z2 = V (X2, X1) and Z1 the corresponding reverse weights, discussed above. Almost surely, we
have

V (H(X3, X2), X1) = H(V (X3, Z1), Z2). (4.19)

Remark 4.8. The equality (4.19) is essentially deterministic and its proof requires no probabilistic
reasoning. We phrase it as an almost sure result in terms of random variables to avoid enumerating
the various regularity assumptions we would need on the sequences.

The identity for A is the same: when Y 1, Y 2 have distributions in the fourth column of
Table 1, and W 2 = A(Y 2, Y 1) with W 1 the reverse weights:

A(H(Y 3, Y 2), Y 1) = H(A(Y 3,W 1),W 2). (4.20)

The following series of lemmas show a particular entry in the output of our maps depends
only on finitely many of the inputs. Throughout, we take some integers a ≤ b and let S(a,b) be

the truncation of a sequence S defined by S
(a,b)
k = 1(−a ≤ k ≤ b)Sk.

Lemma 4.9. Let X, W be i.i.d sequences of non-negative random variables, such that the support
of the Wk contains 0, and set Z = V (X,W ). For each n, there is almost surely a and b large

enough such that the sequence Z̃ = V (X,W (a,b)) has Z̃k = Zk for −n ≤ k ≤ n.

Proof. Here it is helpful to imagine the corresponding particle system, as described in Section 3.1.
The Xk represent the distance between particles k and k + 1, and the Wk are the distances the
particles intend to jump. Let b = min{k ≥ n :Wk ≤ Xk} − 1, which is finite by our assumptions.
Regardless of the jumps performed ahead of it, there is no way for particle b+ 1 to interact with
particle b+ 2, as its jump is too short. So we may replace the jumps ahead of particle b by 0
without affecting the dynamics of particle b+1 and all those behind it, and thus the inter-particle
distances are unaffected from particle b, downward. Also, the trajectory of a particle is not
affected by those behind it, so we may take a = n.
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Lemma 4.10. Let W and X be as before, and W ′ be an arbitrary sequence. Set W̃ = W ′ −
(W ′)(a,b)+W (a,b), which isW ′ with an interval of values replaced by those ofW , and Z = V (X,W ),

Z̃ = V (X, W̃ ). For each n, there is almost surely a and b large enough such that Z̃k = Zk for all
−n ≤ k ≤ n.

Proof. This is a direct consequence of the previous lemma. The truncations of W and W̃
agree, and we have seen that a sufficiently large truncation determines the values of Zk, Z̃k, for
−n ≤ k ≤ n.

Lemma 4.11. Let W follow one of the distributions in the first column of Table 13 and let X
follow a corresponding distribution from the third. Let W ′ be reverse weights for V (X,W ), and

W̃ reverse weights for V (X,W (a,b))4. There is a coupling of the two, such that for each n, there

is almost surely a and b large enough such that W̃k =W ′
k for all −n ≤ k ≤ n.

Proof. Recall that for each valid choice of the distribution of (X,W ), we had a function f ′ giving
the reverse weights which may take some independent source of randomness ω as an independent
argument. We may write W ′

k = f ′(Xk,Wk, Ik, ωk), where Ik are the horizontal increments we
discussed in the proof of Proposition 4.5. In the store picture, they are the inputs to each
queue before service. Coupling them by using the same external randomness, we may take
W̃k = f ′(Xk,1(−a ≤ k ≤ b)Wk, Ĩk, ωk). (Here Ĩk are the inputs of the stores when we use the

truncated service.) Clearly these will be equal if −a ≤ k ≤ b and Ĩk = Ik. For the first condition,
we should just make sure that a, b ≥ n.

To show Ĩk = Ik, we go back to our particle picture. Each Ik is just the distance moved by
particle k + 1. As we argued in Lemma 4.9, taking our a and b large enough leaves the dynamics
of particle −(n+ 1), . . . , n+ 1 unchanged after replaces the jumps for the other particles by 0. In

particular, the distances moved are unchanged, and thus Ĩk = Ik.

We collect similar statements to the above, but now for the H map.

Lemma 4.12. Let I, W be i.i.d sequences of non-negative random variables such that E[I0] <
E[W0] < ∞, or such that E[I0] = E[W0] and both have finite variance. Let O = H(I,W ) and

Õ = H(I(a,b),W ). For each n ≥ 0, there is almost surely a and b large enough so that Ok = Õk

for all −n ≤ k ≤ n.

Proof. Consider the store with services W and inputs I. Our assumptions on the means and
variance say that the store empties infinitely often (this is equivalent to the random walk with
steps Ik −Wk having infinitely many running minimums). Choose a ≥ n such that −(a+ 1) is
such a time. Set b = n. Both the store with input I and input I(a,b) are initially empty at time
−a (the latter for trivial reasons). Thereafter, the stores receive the same input and service, up
until time b. They will thus have the same output, which is what we claimed.

The statement below is then immediate from Lemma 4.12:

Lemma 4.13. Let I and W be as before, and I ′ another i.i.d sequence satisfying the same
assumptions as I. Set Ĩ = I ′ − (I ′)(a,b) + I(a,b), and O = H(I,W ), Õ = H(Ĩ ,W ). For each n,

there is almost surely a and b large enough such that Z̃k = Zk for all −n ≤ k ≤ n.
3Or indeed, from any of the others. The distributions of the other columns also appear in the first, with

rescaling and the correct choice of parameters.
4We use the same function f ′ to produce W̃
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Lemma 4.14. Let I, W, xW be i.i.d sequences of non-negative random variables, all with finite
mean, such that either E[I0] < E[W0] ∧ E[xW0], or such that E[I0] = E[W0] ∧ E[xW0] and all have

finite variance. Set W̃ = xW −xW (a,b) +W (a,b), and Let O = H(I,W ) and Õ = H(I, W̃ ). For

each n ≥ 0, there is almost surely a and b large enough so that Ok = Õk for all −n ≤ k ≤ n.

Proof. Set b = n. Consider the stores corresponding to H(I,W ) and H(I,xW ), which we call the
first and second store, respectively. These stores will be empty infinitely often, so find a and
a0 such that a ≥ a0 ≥ −n, and such that the first store is initially empty at time −a0, and the
second store is initially empty at time −a. A third store, with service W̃ , is also initially empty
at time −a, while at this time the first store may not be. Thereafter, the first and third stores
receive the same input and service, and so the first dominates the third. At time −a0, both
stores are empty. From this point on, both stores are in the same state and produce the same
output.

We put these lemmas together into the form which will actually need.

Lemma 4.15. Let X1, X2, X3 be as in Proposition 4.5, with Z2 = V (X2, X1) and Z1 the

corresponding reverse weights. Let X̃1 be the truncation (X1)(a,b). Set Z̃2 = V (X2, X̃1) and let

Z̃1 be the reverse weights for this update with truncated service. For all n ≥ 0, almost surely we
may choose a, b large enough so that

(V (H(X3, X2), X1))k = (V (H(X3, X2), X̃1))k (4.21)

and
(H(V (X3, Z1), Z2))k = (H(V (X3, Z̃1), Z̃2))k (4.22)

for all −n ≤ k ≤ n.

Proof. The equality in (4.21) follows just from Lemma 4.9. For (4.22), we first use Lemma 4.14 to

replace Z2 by Z̃2. Then Lemma 4.11 means that Z1 and Z̃1 agree on an arbitrarily long interval,
and so Lemma 4.10 says that also V (X3, Z1) and V (X3, Z̃1) agree on an arbitrarily long interval.
Now Lemma 4.13 gives the result.

The takeaway from Lemma 4.15 is that to verify Proposition 4.5, it suffices to check finite
truncations of the sequence X1. Before carrying this out, let us introduce some language which will
help visualise what (4.19) is saying and better organise the argument. Switch to the particle system
picture and let {(η2(k), 1)}k∈Z, {(η3(k), 0)}k∈Z be the positions of particles on vertically shifted
copies of the real line, with ηi(k + 1)− ηi(k) = Xi

k and translated such that η2(0) = η3(0) = 0.
Consider paths starting at (−∞, 0) on the lower line and ending at (ηi(k), 3− i). We may jump
rightwards along the lower line from one particle to the next. If our destination is on the upper
line, we have the option while at η3(j) to jump for free to η2(j) on the upper line, and then
continue to jump on the upper line towards our destination.

If γ, γ′ are two such paths, possibly with different endpoints, it makes sense to talk about the
difference |γ| − |γ′| as

|γ| − |γ′| = |γ \ γ′| − |γ′ \ γ|. (4.23)

Here γ \ γ′ is the segment of γ not shared with γ′.
Let γ0 be the unique path to (η3(0), 0), and define the “length” of γ as L(γ) = |γ| − |γ0|. Let

γ(k) be the path to (η2(k), 1) with minimal length and define ζ(k) = L(γ(k)). In light of the
fact that H represents the horizontal update in SWFPP, it is not difficult to see that in fact
(ζ(k + 1)− ζ(k)) = H(X3, X2). Observe that

ζ(k) = (ζ(k − 1) +X2
k−1) ∧ η3(k). (4.24)
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Also, ζ(k − 1) ≤ η3(k − 1) ≤ η3(k), and so if X2
k−1 = 0, we must have ζ(k) = ζ(k − 1).

The purpose of the long-winded interpretation of H in the preceding paragraph is to pro-
vide some meaning to the expressions V (H(X3, X2), X1) and H(V (X3, Z1), Z2). The former
represents computing the positions of these ζ(k), then jumping them forward by X1 in the sense
described in Section 3.1.2. Let ζ ′(k) be the positions of the particles in this instance. The latter
expression represents first jumping the η2(k) forward by X1 to produce η̃2(k), then jumping
the η3(k) by with some compensatory jumps tp produce η̃4(k), and finally using these moved

particles with the scheme described above to compute positions ζ̃(k). We would like to show that

these are equivalent and that ζ ′(k) = ζ̃(k).
The following simple bound will be useful in proving the intertwining identity.

Lemma 4.16. For all k,
ζ̃(k) ≤ ζ(k) +X1

k . (4.25)

Proof. Consider a path γ going from (−∞, 0) to (η3(k), 1) along the original particles η2 and η3.
Suppose this path moves to the upper line at particle l, and let γ̃ be the path along the moved
particles η̃2 and η̃3 which itself moves to the upper line at particle l. The difference in lengths is

|γ̃| − |γ| = (η̃2(k)− η2(k)) + (η̃3(l)− η3(l))− (η̃2(l)− η2(l)). (4.26)

Suppose X2
l−1 > 0, so that Z1

l = X2
l ∧X1

l by Corollary 4.6. The differences in the expression
above have

η̃2(k)− η2(k) = X2
k ∧X1

k ≤ X1
k , (4.27)

η̃3(l)− η3(l) = X3
k ∧ Z1

l ≤ X2
l ∧X1

l , (4.28)

η̃2(l)− η2(l) = X2
l ∧X1

l . (4.29)

Plugging into (4.26), one gets |γ̃| − |γ| ≤ X1
k and

|γ̃| − |γ̃0| ≤ |γ| − |γ0|+X1
k . (4.30)

In the other case, when X2
l−1 = 0, we see that the path which moves to the upper line at

particle l − 1 is no longer than γ, so we may discard γ from the collection of paths we consider.
Taking the minimum in (4.30) over paths γ, we arrive at ζ̃(k) ≤ ζ(k) +X1

k .

At last, we are ready to prove Proposition 4.7

Proof of Proposition 4.7. Suppose X1
k = 0 unless −a ≤ k ≤ b. This suffices, by Lemma 4.15.

We use two-sided induction: if we can show the equality for some k ≥ b+ 1, then we may use
induction in either direction to get the equality for all k. Let m = max−a≤j≤bX

1
j and let πj,k be

the path (−∞, 0)→ (η3(j), 0)→ (η2(j), 1)→ (η2(k), 1). Find k0 ≥ b+ 1 large enough such that
ζ(k0) ≤ min{|πj,k0

| : j ≤ b} − 2m. Such a k0 will must exist almost surely, since E[X3
0 ] < E[X2

0 ],
and so the optimal path will tend to stay on the lower line for most of its journey. Let l be
minimal such that πl,k0

is an optimal path to (η2(k0), 1), and call this path γ. Observe that l ≥ b.
If X2

l−1 = 0, then l would not be minimal, so we must have X2
l−1 > 0. Also, l ≥ b+ 1 and so

X1
l = Z1

l = 0. Thus η̃3(l) = η3(l) and η̃3(k0) = η3(k0). Then γ is a valid path to (η̃3(k), 1) under

the shifted particles, hence ζ̃(k0) ≤ |γ| = ζ(k0). Trivially, ζ̃(k0) ≥ ζ(k0) (the particles only move

forward) and ζ ′(k0) = ζ(k0), so ζ̃(k0) = ζ ′(k0).

With k0 as our base case, suppose we know ζ̃(k+1) = ζ ′(k+1). Since we get ζ ′(k) by shifting
the ζ forward, we have the recurrence

ζ ′(k) = (ζ(k) +X1
k) ∧ ζ ′(k + 1). (4.31)
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The ζ̃ represent the lengths of optimal paths, and have

ζ̃(k + 1) = (ζ̃(k) + Z2
k) ∧ η̃3(k + 1), (4.32)

Therefor, by the induction hypothesis

ζ ′(k) = (ζ(k) +X1
k) ∧ (ζ̃(k) + Z2

k) ∧ η̃3(k + 1). (4.33)

Our task becomes showing that the expression on the right also equals ζ̃(k). Note that each

of the terms dominates ζ̃(k): the first by Lemma 4.16, the second trivially, and the third by

ζ̃(k) ≤ η̃3(k) ≤ η̃3(k + 1). So it suffices to show that any of these is equal to ζ̃(k).

The equality is immediate if we suppose Z2
k = 0 or that ζ̃(k) = η̃3(k) = η̃3(k + 1), so suppose

Z2
k > 0. This implies η̃2(k) = η2(k) +X1

k . We consider three cases:

1. Suppose ζ̃(k) < η̃3(k), so that ζ̃(k) = ζ̃(k − 1) + Z2
k−1. Let γ̃ be the minimising path with

jump point l maximal. Then l ≤ k − 1. We must have η̃3(l + 1) − η̃3(l) > Z2
l ≥ 0, as

otherwise l would fail to be maximal. So η̃3(l) = η3(l) + Z1
l . Also, we can conclude from

the reversibility property in Proposition 4.5 which Z1 satisfies that Z1
l ≥ η̃2(l)− η2(l). So

the length of γ = πk,l along the original particles is

L(γ) = L(γ̃)−X1
k + (η̃2(l)− η2(l))− Z1

l ≤ L(γ̃)−X1
k . (4.34)

Hence ζ(k) ≤ L(γ̃)−X1
k = ζ̃(k)−X1

k . It follows from Lemma 4.16 that ζ̃(k) = ζ(k) +X1
k .

2. Suppose ζ̃(k) = η̃3(k) < η̃3(k + 1). Then we can repeat the argument in the previous point

with l = k to find that Z1
k ≥ η̃2(k)− η2(k). Once again, this implies ζ̃(k) = ζ(k) +X1

k .

3. Suppose ζ̃(k) = η̃3(k) = η̃3(k + 1). Then in particular, ζ̃(k) = η̃3(k + 1).

With the backward induction complete, suppose instead that we know ζ̃(k − 1) = ζ ′(k − 1).
We may assume k ≥ b+ 2. From the definition, ζ ′(k − 1) = (ζ(k − 1) +X1

k−1) ∧ ζ(k) = ζ(k − 1)
(since X1

k−1 = 0 after the truncation), and our induction hypothesis means that

ζ̃(k) = (ζ̃(k − 1) + Z2
k−1) ∧ η̃3(k) (4.35)

= (ζ(k − 1) +X2
k−1) ∧ (η3(k) + Z1

k) ∧ η̃3(k + 1). (4.36)

Because ζ(k) is majorised by each of the three right hand terms, we just need to show equality
with one. If X2

k−1 = 0, then ζ(k) = ζ(k − 1) and we’re done. If X2
k−1 > 0, then Z1

k ≤ X1
k = 0,

and the first two terms of (4.36) are (ζ(k − 1) +X2
k−1) ∧ η3(k). This is the recursive form of

ζ(k).

Having worked to prove the intertwining identities, we may now prove the main theorem
rather easily. Define H(1)(X1) = X1 and

H(n+1)(Xn+1, . . . , X1) = H(H(n)(Xn+1, . . . , X2), X1). (4.37)

For example, H(2)(X2, X1) = H(X2, X1). The map H(n) takes n sequences and applies H

iteratively, the output from one store becoming the input of the next. Define also pV (X2, X1) for

the reverse weights coming from H(X2, X1), and pV (n)(Xn, . . . , X1) recursively by pV (1)(X1) = X1

and
pV (n+1)(Xn+1, . . . , X1) = pV (Xn+1, H(n)(Xn, . . . , X1)). (4.38)

A simple induction gives an intertwining identity involving the H(n).
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Lemma 4.17. Let X1, . . . , Xn be sequences such that each triple (Xk, Xk+1, Xk+2) satisfies the
assumptions of Proposition 4.7. Then

V
(
H(n−1)(Xn, . . . , X2), X1

)
=

H(n)
(
V
(
Xn, pV (n−1)(Xn−1, . . . , X1)

)
, V
(
Xn−1, pV (n−2)(Xn−2, . . . , X1)

)
, . . . , V (X2, X1)

)
.

(4.39)

Proof. The n = 2 case is Proposition 4.7, so suppose it holds for n− 1. Then using (4.19),

V
(
H(n−1)(Xn, . . . , X2), X1

)
= V

(
H
(
H(n−2)(Xn, . . . , X3), X2

)
, X1

)
(4.40)

= H
(
V
(
H(n−2)(Xn, . . . , X3), pV (X2, X1)

)
, V (X2, X1)

)
(4.41)

= H

(
H(n−1)

(
V
(
Xn, pV (n−2)

(
Xn−1, . . . , X3, pV (X2, X1)

))
, . . .

. . . , V (2)(X3, pV (X2, X1)
)
, V (X2, X1)

)
(4.42)

= H(n)

(
V
(
Xn, pV (n−1)(Xn−1, . . . , X1)

)
,

V
(
Xn−1, pV (n−2)(Xn−2, . . . , X1)

)
, . . . , V (X2, X1)

)
,

(4.43)

where on the last line we used the recursive definition of pV (n).

Proof of Theorem 2.9. Let ρ = (ρ1, . . . , ρn) be the vector of means in the statement of the
theorem, let W ∼ ν be a sequence of weights, and let (X1, . . . , Xn) ∼ νρV (that is, they are all
independent, have means ρ, and have marginals belonging to the family in the third row Table 1
corresponding to the weight distribution). Let X̃k = H(k)(Xk, . . . , X1). Then:

V (X̃k,W ) = V (H(k)(Xk, . . . , X1),W ) (4.44)

= H(k)(V (Xk, pV (k)(Xk−1, . . . , X1,W )), V (Xk−1, pV (k−1)(Xk−2, . . . , X1,W )), . . . , V (X1,W )).
(4.45)

Observe that each entry Zj = V (Xj , pV (j)(Xj−1, . . . , X1,W )) has marginal νρ
j

V . This is because

Xj ∼ νρ
j

V and by induction pV (j)(Xj−1, . . . , X1,W ) ∼ νρ
j−1

V (recall the distribution of the reverse
weights in Proposition 4.5), and since the distributions are compatible, the distribution of the input
is preserved. Moreover, observe that Zj is independent of Zi for i ̸= j. To see this,suppose i < j
and recall again from Proposition 4.5 that the reverse weights of an operation are independent of
the output. Our Zi is the output of V (Xj , pV (i)(Xi−1, . . . , X1,W )), while Zj depends on these
variables only through the reverse weights of this operation. Rewrieq:MultiStatApply as

V (X̃k,W ) = H(k)(Zk, . . . , Z1). (4.46)

This is the same form as in the definition of X̃k, except with Xk replaced by Zk. But our

argument above says (Z1, . . . , Zn)
d
= (X1, . . . , Xn), so

(V (X̃1,W ), . . . , V (X̃n,W ))
d
= (X̃1, . . . , X̃n). (4.47)

This is what it means for the distribution νρV to be a fixed point.
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4.4 The H map as reverse weights in LPP

Let us now observe a connection between our H update and the update map in last passage
percolation (LPP). The usual form of LPP considered on the integer lattice differs from our model
in that weights live on vertices, rather than edges, and our passage time is the maximal weight of
a directed path, rather the minimum.

Consider Γ = {ke1 : k ∈ Z} and to each vertex x associate a weight W (x). Let G : Γ → R
give passage times on the boundary Γ. Then we define passage times on Γ + e2 by

L
Γ
(ke1 + e2) = max

l≤k
G(le1) +

k∑
j=l

Wje1+e2 . (4.48)

It is important that the weight of the endpoint is included in the sum. Consider increments

Ik = L
Γ
((k+1)e1)−L

Γ
(ke1), Jk = L

Γ
(ke1+e2)−L

Γ
(ke1), I

′
k = L

Γ
((k+1)e1+e2)−L

Γ
(ke1+e2)
(4.49)

and write W k =W(k+1)e1+e2 . Then the increments obey the local update rules

I
′
k =W k + (Ik − Jk)

+, Jk+1 =W k + (Jk − Ik)+. (4.50)

The map (Ik, Jk,W k) 7→ (I
′
k, Jk+1) may be augmented byW

′
k = Ik∧Jk to form an involution

(Ik, Jk,W k) 7→ (I
′
k, Jk+1,W

′
). There is a vast literature on exponential-weight LPP (and its

discrete geometric-weight sibling), an in particular it is well known that if Ik ∼ Exp(ρ) for

0 < ρ < 1, then this involution fixes the distribution of (Ik, Jk,W k). Thus the W
′
k play exactly

the role of the reverse weights we have discussed above.
Analogously to our map H from SWFPP, given a sequence (Ik) which form the increments of

boundary values G : Γ→ R, and weights W k, let D(I, I) be defined as the sequence of increments

of the passage times along Γ + e2, namely the (I
′
k) from (4.49). This D can also be seen as the

interdeparture times of an M/M/1 queue with interarrival times I and service W . Let R(I,W )

be the sequence of W
′
k which give the reverse weights in the exponential setting. See [Sep18;

FS20] for further discussion of these relations.

Lemma 4.18. Let I, W be sequences for which H(I,W ) and D(W, I) make sense. Then

H(I,W ) = σ−1R(σ1W, I). (4.51)

Here σn is the operator shifting a sequence forward by n, so that index (σnI)k = Ik−n.

Proof. Let Γ = {ke1 : k ∈ Z} be our boundary and let G(ke1) =
∑k−1

j=0 Ij −
∑k

j=−1 Ik be the

passage times along the boundary. Let LΓ be the SWFPP passage times on Γ+ e2 determined by
G and W , given by

LΓ(ke1 + e2) = min
l≤k

G(le1) +

k∑
j=l+1

Wk, (4.52)

and let I ′k and Jk be the horizontal and vertical increments:

I ′k = LΓ((k + 1)e1 + e2)− LΓ(ke1 + e2), Jk = LΓ(ke1)− LΓ(ke1 + e2). (4.53)

Further, let Ik =Wk−1 = (σ1W )k and W k = Ik, and G(ke1) =
∑k−1

j=0 Ij −
∑k

j=−1 Ik. We let L
Γ

the now the LPP passage times, defined as

L
Γ
(ke1 + e2) = max

l≤k
G(le1) +

k∑
j=l

W j . (4.54)
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Finally, set

I
′
k = L

Γ
((k + 1)e1 + e2)− L

Γ
(ke1 + e2), Jk = L

Γ
(ke1 + e2)− L

Γ
(ke1), (4.55)

noting that the order of Jk is swapped relative to Jk.
We first claim that Jk+1 = Ik + Jk. This is clear once we expand the vertical increments:

Jk = max
l≤k

k−1∑
j=l

Ij −Wj , and Jk+1 =W k +max
l≤k

k−1∑
j=l

W j − Ij+1. (4.56)

Now plugging in the definitions of Ik and W k gives the identity. Then we find, using (4.8) and
(4.49), that

I ′k = (Ik + Jk) ∧Wk (4.57)

= Jk+1 ∧ Ik+1 (4.58)

=W
′
k+1. (4.59)

This is what we wanted to show.

Consider the reversed operators
←−
D and

←−
R . These are useful because we can succinctly write

the time reversal property satisfied by the reverse weights:

I =
←−
D(D(I,W ), R(I,W )) and W =

←−
R (D(I,W ), R(I,W )). (4.60)

From this and Lemma 4.18 we may derive a number of interesting distributional inequalities,
ultimately leading to a distributional inequality between exponential SWFPP Busemann functions
and those in LPP.

Lemma 4.19. Take ρ1 > ρ2 > 0 and let I1, I2 be independent i.i.d sequences with marginals
Exp(ρ1) and Exp(ρ2). Then

(I1, D(I2, I1))
d
= (
←−
R (I2, I1), I2) (4.61)

and
(I1,
←−
D(I2, I1))

d
= (R(I2, I1), I2) (4.62)

Proof. Let Ĩ1 = R(I2, I1) and Ĩ2 = D(I2, I1). Burke’s theorem (for example [DMO05, Section

4]) tells us that (Ĩ1, Ĩ2)
d
= (I1, I2). Using the time reversal of (4.60),

(I1, D(I2, I1))
d
= (Ĩ1, D(Ĩ2, Ĩ1)) = (R(I2, I1),

←−
I2)

d
= (
←−
R (I2, I1), I2). (4.63)

For the last equality we replaced (I1, I2) by (
←−
I 1,
←−
I 2). This is (4.64), and (4.62) follows by

reversing the directions of all the sequences.

Lemma 4.20. Take ρ1 > ρ2 > 0 and let I1, I2 be independent i.i.d sequences with marginals
Exp(ρ1) and Exp(ρ2). Then

(I2, H(I1, I2))
d
= (
←−
D(I2, I1), I1). (4.64)
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Proof. From Lemma 4.18 and using translation invariance of the distributions, one gets

(I2, H(I1, I2)) = (I2, σ−1R(σ1I
2, I1))

d
= (σ1I

2, R(σ1I
2, I1))

d
= (I2, R(I2, I1)). (4.65)

We have just shown in Lemma 4.19 that this last pair is equal in distribution to (
←−
D(I2, I1), I1).

Now we extend Lemma 4.20 to n-tuples. With H(n) as before, define
←−
D (2)(I2, I1) =

←−
D(I2, I1),

and
←−
D (n)(In, . . . , I1) =

←−
D(In,

←−
D (n−1)(In−1, . . . , I1)).

Proposition 4.21. Let ρ1 > · · · > ρn > 0 and let I1, . . . , In be independent i.i.d sequences where
Ik has marginals Exp(ρk). Then

(In, H(2)(In−1, In), . . . ,H(n)(I1, . . . , In))
d
= (
←−
D (n)(In, . . . , I1), . . . ,

←−
D (2)(I2, I1), I1). (4.66)

Proof. The n = 2 case is just Lemma 4.20. Suppose we have the equality for n− 1. Then since
←−
D (k)(Ik, . . . , I1)

d
=
←−
D (k−1)(Ik, . . . , I3, D(I2, I1)), we have

(
←−
D (n)(In, . . . , I1), . . . ,

←−
D (2)(I2, I1))

d
= (
←−
D (n−1)(In, . . . , I2), . . . ,

←−
D (2)(I3, I2), I2). (4.67)

To the latter we may apply the induction hypothesis, and end up with

(
←−
D (n)(In, . . . , I1), . . . ,

←−
D (2)(I2, I1))

d
= (In, H(2)(In−1, In), . . . ,H(n−1)(I2, . . . , In)). (4.68)

Now suppose we have sampled the right side of (4.68) and wish to sample I1. Since the only

dependence of our conditioning with I1 is through
←−
D(I2, I1), this is equivalent to sampling I1

conditional on
←−
D(I2, I1). We may do this by sampling independent reverse weights O1 as a

sequence of i.i.d Exp(ρ1) variables, and setting I1 = R(
←−
D(I2, I1), O1)5.

Suppose on the other had we have sampled from the right side of (4.68). SamplingH(n)(I1, . . . , In)
is easy — we just draw I1 independently and take H(I1, H(n−1)(I2, . . . , In)). Our equality be-
tween H and R in Lemma 4.18, and the manipulations we did in the proof of Lemma 4.20 showing
that the shifts do not affect the distributions, means that our two conditional sampling procedures
are equivalent. Thus the full joint distributions are equal, and

(In, H(2)(In−1, In), . . . ,H(n)(I1, . . . , In))
d
= (
←−
D (n)(In, . . . , I1), . . . ,

←−
D (2)(I2, I1), I1). (4.69)

All that remains is to quote the distribution of the exponential LPP distribution and we will
have proved Proposition 2.11.

Theorem 4.22 (Theorem 3.2 of [FS20]). Take 1 > ρ1 > · · · > ρn > 0 and let B
k
(x, y) be the

north-east Busemann function in exponential LPP such that E[Bk
(0, e1)] = ρ−1

k . Let I1, . . . , In be
independent sequences of i.i.d exponential variables, with the marginal of Ik being Exp(ρk). Then

{(B1
((k + 1)e1, ke1), . . . , B

n
((k + 1)e1, ke1)) : k ∈ Z} d

= (
←−
D (1)(I1), . . .

←−
D (n)(In, . . . , I1). (4.70)

The use of the reversed
←−
D map rather than the forward D reflects the use of north-east rather

than south-west Busemann functions.

5There is some complication given the various reversals of indexing, but we can check that this does indeed

sample from I1 |
←−
D(I2, I1).
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Remark 4.23. All of the properties proved in [FS20] for the multi-line distribution carry over
to the Busemann process on an antidiagonal in exponential SWFPP. In particular, we have the
distribution on a single edge as that of a certain inhomogeneous Markov process. Convergence to
the stationary horizon for these measures was proved in [Bus24a]. There is a similar statement
for the horizontal edge Busemann process.

5 Semi-infinite geodesics near the axis

5.1 Branch points along the vertical axis

Recall from Section 2.6 that we defined Γ∞ to be the tree of semi-infinite geodesics rooted at the
origin. From this, define

B = {k : (0, 0)→ (0, k)→ (1, k) ⊆ Γ∞} (5.1)

to be the set of those heights where the tree Γ∞ branches from the y-axis. In light of the procedure
for producing Busemann geodesics, the set

B′ = {0}∪{k ≥ 1 : for some ξ ∈ U we have Bξ((k−1)e2, ke2) = 0, Bξ(ke2, (k+1)e2) ̸= 0} (5.2)

is the set of heights where Busemann geodesics branch from the y-axis. Clearly B′ ⊆ B. In the
general case, this inclusion allows us to say at least one thing which is not immediately obvious:

Proposition 5.1. In SWFPP, the set B is almost surely infinite.

Proof. If the weight distribution has an atom at 0, then every k such that W (ke2) = 0 may be
seen to belong to B. Suppose then that there is no atom at 0. The arguments of [Has25]6 may be
used to show that the limit shape has a sequence of extreme points converging to the e2-axis.
It follows that there is a sequence of directions {ξk} ⊆ U such that ξk → e2. Our more general
existence theorem, Theorem B.5, ensures the existence of Busemann functions associated to these
directions.

An elementary argument shows that almost surely, the critical angle ξ∗ is not e2. This is to say
that for angles sufficiently close to the vertical axis, the first step of the semi-infinite geodesic will
be up. If αk = P(Bξk(0, e2) ̸= 0), then in light of the rule for producing semi-infinite geodesics in
Remark 2.6, we have αk → 0.

Let AN be the event that maxB = N . Then on this event, for all k large enough, Bξk(0, e2) ̸= 0.
So P(AN ) ≤ lim inf P(Bξk(0, e2) ̸= 0) = lim inf αk = 0. Hence P(

⋃
N≥0AN ) = 0, and the branch

points are infinite almost surely.

Having B′ = B is equivalent to the statement that in a given realisation of Γ∞, there are no
three semi-infinite geodesics with the same direction. The corresponding statement has been
shown to hold for exponential LPP [Cou11] and in the directed landscape [Bus24b], and is
expected to hold in wide generality. This is the so-called N3G problem.

Theorem 5.2. Under exponential weights, almost surely we have

B′ = B. (5.3)

6Or, indeed, easier arguments given our simpler setting.
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To prove this for exponential LPP, Coupier reduced the problem to the statement that in the
TASEP speed process, two particles with the same asymptotic speed eventually collide. This in
turn had been shown in [AAV11]. In our case, the speed process for the associated discrete-time
particle system has been studied in [MS11], wherein the authors claim (without proof) that two
particles having the same speed will eventually collide. This statement, combined with Coupier’s
observation, give the theorem.

Being able to identify B with B′ in the exponential case and studying the joint distributions
of the Busemann functions here gives a precise, albeit difficult-to-work-with, description of the
branch points. For a direction ξ ∈ U , let α(ξ) = P(Bξ(0, e2) ̸= 0). Then due to the independence
of the Busemann increments in the solvable case, we know that the variable

b(ξ) = min{k : Bξ−(0, (k + 1)e2) ̸= 0} (5.4)

is geometrically distributed with parameter α(ξ). Moreover, b(ξ1) ≤ b(ξ2) whenever ξ1 ≤ ξ2.
Hence

B = {b(ξ) : ξ ∈ U } (5.5)

may be regarded as the values realised by a particular monotonic coupling of geometric variables.
The most natural such coupling of geometric variables can be found as a function of a sequence

(Uk : k ≥ 0) of i.i.d Unif[0, 1] variables, by setting X(t) = min{k ≥ 0 : Uk ≥ 1 − t}. One may
verify that the process {X(t) : 0 ≤ t < 1} is a cadlag pure jump process with X(t) ∼ Geom0(1−t).
The jump points are given by a Poisson process of intensity (1− t)−1dt and a jump at t follows a
Geom+(1− t) distribution, independent of everything else. Up to a time change, the continuous
space analogue of this coupling appears in [FS20] as the distribution of the Busemann process
along an edge. We may also verify that the Poisson process giving the jump points {tk} is
equivalent to choosing t0 = 0 and choosing each tk+1 uniformly on [tk, 1).

As an abuse of notation, write b(t) = b(ξ) when t = 1−α(ξ). The process {b(t) : 0 ≤ t < 1} is
once again a cadlag pure jump process with positive jumps, but in contrast to the above is neither
a Markov process nor has its jump points placed independently. We do however have a sort of
Markov property for the jump points. Define define D(b) = {t : b(t−) ̸= b(t)}, the random set of
jump points (discontinuities) of {b(t)}, and write D(b) = (d0, d1, . . . ), where 0 = d0 < d1 < · · · 7.
Suppose we know d0, . . . , dk and wish to sample dk+1. Then

P(dk+1 ≤ t) = tb(dk)
(
1− 1− t

1− dk
)
. (5.6)

Note that the dependence on {b(t) : t ≤ dk} is solely through b(dk). In particular, since b(dk) ≥ 0
and positive values induce a skew the distribution towards 1, we see that a time dk+1 sampled in
this way is stochastically larger than under the uniform sampling procedure for {X(t)}. Thus
our b(t) will tend to take fewer jumps than the more natural coupling, and must compensate for
this by taking larger jumps. We return to this point in Lemma 5.10.

The jumps are somewhat more complicated and do depend on the entire trajectory. Let H0 be
a map from (ZN × ZN)→ ZN representing a one-sided version of our store map H, where initially
the store is empty. That is, if we have a sequence inputs I = (I0, . . . ) and services W = (W0, . . . ),
we produce the sequence I ′ = H0(I,W ) according to

Xk = Xk−1 + Ik−1 − I ′k−1 (5.7)

I ′k = (Ik +Xk) ∧Wk, (5.8)

where we take X0 = 0 as our initial value.

7It will be convenient to have 0 ∈ D(b), even if it isn’t strictly a jump.
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Given the collection of jumps dk, sample Ik ∼ νk, independently, where νk is the marginal
distribution of the vertical increment Busemann functions in the direction corresponding to
tk, namely α−1(1 − t). Let σnI to be the sequence where n copies of 0 are appended to the

start of I. We set b(0) = 0 (there is always a branch at height 0) and Ĩ1 = σ1I1. Then we let

b(t1) = min{n : Ĩ1 ̸= 0}, and recursively define

Ĩk+1 = H0(σb(tk)+1I
k+1, Ĩk), (5.9)

b(tk+1) = min{n : Ĩk+1 ̸= 0}. (5.10)

Remarkably, the jump process b(t) defined this way has geometric marginals.

Proposition 5.3. The procedure described above does indeed sample from the process {b(t) : 0 ≤
t < 1}.

Proof. Consider sampling at finitely many times 0 = t0 < t1 < · · · < tn. We have a representation
of the Busemann functions {Bξk((j + 1)e2, je2)} in terms of the multi-line process. The branch
points can be recovered from (5.4), giving us the joint distribution of (b(t1), . . . , b(tn)).

The multi-line process takes as input independent sequences Ik ∼ νk and recursively applies
the H map. The first sequence, I0, may be considered as constant sequence of∞, and b(t0) = 0 as

expected. Then Ĩ1 = H(I1, I0) = I1, and b(t1) is just a geometric random variable, as expected.

Now consider Ĩ2 = H(I2, Ĩ1). The value of b(t2) will be the first non-negative time when the

store with input I2 and service Ĩ1 has non-zero output. The store has its first non-zero service at
time b(t1). There will be an output at this time if there is material in the store. This fails to
happen if there was both no material in the store already at time 0, and if the input from I2

was zero between time 0 and time b(t1). Thus the probability of no output at time b(t1) may be
computed as

tb(t1)
(
1− 1− t2

1− t1
)
. (5.11)

Here we use the explicit distributions for the Ik, and also for the corresponding store quantities in

Table 1. Hence b(t2) = b(t1) with probability 1− tb(t1)2 (1− (1− t2)/(1− t1)), and in the same way

P(b(tk) = b(t1)) = 1− tb(t1)k

(
1− 1− tk

1− t1
)
. (5.12)

This naturally leads to the distribution of the next jump point given in (5.6).
Let tk1 be the first time at which the value is different from b(t1). The Busemann functions

(Bξ1 , Bξk1 ) are jointly distributed as H(Ik1 , Ĩ1), conditioned on the store being empty at time 0,
and Ik1 having zero entries up to time b(t1). This is the relation we described by (5.9). Now we
look for the first subsequent time tk2 such that b(tk2) ̸= b(tt1), whose distribution from (5.12),
and repeat the procedure until we reach tn. Going to continuous time by taking n→∞ and the
spacing of the times to 0 yields the claimed sampling procedure.

Our Theorem 2.18 estimates the number of heights in B below a threshold N . This is equivalent
to estimating the number of jumps in our process {b(t)} before it hits N . Using (5.6) to analyse
the distribution of the jump points directly seems rather difficult, so our strategy of proof is more
indirect. We discretise the process and produce a dominating process b(t) with independent jumps
for which the hitting time is more easily understood. We then show that a positive proportion of
the jumps of {b(t)} are shared with {b(t)}, yielding a lower bound. For the upper bound, we use
a comparison with the {X(t)} process to show that the jumps in the branch process don’t cluster
“too much”, so that the number in the discretised process is a good proxy. One last comparison
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with a stochastically smaller process gives an upper bound for the discretised process, completing
the argument. For ease of presentation, we prove the lower and upper bounds separately, in
Proposition 5.4 and Proposition 5.8.

5.1.1 A lower bound on jumps

Proposition 5.4. There is C1 > 0 such that

|B ∩ [0, N ]| ≥ C1 logN (5.13)

for all N large enough, almost surely.

The argument goes through our first coupled process, which is just the sum of certain
independent increments. Here and in the remainder of the section, we set tk = 1− 2−k.

Lemma 5.5. There is a coupling of our process {b(t)} and a process {b(t)} such that b(tk) ≤ b(tk)
for all k ≥ 0, where b(t) may be represented as

b(t) =

⌊− log2(1−t)⌋∑
k=1

[
1 +

k∑
j=1

zk,j

]
, (5.14)

with zk,j ∼ Geom0(2
−j) and the zk,j all mutually independent.

Proof. Consider b(t1), b(t2), . . . , whose joint distribution we may access from the multi-line process.

Take Ik ∼ νk to be the independent inputs into the multi-line process and Ĩk the associated
outputs. As in the proof of Proposition 5.3, we describe how the values of b(tk) depend on the
inputs Ik.

Observe that for us to have b(tk) ̸= b(tk−1), the store with inputs Ik and service Ĩk−1 must
have no output at time b(tk−1). Let Ek(b(tk−1)) be the event that the store with input Ik is

empty immediately before the input at time b(tk−1). Since Ĩ
k−1
j = 0 for 0 ≤ j < b(tk−1), it must

be that the store is empty before the input at time 0, and subsequently Ikj = 0 for 0 ≤ j ≤ b(tk−1).
This probability may be computed as

P(Ek(b(tk−1))) =
1− tk

1− tk−1
t
b(tk−1)
k =

1

2
(1− 2−k)b(tk−1)−1. (5.15)

Again we use the distributions given in Table 1. We will have b(tk) ̸= b(tk−1) if Ek(b(tk−1))
occurs along with having Ikb(tk−1)

= 0, for a total probability of

pk =
1

2
(1− 2−k)b(tk−1). (5.16)

though we do not need this expression in proving this lemma, it will be useful later on.
Now, let us look at the value of b(tk). If Ek(b(tk−1)) does not occur, then b(tk) = b(tk−1).

If it does, then the new value will be the time of the first output for the store with input
Ik and service Ĩk−1. This must be after the next nonzero input to the store, say at time
yk,k = b(tk−1) + nk(b(tk−1)), and thereafter occurs at the first nonzero service. Here nk(b) =
min{n ≥ 0 : Ik( n+ b) ̸= 0}, and nk(b) ∼ Geom0(1− tk).

The sequence of services, Ĩk−1, is itself the output of a store, with input Ik−1 and service
Ĩk−2. Let Ek−1(yk,k) be the event that this store is empty before input at time yk,k. On this
event, we must now wait for the first subsequent nonzero input from Ik−1, and then for the first
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nonzero service. If the store is not empty, then we need only wait for the first nonzero service.
We then wait time

yk,k−1 = 1Ek−1(zk,k)nk−1(yk,k) (5.17)

for the input, and for the service we look at the store with input Ik−2 and service Ĩk−3, and so
on. Ultimately,

b(tk) = b(tk−1) +

k∑
j=1

yk,j , (5.18)

= b(tk−1) +

k∑
j=1

1Ej(yk,j+1)nj(yk,j+1). (5.19)

For this to work at j = 1 we should define yk,k+1 = b(tk−1). Observe that the quantities nj(yk,j+1)
are all independent of each other.

The only troublesome point in (5.18) is the dependency on the event Ej(zk,j+1). We define
the process b(t) to ignore this dependence. Define b(t0) = b(t0) = 0, and thereafter define

b(tk) = b(tk−1) + 1 +
k∑

j=1

zk,j , (5.20)

where zk,j is defined recursively by zk,k+1 = b(tk−1) and

zk,j = nj(zk,j+1). (5.21)

The additional 1 in the sum is merely to ensure that b(tk) ̸= b(tk−1). The collection {zk,j : k ≥
1, 1 ≤ j ≤ k} consists of independent geometric variables. Since both {b(tk)} and {b(tk)} are
defined through the same input variables Ik, and since for b(tk) we always overestimate the time
we wait to see output in a queue, we ensure that b(tk) ≤ b(tk).

We are interested in the number of values taken by {b(t)} before it hits a level N . Let
TN = inf{t : b(t) ≥ N}, and let VN = |{b(t) : 0 ≤ t < TN}|. Similarly, let TN and V N be the
corresponding quantities for {b(t)}.

Lemma 5.6. Almost surely, we have the asymptotics

lim
N→∞

− log(1− TN )

logN
= 1 (5.22)

and

lim
N→∞

V N

log2N
= 1. (5.23)

Proof. Find K such that 2K ≤ N < 2K+1. The first limit is a very coarse estimate which only
uses the marginals of b(t), namely that they are geometric with mean (1− t)−1. We again use
the dyadic times tk = 1− 2−k. We know

P(TN ≥ tk) = P(b(tk) ≤ N) = 1− (1− 2−k)N ≤ 1− (1− 2−k)2
K

. (5.24)

So
P(TN ≥ tK(1+ϵ)) ≤ 1− (1− 2−K(1+ϵ))2

K

≤ C(1− e−2−Kϵ

). (5.25)
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This upper bound decays very quickly and in particular is summable. So we may have TN ≥ tK(1+ϵ)

only finitely often. Thus

lim sup
N→∞

− log2(1− TN )

log2N
≤ 1 + ϵ (5.26)

almost surely. Taking ϵ to zero and finding the matching lower bound (similar to what we do
below), gives the limit.

For the second part, note that since b(t) is constant between its jumps at times tk, we may
write V N = − log2(1− TN ). We must show that

lim
N→∞

− log2(1− TN )

log2N
= 1. (5.27)

A short calculation gives P(zk,j ≥ 2j(1+ϵ)) ≤ e−2jϵ , and therefor there will be some (random)
C > 0 such that zk,j ≤ C2j(1+ϵ), for all k, j. Hence

b(tk) ≤ k +
k∑

l=1

l∑
j=1

C2j(1+ϵ) (5.28)

≤ k + C

k∑
l=1

2(l+1)(1+ϵ) (5.29)

≤ k + C2(k+2)(1+ϵ) (5.30)

≤ C2k(1+ϵ), (5.31)

where in the last line we enlarge C to absorb the other terms. Some manipulation gives a bound
on the hitting time: if b(tk) ≥ 2K , then

k ≥ (1 + ϵ)−1(K − log2 C). (5.32)

So since ϵ > 0 may be chosen arbitrarily,

lim inf
N→∞

− log2(1− TN )

log2N
≥ 1. (5.33)

The same procedure, with a lower bound of c2j(1−ϵ) on the zk,j , gives the matching upper bound,
and we conclude that in fact

lim
N→∞

− log2(1− TN )

log2N
= 1, (5.34)

which is equivalent to what we want.

We now know how many jumps to expect before {b(t)} reaches a given level. We will get a
lower bound on the jumps of {b(t)} by showing that the two processes jump “together” at least a
positive proportion of the time. This will follow easily after a technical lemma.

Lemma 5.7. Let A = {k ≥ 0 : b(tk) ≤ 2k}. There is a deterministic p > 0 such that

lim
K→∞

|A ∩ [0,K]|
K

= p a.s. (5.35)
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Proof. We relate b(t) to an R-valued ergodic process, for which the statement is immediate.

Let Yk =
∑k

j=−∞ 2j−kyk,j , where yk,j ∼ Exp(1) and these are mutually independent across all

k, j ∈ Z. Consider the process Ck =
∑k

l=−∞ 2l−kYl, which is quite clearly stationary and ergodic
under shifts of the index. The support of Ck is [0,∞), so for each α we can say

lim
K→∞

∑K
k=1 1{Ck ≤ α}

K
= P(Ck ≤ α) a.s. (5.36)

Now observe that ⌊2jyk,j⌋ ∼ Geom0(2
−j). We may couple our Ck with {b(t)} such that

b(tk) =

k∑
l=0

[
1 +

l∑
j=0

2j⌊yl,j⌋
]
. (5.37)

Under this coupling, the typical difference between 2kCk and b(tk) is quite small:

2kCk − b(tk) =
k∑

l=−∞

l∑
j=−∞

2jyl,j −
k∑

l=0

[
1 +

l∑
j=0

2j⌊yl,j⌋
]

(5.38)

=
−1∑

l=−∞

l∑
j=−∞

2jyk,j +
k∑

l=0

−1∑
j=−∞

2jyk,j +
k∑

l=0

l∑
j=0

(2jyl,j − ⌊2jyl,j⌋)− k. (5.39)

Write S1
k, S

2
k, S

3
k for the three sums. Among these, S1

k doesn’t actually depend on k, so let us
write H1 = S1

k. For S
2
k, an application of the Borel-Cantelli lemma to the yk,j shows there is a

random H2 such that S2
k ≤ H2k for all k ≥ 0. Lastly, the terms of S3

k are individually bounded
by 1, so trivially S3

k ≤ k2. Using the triangle inequality in (5.38) and plugging in these bounds,

|2kCk − b(tk)| ≤ H1 + (H2 + 1)k + k2 ≤ Hk2, (5.40)

for all k ≥ 1 (and H chosen large enough).
Now to prove the lemma,

{k ≥ 0 : b(tk) ≤ 2k} ⊆ {k ≥ 0 : 2kCk −Hk2 ≤ 2k} (5.41)

= {k ≥ 0 : Ck ≤ 1 +H2−kk2}. (5.42)

With ϵ > 0 arbitrary, let kϵ be large enough that H2−kϵk2ϵ < ϵ. Then

lim
K→∞

∑K
k=0 1{b(tk) ≤ 2k}

K
≤ lim

K→∞

∑K
k=0 1{Ck ≤ 1 +H2−kk2}

K
(5.43)

= lim
K→∞

∑K
k=kϵ

1{Ck ≤ 1 +H2−kk2}
K

(5.44)

≤ lim
K→∞

∑K
k=0 1{Ck ≤ 1 + ϵ}

K
(5.45)

= P(C0 ≤ 1 + ϵ). (5.46)

Taking ϵ → 0, we can replace the last bound by P(C0 ≤ 1). Repeating this calculation with a
matching lower bound leaves us with

lim
K→∞

∑K
k=0 1{b(tk) ≤ 2k}

K
= P(C0 ≤ 1) > 0. (5.47)
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Proof of Proposition 5.4. Recall the expression for pk from (5.16), which gives the probability
that b(tk) ̸= b(tk−1) and hence there is a jump point in (tk−1, tk]. Moreover, our description of
the discretised process in the proof of Lemma 5.5 makes clear that whether this happens is a
function of fresh, independent inputs whose only dependence on the trajectory thus far is through
the value of b(tk−1). Now note that

pk =
1

2
(1− 2−k)b(tk−1) ≥ 1

2
(1− 2−k)b(tk−1). (5.48)

If k ∈ A, the set from Lemma 5.7, then we have a further estimate

pk ≥
1

2
e−(1+ϵ) > 0, (5.49)

uniformly for all k large enough. Then Lemma 5.7 shows that this estimate holds a positive
proportion of the k, and thus there must be a jump for b, within (tk−1, tk] for a positive proportion
of the k. Lemma 5.6 says that TN will typically be around 1−N−1, so there will be of order logN
such dyadic intervals before we hit N . The lower bound on the number of jumps follows.

5.1.2 An upper bound on jumps

For the upper bound, we wish to show that the number of jumps of the discretised process is a
good proxy for the the total number in the original process, and then give an upper bound on
the former. The dyadic spacing may no longer be sufficient, so we now choose α > 1 and look at
times tk = 1− α−k. Taking α↘ 1 improves the accuracy of our discretisation.

Proposition 5.8. There is C2 < 1 such that

|B ∩ [0, N ]| ≤ C2 logN (5.50)

for all N large enough, almost surely.

Remark 5.9. We can prove (5.50) for general continuous weights if we allow C2 = 1, and in
particular we don’t need the power of Theorem 5.2. Observe that the geodesic γ(1,k) will branch
off the vertical axis at the height 0 ≤ j ≤ k such that W ((0, j)) is minimised, and so k will fail
to be in B unless W ((0, k)) sets a new minimum for the weights along the vertical axis. The
behaviour of such minima is discussed in [Dur19, Example 2.3.10], where it is shown that up to
height N , there will asymptotically be logN minima.

Lemma 5.10. There is a coupling of {b(t)} and the process {X(t)} defined above, such that if
D(b) = (d0, d1, . . . ) and D(X) = (d′0, d

′
1, . . . ) are the jump points for the processes, we have

1− dk+1

1− dk
≤

1− d′k+1

1− d′k
(5.51)

for all k ≥ 0. That is, on a logarithmic scale, the times {1− dk} are farther separated than are
{1− d′k}.

Proof. Recall that we define d0 = d′0 = 0, and have b(0) = X(0) = 0. For both processes, the
first jump is chosen uniformly on [0, 1], so we may let d1 = d′1. Subsequently, suppose we have
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sampled the first k points such that (5.51) holds and wish to do same with the k+ 1-th. We have

P
(
1− dk+1

1− dk
≥ r
)

= P(dk+1 ≤ 1− (1− dk)r) (5.52)

= (1− (1− dk)r)b(dk)(1− r) (5.53)

≤ 1− r (5.54)

= P
(
1− d′k+1

1− d′k
≥ r
)
, (5.55)

so we may sample dk+1 and d′k+1 such the relation Eq. (5.51) continues to hold.

Lemma 5.11. With tk = 1−α−k as above, let Dk = {D(B)∩ [tk, tk+1] ̸= ∅} = {b(tk) ̸= b(tk+1)}.
Then we have

lim inf
k→∞

∑k
l=0 1Dl

|D(B) ∩ [0, 1− tk]|
≥ 1

α
. (5.56)

That is, in lieu of counting the actual number of zeroes up to tk+1, we may count only the
number times that b(tl) ̸= b(tl+1), 0 ≤ l ≤ k, and in doing so we miss at most a portion of α−1 of
the total.

Proof. Consider the jumps of the process {X(t)}, which we again write as D(X) = (d′0, d
′
1, . . . ).

Suppose d′k lies in [tl, tl+1]. Conditional on d
′
k, d

′
k+1 is distributed uniformly in [1− d′k, 1]. It will

certainly lie beyond tl+1 if
1− d′k+1

1− d′k
≥ 1

α
. (5.57)

This happens with probability α−1, and the ratios in (5.57) are independent across different
values of k. This implies the statement of the lemma for the points d′k.

As before, write D(b) = (d0, d1, . . . ) for the jumps of {b(t)}. The coupling from Lemma 5.10
gives us

1− d′k+1

1− d′k
≥ 1

α
⇒ 1− dk+1

1− dk
≥ 1

α
. (5.58)

We see then that the statement must also hold for the dk.

At this point, we may notice that since P(b(tk+1) ̸= b(tk)) = (1− α−1)t
b(tk)
k+1 ≤ (1− α−1), and

since these jumps capture at least a portion of α−1 of the total, we have found the following
asymptotic bound for the number of jumps up until time t:

α · (1− α−1) · logα(1− t) =
(α− 1) log(1− t)

logα
(5.59)

Taking α↘ 1 brings this upper bound to simply log(1− t). Along with Lemma 5.6, would give
the desired upper bound in Proposition 5.8 with constant C = 1. That we can take C < 1 means

that the factor of t
b(tk)
k+1 which we discarded does play a role.

Lemma 5.12. For ϵ > 0 arbitrary and k large enough, we have that

P(b(tk) ≥ αk | b(tk) ̸= b(tk−1)) ≥ e−(1+ϵ). (5.60)

Proof. Recall our description of the jump from b(tk−1) to b(tk) from the proof of Lemma 5.5.
While waiting for the first output of the relevant store, we must at least wait for the first non-zero
input from the sequence Ik. This is a Geom+(α

k) random variable which lowers bounds b(tk),
from which (5.60) is immediate.
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Proof of Proposition 5.8. Let D = {k ≥ 0 : b(tk) ̸= b(tk−1)} be those indices where we see jumps
in {b(t)}. Consider also Dind, where each k ≥ 0 is a member independently with probability
1 − α−1. We couple D and Dind in an obvious way. Take an i.i.d collection {Uk : k ≥ 1}
of Unif[0, 1] random variables and put 0 in both sets. Assume that we have determined the
membership for all j ≤ k, and moreover we have a sampled of {b(t) : t ≤ tk} such that this
process has jumps in intervals indicated by D. We then add k + 1 to the sets according to the
following rule:

Uk+1 ≤ 1− α−1 ⇒ k + 1 ∈ Dind, (5.61)

Uk+1 ≤ (1− α−1)t
b(tk)
k+1 ⇒ k + 1 ∈ D. (5.62)

We will try to show that for the correct choice of α > 1, we have

lim sup
k→∞

|D ∩ [0, k]|
k

≤ C2 logα, (5.63)

with C2 < 1. We will compare it to Dind, for which we have trivially that

lim
k→∞

|Dind ∩ [0, k]|
k

= 1− α−1 = logα+ o(α− 1). (5.64)

Thus if we can show that a positive proportion of elements of Dind fail to lie in D, then (5.63)
will follow from taking α ≈ 1 in (5.64).

Rearranging (5.61) gives

P(k + 1 ∈ D | k + 1 ∈ Dind) = t
b(tk)
k+1 , (5.65)

and also that conditional on the value of b(tk), this event is independent of {b(t) : t ≤ tk}.
Suppose k ∈ D. By Lemma 5.12,

P(b(tk) ≥ αk) ≥ e−(1+ϵ), (5.66)

for ϵ > 0 arbitrary and k large enough. Let Z = min{l ≥ 1 : k + l ∈ Dind}, the gap until the next
element of Dind. Then Z ∼ Geom+(1− α−1), independent of everything else. For α close enough
to 1, P(Z ≤ α/(α− 1)) ≥ 1− e−(1−ϵ). Using (5.66),

P(k + Z ̸∈ D | k ∈ D) ≥ P(b(tk) ≥ αk)P(Z ≤ α/(α− 1))(1− tα
k

k+(α/(α−1))) (5.67)

≥ e−(1+ϵ)(1− e−(1−ϵ))(1− e−(1−ϵ)α−α/(α−1)

). (5.68)

With some calculus we may get the lower bound

P(k + Z ̸∈ D | k ∈ D) ≥ e−(1+ϵ)(1− e−(1−ϵ))(1− e−(1−ϵ)/2e). (5.69)

Write pϵ for the quantity on the right hand side. In sampling D, we can begin from Dind and go
through the points in increasing order, performing the test in (5.61) to determine membership
of D. If we have a point in D, then the subsequent point in Dind is discarded from D with
probability at least pϵ. Thus

lim sup
k→∞

D ∩ [0, k]

Dind ∩ [0, k]
≤ 1

1 + pϵ
. (5.70)

Hence

lim sup
k→∞

D ∩ [0, k]

k
≤ 1

1 + pϵ
lim
k→∞

Dind ∩ [0, k]

k
=

1− α−1

1 + pϵ
. (5.71)
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Since pϵ > 0 was uniform in α, we can make α small enough so

1− α−1

1 + pϵ
≤ C2α

−1 logα (5.72)

holds with C2 < 1.
We are ready to conclude. Suppose tKN

≤ TN < tKN+1, where TN is the hitting time from
Lemma 5.6. From the various definitions and Lemma 5.11, one has

|B ∩ [0, N ]|
logN

=

∣∣D(b) ∩ [0, TN ]
∣∣

− log(1− TN )
· − log(1− TN )

logN
≤ α|D ∩ [0,KN + 1]|

KN logα
· − log(1− TN )

logN
, (5.73)

and so

lim sup
N→∞

∣∣B ∩ [0, N ]
∣∣

logN
≤ lim sup

N→∞

α
∣∣D ∩ [0,KN + 1]

∣∣
KN logα

· − log(1− TN )

logN
≤ C2 · 1. (5.74)

Here we used (5.63), (5.22), (5.71) and (5.72).

5.2 Highways passing through a column

The infimum in (2.30) can be done directly without knowledge of the Busemann process, and
indeed for any continuously distributed weights.

Proposition 5.13. Under continuously distributed weights and for any y ∈ Z2
≥0,

lim inf
k→∞

|[y, y + ke2] ∩ Γ∞|
k

= 0 a.s. (5.75)

Proof. Without loss of generality we may assume y = le1. Fix m ≥ 1. We describe a sequence of
events, happening infinitely often almost surely, on which the ratio in (5.75) is bounded by 1/m.
Taking m→∞ gives the result.

Let An be the event on which

1. argmin0≤j≤lmnWi,j ∈ [in, (i+ 1)n) for all 0 ≤ i ≤ l − 1,

2. argmin0≤j≤2lmnWi,j ∈ [(l + j)mn, (l + j + 1)mn) for all 0 ≤ i ≤ l − 1,

3. argmin0≤j≤2lmnWl,j ∈ [ln, (l + 1)n).

The first condition ensures that γ(l, lmn) reaches column l at height below ln. The second
means that γ(l, 2lmn) initially follows the e2-axis up to height at least lmn. The third says
that γ(l + 1, 2lmn) cannot overlap with γ(l, lmn) in column l beyond height (l + 1)n. Taken
together, these imply that γ(l, lmn) is “boxed in” by γ(l, 2lmn) and γ(l + 1, 2lmn). In particular,
the points (l, k) which have (l + 1)n ≤ k ≤ 2lmn belong to γ(l, lmn) but do not form part of a
semi-infinite geodesic. The situation is illustrated in ?? So on the event An, we have

|[y, y + 2lmne2] ∩ Γ0|
2lmn

≤ (l + 1)n

2lmn
≤ 1

m
. (5.76)

The probability of An can be calculated easily when we recall that the position of the minimum
among a finite collection of independent continuous random variables is distributed uniformly
among the possible indices. So

P(An) =

(
n

1 + lmn

)l(
mn

1 + 2lmn

)l
n

1 + 2lmn
≥ (2lm)−l(3l)−l(3lm)−1. (5.77)
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The lower bound in uniform in n.
Another useful property of the positions of minima is that when J ⊆ I are sets of indices

and {Xi : i ∈ I} are i.i.d, the event {argmini∈I Xi ∈ J} is independent of argmini∈J Xi. This
implies that An1

is independent of An2
whenever 2lmn1 < n2, or vice versa. Now we note that

{A(4lm)n : n ≥ 1} are mutually independent. Thus through the second Borel-Cantelli lemma and
the lower bound in (5.77), we have (5.76) infinitely often, almost surely. Then

lim inf
k→∞

|[y, y + ke2] ∩ Γ0|
k

≤ 1

m
, (5.78)

and we conclude by sending m→∞.

The proof in the other direction is of a similar flavour, but the events won’t be so nice as to
be independent. Here it is useful to have knowledge of the joint distributions of the Busemann
functions to control the correlations.

Proposition 5.14. Under exponential weights and for any y ∈ Z2
≥0,

lim sup
k→∞

|[y, y + ke2] ∩ Γ0|
k

= 1 a.s. (5.79)

Proof. Recall our procedure for producing semi-infinte geodesics from the Busemann functions
{Bξ(x, y)}, described in Remark 2.6. Starting at 0, the Busemann geodesic in direction ξ ∈ U
will leave the e2-axis at height k1 = min{k ≥ 0 : Bξ(ke2, (k + 1)e2) ̸= 0}. Subsequently, it will
leave the l column at height

kl = min{k ≥ kl−1 : Bξ(le1 + ke2, le1 + (k + 1)e2) ̸= 0}. (5.80)

Once again we may assume that y = le1 and fix m ≥ 1. We look at events A′
n under

which the a semi-infinite geodesic spends a relatively long time in the l column, and where the
ratio in (5.79) is at least (m − 1)/m. Namely, let ξn = ξ(lmn) (that is, the direction in which
P(Bξn(0, e2) = 1) = (1 + lmn)−1), and let A′

n be the event that

1. There is k′l ∈ (lmn, 2lmn] such that Bξn
2 (le1 + k′le2) ≥ (lmn)−1, and Bξn

2 (le1 + ke2) = 0 for
all other k ∈ [0, 2lmn), k ̸= k′l.

2. For 0 ≤ j ≤ l − 1, there is k′j ∈ [jn, (j + 1)n) such that Wj,k′
j
≤ (2l2mn)−1, and Wj,k ≥

2(lmn)−1 for all other k ∈ [0, 2lmn), k ̸= k′j ..

Recall that the Busemann functions along the j column may be found through the vertical update
map V by

{Bξ
2(je1 − ke2) : k ∈ Z}k∈Z = V

(
{Bξ

2((j + 1)e1 − ke2)}k∈Z, (Wje1−ke2)k∈Z

)
. (5.81)

On event A′
n, the stores represented by {Bξn

2 (je1 − ke2)}k∈Z are initially empty between
k = 0 and k = k′l − 1, with a mass at k = k′l. In the first update, which produces the Busemann
functions on the l − 1 column, this mass is flushed through the tandem by large services Wj,k,
except for a bottleneck at k = k′l−1, where at least (2l − 1)/(2l2mn) is left in the store here. The
stores for 0 ≤ k ≤ k′l−1 − 1 end up empty. This process continues, with the stores in column j
empty for 0 ≤ k ≤ k′j − 1, and a mass of at least (l + j)/(2l2mn) > 0 at k = k′j . If we then carry
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out the procedure for finding the semi-infinite geodesic from the origin in direction ξn, we see
that this geodesic will leave column j at height k′j , 0 ≤ j ≤ l. Thus we have∣∣[y, y + (lmn)e2] ∩ Γ0

∣∣
lmn

≥ l(m− 1)n

lmn
=
m− 1

m
. (5.82)

The remainder of the proof is to compute the probabilities and pairwise correlations of the
A′

n, to verify that they are large enough and small enough, respectively, to ensure that we see

(5.82) infinitely often. We have chosen ξn so that Bξn
2 (0) ∼ Ber((1 + lmn)−1)Exp(lmn), so

P(A′
n) = (lmn)

e−lmn/(l2mn)

1 + lmn

(
1− 1

1 + lmn

)2lmn−1(
n(1− e−1/(2l2mn))

)l
(e−2/(lmn))(2lmn−1)l.

(5.83)
We can approximate each factor when n is large and we arrive at

P(A′
n) = (2l2m)−le−2−4l−1/l +O(n−1), (5.84)

Now take n1, n2, with n2 ≫ n1 (it will be enough that n2 > 4lmn1). From (5.84) we can
estimate

P(A′
n1
)P(A′

n2
) = (2l2m)−2le−4−8l−2/l +O(n−1

1 + n−1
2 ). (5.85)

We would like to estimate P(A′
n1
∩A′

n2
) and show that it cannot be much larger. Decompose A′

n

into independent events A
(1)
n ∩A(2)

n , where A
(1)
n is just condition 1 defining A′

n, and A
(2)
n is just

condition 2. Now
P(A′

n1
∩A′

n2
) = P(A(1)

n1
∩A(1)

n2
)P(A(2)

n1
∩A(2)

n2
). (5.86)

In the first, we may infer from Theorem 2.9 that {Bξn1
2 (y + ke2) : 0 ≤ k ≤ 2lmn1} and

{Bξn2 (y + ke2)2 : k > 2lmn1} are independent. The event A
(1)
n2 demands that B

ξn2
2 (y + ke2) = 0

for all 0 ≤ k ≤ lmn2, which includes 2lmn1 + 1 ≤ k ≤ lmn2. Then we can use independence to
bound

P(A(1)
n1
∩A(1)

n2
) ≤ (lmn1)

e−l

1 + lmn1

(
1− 1

1 + lmn1

)2lmn1−1

(lmn2)
e−l

1 + lmn2

(
1− 1

1 + lmn2

)2lm(n2−n1)−2

(5.87)

= e−2l lmn1
1 + lmn1

lmn2
1 + lmn2

(
1− 1

1 + lmn1

)2lmn1−1(
1− 1

1 + lmn2

)2lm(n2−n1)−2

(5.88)

= e−(2+2(n2−n1)/n2+2l) +O(n−1
1 + n−1

2 ). (5.89)

The second pair is also fairly easy and the calculation may be carried out directly:

P(A(2)
n1
∩A(2)

n2
) =

(
n2(1− e−1/(2l2mn2))

)l
(e−2/(lmn2))2lm(n2−n1)l· (5.90)

·
(
n1(e

−2/(lmn2) − e−1/(2l2mn1))
)l
(e−2/(lmn1))(2lmn1)l (5.91)

= (2l2m)−2le−4l(1+(n2−n1)/n2)

(
1

2l2m
− n1
n2

2

2l2m

)l

+O(n−1
1 n−1

2 ) (5.92)

= (2l2m)−2le−4l(1+(n2−n1)/n2)

(
1− 2n1

n2

)l

+O(n−1
1 + n−1

2 ). (5.93)
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So then our bound on the overlap is

P(A′
n1
∩A′

n2
) ≤ e−2(1+(n2−n1)/n2)−4l(1+(n2−n1)/n2)−2/l)

(
1− 2n1

n2

)l

+O(n−1
1 + n−1

2 ). (5.94)

The bound on the correlation is the rather messy

Cov(A′
n1
, A′

n2
) = P(A′

n1
∩A′

n2
)− P(A′

n1
)P(A′

n2
) (5.95)

= (2l2m)−2le−4−8l−2/l

(
1− e2(1−(n2−n1)/n2)+4l(1−(n2−n1)/n2)

(
1− 2n1

n2

)l
)
+

+O(n−1
1 + n−1

2 ). (5.96)

Choose nr = (4lm)r. Then using our bound in (5.96), one finds that∑
r ̸=s

Cov(A′
nr
, A′

ns
) <∞. (5.97)

We do not claim that the sum converges, merely that it does not diverge to positive infinity. From
(5.84), we also have

∞∑
r=1

P(A′
nr
) =∞. (5.98)

These two facts are enough to conclude that the A′
nr

occur infinitely often, almost surely (for
example, by following the argument of Theorem 2.3.9 in [Dur19]). Hence∣∣[y, y + ke2] ∩ Γ0

∣∣
k

≥ m− 1

m
(5.99)

for infinitely many k, and sending m→∞ gives the proposition.

5.3 Convoys on the vertical axis

For concreteness, let us prove Theorem 2.21 (at least, the latter two claims) for exponential rate
1 weights. The techniques we use apply equally to Bernoulli and Bernoulli-geometric weights,
except that the precise expressions and resulting constants will necessarily differ.

Also, rather than looking at the critical angle ξ∗, it will be helpful to look at the critical

parameter ρ∗ ∈ (0,∞) with Bξ∗

2 (0) ∼ Ber(ρ∗(1 + ρ∗)−1)Exp(ρ∗). This ρ∗ is a decreasing function
of ξ∗, so the various inequalities in Theorem 2.21 should be reversed.

It will be useful to define some probabilities, whose meaning will be come apparent when we
introduce our random walk below:

1. Let p(ρ) = ρ(1 + ρ)−1 be the probability that Bρ
2(ke2) ̸= 0.

2. Let p↑(ρ1, ρ2) = (1− p(ρ1))p(ρ2) + p(ρ1)p(ρ2)ρ1(ρ1 + ρ2)
−1, p→ = (1− p(ρ1))(1− p(ρ2)),

and p↓(ρ1, ρ2) = 1− p↑ − p→ be the probabilities of going up, flat, and down, respectively,
in the random walk.

3. Let q↑(ρ1, ρ2) = p↑(1− p↓)−1 and q→(ρ1, ρ2) = p→(1− p↓)−1 be the probabilities when we
condition on the step being up or flat.

Proposition 5.15. For a fixed ρ > 0, the set {k : ρ∗(ke2) ≥ ρ} is a Bernoulli process with
density (1 + ρ)−1.
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Proof. We have ρ∗(ke2) ≥ ρ if and only if Bρ
2 (ke2) = 0, which happens with probability 1− p(ρ).

Moreover, the variables {Bρ
2(ke2) : k ∈ Z} are all independent.

Proposition 5.16. For fixed 0 < ρ1 < ρ2, the set C(ρ1, ρ2) = {k : ρ1 ≤ ρ∗(ke2) ≤ ρ2} is a
renewal process whose holding times may be represented in terms of stopping times in a particular
random walk. Specifically, consider Sk =

∑k
j=1Xj, where Xj = X2

j −X1
j , and

X1
j ∼ Ber(ρ1(1 + ρ1)

−1)Exp(ρ1), X1
j ∼ Ber(ρ2(1 + ρ2)

−1)Exp(ρ2) (5.100)

are i.i.d. Define τ = min{k ≥ 1 : Sk > Sk−1 ≥ max0≤j≤k−1 Sk}, and let τ1, τ2, . . . be independent
copies of τ . Set pt = (ρ1 + ρ2)(ρ1 + ρ2 + ρ22)

−1 and take Z ∼ Geom+(p
t). Then the increments

between elements of C(ρ1, ρ2) are independent and equal in distribution to
∑Z

n=1 τ
n.

Proof. We look at our multi-line representation and identify this walk Sk. Suppose 0 ∈ C(ρ1, ρ2),
and let I1 I2 be the inputs into our multi-line process. The distribution of the sequence
{(Bρ1

2 (ke2), B
ρ2

2 (ke2)) : k ∈ Z} is that of (I1, H(I2, I1)). Write Ĩ2 = H(I2, I1). That 0 be-

longs to C(ρ1, ρ2) means that I10 > 0 and Ĩ20 = 0. The store had nonzero service at time 0 but
zero output, meaning that the store was empty before this time and that I20 = 0.

We will have another element of C(ρ1, ρ2) the next time the store is empty and subsequently

receives zero input and nonzero service. Consider Sk =
∑k

j=0(I
2
j − I1j ). An increase in Sk means

that the input was greater than the available service and thus the quantity in the store has
increased. A decrease in Sk means that that that the store has decreased (possibly to zero). The
store is empty exactly when Sk attains its (weak) running minima. If Sk−1 is a running minimum,
then the store is empty at the beginning of time step k. If the value of the walk decreases as Sk, then
the store had nonzero service, but possibly zero input. A quick calculation with Bayes’ theorem
tells us that the input was zero with probability pt = p(ρ2)p

↓(ρ1, ρ2)/(p(ρ2)p
↓(ρ1, ρ2)+(1−p(ρ2))),

which reduces to the expression in the statement. In this case we have found our next element of
C(ρ1, ρ2). Otherwise, the store is again empty and we begin the wait once more.

To make the dependence on the parameters more explicit, denote by τ(ρ1, ρ2) the stopping
time in Proposition 5.16. So long as ρ1 < ρ2, τ(ρ1, ρ2) has finite mean and moreover, exponential
decay (as the return time of a biased random walk). From ergodicity considerations, we know
that the density of C(ρ1, ρ2) must be (1 + ρ2)

−1 − (1 + ρ1)
−1, and so we must have

E[τ(ρ1, ρ2)] =
(ρ1 + ρ2)(1 + ρ1)(1 + ρ2)

(ρ2 − ρ1)(ρ1 + ρ2 + ρ22)
. (5.101)

We could also derive this through Wald’s identities, and we will take this approach later on.
The more interesting case is when we look at C(ρ) = {k : ρ∗(ke2) = ρ}. Since ρ∗ is continuously

distributed, this set must be empty almost surely. But if we condition on it being nonempty, then
we get the same description as above, now with τ(ρ1, ρ2) replaced by τ(ρ) = τ(ρ, ρ).

Proposition 5.17. Let ρ = ρ∗(0). Let τ1, τ2, . . . be independent copies of τ(ρ) and let Z ∼
Geom+(p

t), where now pt = (1 + ρ/2)−1. Then the convoy for ρ, C(ρ), is a renewal process

whose holding times are equal in distribution to
∑Z

n=1 τ
n.

Proof. We have in mind the same situation as in Proposition 5.16, now taking ρ2 ↘ ρ1. We are
left with two sets of independent inputs I1, I2, both with Ber(ρ(1 + ρ)−1)Exp(ρ) marginals. In
general there may be difficulties defining H(I2, I1), but our conditioning means that we may
assume the store is empty before and after service at time 0. Now we repeat the argument from
Proposition 5.16 linking elements of our set to τ(ρ).
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We turn to finding the number of vertices in our convey below a given height, or equivalently
the number of renewals before a given time. If the mean of the holding time were finite then
this would just be an application of the renewal theorem. However, the mean here is infinite, as
seen from taking ρ1 = ρ2 in (5.101), or by ergodicity considerations. We use an extension of the
standard renewal theorem to heavy-tailed distributions:

Theorem 5.18 (Theorem 5 of [Eri70]). Let F be the distribution for our holding times and
suppose 1 − F (x) = Lx−α + o(x−α), for some 0 < α < 1. Let U(t) be the number of renewal
times in [0, n] (where for simplicity we may condition on a renewal at time 0). Then

lim
t→∞

U(n)

nα
=

1− α
LΓ(α+ 1)Γ(2− α)

a.s. (5.102)

The full statement found in [Eri70] is quite a bit more general, but this version will suffice.
The theorem suggests that we should study the tails of our holding time distribution, but it will
be easier to instead study tails of hitting times of our walk and relate the two.

Lemma 5.19. The stopping time τ admits a further decomposition into a sum of geometrically
many hitting times. Let σ = min{k ≥ 1 : Sk ≤ 0 | S1 ≥ 0}, or the first time the walk reaches zero
conditioned on taking taking a non-negative first step. Then if σ1, σ2, . . . are independent copies

of σ, we have τ
d
= 1 +

∑Y
j=1 σ

j, where Y ∼ Geom0(p
↓).

Proof. Recall that τ records the first time that we reach a strict running minimum, where the
previous time is itself a running minimum. Initially the walk is at a running minimum, so we will
get τ = 1 if the first step is down, with probability p↓. Otherwise, the run takes a non-negative
step, and we must wait for the walk to reach its prior low point. This time is σ1. After time σ1,
we are again at a running minimum, and will have τ = 1 + σ1 if we subsequently take a down
step, and this situation happens with probability (1− p↓)p↓. Iterating the argument gives the
claimed decomposition.

Random walks with Bernoulli or exponential increments are special in that their hitting times
are particularly amenable to analysis through Wald’s identities, Still, the time we care about,
the sum in Proposition 5.16, is rather complicated. It is necessary to first understand σ and go
through the decomposition from the last lemma.

Lemma 5.20. Suppose ρ1 = ρ2 = ρ and set β = ρ2(1 + ρ)−2. Let σ̃ = (σ − 1) | {σ ≥ 1}, just the
value σ − 1 conditioned on having it being non-negative. Then σ̃ has characteristic function

ϕ̃(θ) = E[eiθσ] =
√
1− βeiθ −

√
1− eiθ√

1− βeiθ +
√
1− eiθ

. (5.103)

Further, the generating function of p̃k = P(σ̃ = k) is

f̃(z) =

∞∑
k=0

p̃kz
k =

√
1− βz −

√
1− z√

1− βz +
√
1− z

. (5.104)

Proof. The characteristic function of our steps X2 −X1 is easily seen to be

M(t) = E[eit(X
2−X1)] (5.105)

=

(
(1− p(ρ)) + p(ρ)

1− it/ρ

)(
(1− p(ρ)) + p(ρ)

1 + it/ρ

)
(5.106)

=
ρ2 + t2(1 + ρ)−2

ρ2 + t2
. (5.107)
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Consider σa = min{k ≥ 0 : Sk ≤ −a}, the hitting time for −a < 0. This σa is equal in distribution
to σ̃ conditioned on S1 = a. Wald’s third identity applied here tells us that

1 = E
[
M(t)−σa

eitSσa

]
. (5.108)

Memorylessness means that Sσa ∼ −a − Exp(ρ) and is independent of σa. So we factor the
expectation and get

1 = E
[
M(t)−σa

]
e−aitE[eit(Sσa+a)]. (5.109)

Plugging in the characteristic function for an exponential and rearranging, this becomes

eait(1 + it/ρ) = E
[
M(t)−σa

]
. (5.110)

Now with a = S1 and taking an expectation over a (we condition it to be positive):

1 + it/ρ

1− it/ρ
= E

[
M(t)−σ̃

]
. (5.111)

Now let t(θ) solve M(t)−1 = eiθ. We would have

E
[
eiθσ̃

]
. =

1 + it(θ)/ρ

1− it(θ)/ρ
. (5.112)

One can solve this equation to find

t(θ) = i
ρ(1 + ρ)

√
1− eiθ√

1− (1 + ρ)2eiθ
. (5.113)

Now plugging in to (5.112) gives the desired expression (5.103).

For the second claim, observe that ϕ̃(θ) = f̃(eiθ), and ϕ̃ may be seen as the restriction of f̃ to

the unit circle. Moreover, f̃ is analytic on the unit disc. The inversion formula for characteristic
functions reduces here to the statement that Fourier coefficients of ϕ̃ are the probabilities p̃k. The
Fourier coefficients of ϕ̃ are in turn the coefficients of the power series expansion of its extension
f̃ about the origin. This is the substance of (5.104).

To recover the distribution of σ̃, and so of σ itself, we would like to find the power series
expansion of f̃ , or at least understand the asymptotic behaviour of its coefficients. Fortunately,
we can simply borrow standard tools from the theory of analytic combinitorics, which exist to
answer such questions.

Proposition 5.21. The probabilities p̃k have

p̃k = k−3/2 1√
π(1− β)

+ o(k−3/2). (5.114)

Hence pk = P(σ = k) has p0 = q→, and for k ≥ 1,

pk = k−3/2 q↑√
π(1− β)

+ o(k−3/2). (5.115)
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Proof. The function of interest, f̃ , may be written in a less symmetric but more approachable
form as

f̃(z) =
1

(1− β)z
(
2− (1 + β)z − 2

√
1− βz

√
1− z

)
. (5.116)

Dividing by z just shifts the series coefficients downward, and the 2− (1 + β)z term only affects
the first two coefficients. For the asymptotic behaviour of the coefficients, it is enough to look at

− 2

1− β
√

1− βz
√
1− z. (5.117)

We look to [FS09, Theorem VII.8], which states that it is enough to understand the function near
z = 1, then [FS09, Theorem VI.1] to see that the coefficients are approximately

− 2

1− β
·
√
1− β · −k

−3/2

√
π

= k−3/2 1√
π(1− β)

. (5.118)

In fact, the theorems we quoted may be used to find the asymptotic expansion up to arbitrary
order, but we will not use anything beyond the leading term.

Remark 5.22. The order of the pk being k−3/2 can be expected from what is known generally
about return times of random walks [LL10, Theorem 5.1.7]. It is only when our steps are
exponential, geometric, Bernoulli, or some combination that we may solve for the generating
function and compute the coefficient of the leading order term.

Corollary 5.23. Consider a renewal process whose holding times have the same distribution as
σ, and let Us(n) be the number of renewals in [0, n]. Then

lim
t→∞

Us(n)√
n

=

√
1− β
q↑
√
π

a.s. (5.119)

Proof. Using Proposition 5.21, we can see that the tails of σ have

P(σ ≥ n) =
∞∑

k=n

pk = n−1/2 2q↑√
π(1− β)

+ o(n−1/2). (5.120)

We may then apply the strong renewal theorem as stated in Theorem 5.18, with α = 1/2 and
L = 2q↑(π(1− β))−1/2.

Corollary 5.24. Consider a renewal process whose holding times have the same distribution as
τ , and let U t(n) be the number of renewals in [0, n]. Then

lim
t→∞

U t(n))√
n

=
p↓
√
1− β

(1− p↓)q↑
√
π

a.s. (5.121)

Proof. Consider instead the renewal process with holding times distributed as τ̃ = τ − 1, and
call the corresponding counting function Ũ(n). Note that since τ̃ may be zero, we can have
multiple renewal times in the same instant. The number of renewals at a given renewal time
is geometrically distributed (this is a general fact). Since by Lemma 5.19 τ̃ is just the sum

of Geom0(p
↓) many copies of σ, we can sample {Ũ(n)} as follows: sample {Us(n)}, and to

each renewal point k ∈ D(Us), attach a Geom0(p
↓) variable Zk. Then Ũ can be taken to be∑

k≤n
k∈D(Us)

Zk.
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It is easy to see from Corollary 5.23 that

lim
t→∞

Ũ(n)√
n

= E[Z] lim
t→∞

Us(n))√
n

=
p↓
√
1− β

(1− p↓)q↑
√
π
. (5.122)

The process we care about, U t(n), can be found by adding a unit space between renewals of

Ũ . So they may be coupled such that U t(n+ Ũ(n)) = Ũ(n), and

Ũ(n− Ũ(n)) ≤ U t(n) ≤ Ũ(n). (5.123)

Dividing by
√
n and taking the limit of the left and right with (5.122) gives the result.

We may finally prove the asymptotic result for the convoys.

Proposition 5.25. Let ρ = ρ∗(0) and let C(ρ) = {k : ρ∗(ke2) = ρ}. Then

lim
t→∞

|C(ρ) ∩ [0, n]|√
n

=
p↓
√
1− β

pt(1− p↓)q↑
√
π

a.s, (5.124)

recalling that we defined pt = (1 + ρ/2)−1.

Proof. The idea of the proof is the same as for Corollary 5.24. Proposition 5.17 says that the
holding times are sums of Geom+(p

t) many copies of τ , and so we may sample C(ρ) from U t by
keeping the renewal points of U t independently with probability 1− pt. From this it is immediate
that

lim
t→∞

|C(ρ) ∩ [0, n]|√
n

=
1

pt
lim
t→∞

U t(n)√
n

=
p↓
√
1− β

pt(1− p↓)q↑
√
π
. (5.125)

Unwrapping the definitions of the various quantities on the right of (5.124) leaves us with

2(1 + ρ)3(2 + ρ)
√
1 + 2ρ

(1 + ρ2)2
√
π

. (5.126)

Remark 5.26. Using the decompositions in Proposition 5.17 and Corollary 5.24 and the
expression for the characteristic function of σ in Lemma 5.20, one can express the characteristic
functions of τ and the holding times of C(α) as an infinite sum over powers of ϕ̃. Mathematica
does produce closed forms for these series, but they aren’t especially simple and it is easier to
argue more indirectly, as we have done.

A Uniform convergence to the limit shape

Uniform convergence to the limit shape will be needed later in establishing the Busemann limits.
We begin by restating [GRS16, Theorem 2.4] for our case, which establishes the existence of the
limit shape very generally.

Theorem A.1. There exists a deterministic, convex function g : R+
2 → R such that almost surely,

it holds for each (x1, x2) ∈ R+
2 simultaneously that

ℓ(x1, x2) = lim
n→∞

n−1L(⌊nx1⌋, ⌊nx2⌋). (A.1)

These limits also hold in the L1 sense.
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The rest of the section consist largely of proving the following improved convergence, which is
a small extension of Theorem 5.1 in [Mar04].

Theorem A.2. Almost surely

lim
n→0

1

n
max

x∈Z2
+,|x|1=n

|L(0, x)− l(0, x)| = 0. (A.2)

The argument in [Mar04] deals with vertex weights, but can be carried out in the same fashion
for edge weights. It relies essentially on only two facts: that in a directed model the number of
steps (in each direction) in a geodesic is deterministic; and that one has a powerful concentration
inequality for passage times of bounded weights [Tal95, Theorem 8.1.1]. As we are only interested
in the planar case we specialise the proof to dimension d = 2, but in principle the same steps can
be carried out for any d ≥ 1.

The proof goes through a number of lemmas, which we restate for our edge-weight FPP setup.
The arguments for the most part require very little modification. The only subtlety is in Martin’s
Lemma 3.1, which is the statement of the concentration inequality which the proof ultimately
rests on. The statement in our context is:

Lemma A.3. Let Xi, i ∈ I, be a finite collection of independent random variables taking values
in [0, L]d and write Xi,k for the k-th component of Xi. Let C be a set of subsets of I × [d], such
that

max
C∈C
|C| ≤ R, (A.3)

and additionally such that if C ∈ C and (i, k1), (i, k2) ∈ C, then k1 = k2. Set

Z = max
C∈C

∑
(i,k)∈C

Xi,k. (A.4)

Then for any u > 0,

P(|Z − E[Z]| > u) ≤ exp

(
− u2

64RL2
+ 64

)
. (A.5)

The proof in [Mar02, Lemma 5.1] is a direct application of an inequality due to Talagrand
[Tal95, Theorem 8.1.1] on the concentration of passage times, which itself is a quick consequence
of his isoperimetric inequality, as stated in [Tal95, Theorem 4.1.1]. An appropriate vector-valued
version of the isoperimetric inequality, such as the one found in Section 7.6 of [AS16], gives the
corresponding vector-valued version of his passage time concentration.

Theorem A.4. Let (Xi)i≤N be a collection of independent random variables with Xi ∈ [0, 1]di ,
and for 1 ≤ k ≤ di write Xi,k for the k-th component of Xi. Consider a family F of N -tuples of
pairs (αi, ki)i≤N , where αi ≥ 0 is a non-negative coefficient and ki is an index with 1 ≤ ki ≤ di.
Set σ = sup(α,k)∈F∥α∥2. Define a maximum over this family

Z = sup
(α,k)∈F

∑
i≤N

αiXi,ki . (A.6)

If M is the median of Z, then for all u > 0 we have

P(|Z −M | ≥ u) ≤ 4 exp

(
− u2

4σ2

)
. (A.7)

54



Now Lemma A.3 can be proved in precisely the same way as in [Mar02, Lemma 5.1].
One can use the strong control in the bounded case to prove Theorem A.2 for these weights.

We follow Martin and begin with continuity of the limit shape.

Lemma A.5. Let Xi, i ∈ I, be a finite collection of independent random variables taking values
in [0, L]d and take ϵ > 0. Then there is δ > 0 such that if x ∈ Rd

+ and ∥x∥ ≤ 1, with x1 = 0, then

|ℓ(x+ he1)− ℓ(x)| < ϵ (A.8)

for all 0 ≤ h ≤ δ.

Lemma A.6. Suppose |Wi(x)| < M for some M > 0. Then ℓ is continuous on R2
+.

The proofs of [Mar04, Lemmas 3.2, 3.3] go through word-for-word8.
We now give Theorem A.2 for bounded weights. This is a combination of Lemmas 5.3, 5.4 in

[Mar04]. The proofs go through word-for-word9.

Lemma A.7. Suppose |Wi(x)| < M for some M > 0, and let ϵ > 0 be given. Then almost surely,
we have for all but finitely many z ∈ Z2

+ that

|L(z)− ℓ(z)| ≤ ϵ∥z∥. (A.9)

Having proved these lemmas for bounded weights, Martin proceeds to generalise to unbounded
distributions satisfying a certain decay assumption. Namely, we need

∫∞
0

(1− F (s))1/2 ds <∞,
where F is the distribution of the vertex weights in the LPP model Martin considers. After taking

negatives to bring us into FPP, the condition becomes
∫ 0

−∞ F (s)1/2 ds <∞. This condition is
automatically implied by the existence of 2 + ϵ moments.

As our inequalities do not have to be especially sharp, we bound our edge-weight model
between vertex-weight models and apply Martin’s results to these. Given a directed path
π = (x = π0, π1, . . . , πn = y), define upper and lower vertex passage times

L(π) =

n−1∑
i=0

(
W (πi; 1) ∨W (πi; 2)

)
, (A.10)

L(π) =

n−1∑
i=0

(
W (πi; 1) ∧W (πi; 2)

)
. (A.11)

We define L(x, y) and L(x, y) as minimums over admissible paths, as before.

Lemma A.8. In the notation above,

L(x, y) ≤ L(x, y) ≤ L(x, y). (A.12)

Proof. Let π be a minimising path for L(x, y). Then

L(π) =

n−1∑
i=0

(
W (πi; 1) ∨W (πi; 2)

)
≥

n−1∑
i=0

W (π(i), π(i+ 1)) = L(π), (A.13)

and in turn L(π) ≥ L(x, y). Similarly for L(x, y).

8Martin uses T for the passage times in place of L and has weights X(v) rather than W (e).
9Again, with the passage times T and weights X(v)
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Write F and F for the distributions of W (0; 1) ∨W (0; 2) and W (0; 1) ∧W (0; 2), respectively.
These again have finite 2 + ϵ moments.

Lemma A.9. There exists c (independent of the weight distribution) such that:

(i) for all z ∈ Z2
+,

E[L(z)] ≥ −c∥z∥
∫ 0

−∞
F (s)1/2 ds. (A.14)

(ii) with probability 1,

lim inf
n→∞

1

n
min

∥z∥1≤n
L(z) ≥ −c

∫ 0

−∞
F (s)1/2 ds. (A.15)

(iii) for all x ∈ R2
+,

2∑
i=1

⟨x, ei⟩EW (0; i) ≥ ℓ(x) ≥ −c∥x∥
∫ 0

−∞
F (s)1/2 ds. (A.16)

Proof. The lower bounds all come from taking negatives in [Mar04, Lemma 3.5] and applying the
statement to the lower vertex passage times L. For the upper bound in (iii) we need only follow
Martin’s calculation. Let π̃ ∈ Π(z) be some path connecting z to the origin. Then

E[L(z)] = Emin
π

∥z∥−1∑
i=0

W (πi, πi+1) (A.17)

≤ E
∥z∥−1∑
i=0

W (π̃i, π̃i+1) (A.18)

=
∑

π̃i+1−π̃(i)=e1

EW (0; 1) +
∑

π̃i+1−π̃(i)=e2

EW (0; 2) (A.19)

= ⟨z, e1⟩EW (0; 1) + ⟨z, e2⟩EW (0; 2). (A.20)

Dividing by n and taking limits, we get the desired expression.

Take M ≥ 0 and consider the environment of truncated weights {W (M)(x; i)}, where
W (M)(x; i) = (W (x; i) ∨ (−M)) ∧ M . Let L(M), ℓ(M) be the passage times and limit shape
under the truncated weights. The next lemma quantifies the rate at which ℓ(M) → ℓ as M →∞.

Lemma A.10. For any x ∈ R2
+,

ℓ(M)(x)− c∥x∥
∫ −M

−∞
F (s)1/2 ds ≤ ℓ(x) ≤ ℓ(M)(x) + ∥x∥

∫ ∞

M

1− F (s) ds. (A.21)

In particular, for any R > 0,

sup
x∈R2

+,∥x∥≤R

|ℓ(x)− ℓ(M)(x)| −→
L→∞

0. (A.22)
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Proof. The argument is largely identical to [Mar04, Lemma 3.6]. For lower bound, take x ∈ R2
+.

We have

ℓ(x)− ℓ(M)(x) = lim
n→∞

n−1E[L(⌊nx⌋)]− lim
n→∞

n−1E[L(M)(⌊nx⌋)]

= lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

∑
e∈π

W (e)− min
π∈Π(0,⌊nx⌋)

∑
e∈π

W (M)(e)]

≥ lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

∑
e∈π

W (e)−W (M)(e)]

≥ lim
n→∞

n−1E[ min
π∈Π(0,⌊nx⌋)

∑
e∈π

(W (e)−M)−]

≥ −c∥x∥
∫ −M

−∞
F (s)1/2 ds.

The last inequality comes from applying Lemma A.9.(iii) to the weights {(W (e)−M)−}.
We need an auxiliary calculation before the upper bound. For the other side, take z ∈ Z2

+ and

let π∗ be the rightmost geodesic for L(M)(z). One sees that the presence of an edge e ∈ E(Z2
+) in

π∗ is a nonincreasing function of W (e). From Harris’s inequality then, the probability that W (e)
exceeds the threshold L can only decrease when we condition on it belonging to π∗:

P(W (e) ≥M | e ∈ π∗) ≤ P(W (e) ≥M). (A.23)

Conditional on {W (e) ≥ L}, the event e ∈ π∗ is independent of W (e). This is because the
presence of e ∈ π∗ depends on W (e) only through the truncation W (M)(e), and upon assuming
W (e) ≥ L, additional knowledge of W (e) is irrelevant. So

E[(W (e)−M)+ | e ∈ π∗] ≤ E
[
(W (e)−M)+1{W (e) ≥M}

∣∣ e ∈ π∗] (A.24)

= E
[
(W (e)−M)+

∣∣W (e) ≥ L
]
P(W (e) ≥ L | e ∈ π∗) (A.25)

≤ E
[
(W (e)−M)+

∣∣W (e) ≥ L
]
P(W (e) ≥ L) (A.26)

= E[(W (e)−M)+] (A.27)

≤
∫ ∞

L

1− F (s) ds. (A.28)

Now

E[L(z)] = E
[
min
π

∑
e∈π

W (e)
]

(A.29)

≤ E
[
min
π

∑
e∈π

W (M)(e) + (W (e)−M)+
]

(A.30)

≤ E
[∑
e∈π∗

W (M)(e)
]
+ E[

∑
e∈π∗

(W (e)−M)+] (A.31)

= E[L(M)(z)]−
∑

e∈E(Z2
+)

P(e ∈ π∗)E[(W (e)−M)+ | e ∈ π∗] (A.32)

≤ E[L(M)(z)] +

∫ ∞

L

1− F (s) ds
∑

e∈E(Z2
+)

P(e ∈ π∗) (A.33)

= E[L(M)(z)] + ∥z∥
∫ ∞

L

1− F (s) ds. (A.34)

Putting z = ⌊nx⌋ and taking the limit, we arrive at the upper bound.
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There are two final lemmas establishing uniform convergence of the truncated passage times
and limit shape to the untruncated counterparts.

Lemma A.11. Let ϵ > 0 be given. Then there is M large enough such that almost surely, we
have for all but finitely many z ∈ Z2

+ that

|L(z)− L(M)(z)| ≤ ϵ∥z∥. (A.35)

Lemma A.12. Let ϵ > 0 be given. Then there is M large enough such that almost surely, we
have for all but finitely many z ∈ Z2

+ that

|ℓ(z)− ℓ(M)(z)| ≤ ϵ∥z∥. (A.36)

Of these, Lemma A.12 is immediate from Lemma A.10.

Proof of Lemma A.11. Except for swapping signs and the need to involve F , F due to their
appearance in Lemma A.9, we can largely follow Martin’s argument unchanged10. Choose M so

that c
∫ −L

−∞ F (s)1/2 ds < ϵ and c
∫∞
L

(1− F (s))1/2 ds < ϵ.

Take z ∈ Z2
+. Let π

∗ be a geodesic for L(M). Then

L(z)− L(M)(z) = min
π∈Π(z)

∑
e∈π

W (e)−
∑
e∈π∗

W (M)(e) (A.37)

≤
∑
e∈π∗

W (e)−W (M)(e) (A.38)

≤
∑
e∈π∗

(W (e)−M)+ (A.39)

≤ − min
π∈Π(z)

∑
e∈π

V (M)(e), (A.40)

where V (M) = −(W (e)−M)+. Similarly,

L(M)(z)− L(z) ≤ − min
π∈Π(z)

∑
e∈π

U (M)(e), (A.41)

where now U (M) = −(−L−W (e))+. In either case the bound is non-negative, so we combine
them and get

|L(M)(z)− L(z)| ≤ − min
π∈Π(z)

∑
e∈π

V (M)(e)− min
π∈Π(z)

∑
e∈π

U (M)(e). (A.42)

Observe that the {V (M)(e)} and {U (M)(e)} fall under Assumption 2.1. Write F
(M)
V,i for

the distribution of V (M)(0; i), and F
(M)
V for the distribution of V (M)(0; 1) ∧ V (M)(0; 2). Then

F
(M)
V (s) = 1− F (L− s) on s ≤ 0, and F

(M)
V (s) = 1 elsewhere. We apply Lemma A.9.(ii) to find

10Except that Martin seems to have made a mistake in asserting that there is a path which is a geodesic for
both G and L(M). Thanks for noticing (it seemed plausible to me). The bound he ultimately arrives at shouldn’t
depend on this, though.
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that almost surely

lim inf
n→∞

1

n
min

∥z∥1≤n
min

π∈Π(z)

∑
e∈π

V (M)(e) ≥ −c
∫ 0

−∞
F

(M)
V (s)1/2 ds (A.43)

= −c
∫ 0

−∞
(1− F (L− s)1/2 ds (A.44)

= −c
∫ ∞

M

(1− F (s))1/2 ds (A.45)

≥ −ϵ/2. (A.46)

Then there are only finitely many z for which

− min
π∈Π(z)

∑
e∈π

V (M)(e) ≥ ϵ

2
∥z∥. (A.47)

We can do the same for the {U (M)(e)} to find

lim inf
n→∞

1

n
min

∥z∥1≤n
min

π∈Π(z)

∑
e∈π

U (M)(e) ≥ −c
∫ 0

−∞
F

(M)
U (s)1/2 ds (A.48)

= −c
∫ −M

−∞
F (s)1/2 ds (A.49)

≥ −ϵ/2, (A.50)

so that there are only finitely many z with

− min
π∈Π(z)

∑
e∈π

U (M)(e) ≥ ϵ

2
∥z∥. (A.51)

Looking back now at (A.35), we find that only finitely many z have

|L(z)− L(M)(z)| ≥ ϵ∥z∥. (A.52)

This is what we wanted.

Combining Lemmas A.7, A.11 and A.12 gives Theorem A.2.

B Convergence of Busemann limits

Under Assumption 2.1, the results of [GJR23] apply to give the existence of generalised Busemann
functions. In what follows, let U = {(t, 1− t) : 0 < t < 1} be the set of directions into the first
open quadrant, and let U0 be some countable subset (which can be assumed to be dense). To
better match notation, we use ωx = (ωx,1, ωx,2) for the weights into vertex x. Denote by Tx
translations of the environment Tx(ωy) = ωy−x.

Below is essentially a restatement of Theorem 4.4 of [GJR23], but specialised to β = ∞
and the face A ∈ A being the entire limit shape11. The m in their statement is a member of a
superdifferential of the limit shape, and here the role is taken by (ζ,±).

11Such a degenerate choice of A is explicitly allowed in their statement.
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Theorem B.1. There exists a probability space (pΩ, pB, pP) with a measurable projection onto Ω, and

real-valued measurable functions Bξ(pω, x, y) of (pω, ξ, x, y) ∈ pΩ×U0 × Z2 × Z2 and a translation

invariant Borel probability measure pP on (pΩ, pB), such that the following properties hold:

(i) (Consistency) Under pP, the marginal distribution of the configuration ω is i.i.d with the
specified marginals. For each ξ ∈ U0, the R3-valued process {ψξ

x}x∈Z2 defined by

ψξ
x(pω) = (ωx, B

ξ(pω, x, x+ e1), B
ξ(pω, x, x+ e2)) (B.1)

is stationary under translations Tx. For any I ⊆ Z2, the variables{
(pωx, B

ξ(pω, x, x+ ei)) : x ∈ I, ξ ∈ U0, i ∈ {1, 2}
}

(B.2)

are independent of {ωx : x ∈ I<}.

(ii) (Adaptedness) For a fixed ξ ∈ U0, the process Bξ = {Bξ(x, y)}x,y∈Z2 is a stationary L1(pP)
cocycle (in the sense of [GRS16]) that recovers the potential:

min
i∈{1,2}

Bξ(x, x+ ei)− ω(x, x+ ei) = 0. (B.3)

(iii) (Distinct means) The mean vectors h(ξ) = h(Bξ) defined by

h(ξ) · ei = E[Bξ(0, ei)] (B.4)

satisfy
h(ξ) = ∇ℓ(ξ). (B.5)

If h(ξ) = h(ζ) then Bξ(x, y) = Bζ(x, y) a.s.

Remark B.2. The generalised Busemann functions are related to the underlying environment
only through the adaptedness property. Thus, any proof which takes the above as its starting
point and produces these objects as functions of the environment must use adaptedness in an
essential way. The utility of this property was identified in [GRS16], where it is connected to
maximisers of variational formulas for the limit shape. It is also interesting to note that the
adaptedness here is exactly the notion of max-plus harmoniticty described in [AGW09], the graph
here being the integer lattice with up-right directed edges.

The property has been called recovery in the context of vertex-weight LPP [Sep18], referring to
the fact that one can completely recover the weight configuration from the collection of Busemann
functions in a fixed direction. In edge weight LPP we have only this weaker statement: if U0

is dense, then almost surely the weight configuration is determined by the full collection of
generalised Busemann functions.

We are interested in showing that these functions arise as limiting differences of the pas-
sage times, and moreover that they extend to a full-fledged Busemann process indexed by U .
Specifically, for a direction ξ ∈ U and x, y ∈ Z2, we look at limits

Bξ(x, y) = lim
n→∞

L(x, vn)− L(y, vn), (B.6)

where (vn)n∈Z≥0
⊂ Z2 is a sequence of vertices with limiting direction ξ and |vn| → ∞.

This task has been carried out in [JR20] for planar vertex-weight models. The extension to
the remaining directions relies on the “path crossing trick” to give monotonicity, after which
limits can be taken to extend the process from ξ ∈ U0 to ξ ∈ U . The relevant statement for our
setup is below.
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Lemma B.3 (Path-crossing trick). Suppose |u|1 = |v|1 and u1 ≤ v1. Then

L(0, u)− L(e1, u) ≤ L(0, v)− L(e1, v) (B.7)

and
L(0, u)− L(e2, u) ≥ L(0, v)− L(e2, v), (B.8)

whenever these passage times are defined.

Proof. We prove (B.7). This holds trivially if u1 = v1, so assume u1 < v1. This implies u2 > v2.
Fix a geodesic connecting e1 to u and 0 to v. The relative positions of u and v ensure that the
geodesic (or any other directed path) connecting e1 to u must cross the geodesic connecting 0 to
v. Let x be the first point of intersection. Passage times are sub-additive, hence

L(0, x) + L(x, u) ≥ L(0, u), L(e1, x) + L(x, v) ≥ L(e1, v). (B.9)

These can be combined and rearranged to give

L(0, u)− L(e1, x)− L(x, u) ≤ L(0, x) + L(x, v)− L(e1, v). (B.10)

That x lies on both geodesics means L(e1, x) + L(x, u) = L(e1, u) and L(0, x) + L(x, v) = L(0, v).
Thus we arrive at

L(0, u)− L(e1, u) ≤ L(0, v)− L(e1, v). (B.11)

It is then quite transparent from the construction of the generalised Busemann functions in
[GJR23] that we have the following additional property.

Lemma B.4. There exists an event pΩ0 with pP(pΩ0) = 1 and such that if ξ, ζ ∈ U with ξ ·e1 < ζ ·e1,
then

Bξ(pω, x, x+ e1) ≤ Bζ(pω, x, x+ e1) (B.12)

and
Bξ(pω, x, x+ e2) ≥ Bζ(pω, x, x+ e2). (B.13)

It now makes sense to define for ξ ∈ U

Bξ+(pω, x, y) = lim
ζ·e1↘ξ·e1

Bζ(pω, x, y), (B.14)

Bξ−(pω, x, y) = lim
ζ·e1↗ξ·e1

Bζ(pω, x, y). (B.15)

The limits are taken through ζ ∈ U0. That these limits exist follows from monotonicity and the
cocycle property.

Finally, we summarise the properties of the collection of these extended generalised Busemann
functions.

Theorem B.5. Let (pΩ, pB, pP) be as in Theorem B.1. There are functions Bξ±(pω, x, y) of

(pω, ξ, x, y) ∈ pΩ×U × Z2 × Z2, such that the following properties hold:

(i) (Consistency) Under pP, the marginal distribution of the configuration ω is i.i.d with the
specified marginals. For each ξ ∈ U , the R3-valued process {ψξ±

x }x∈Z2 defined by

ψξ±
x (pω) = (ωx, B

ξ±(pω, x, x+ e1), B
ξ±(pω, x, x+ e2)) (B.16)

is stationary under translations Tx. For any I ⊆ Z2, the variables{
(ωx, B

ξ+(pω, x, x+ ei), B
ξ−(pω, x, x+ ei)) : x ∈ I, ξ ∈ U0, i ∈ {1, 2}

}
(B.17)

are independent of {ωx : x ∈ I<}.
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(ii) (Adaptedness) For a fixed ξ ∈ U , the process Bξ± = {Bξ±(x, y)}x,y∈Z2 is a stationary

L1(pP) cocycle satisfying

max
i∈{1,2}

Bξ(x, x+ ei)− ω(x, x+ ei) = 0. (B.18)

(iii) There exists an event pΩ0 with pP(pΩ0) = 1 and such that the following hold for all pω ∈ pΩ0,
x, y ∈ Z2 and ξ, ζ ∈ U .

(a) (Monotonicity) If ξ · e1 < ζ · e1, then

Bξ−(pω, x, x+ e1) ≤ Bξ+(pω, x, x+ e1) ≤ Bζ−(pω, x, x+ e1) (B.19)

and
Bξ−(pω, x, x+ e2) ≥ Bξ+(pω, x, x+ e2) ≥ Bζ−(pω, x, x+ e2). (B.20)

(b) (One-sided continuity) If ξn · e1 ↘ ζn · e1, then

lim
n→∞

Bξn±(pω, x, y) = Bζ+(pω, x, y). (B.21)

Similarly, if ξn · e1 ↗ ζn · e1, then

lim
n→∞

Bξn±(pω, x, y) = Bζ−(pω, x, y). (B.22)

(iv) (Distinct means) The mean vectors h(ξ±) = h(Bξ±) defined by

h(ξ±) · ei = E[Bξ±(0, ei)] (B.23)

satisfy
h(ξ±) = ∇ℓ(ξ±). (B.24)

If h(ξ+) = h(ζ−) then Bξ+(x, y) = Bζ−(x, y) a.s. Similarly for h(ξ+) = h(ζ+) and
h(ξ−) = h(ζ−).

B.1 As gradients of passage times

It remains to see that these objects are genuine Busemann functions given by the limits gradients,
as in (B.6). We will go through the lemmas of Section 6 in [GRS17b], noting where the details
differ. To that end, fix a v ∈ Z2 and for x ≤ v − e1, y ≤ v − e2, define increments

I(x, v) = L(x, v)− L(x+ e1, v) (B.25)

and J(y, v) = L(y, v)− L(y + e2, v). (B.26)

The path crossing trick applies to give various inequalities for these increments.

Lemma B.6.

I(x, v + e2) ≤ I(x, v) ≤ I(x, v + e1) (B.27)

and J(x, v + e2) ≥ J(x, v) ≥ J(x, v + e1). (B.28)
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The next lemma links the Busemann functions to limiting directions of the FPP, but requires
quite a bit of notation. Recalling that ℓ is the limit shape of our model, set γ(s) = ℓ(1, s). Note
that ℓ won’t in general be symmetric. The convexity of ℓ ensures the existence of one-sided
derivatives for γ. Fix ζ ∈ U and a cocycle B = Bζ±. Take the (inverse) slope r = ζ · e1/ζ · e2, so
that α = γ′(r±) (the same choice of sign as for B) satisfies

α = pE[B(0, e1)]. (B.29)

This is theorem B.5.(iv). Define f(α) by

f(α) = pE[B(0, e2)]. (B.30)

Fix for the moment some v ∈ Z2 and define, for u ≤ v,

LNE(u, v) =

{
B(u, v), v − u = kei, k ∈ Z+, i ∈ {1, 2}
(ω(u, u+ e1) + LNE(u+ e1, v)) ∧ (ω(u, u+ ew) + LNE(u+ ew, v)), otherwise.

(B.31)

These are the passage times with the generalised Busemann functions as initial conditions along
the northeast boundary.

Write LNE
v−ei∈π(0, v) for the minimal passage time among paths which reach v through the

edge {v − ei, v} (where we use in the definition the corresponding weights for LNE, which can be
recovered uniquely from the definition above).

Lemma B.7. Fix 0 < s, t < ∞. Let vn ∈ Z2 be such that vn/|vn|1 → (s, t)/(s+ t) as n → ∞
and such that |vn| ≥ η0n for some η0 > 0. Then the following limits hold almost surely:

|vn|−1
1 LNE

vn−e1∈π(0, vn) −→
n→∞

(s+ t)−1 max
0≤τ≤s

{ℓ(s− τ, t) + ατ} (B.32)

and
|vn|−1

1 LNE
vn−e2∈π(0, vn) −→

n→∞
(s+ t)−1 min

0≤τ≤s
{ℓ(s, t− τ) + f(α)τ}. (B.33)

Proof. The proof can be carried out as in [GRS17b] after minor modifications to the estimates.
The symmetry of the setup means that it is enough to look at the e1-axis. Fix ϵ > 0, let
M = ⌊ϵ−1⌋, and define steps

qnj = j

⌊
ϵ|vn|1s
s+ t

⌋
, for 0 ≤ j ≤M − 1, and qnM = vn · e1. (B.34)

Notice that for n large we have qnM−1 < vn · e1 = qnM .
Suppose a minimal path for LNE

v−e1∈π(0, v) enters the north boundary at the point vn − (l, 0)
and choose j so that qnj < l ≤ qnj+1 . Write m0 = E[ω1(x)]. We have a bound

LNE
v−e1∈π(0, v) = L(0, vn − (l, 1)) + ω2(vn − (l, 1)) +B(vn − (l, 1), vn) (B.35)

≥ L(0, vn − (qnj , 1)) + qnj α+ ω2(vn − (l, 1)) +

l∑
k=qnj +1

(ω1(vn − (k, 1))−m0)

+ (l − 1− qnj )m0 + (B(vn − (l, 1), vn)− lα) + (l − qnj )α.
(B.36)
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Proceeding in the same way, define F (x, y) = h(B) · (x− y)−B(x, y), which has

B(vn − (l, 0), vn)− lα = F (0, vn − (l, α))− F (0, vn). (B.37)

Here the adaptedness property is 0 = (B(0, e1)−ω1(0))∨ (B(0, e2)−ω2(0)). The resulting bound
on the centred cocycle is

F (0, ei) ≤ α ∧ f(α)− ω1(0) ∨ ω2(0). (B.38)

By Assumption 2.1, the variables {ω1(x) ∨ ω2(x)}x∈Z2 are i.i.d with 2 + ϵ moments, and so

[GRS17b, Theorem A.1] applies to F . Writing Sn
j,m =

∑qnj +m

l=qnj +1(ω1(vn − (k, 1))−m0) and C for

some constant, then maximising over j in our bound above,

LNE
v−e1∈π(0, v) ≥ max

0≤j≤M−1

{
L(0, vn − (qnj , 1)) + qnj α+ max

qnj ≤l≤qnj+1

|ω2(vn − (l, 1))|+ max
0≤m≤qnj+1−qnj

|Sn
j,m+1|

+ max
qnj ≤l≤qnj+1

(|F (0, vn − (l, 0))|+ |F (0, vn)|)

}
.

(B.39)
Divide through by |vn|1 and let n→∞. Each of these terms converges as in [GRS17b], except
that we have an additional term

|vn|−1
1 max

0≤l≤vn·e1
|ω2(vn − (l, 1))|. (B.40)

But the finite variance of the weights is enough to ensure that this term too goes to zero almost
surely. This gives the upper bound

lim sup
n→∞

|vn|−1
1 LNE

vn−e1∈π(0, vn) ≥ (s+ t)−1 max
0≤τ≤s

{ℓ(s− τ, t) + ατ}. (B.41)

The argument for the upper bound is completely identical to the one in [GRS17b] (after swapping
signs).

Lemma B.8. Let s ∈ (r,∞). Let vn ∈ Z2 be such that vn/|vn|1 → (s, t)/(s+ t) as n→∞ and

such that |vn| ≥ η0n for some η0 > 0. Assume that γ′(r+) > γ′(s−). Then pP- a.s there exists a
random n0 <∞ such that for all n ≥ n0

LNE(0, vn) = LNE
vn−e1∈π(0, vn). (B.42)

The proof in [GRS17b] makes no mention of the weights and goes through word-for-word, so
we skip it.

There are some final definitions before the theorem. Write

D = {ξ ∈ U : g is differentiable at ξ}. (B.43)

For a direction ξ ∈ U , consider the maximal line segments of g to which ξ belongs:

Uξ± = {ζ ∈ U : ℓ(ζ)− ℓ(ξ) = ∇ℓ(ξ±) · (ζ − ξ)}. (B.44)

Let
Uζ = Uξ− ∪Uξ+ = [ξ, ξ], where ξ · e1 ≤ ξ · e1. (B.45)

64



Theorem B.9. Fix a possibly degenerate segment [ζ, η] ⊆ U . Assume that either [ζ, η] consists
of a single exposed point ξ such that ξ = ξ = ξ = ζ = η, or that [ζ, η] is a maximal, non-degenerate

linear segment of g so that [ζ, η] = [ξ, ξ] for all ξ ∈ (ζ, η). Then there exists an event pΩ0 with
pP(pΩ0) = 1 such that for each pω ∈ pΩ0 and for any sequence vn ∈ Z2

+ with

|vn|1 →∞ and ζ · e1 ≤ lim inf
n→∞

vn · e1
|vn|1

≤ lim sup
n→∞

vn · e1
|vn|1

≤ η · e1, (B.46)

we have for all x ∈ Z2
+

Bζ−(pω, x, x+ e1) ≤ lim inf
n→∞

(L(ω, x, vn)− L(ω, x+ e1, vn)) (B.47)

≤ lim sup
n→∞

(L(ω, x, vn)− L(ω, x+ e1, vn)) ≥ Bη−(pω, x, x+ e1) (B.48)

and

Bη+(pω, x, x+ e2) ≤ lim inf
n→∞

(L(ω, x, vn)− L(ω, x+ e2, vn)) (B.49)

≤ lim sup
n→∞

(L(ω, x, vn)− L(ω, x+ e2, vn)) ≤ Bζ−(pω, x, x+ e2). (B.50)

After the appropriate redefinition of the LN passage times, the proof is identical. Finally, we
arrive at

Corollary B.10. Assume ξ, ξ, ξ ∈ D . Then there exists an event pΩ0 with pP(pΩ0) = 1 such that

for each pω ∈ pΩ0, x, y ∈ Z2
+, and for any sequence vn ∈ Z2

+ with

|vn|1 →∞ and ξ · e1 ≤ lim inf
n→∞

vn · e1
|vn|1

≤ lim sup
n→∞

vn · e1
|vn|1

≤ ξ · e1, (B.51)

we have
Bξ(pω, x, x+ e1) = lim

n→∞
(L(ω, x, vn)− L(ω, y, vn)). (B.52)

The corollary shows in particular that when the limit shape is differentiable, the Busemann
process is a function of the weights and so is B-measurable.
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Probab. 39.4 (2011), pp. 1205–1242. issn: 0091-1798,2168-894X. doi: 10.1214/10-
AOP561. url: https://doi.org/10.1214/10-AOP561.

[ADH17] Antonio Auffinger, Michael Damron, and Jack Hanson. 50 years of first-passage
percolation. Vol. 68. University Lecture Series. American Mathematical Society, Prov-
idence, RI, 2017, pp. v+161. isbn: 978-1-4704-4183-8. doi: 10.1090/ulect/068. url:
https://doi.org/10.1090/ulect/068.
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