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Motivation
Order-theoretic Properties

The Setup
Other Reducibilities

Fix a set O of “computational objects” (e.g., P(ω)).

On O, define a “reducibility”: a reflexive, transitive relation ≤r ,
saying that an object can be “computed” from another (e.g., ≤T ).
This induces an equivalence relation ≡r on O.
The ≡r -equivalence classes are called r -degrees.

A degree structure is a quotient O/ ≡r , partially ordered by the
ordering induced by ≤r . We study them as algebraic objects
(i.e., as partial orders, possibly in an expanded language).

“Classical” degree structures (e.g., Turing degrees, enumeration
degrees, m-degrees) are

quotients of P(ω) (or of subsets of P(ω)) and

locally countable (each degree bounds at most countable
many degrees), since there are only countably many
reductions.

So these degree structures are at most size continuum (= c), and
chains in them at most size ℵ1. (But antichains can have size c.)
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Other degree structures have been studied:

O = P(P(ω)), i.e., O is the set of “mass problems”:

Medvedev reducibility: A ≤s B if there is a Turing
functional Φ such that ∀B ∈ B (Φ(B) ∈ A).
Muchnik reducibility: A ≤w B if
∀B ∈ B ∃A ∈ A (A ≤T B).

O is the set of partial multi-valued functions f :⊆ ωω ⇒ ωω:

Weihrauch reducibility: f ≤W g iff there are Turing
functionals Φ and Ψ such that

for all p ∈ dom(f ), we have Φ(p) ∈ dom(g) and
for all q ∈ g(Φ(p)), we have Ψ(p ⊕ q) ∈ f (p).

strong Weihrauch reducibility: f ≤sW g iff there are
Turing functionals Φ and Ψ such that

for all p ∈ dom(f ), we have Φ(p) ∈ dom(g) and
for all q ∈ g(Φ(p)), we have Ψ(q) ∈ f (p).

So in particular, each of the above degree structures has size 2c.
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These four degree structures (Medvedev, Muchnik, and (strong)
Weihrauch) all form distributive lattices.

The Medvedev and Muchnik degrees have a least element
deg({∅}) and a largest element deg(∅).
The (strong) Weihrauch degrees have a least element deg(∅) but
no greatest element.

The “forward” functional Φ for f ≤W g gives a Medvedev
reduction for dom(g) ≤s dom(f ).

So the Medvedev degrees embed onto the initial segment
[0, deg(id)] of the Weihrauch degrees under the order-reversing
map

A 7→ id ↾ A.
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The (upside down) Medvedev degrees inside the Weihrauch degrees

∅

id

M
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Some facts about the Weihrauch degrees

Every nontrivial Weihrauch degree has 2c many degrees above
and below it.

(Higuchi, Pauly, 2013)
No nontrivial countable joins in the Weihrauch degrees:
For every {fn}n∈ω, there is N such that {fn}n∈ω and {fn}n<N

have the same least upper bound (if the former has one).
So the Weihrauch degrees do not form an ℵ0-complete lattice.

However, using Medvedev degrees, we can show:

Theorem (Lempp, Marcone, Valenti)

For every κ ≤ c of uncountable cofinality, there is a chain of
Weihrauch degrees of order type κ with a least upper bound.
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Let’s sketch the proof:

Fix a ≤T -antichain {pα}α≤κ and set Aα = {pγ | γ < α}.

Then {Aα}α≤κ has type (κ+ 1)∗ in the Medvedev degrees.

Clearly Aκ is a lower bound for {Aα}α<κ.

Suppose B ≤s Aα for all α < κ.

Since cof(κ) > ω, there is a cofinal subset C ⊂ κ such that
B ≤s Aα for all α ∈ C via the same Φe ; so B ≤s Aκ.
So Aκ is the greatest lower bound for {Aα}α<κ.

Now define fα : Aα ⇒ ωω, p 7→ {pδ | δ ≥ α}.
So {fα}α≤κ has type κ+ 1 in the Weihrauch degrees.

And as with Aκ above, fκ is a least upper bound for {fα}α<κ.
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Clearly Aκ is a lower bound for {Aα}α<κ.

Suppose B ≤s Aα for all α < κ.

Since cof(κ) > ω, there is a cofinal subset C ⊂ κ such that
B ≤s Aα for all α ∈ C via the same Φe ; so B ≤s Aκ.
So Aκ is the greatest lower bound for {Aα}α<κ.

Now define fα : Aα ⇒ ωω, p 7→ {pδ | δ ≥ α}.
So {fα}α≤κ has type κ+ 1 in the Weihrauch degrees.
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We study chains in the Weihrauch degrees in more detail:

Corollary (of Terwijn, 2008, for the Medvedev degrees)

Under ZFC + 2<c = c, there is a chain of size 2c in the Weihrauch
degrees.

It is open if ZFC + 2<c = c is needed to ensure a chain of size 2c.

It is also open whether every chain of size < 2c can be extended.

But not every chain of size < 2c can be extended above or below:

Theorem (Lempp, Marcone, Valenti)

Let κ ≤ c be an cardinal of uncountable cofinality. Then:

There is a chain of order type κ in the Weihrauch degrees
which has no upper bound.

(essentially Shafer, 2011, for the Medvedev degrees)
There is a chain of order type κ∗ in the nonzero Weihrauch
degrees which has no lower bound > 0.
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In a poset P, we call S ⊆ P cofinal in P if ∀p ∈ P ∃q ∈ S (p ≤ q).

The set-cofinality of P is the smallest size of a cofinal set S ⊆ P.
The cofinality of P is the smallest size of a cofinal chain S ⊆ P
(if any). (Similar definitions define set-coinitiality and coinitiality.)

Theorem (Lempp, Marcone, Valenti)

The set-cofinality of the Weihrauch degrees is > c.

There are no cofinal chains in the Weihrauch degrees.

Using known results about the Medvedev degrees (under the
reverse order), we also obtain:

Theorem (Lempp, Marcone, Valenti)

The set-coinitiality of the nonzero Weihrauch degrees is c.

The existence of coinitial chains in the nonzero Weihrauch
degrees is equivalent to the Continuum Hypothesis.
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Combining arguments for increasing and decreasing chains in the
Weihrauch degrees, we also obtain:

Theorem (Lempp, Marcone, Valenti)

Every interval in the Weihrauch degrees is finite or uncountable.

(And there are finite intervals.)

Turning to antichains, we have:

Theorem (Lempp, Marcone, Valenti)

Every nonzero Weihrauch degree is contained in an antichain
of size 2c.

No antichain in the nonzero Weihrauch degrees of size < c is
maximal.

We do not know if an antichain of size < 2c can be maximal.
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