
Minimal Pair Constructions and Iterated Trees of Strategies

 

Dedicated to Anil Nerode on the occasion of his sixtieth birthday

STEFFEN LEMPP1,  MANUEL LERMAN2, AND FRANK WEBER
3

 

Department of Mathematics, University of Wisconsin,

Madison, WI 53706, USA

lempp@math.wisc.edu

Department of Mathematics, University of Connecticut,

Storrs, CT 06269

mlerman@uconnvm.uconn.edu

Department of Mathematics, Concordia University Wisconsin,

Mequon, WI 53092

0.  Introduction.  We use the iterated trees of strategies approach developed in [LL1],

[LL2] to prove some theorems about minimal pairs.  In Sections 1-3, we show how to use

these methods to prove the Minimal Pair Theorem of Lachlan [L] and Yates [Y]:

Theorem 3.4 (Minimal Pair):  There exist nonrecursive r.e. degrees a and b such that

a∧b = 0.  

In Section 4, we add requirements to prove:

Theorem 4.3:  There are r.e. degrees a and b such that a',b' > 0' and a∧b = 0.

And in Section 5, we construct a minimal pair of r.e. degrees a and b such that a' and b'

form a minimal pair over 0', i.e., 

Theorem 5.4:  There are r.e. degrees a and b such that a'|b', a∧b = 0, and a'∧b' =

0 ' .
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N is the set of natural numbers.  Given a set P, we let |P| denote the cardinality of

P.  

A string is a finite sequence of letters from an alphabet.  If S is an alphabet, we let

S<ω be the set of all strings from S.  We write σ ⊂ τ if τ properly extends σ, and σ|τ if σ

and τ are incomparable.  For σ,τ ∈ S<ω,  we let lh(σ) denote the cardinality of the domain

of σ .  If σ  ≠ 〈␣␣〉 (the empty string), then σ - is the unique τ␣ ⊂ σ such that lh(σ) =

lh(τ)+1.  We define the string σ^τ by

 σ(x) if x < lh(σ)

σ^τ(x) = ␣ 

 τ(x-lh(σ)) if lh(σ) ≤ x < lh(σ)+lh(τ).

If x ≤ lh(σ), then σ|x, the restriction of σ  to x, is the string τ of length x such that τ(y) =

σ(y) for all y < x.  Restriction is similarly defined for infinite sequences from an alphabet.

We use interval notation for strings.  Thus [σ,τ] = {ρ: σ ⊆ ρ  ⊆ τ}.  σ∧τ denotes the

longest ρ  such that ρ ␣␣␣⊆ ␣␣␣σ ,τ .

A tree is a set of strings which is closed under restriction.  The paths through a

tree T are the infinite sequences Λ such that Λ|x ∈ T for all x ∈ N.  We let [T] denote the

set of paths through T.  

The high/low hierarchy for R is defined as follows.  For n ≥ 1, we say that a is

lown (a ∈ Ln) if a(n) = 0(n), and a is highn (a ∈ Hn) if a(n) = 0(n+1).  If 0(n) <  a(n) <

0(n+1) for all n, then we say that a is intermediate.

〈Φe
k
: e ∈ ␣N〉 will be the standard enumeration of all partial recursive functionals of

k variables.  (We will frequently suppress the superscript, writing Φe for Φe
k
.)  Thus

Φe
k
(A;x1,...,xk) = y if the eth partial recursive functional of k variables, computing from

oracle A and input x1,...,xk, outputs the value y.  For each e,k ∈ N, we will have a

recursive approximation 〈Φe,s
k

: s␣  ∈  N 〉  to Φe
k
.  We say that Φe,s

k
(A;x1,...,xk)↓ if we

obtain an output from this computation in fewer than s steps; otherwise,

Φe,s
k

(A;x1,...,xk)↑.  If Φe,s
k

(A;x1,...,xk)↓,  then we let the use of this computation be 1+u,

where u is the greatest element v for which a question "v ∈ A?" is asked of the A oracle

during the computation.  We will also be constructing partial recursive functionals.  We

define these functionals within a recursive construction by declaring axioms ∆(σ;x) = y to

reflect the fact that the partial recursive functional ∆ with input x produces output y when

computing from any oracle A ⊃ σ.  Other notation follows [So].
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1.  The Basic Modules for a Minimal Pair.  We construct r.e. sets A0 and A1 such

that neither is recursive, and any set recursive in both must be recursive.  The requirements

which we satisfy are the standard ones.  In this section, we present the basic modules for

the two types of requirements.  We will have three trees of strategies, T0, T1, and T2, and

relate the action taken for the basic modules to the nodes of the trees on which we act for

these modules.

The Requirements:  We let Re,i
0,1

 be the requirement stating that Ai ≠ Φe(Ø).  This

requirement is said to have type 0 and dimension 1.  (Types are used to differentiate

between the various kinds of requirements.  Dimensions indicate the trees on which the

construction first begins to act, i.e., the complexity level of the requirement.)

We let Re
1,2 be the requirement stating that if Φe(A0) = Φe(A1) is total, then Φe(A0) is

recursive.  This requirement has type 1 and dimension 2.  We recall that by Posner's

Lemma [P], it suffices to satisfy these requirements, as given any n and m, there is an e

such that Φn(A0) = Φe(A0) and Φm(A1) = Φe(A1).

Fix a recursive ordering {Ri:␣i ∈ N} of all requirements.  We say that Ri has higher

priority than Rj if i < j.  ■

The Basic Module:  Nonrecursiveness requirements.  We satisfy the

requirement Re,i
0,1

 by constructing a partial recursive functional ∆i which is total on oracle Ai

such that for some x, if Φe(Ø;x)↓, then Φe(Ø;x) ≠ ∆ i(Ai;x).  Each instance of this

requirement on T1 will be associated with a different argument x, and each instance on T0

will be associated with a stage s as well.  At stage s, we declare an axiom ∆i,s(Ai
s;x) = m

with use x+1, setting m = 0 unless Φe,s(Ø;x)↓ = 0, in which case we set m = 1.  If, at

some stage t ≥ s which deals with the T1-module, we find that Φe,t(Ø;x)↓ = 0, then we

place x into Ai
t.  If t > s, this will allow us to redefine ∆i,t(Ai

t;x) = 1, with use t+1.  

There are two possible types of outcomes.  If, during the construction, we never

see a computation Φe,t(Ø;x)↓ = 0, then ∆ i(Ai;x) = 0 and we will ensure that either

Φe(Ø;x)↑, or Φe(Ø;x)↓ ≠ 0 by protecting a computation, if necessary.  This outcome will

be called the finite outcome on the tree T0 and the infinite outcome on the tree T1.  If we

see such a computation, then we place x into Ai unless this happens the first time we

encounter the requirement, and ensure that Φe(Ø;x)↓ = 0 ≠ 1 = ∆i(Ai;x).  This outcome

will be called the infinite outcome on T0 and the finite outcome on T1.  ■
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The Basic Module:  Minimal pair requirements.  The basic module for Re
1,2 will

be a finite tree consisting of two comparable nodes, of types (1,0) and (1,1), essentially

following the Yates minimal pair construction [Y].  The first node checks to see whether

Φe(A0) and Φe(A1) are both total, and the second tries to find an x such that Φe(A0;x) ≠

Φe(A1;x).  If it fails to find such an x, it defines a total recursive function Ξ = Φe(A0).

There will be one finite tree for each such requirement along each infinite path

through the top tree T2 of our tree of strategies.  On the next tree down, T1, we will work

with similar finite trees, each associated with a given x.  And on the recursive tree T0 where

the construction takes place, the modules derived from those on T1 will also be associated

with a stage s.  Action on T0 for the module associated with x and s is as follows.  The first

node, of type (1,0), asks if Φe,s(A0
s ;x)↓ and Φe,s(A1

s ;x)↓.  If the answer is no, then we

follow the finite outcome on T0.  (We will now have to deal with other T0-modules derived

from this T1-module, so make infinitely many attempts to find a yes answer to this

question.  If one is never found, then either Φe(A0) is not total, or Φe(A1) is not total, so

the requirement is satisfied.)  If the answer is yes, then we follow the infinite outcome on

T0, and action to be taken will be determined by the second node of the module.  The

second node of the module has type (1,1) and asks whether Φe,s(A0
s ;x) ≠ Φe,s(A1

s ;x).  If the

answer is yes, then we follow the finite outcome on T0, and will preserve this

disagreement as long as the node is derived from a node on the true path of T1.  If the

answer is no, then we follow the infinite outcome on T0, and declare an axiom Ξs(Ø;x) =

Φe,s(A0
s ;x).  We show that, in this case, for all t ≥ s, either Φ e,t(A0

t ;x) = Ξ(Ø;x) or

Φe,t(A1
t ;x) = Ξ(Ø;x).  Hence if we encounter such a requirement for every x on T1 and

Φe(A0;x)↓ = Φe(A1;x)↓ for all x, then Ξ(Ø;x) = Φe(A0;x) for all x.  ■

2.  Systems of trees.  The construction of a minimal pair will use systems of trees.  We

refer the reader to [LL2] for a more general development of such systems.  As we will

prove theorems in this paper requiring starting trees at several different levels, we fix n ∈

N, and indicate how to construct Ti for i ≤ n.

Definition 2.1 (Definition of trees):  We set T-1 = {0,∞} and T0 = {0,∞}<ω.  If 0 <

k ≤ n and Tk-1 has been defined, let 

Tk␣=␣{σ ∈ (Tk-1)<ω: ∀i<lh(σ)∀j<lh(σ)(i ≠ j → σ(i) ≠ σ(j))}.  

Tk␣ = ␣ 〈Tk,⊆〉 is the kth tree of strategies, ordered by inclusion.  We refer to the elements
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of Tk as nodes of Tk, and view each node of Tk as following its immediate predecessor by

a designated node of Tk-1.   If σ  ∈  Tk , ξ  ∈  Tk-1, and σ  = σ-^〈ξ〉, then we call ξ the

outcome for σ-  along σ, and define out(σ) = ξ.  If j ≤ k, then we define outj(σ) by reverse

induction; outk(σ) = σ, and outj-1(σ) = out(outj(σ)).  If σ ⊆ τ ∈ Tk and lh(σ) > 0, then we

say that σ- has finite (infinite, resp.) outcome along τ if either k = 0 and out(σ) = 0

(out(σ) = ∞, resp.), or k > 0 and out(σ)- has infinite (finite, resp.) outcome along out(σ).

■

We will need a one-to-one weight function on elements of T␣ = ∪{Tk: 0 ≤ k ≤ n}

which will ω-order T.  (We take the disjoint union here, differentiating between the empty

nodes of the various trees.)  Weights will provide automatic initialization to protect

computations from injury.  Condition (2.3) below will be used to show that the path

generating function, λ, introduced below, respects weights (see condition (2.11)).

Definition 2.2:  It is routine to check that a one-to-one recursive weight function

wt:T → N can be defined to satisfy the following properties for all σ,τ,ρ ∈ Tk.

(2.1) If σ ⊂ τ then wt(σ) < wt(τ).

(2.2) If out(σ) ∈ T, then wt(out(σ)) < wt(σ).

(2.3) If σ ≠ τ and out(ρ) ⊂ out(τ) for all ρ ⊆ σ, then wt(σ) < wt(τ).

Requirements of dimension r will be assigned to nodes of trees Tk for k ≥ r, and

subrequirements of these requirements will be assigned to nodes of Tk for k < r.  This

assignment of requirements will proceed by induction on n-k, and will depend on

definitions introduced by simultaneous induction.  In Step 1, we will define the path

generating function λ on nodes σ of trees which have already had requirements assigned to

all τ ⊂ σ.  If σ ∈ Tk, then λ(σ) will be a node on Tk+1.  Given a path Λ ∈ [Tk], {λ(σ):␣σ

⊂ Λ} gives an approximation to a path λ(Λ) ∈ [Tk+1].  When λ(σ)|λ(σ-), a link will be

formed on Tk.  These links, defined in Step 2, will prevent action by nodes of Tk which do

not seem to come from nodes on higher trees lying on the true path approximation.  We

will have to decide which nodes of Tk+1 are eligible to assign subrequirements to a given

node of Tk.  Conditions ensuring consistency between the different trees enter into this

decision, and these conditions are delineated in Step 3.  The requirement assignment

process is described in Step 4.
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Step 1:  Definition of the path generating function λ.  Given a node η ∈

Tk such that requirements have been assigned to all predecessors of η, the function λ will

define a node λ(η) ∈ Tk+1.  The process is meant to capture the following situation.  For

each ξ ⊂ η, ξ will be derived from a node σ ∈ Tk+1.  A sentence Μσ will implicitly be

associated with σ, and a fragment Μξ of that sentence will be associated with ξ.  Suppose

that Μσ begins with a universal quantifier.  If σ has dimension ≥ k+1, we bound the

leading block of universal quantifiers by wt(σ) which, by (2.1), increases with lh(ξ).  As

long as each ξ succeeds in satisfying its sentence Μξ, the approximation given by λ

predicts that σ^〈ν^〈β〉〉 ⊆ λ(η), where ν will be the initial derivative of σ along η (defined

below) and β is the outcome of ν along η.  If we find a first ξ for which Μξ is false, then

σ^〈ξ^〈β〉〉 ⊆ λ(σ), where β is the outcome of ξ along η.  If Μσ begins with an existential

quantifier, then we proceed as above after replacing Μξ with ¬Μξ.  (If dim(σ) ≤ k, then

we just copy the outcome from Tk to Tk+1.)

If η  = 〈 〉 then λ(η) = 〈 〉.  Suppose that η  ≠ 〈 〉.  By (2.4), it will follow by

induction that up(η-) ⊆ λ(η-), where up(η-) is the node of Tk+1 from which η- is derived.

(up(η-) has been defined inductively in Step 4 for η-.)  

(2.4) If either up(η-) = λ(η-) or η- has infinite outcome along η, then we set λ(η) = 

up(η-)^〈η〉 and call η- the principal derivative of up(η-) along η.  We set λ(η) = 

λ(η-) otherwise, and define the principal derivative of up(η-) along η to be the 

principal derivative of up(η-) along η-.

It follows from (2.4) that:

(2.5) If σ ⊆ λ(η) then out(σ) ⊆ η and λ(out(σ)) = σ; and

(2.6)  If λ(η-) ⊇ σ and λ(η) ⊇/  σ, then for all δ ⊇ η, λ(δ) ⊇/  σ.

  We define λ
r
(η) for r ∈ [k,n] by λ

k
(η) = η and λ

r
(η) = λ(λ

r-1
(η)) for r > k.  And if

r ≥ k and ζ ∈ Tr, we call ξ the principal derivative of ζ along η if either r = k and ξ = ζ,

or r > k and there is a σ ∈ Tk+1 such that ξ is the principal derivative of σ along η and σ is

the principal derivative of ζ along λ(η).  

Step 2:  Links.  We will place restrictions on the stages of the construction at

which nodes are eligible to be switched by the approximation to the true path.  One

restriction requires a node to be free when it is switched by the true path approximation,

i.e., that it not be contained in any link.  Links are formed when a switch occurs, and can
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be broken when the outcome of a switched node is switched back.  (Links correspond to

initialization, after injury, in the standard approach to infinite injury priority arguments.

Suppose that a node σ ∈ T2 has initial derivative (defined inductively in Step 4) ν along a

path Λ
1
 through T1, and principal derivative π ⊃ ν along η ⊂ Λ

1
.  Then we form a primary

η-link [ν,π] from ν to π, thereby restraining any node ξ ∈  [ν,π) from acting and

destroying computations declared by π.  (Note that if [ν,π] is an  η-link, then π is not

restrained by [ν,π].  However, as we can have [ν,π) = [ν,δ) as intervals with π ≠ δ, we

use closed interval notation [ν,π] for η-links to make sure that there is a one-to-one

correspondence between intervals which determine links, and the links themselves.)  Any

such ξ will either be a derivative of a node which is no longer on the approximation to the

true path, or a derivative of a node ρ ⊆ σ.  The links prevent derivatives of ρ ⊆ σ from

acting.  Derivatives of such a node ρ which lie beyond the link [ν,π] will be able to act, and

we will show that there is no harm in preventing derivatives of ρ restrained by the link

from acting.  We will allow derivatives of π to act, and so do not restrain π in this link.)  

A node η ∈ Tk such that lh(η) > 0 is said to be switching if there is an r > k such

that λ
r
(η-)|λ

r
(η).  For the least such r, we say that η is r-switching.  If j ∈ [r,n] and η is r-

switching, we say that η  switches upj(η-).  

Fix η ∈ Tk.  Each η-link will be derived from a primary η-link.  We define the η-

links of Tk by induction on n-k.  If k = n, then there are no η-links.  Suppose that k < n.  

We first determine the primary η-links.  Suppose that ξ ⊆ η and ξ
-
 is the principal

derivative of γ = up(ξ
-
) along η, but is not the initial derivative of γ along η.  Let µ be the

initial derivative of γ along η.  Then [µ,ξ
-
] is a primary η-link.  

η-links can also be created by pulling down λ(η)-links.  Suppose that [ρ,τ] is a

λ(η)-link on Tk+1.  Then the initial derivative µ of ρ along η and the principal derivative π

of τ along η will exist.  [µ,π] is an η-link derived from [ρ,τ].

If [ρ,τ] is derived from some link [ζ,κ], then every link derived from [ρ,τ] is

derived from [ζ,κ].  If r > k, then an η-link on Tr is just a λ
r
(η)-link.  We say that ξ  is

η-restrained  if there is an η-link [µ,π] such that µ ⊆ ξ ⊂ π.  In this case, we say that ξ

is η-restrained by [µ,π].  ξ  is η-free if ξ is not η-restrained.

Step 3:  η-consistency.  We decide, in this step, whether a node σ ∈ Tk+1 is

allowed to assign subrequirements at η.  This will depend on four conditions.  The first

condition, (2.7), requires η to predict that σ is on the true path of Tr for all r ∈ [k,n].  The

second condition, (2.8), requires that if σ ∈ Tk+1, once a witness ξ ⊂ η for an existential

sentence associated with σ is found, no derivatives of σ can extend ξ.  In this case, η has
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all the information needed to correctly predict the outcome of σ.  However, we do not

search for such witnesses on Tk if k ≥ dim(σ), as we have not yet begun to decompose the

sentence assigned to σ in this case.  Rather, we will require σ to code the outcome of a

unique derivative of σ on Tk, and so impose condition (2.9) requiring that there be a unique

such derivative.  Condition (2.10) requires that σ be λ(η)-free.  (We note that the definition

of η-consistency is the same as that in [LL2], but differs from the definition in [LL1].)

(2.10) implies (2.7), but it is convenient to require both, before the implication is apparent.

For η ∈ Tk, we say that σ ∈ Tk+1 is η-consistent if the following conditions hold:

(2.7)  upr(σ) ⊆ λ
r
(η) for all r ∈ [k+1,n].

(2.8) If σ ⊂ λ(η), then for all ν ⊂ η, if up(ν) = σ and dim(σ) > k, then ν has finite 

outcome along η.

(2.9) For all ν ⊂ η, if dim(σ) ≤␣k then up(ν) ≠ σ.

(2.10) σ is λ(η)-free.

Step 4:  Assignment of Derivatives.  Let η  ∈  Tk  be given such that

requirements have been assigned to all predecessors of η, but not to η.  We want to assign

a requirement (or subrequirement) to η.  The requirement chosen will either be one which

does not have any derivatives along η, or one assigned to some η-consistent node of Tk for

some k.  

Requirements are assigned in blocks. (Blocks on T0 are the counterpart of stages

in the usual approach to priority constructions; the node which begins a block is the

counterpart of a stage, and the remaining nodes within the block play the role of substages

of that stage.)  If k = n and Ri is the highest priority requirement which has not yet been

assigned to a node ⊂ η, then we assign the first node of the module for Ri to η, and the

second node of the module for Ri, if it exists, to every ξ ⊃ η such that ξ- = η and η has

infinite outcome along ξ.  The η-block of T2 consists of the nodes of T2 to which the

requirement Ri has just been assigned.  (Thus if the basic module for Ri has a single node,

then the η-block is {η}.)  If ζ ⊃ η, then a ζ-path through the η-block is completed at δ if

δ ⊂ ζ, δ is in the η-block, and there is no γ such that δ ⊂ γ ⊆ ζ and γ is in the η-block.

Suppose that k < n.  A 〈 〉-block on Tk  is begun at 〈 〉.  A σ-path through the ν-

block is completed at δ ∈ Tk if ν ⊆ δ ⊂ σ, no γ such that ν ⊆ γ ⊂ δ completes a σ-path

through the ν-block, up(δ) completes a λ(σ)-path through a block of Tk+1 and δ is an initial

8



derivative of up(δ).  κ is in the ν-block if ν ⊆ κ and we have not completed a κ-path

through the ν-block at any δ ⊂ κ.  If no such ν exists, then we begin a κ-block at κ, and

place κ in the κ-block.  

Fix ν such that η is in the ν-block.  There are two substeps to consider.

Substep 4.1:  If either η  = 〈 〉, η  = ν, or η is switching, set ρ = 〈 〉.  In this case,

we start an η-subblock.  Otherwise, fix ρ ⊆ λ(η) such that ρ- = up(η-).  (By induction

using (2.7), up(η-) ⊆ λ(η-) and η provides an outcome for a derivative of up(η-); hence by

(2.7), up(η-) ⊂ λ(η) so such a ρ  must exist.)  Search for an η-consistent σk+1 ∈ Tk+1 of

shortest possible length such that ρ ⊆ σk+1.  (We note that for any j ≥ k, any λ
j
(η )-link

[µj,πj] satisfies πj ⊂  λ
j
(η ), so λ(η) is λ(η)-free.  Furthermore, (2.7) for k will follow

from (2.7) for k+1.  It thus follows that λ(η) is η-consistent, so σk+1 must exist.)  Let Ri

be the requirement assigned to σk+1.  We assign Ri to η, and designate η as a derivative of

σk+1.  If k = 0, or if k = 1, ξ
-
 = η and η has finite outcome along ξ, then Step 4 for η is

complete and we begin Step 4 for ξ next.  Otherwise, we go to Substep 4.2 below for ξ.  

Substep 4.2:  (The role of this substep is to protect one of the computations

Φe(Ai;x) = Ξ(Ø;x), when the computation Φe(Aj;x) for j = 1-i has been destroyed.  The

danger is that there is no node along ξ to which x is assigned and which checks if Φe(A0;x)

= Φe(A1;x); so we specify such a node.  This prevents a node of T2 which predicts that

Φe(A0;x) = Φe(A1;x) and which might destroy the computation Φe(Ai;x) = Ξ(Ø;x) from

being consistent until we have recovered a new computation yielding Φe(Aj;x) = Ξ(Ø;x).

This substep has no counterpart in [LL2].)  We iterate this substep, beginning at ξ ∈ T1

and assigning requirements to γ ⊇ ξ, until either we fail to find ρ below, or we reach γ ⊃ ξ

such that γ - has infinite outcome along γ.  When we decide, at γ, that this substep will no

longer be followed, we return to the beginning of Step 4 for γ.  Suppose that either γ = ξ or

that γ - has finite outcome along γ.  We search for the shortest ξ-consistent ρ ∈ T2 of type 1

such that ρ has a derivative along η and |{µ ⊂ γ: up(µ) = ρ}| < wt(ξ).  If such a ρ exists,

then the requirement assigned to µ is the requirement which has previously been assigned

to this ρ.

Suppose that we have just assigned a requirement R to η ∈  Tk.  Let η be a

derivative of σk+1 ∈ Tk+1.  Then we set up(η) = σk+1 and assign a type and dimension to η

in the same way as these were assigned to R.  The derivative operation can be iterated; thus

for every ζ such that σk+1 is a derivative of ζ, we call η a derivative of ζ.  η is also a
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derivative of η.  If r > k, ζ ∈␣Tr, and η is a derivative of ζ then we write upr(η) = ζ.  If

there is no ξ ⊂ η such that up(ξ) = σk+1, then for all ν ⊇ η, we call η the initial derivative

of σk+1  along ν,  and if, in addition, σk+1 is the initial derivative of ζ along σk+1, then η

is the initial derivative of ζ  along any ν ⊇  η.  ζ is an antiderivative of ξ if ξ is a

derivative of ζ.

If Λ
k
 is a path through Tk, then we let λ(Λ

k
) = lims{λ(Λ

k
|s)}, and define Λ

k+1
 =

λ(Λ
k
).  (We will show in Lemma 3.2 that if lh(Λ

k
) = ∞, then lh(Λ

k+1
) = ∞.)  For Λ

k
 ∈

[Tk], [µk,πk] is a primary Λ
k
-link if there is a ξk �⊂ Λk such that [µk,πk] is a primary ξk-

link.  [µk,πk] is a Λ
k
-link if it is derived from a primary Λj-link for some j ≥ k.  The

notions of ξ  is Λ
k
-restrained, and ξ  is Λ

k
-free are now defined as in Step 2, with Λ

k
 in

place of η.  ■

Suppose that k < n, σ ⊂ τ ∈ Tk, and λ(σ) ≠ λ(τ).  By (2.5), out(λ(σ)) ⊆ σ and

out(λ(τ)) ⊆ τ, so by (2.4) and (2.5) and as σ ⊂ τ,  out(λ(σ)) ⊆ σ ⊂ out(λ(τ)) ⊆ τ.  By

(2.4) and (2.5), for all κ ⊆ λ(σ), out(κ) ⊆ out(λ(σ)) ⊂ out(λ(τ)).  It now follows from

(2.3) that:

(2.11) For all k < n and σ,τ ∈ Tk, if σ ⊂ τ then wt(λ(σ)) ≤ wt(λ(τ)).

Our first lemma will tell us that if Λ
0
 ∈ [T0] is infinite, then Λ

1
 and Λ

2
 are also

infinite.  It also provides information on the value of λ on initial and principal derivatives.

Lemma 2.1:  Fix k ∈ [0,n) and a path Λ
k
 ∈ [Tk].  Then:

(i) If σ ⊂ λ(Λ
k
), then σ has an initial derivative ν along Λ

k
 and λ(ν)␣= σ.

(ii) If σ ⊂ λ(Λ
k
), then there is a π ⊆ Λ

k
 such that π- is the principal derivative of 

σ along Λ
k
, λ(π)

-
=␣σ, and for all η ⊆ Λ

k
, λ(π) ⊆ λ(η) iff π ⊆ η.  

(iii) If σ ⊂ τ ⊂ λ(ρ) ⊆ λ(Λ
k
), µ (ν, resp.) is the initial derivative of σ (τ, resp.) 

along ρ, and π (δ, resp.) is the principal derivative of σ (τ, resp.) along ρ, 

then µ ⊆ π ⊂ ν ⊆ δ.

(iv) If lh(Λ
k
) = ∞, then for any δ-block such that δ ⊂ Λ

k
, there is a ξ ⊂ Λ

k
 such 

that ξ  completes a path through the δ-block.

(v) If lh(Λ
k
) = ∞, then Λ

k+1
 = λ(Λ

k
) = lim{λ(η): η ⊂ Λ

k
} exists and lh(Λ

k+1
) = 

∞ .

Proof:  We proceed by induction on n-k.

10



(i):  By (2.4) and as σ ⊂ λ(Λ
k
), σ must have a derivative along Λ

k
.  Hence if ν  is

the shortest derivative of σ  along Λ
k
, then ν is the initial derivative of σ  along Λ

k
.  By

(2.7), λ(ν) ⊇ σ.  As no derivative of σ has an outcome along ν, it follows from (2.4) that,

λ(ν) = σ.

(ii):  If dim(σ) ≤ k, then by (2.9), the initial derivative ν of σ along Λ
k
 is the

principal derivative of σ along Λ
k
.  (ii) follows in this case from (i), and as by (2.4) and

(2.7), no τ ⊃ σ can have a derivative µ ⊂ ν. 

Suppose that dim(σ) > k.  By (i), let ν be the initial derivative of σ along Λ
k
.  If

there is no π ⊂ Λ
k
 such that up(π-) = σ and π- has infinite outcome along π, then it follows

as in the case for dim(σ) ≤ k that ν is the principal derivative of σ along Λ
k
.  Otherwise, fix

the shortest such π.  We note that π- is the principal derivative of σ along Λ
k
.  By (2.4),

induction, (2.7) and (2.6), λ(π)␣= σ^〈π〉 ⊆ Λ
k+1

, and if η ⊂ Λ
k
 then λ(η)␣⊇ σ^〈π〉 iff η

⊇ π.    

(iii):  It follows easily from (2.4) that µ ⊆ π and ν ⊆ δ.  By (i), λ(ν) = τ ⊃ σ =

λ(µ).  By (2.4) and (2.5), if γ ⊆ λ(ρ) and γ - = σ, then (out(γ))- = π and out(γ) ⊆ ν.  Hence

π ⊂ ν.

(iv),(v):  It follows easily from (2.7) that Λ
k+1

 = λ(Λ
k
) = lim{λ(η): η  ⊂  Λ

k
}

exists.  First suppose that lh(Λ
k+1

) = ∞.  By (iv) inductively, there are infinitely many

blocks along Λ
k+1

 (note that this is immediate for k = n), so there are infinitely many τ ⊂

Λ
k+1

 such that τ  completes a Λ
k+1

-path through a block.  By (i), each such τ has an initial

derivative along Λ
k
.  Hence by Step 4, there are infinitely many ξ ⊂ Λ

k
 which complete

Λ
k
-paths through blocks, and (iv) and (v) hold in this case.

Now suppose that lh(Λ
k+1

) < ∞ in order to obtain a contradiction.  Then by (2.4),

there is a δ ⊂ Λ
k
 such that for all ν satisfying δ ⊆ ν ⊂ Λ

k
, λ(ν) = Λ

k+1
.  If δ ⊆ ν ⊂ Λ

k
 and

ν completes a path through a block, then ν must be an initial derivative of some node ⊆

Λ
k+1

.  As this is possible only finitely often and lh(Λ
k
) = ∞, we can assume without loss

of generality that there is no ν such that δ ⊆ ν ⊂ Λ
k
 and ν completes a path through any

block.  By (2.4), (2.6) and Step 4, if δ ⊆ ν ⊂ γ ⊂ Λ
k
 then ν is nonswitching, so up(ν) ⊆

up(γ) ⊂ Λ
k+1

.  Furthermore if we fix ξ as in Substep 4.2, then for any γ in the same block

as δ, |{ν: ∃γ(δ ⊆ ν ⊂ γ ⊂ Λ
k
 & up(ν) = up(γ))}| < wt(ξ).  But this is impossible if lh(Λ

k+1
)

< ∞ and lh(Λ
k
) = ∞.  ■
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From now on, whenever we write Λ
k
 ∈ [Tk], we assume that there is a Λ

0
 ∈  [T0]

such that Λ
k
 = λ

k
(Λ

0
).  Similarly, if we write η ∈ Tk, we assume that η ⊂ Λ

k
 for some Λ

k

∈ [Tk].  If this is not the case, then η and Λ
k
 are irrelevant to our construction.

Our next lemma provides sufficiently many free derivatives of nodes on the true

path so that the construction can act to satisfy all requirements.  We first note an important

fact, whose proof we leave to the reader.

(2.12) Fix k ≤ n, Λ
k
 ∈ [Tk], and µ ⊂ ν ⊂ η such that upj(η) ⊆ λj(η) for all j such that 

k ≤ j ≤ n.  Then [µ,ν] is a Λ
k
-link iff [µ,ν] is an η-link.

Lemma 2.2:  Fix k < 2 and Λ
k
 ∈ [Tk] such that lh(Λ

k
) = ∞, and for all r ∈ [k,2], let Λ

r
 =

λ
r
(Λ

k
).  Suppose that σ ⊂ Λ

k+1
 is Λ

k+1
-free.  Then:

(i) If π ⊂ Λ
k
 is the principal derivative of σ along Λ

k
, then π is Λ

k
-free.

(ii) If σ has infinite outcome along Λ
k+1

 and dim(σ) > k, then there are infinitely 

many Λ
k
-free derivatives of σ.

Proof:  (i):  First suppose that [µ,ν] is a primary Λ
k
-link which restrains π in order

to obtain a contradiction.  As µ  is not the principal derivative of up(µ) along Λk, µ ≠ π.  So

µ ⊂ π ⊂ ν, up(µ) = up(ν), and ν has infinite outcome along Λ
k
.  By (2.7), up(µ) ⊆

λ(µ),λ(ν) and up(π) ⊆ λ(π).  As µ ⊂ π ⊂ ν, it follows from (2.6) that up(µ) ⊆ λ(π).

Hence by Lemma 2.1(iii), up(µ) ⊂ up(π) = σ.  Now if ξ ⊂ Λ
k
 and ξ

-
 = ν, then ξ switches

up(µ), so by (2.6) σ ⊂/  Λ
k
 contrary to hypothesis.  

Suppose that [µ,ν] restrains π and is derived from a Λj-link for some j > k in order

to obtain a contradiction. Since there are no links on T2, all links on T1 are primary links so

k ≠ 1.  Thus k = 0 and [up(µ),up(ν)] is a primary Λ1-link.  By (2.6), up(µ) = up(ν) and

up(π) are comparable.  So by Lemma 2.1(iii), up(µ) ⊂ up(π) ⊂ up(ν), a contradiction.  

(ii):  We note by (i) that if ζ ⊂ Λ
n
, then for all j such that k ≤ j ≤ n, the principal

derivative ζ
j
 of ζ along Λ

j
 is Λ

j
-free.  As lh(Λ

k
) = ∞, it follows inductively from Lemma

2.1(v) that lh(Λ
j
) = ∞ for all j such that k ≤ j ≤ n.  Hence there are infinitely many ζ ⊂ Λ

n

such that ζ
j
 extends upj(σ) for all j such that k ≤ j ≤ n.  Fix such a ζ.  If suffices to show

that σ has a free derivative along Λ
k
 which extends ζ

k
.

By (2.4), if we fix γk ⊂ Λ
k
 such that (γk)- = ζ

k
, then γk is Λ

k
-true.  Hence by

(2.12), for all j such that k ≤ j ≤ n and δ
j
 ⊆  λ

j
(γk), δ

j
 is Λ

j
-free iff δ

j
 is λ

j
(γk)-free.  In

12



particular, σ is λ(γk)-free.  It is routine to verify that every Λ
k
-free node is Λ

k
-true.  (For

by contradiction, if we were to fix the least j > k such that the Λ
k
-free node τ satisfies

upj(τ) ⊂/  Λ
j
, then upj-1(τ) would be restrained by a primary Λ

j
-link, and the Λ

k
-link derived

from this Λ
j
-link would restrain τ.)  It thus follows by hypothesis that σ is γk-consistent.

Furthermore, either γk is switching, or (γk)- is the initial derivative of ζ along Λ
k
.  In either

case, we set ρ = 〈 〉 at the beginning of Subtep 4.1, just prior to assigning a requirement to

γk.  As σ ⊂ λ(γk) ⊂ Λ
k+1

, it follows from (2.4) and (2.6) that we will take nonswitching

extensions in Step 4, beginning at γk, and reach a node β
k
 at which σ is the shortest node

eligible to determine a derivative along Λ
k
.  We note that no new links are formed when

nonswitching extensions are taken, and that, as σ ⊂ λ(γk), it will be the case that λ(β
k
) =

λ(γk), and so, that σ is β
k
-free and β

k
-consistent.  By Step 4, we define up(β

k
) = σ, and

β
k
 will be Λ

k
-true and Λ

k
-free.  Hence by (2.12), β

k
 will be a Λ

k
-free derivative of σ.  ■  

We can now show that the construction will have to deal with all requirements.

Lemma 2.3:  Fix Λ0 ∈ T0, and let Λ2 = λ2(Λ0).  Then the requirement Ri is assigned to

some node σ ⊂ Λ2.

Proof:  Each block along Λ2 consists of a single module.  The lemma now follows

from Lemma 2.1(ii), as there are infinitely many blocks along Λ2, and Substep 4.3.  ■

We note that, with the exception of Lemma 2.1(i), the lemmas of this section can be

proved under very general assumptions, and that this is done in [LL2].  Hence much of

what is proved in this section can be obtained from a general framework, and need not be

repeated for each construction.

3.  The Construction and Proof for a Minimal Pair.  Our construction will define

an infinite recursive Λ0 ∈ [T0], and for k ≤ 1, we will set Λk+1 = λ(Λk).  For i ≤ 1, we

construct partial recursive functionals which are total on oracle Ai such that for all e, there

is an x such that Φe(Ø;x) ≠ ∆i(Ai;x).  And for all σ ∈ T2 such that σ has type (1,1), we

construct a partial recursive functional Ξσ such that for the e mentioned in the requirement

assigned to σ, if Φe(A0) = Φe(A1) is total and σ ⊂ Λ2, then Ξσ(Ø) is total and for all x,

Φe(A0;x) =  Ξσ(Ø;x).
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Definition 3.1:  Given η ⊂ Λ0, the action taken by the construction at η will depend on

the truth or falsity of a sentence Mη associated with η.  If η has type 0 and is working on

the requirement Φ e(Ø) ≠ ∆ i(A i), then Mη  will be the quantifier-free sentence

Φe,wt(η)(Ø;wt(up(η)))↓ = 0 with use ≤ wt(η)+1.  Suppose that η has type (1,0) or (1,1),

and |τ ⊂ up(η): up(τ) = up2(η)| = x.  If η has type (1,0), then Mη is the quantifier-free

sentence Φe,wt(η)(A0
wt(η)

;x)↓ and Φe,wt(η)(A1
wt(η)

;x)↓ with uses ≤ wt(η)+1.  And if η has

type (1,1), then Mη is the quantifier-free sentence Φe,wt(η)(A0
wt(η)

;x)↓ = Φe,wt(η)(A1
wt(η)

;x)↓

with uses ≤ wt(η)+1.

The Construction:  We begin by specifying that 〈␣␣〉 ⊂ Λ0.  No axioms ∆i,0(Ai
0;x) or

Ξσ,0(Ø;x) are declared, and Ai
0 = Ø for all i ≤ 1.  (We assume, without loss of generality,

that wt(〈␣␣〉) = 0.)

Suppose that we have specified that η ⊂ Λ0, and are ready to determine the

immediate successor of η along Λ0.  We specify that ξ = η^〈0〉 ⊂ Λ0 if Mη is false, and

that ξ = η^〈∞〉 ⊂ Λ0 if Mη is true, and proceed by cases, depending on the type of η.

Aj
wt(ξ)

 = Aj
wt(η)

 for j ∈ {0,1} and no new axioms are declared, unless we specify otherwise

below.  Also, the axioms declared below are declared only if they are consistent with

previously declared axioms.  (We will show later that this is always the case.)

Case 1:  η has type 0.  If η is working on the requirement Φe(Ø) ≠ ∆i(Ai) and Mη

is false, define ∆i,wt(ξ)(Ai
wt(ξ)

;wt(up(η))) = 0 with use wt(up(η))+1.  If Mη is true, set

Ai
wt(ξ)

 = Ai
wt(η)∪{wt(up(η))} if η is not the initial derivative of up(η) along ξ , and set Ai

wt(ξ)

= Ai
wt(η)

 if η  is the initial derivative of up(η ) along ξ  .  In both cases, define

∆i,wt(ξ)(Ai
wt(ξ)

;wt(up(η))) = 1 with use wt(up(η))+1.

Case 2:  η has type (1,0).  No action is taken.

Case 3:  η has type (1,1).  If Mη is false, then no action is taken.  If Mη is true,

then Φe,wt(η)(A0
wt(η)

;x)↓ = Φe,wt(η)(A1
wt(η)

;x)↓ = y for the x associated with Mη and some y.

We declare the axiom Ξup2(η),wt(ξ)(Ø;x) = y with use 1.

For all x and i such that no axiom ∆i(Ai;x) = m has been declared above for any m,

we set ∆i(Ai;x) = 0.  (This will cause ∆i(Ai) to be total.  We will show in Lemma 3.1 that
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∆i(Ai) is recursive in Ai.)  And for all x and σ ∈ T2 such that no axiom Ξσ(Ø;x) = m has

been declared above for any m, we set Ξσ(Ø;x) = 0.  ■

We now show that the functionals defined above are partial recursive.  As new

axioms are declared only when they are consistent with previously declared axioms, these

functionals are well-defined.

Lemma 3.1 (Recursiveness Lemma):  (i)  For all i ≤ 1, ∆i(Ai) is a well-defined total

function which is recursive in Ai.

(ii)  For all τ ⊂ Λ2 of type (1,1) such that τ has infinite outcome along Λ2,  Ξτ(Ø) is

a total recursive function.

Proof:  (i):  Fix i ≤ 1.  By the last paragraph of the construction, ∆i(Ai) is total.

(When we write ∆i,s(Ai
s;x)↑ below in this proof, our intent is to have this mean that no

axiom defined in Step 1 forces a convergent computation; we ignore the axioms specified at

the end of the construction.)  Let S = {x: ∆ i(A i;x) is not defined by Case 1 of the

construction}.  Fix x.  We claim that x ∈  S iff there is an η ⊂ Λ0  such that

∆i,wt(η)(Ai
wt(η)

;x)↑, wt(λ(η)) > x and there do not exist e and ξ ⊆ η such that up(ξ) ⊂

λ(η), wt(up(ξ)) = x, ξ has type 0, and the requirement Φe(Ø) ≠ ∆i(Ai) is assigned to ξ.

Thus S is r.e., so we can define a partial recursive functional ∆ such that ∆(Ai) = ∆i(Ai). 

To see the claim, first suppose that x ∈/  S.  Then x = wt(ρ) for some ρ ∈ T1.  Since

x ∈/  S, an axiom ∆i,wt(ξ)(Ai
wt(ξ)

;x) = m must be defined by Case 1 when ξ ⊂ Λ0 and µ = ξ
-

is the initial derivative of ρ along Λ0, and this axiom will have use wt(ρ)+1.  By (2.2), x =

wt(ρ) = wt(λ(out(ρ))) > wt(out(ρ)).  A new axiom can be defined by Case 1 at most once

more, at δ where π = δ
-
 is the principal derivative of ρ along Λ0.  If this happens, it

follows from (2.6) that ρ ⊆ λ(ν) for all ν such that out(ρ) ⊆ ν ⊆ π.  Now only elements of

the form wt(λ(ν)) can be placed in sets at such ν, and by (2.1), wt(λ(ν)) > wt(ρ), so the

axiom defined at ξ  is not injured before δ.  If a new axiom is defined at δ, then we set

∆i,wt(δ)(Ai
wt(δ)

;x) = 1 in Step 1, and this axiom will have use wt(ρ)+1.  If this axiom (or the

axiom defined at ξ if δ does not exist) is destroyed at γ, then no axiom for x is ever

redefined in Case 1, so x ∈ S, contrary to assumption.  So no η as above can exist.

Now suppose that x ∈ S.  By (2.1)-(2.3), we can recursively determine whether x

= wt(ρ) for some ρ ∈ T1.  If not, then any η ⊂ Λ0 such that wt(λ(η)) > x will have the

desired properties, and by Lemma 2.1(v), such an η must exist.  Suppose that ρ exists. We

can recursively determine whether ρ has a derivative along Λ0.  For by (2.1) and Lemma
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2.1, we can find γ ⊂ Λ0 such that wt(λ(γ)) > wt(ρ ), and by (2.11) and Lemma 2.1, ρ has

a derivative along Λ0 iff ρ has a derivative along γ.  If no such γ exists, then any η ⊂ Λ0

such that wt(λ(η)) > x will have the desired properties, and by Lemma 2.1(v), such an η

must exist.  Suppose that γ exists.  Let µ be the initial derivative of ρ along Λ0.

An axiom ∆i(Ai;x) = m defined during Case 1 must be defined at µ, and this axiom

will have use wt(ρ)+1.  Furthermore, if ∆i,wt(ν)(Ai
wt(ν)

;x)↑ at any ν such that µ ⊆ ν ⊂ Λ0,

then for the least such ν, wt(up(ν-)) ≤ wt(ρ).  By (2.1), (2.11), and as up(ν-) ≠ ρ  else

∆i,wt(ν)(Ai
wt(ν)

;x)↓ by Step 1, it follows that up(ν-) ⊂ ρ.  Hence ρ ⊂/  λ(ν), so by (2.3) and

Case 1, ∆i,wt(δ)(Ai
wt(δ)

;x)↑ for all δ such that ν ⊆ δ ⊂ Λ0.  As the use of any axiom

declared for x is bounded by wt(ρ)+1 and ∆i(Ai;x) is not defined in Case 1, an η with the

desired properties must exist.

(ii):  As τ has infinite outcome along Λ2, it follows from Lemma 2.2 that τ has

infinitely many derivatives along Λ1.  If ξ is such a derivative, |{ν ⊂ ξ: up(ν) = τ} = x, and

π is the principal derivative of ξ along Λ0, then Case 3 defines an axiom Ξτ,wt(π)(Ø,x) = m

for some m.  ■

We now show that all requirements are satisfied.  We begin with the requirements

of type 0.

Lemma 3.2:  For all e and all i ≤ 1, Φe(Ø) ≠ ∆i(Ai).  

Proof:  Fix j such that Rj is the requirement Φe(Ø) ≠ ∆i(Ai).  By Lemma 2.3, Rj is

assigned to a unique σ ⊂ Λ2.  By (2.9) and Lemma 2.2, there is a unique ν ⊂ Λ1 such that

up(ν) = σ, and ν is Λ1-free.  

First suppose that ν has infinite outcome along Λ1.  By Lemma 2.1(v) and Lemma

2.2(ii), ν has infinitely many derivatives along Λ0, each having finite outcome along Λ0.

By the construction, Φe,wt(η)(Ø,wt(ν))↑ or Φe,wt(η)(Ø;wt(ν))↓ ≠ 0 for each such derivative

η.  Fix δ ⊂ Λ0 such that µ = δ
-
 is the initial derivative of ν along Λ0.  By Case 1, an axiom

∆i,wt(δ)(Ai
wt(δ)

;wt(ν)) = 0 will be defined in Case 1 with use wt(ν)+1.  As ν ⊂ Λ 1 and µ is

the principal derivative of ν along Λ0, it follows from (2.6) that only elements wt(σ) for σ

⊃ ν will be placed into sets at any γ ⊃ µ such that γ ⊂ Λ0.  By (2.1), for any such σ, wt(σ)

> wt(ν).  Hence Φe(Ø;wt(ν)) ≠ 0 = ∆i(Ai;wt(ν)).

On the other hand, suppose that ν has finite outcome ξ along Λ1.  Let η = ξ
-
.  Then

up(η) = ν and η is the principal derivative of ν along Λ0.  As in the preceding paragraph,
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Φe,wt(η)(Ø;wt(ν))↓ = 0 with use wt(ν)+1, and we place wt(ν) ∈ Ai
wt(ξ)

-Ai
wt(η)

.  As any

axiom ∆ i,wt(η)(Ai
wt(η)

;wt(ν )) = m has use wt(ν )+1, we consistently redefine

∆i,wt(ξ)(Ai
wt(ξ)

;wt(ν)) = 1 with use u = wt(ν)+1.  As ν ⊂ Λ1, it follows from (2.6) that there

is no δ ⊃ η such that δ ⊂ Λ0, up(δ) ⊂ ν, and δ has infinite outcome along Λ0.  By (2.1)

and the construction, Ai
wt(η)

|u = Ai|u, so ∆i(Ai;wt(ν)) = 1.  Hence the lemma follows.  ■

Lemma 3.3:  Let Rj be the requirement which asserts that if Φe(A0) = Φe(A1) is total,

then there is a recursive function Ξ such that Φe(A0) = Ξ(Ø).  Then Rj is satisfied.

Proof:  By Lemma 2.3, Rj is assigned to a unique σ ⊂ Λ2 of type (1,0).  By

Lemma 2.2, σ has a principal derivative σ1 ⊂ Λ1, and σ1 is free.  

First suppose that σ1 has infinite outcome along Λ1.  Let σ1 be associated with

argument x (so there are x derivatives of σ which are ⊂ σ1).  By Lemma 2.1(v) and

Lemma 2.2, σ1 has infinitely many derivatives along Λ0, and all have finite outcome along

Λ0.  By the construction, there are infinitely many s such that either Φe,s(A0
s ,x)↑ or

Φe,s(A1
s ,x)↑.  Thus either Φe(A0;x)↑ or Φe(A1;x)↑, so Rj is satisfied.

Suppose that σ1 has finite outcome along Λ1, and fix δ1 ⊂ Λ1 such that (δ1)- = σ1.

Then τ2 = σ^〈δ1〉 is the immediate successor of σ along Λ2, τ2 and σ are part of the same

module, and τ2 has type (1,1).  There are two cases to consider, depending on the

outcomes we see for τ2 during the course of the construction.

Case 1:  There is a ξ0 ⊂ Λ0 such that if ξ1 = λ(ξ0) and τ1 = (ξ1)-, then up(τ1) = τ2

and τ1 has infinite outcome along ξ1.  Let τ1 be associated with argument x (so there are x

derivatives of τ2 which are ⊂ τ1).  This case corresponds to finding a disagreement at x,

since(τ1)-  will also be assigned the argument x, will be part of the same module as τ1, and

since the case assumption implies that all derivatives of σ have finite outcome along τ1,

Φe,s(A0
s ,x)↓ and Φe,s(A1

s ,x)↓ for s = wt((out(τ1)-).  We first show that ξ1 ⊂ Λ1.  For

suppose not in order to obtain a contradiction, and fix the shortest ν0 such that ξ0 ⊂ ν0 ⊂

Λ0, µ1 = up((ν0)-) ⊂ ξ1, and ν0 switches µ1.  Let τ1 be the initial derivative of τ2 along ξ1.

We note that if τ1 ≠ τ1, then [τ1,τ1] is a primary ν0-link.  By (2.10), it must be the case that

either µ1 = τ1 or µ1 ⊂ τ1.  We compare the locations of µ2 = up(µ1) and τ2 on T2.

By Lemma 2.1(iii) and (2.7), µ2  ⊃/  τ2.  Suppose that µ2 ⊂ τ2.  As ν0 switches µ1,

it follows from the construction that µ1 has infinite outcome along ξ1.  Thus if ν1 ⊆ ξ1 and

(ν1)- = µ1, then µ2^〈ν1〉 ⊆ τ2.  As ν1 ⊆/  λ(ν0), it follows from (2.6) that ν1 ⊆/  Λ1.  But
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then by (2.4), τ2 ⊂/  Λ2, a contradiction.

Suppose, next, that µ2|τ2.  Let ρ2 = µ2∧τ2, and let ρ1 be the principal derivative of

ρ2  along τ1.  By Lemma 2.1(iii), ρ1 ⊂ τ1.  Hence by the minimality of the choice of ν0,

ρ1 is the principal derivative of ρ2 along λ((ν0)-).  But then µ2 ⊆/  λ2((ν0)-), contradicting

(2.7).

It remains to consider the case where µ2 = τ2.  By (2.8), ν0 must switch τ1, so τ1 =

µ1.  Let η be the initial derivative of τ1 along Λ0, fix η ⊂ Λ0 such that (η)- = η, and note

that, by Lemma 2.1(iii) and (2.4), λ(η) = ξ1.  By the construction, Φe,wt(η)(A0
wt(η)

,x)↓ ≠

Φe,wt(η)(A1
wt(η)

,x)↓, and the uses of these computations are ≤ wt(η)+1.  By (2.6) and the

construction, all elements placed into A0 or A1 at nodes γ such that η ⊂ γ ⊂ ν0 are of the

form wt(up(γ -)) with up(γ -) ⊇ ξ1.  Furthermore, we have shown that λ(η) = τ1 ⊂ ξ1 =

λ(η).  Hence by (2.1) and (2.2), 

wt(η) < wt(η) < wt(λ(η)) = wt(ξ1) ≤ wt(up(γ -)).  

Hence if β = (ν0)-, then for i ≤ 1, Φe,wt(β)(Ai
wt(β)

,x)↓ = Φe,wt(η)(Ai
wt(η)

,x) with use ≤

wt(η)+1.  By the construction, ν0 is nonswitching, contrary to assumption.

We conclude that τ2^〈ξ1〉 ⊂ Λ2.  It follows as in the preceding paragraph that

Φe(A0;x) = Φe,wt(η)(A0
wt(η)

,x) ≠ Φe,wt(η)(A1
wt(η)

,x) = Φe(A1;x), so Rj is satisfied.

Case 2: Otherwise.  (In this case, a disagreement is never found.)  Then for all ξ0

⊂ Λ0 such that up2((ξ0)-) = τ2, up((ξ0)-) has finite outcome along λ(ξ0).  Fix x,  and fix τ1

⊂ Λ1 such that up(τ1) = τ2 and the argument x is assigned to τ1.  Let η be the initial

derivative of τ1 along Λ0, and fix γ ⊂ Λ0 such that γ - = η.   If Ξσ,wt(η)(x)↑, then we define

Ξσ,wt(γ)(x) = Φe,wt(η)(A0
wt(η)

,x) = Φe,wt(η)(A1
wt(η)

,x), and note that, as τ1 ⊂ Λ1, all elements

entering A0 or A1 at any γ such that η ⊆ γ ⊂ Λ0 are of the form wt(κ ) for some κ ⊃ τ1.  As

in the preceding case, we see that for all such τ1, wt(τ1) > wt(η).  As the use of the

computations Φe,wt(η)(Ai
wt(η)

,x) is ≤ wt(η)+1 for i ≤ 1, it follows that 

Φe(A0,x) = Φe,wt(η)(A0
wt(η)

,x) = Φe,wt(η)(A1
wt(η)

,x) = Φe(A1,x).  

Hence Rj is satisfied in this case.

Suppose that Ξσ,wt(η)(x)↓.  Fix the shortest ξ ⊆ η such that Ξσ,wt(ξ)(x)↓.  We show

that for all µ such that ξ ⊂ µ ⊆ η, there is an i ≤ 1 such that 

18



(3.1) Φe,wt(µ)(Ai
wt(µ)

,x)↓ = Φe,wt(µ-)(Ai
wt(µ-)

,x)↓ = Ξσ(x), and 

Ai
wt(µ)

|wt(µ-)+1 = Ai
wt(µ-)

|wt(µ-)+1,

i.e., one of the computations converges to the original value.  It will then follow that Ξσ(x)

= Ξσ,wt(ξ)(x) = Φe,wt(η)(Ai
wt(η)

,x), and the satisfaction of Rj will follow as in the preceding

paragraph.

We conclude the proof of the lemma by verifying (3.1) by induction on lh(µ).  By

the construction, up2(ξ) = τ2.  We compare the locations of µ2 = up2(µ-) and τ2 on T2.  Let

µ1 = up(µ-) and ξ1 = up(ξ).

Subcase 2.1:  µ2|τ2.  Let ρ2 = µ2∧τ2, and fix β1 such that ρ2^〈β1〉 ⊆ τ2.  By

(2.4), β1 ⊂ Λ1.  First assume that (β1)- has infinite outcome along β1.  By (2.7), Lemma

2.1, and as up2(ξ) = τ2, β1 ⊆ up(ξ) ⊆ λ(ξ) and β1 ⊆ up(η) ⊆ λ(η).  Hence by (2.6), β1

⊆ λ(µ).  If µ is nonswitching, then (3.1) follows.  If µ is switching, then by (2.6), µ1 ⊇

β1.  But then by (2.4) and as ρ2 ⊂ µ2, ρ2^〈β1〉 ⊆ µ2, contradicting the definition of ρ2.

Suppose that (β1)- has finite outcome along β1.  As µ2|τ2, there must be a β1 ⊆ µ1

such that up((β1)-) = ρ2 and(β1)- has infinite outcome along β1; so if β = out(β1), then by

(2.5), β1 = λ(β).  By (2.4) and as ξ ⊂ µ and β1 ⊆ µ1, ξ ⊂ β ⊆ µ.  As up2(β
 -
) = ρ2 ≠ µ2

= up2(µ -), β ⊂ µ.  Hence by (3.1) inductively, Φe,wt(β)(Ai
wt(β)

,x)↓ = Φe,wt(β-)(Ai
wt(β

−
)
,x)↓

= Ξσ(x), and Ai
wt(β)

|wt(β
 -
)+1 = Ai

wt(β
−
)
|wt(β

 -
)+1 for some i ≤ 1, which we fix.  As β1 ⊆

µ1, it follows from (2.6) that any element entering A0 or A1 at any node γ such that β ⊂ γ

⊆ µ is of the form wt(up(γ -)) with up(γ -) ⊇  β1.  Thus by (2.1) and (2.2), wt(up(γ -)) ≥

wt(β1) = wt(λ(β)) > wt(β) > wt(β
 -
), so 

Φe,wt(µ)(Ai
wt(µ)

,x)↓ = Φe,wt(µ-)(Ai
wt(µ−)

,x)↓ = Φe,wt(β-)(Ai
wt(β

−
)
,x)↓ = Ξσ(x), 

and 

Ai
wt(µ)

|wt(β
 -
)+1 = Ai

wt(µ−)
|wt(β

 -
)+1 = Ai

wt(β
−
)
|wt(β

 -
)+1.  

As the computation Φe,wt(β-)(Ai
wt(β

−
)
,x)↓ has use ≤ wt(β

 -
)+1, (3.1) follows.
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Subcase 2.2:  µ2 ⊂ τ2.  Let µ2^〈µ1〉 ⊆ τ2.  First suppose that (µ1)- has infinite

outcome along µ1.  By (2.4) and (2.8), µ1 ⊆ ξ1,Λ1, and there is no µ1  ⊃ µ1 such that

up(µ1) = µ2.  By (2.6) and (2.4), µ is nonswitching, so no elements are placed in any set

at node µ.  Hence (3.1) follows by induction in this case.

Now suppose that  (µ1)- has finite outcome along µ1.  Then µ2 has infinite outcome

along τ2, so by (2.4), all derivatives of µ2 along ξ1 have finite outcome along ξ1.  Hence if

µ switches µ1 (which we assume else (3.1) follows by induction), then µ1 ⊆/  ξ1.  Let µ be

the initial derivative of µ1 along Λ0.  Then ξ ⊂ µ ⊂ µ.  Hence inductively by (3.1),

Φe,wt(µ)(Ai
wt(µ)

,x)↓  = Ξσ(x) with use ≤ wt(µ)+1 for some i ≤ 1, which we fix.  Now by

(2.6), any element entering A0 or A1 at any node γ such that µ ⊂ γ ⊆ µ is of the form

wt(up(γ -)) with up(γ -) ⊇ µ1.  Thus by (2.1), (2.2), and Lemma 2.1, 

wt(up(γ -)) ≥ wt(µ1) = wt(λ(µ)) > wt(µ), 

so 

Ai
wt(µ)

|wt(µ)+1 = Ai
wt(µ−)

|wt(µ)+1 = Ai
wt(µ

−
)
|wt(µ)+1.  

As the computation Φe,wt(µ)(Ai
wt(µ)

,x)↓ has use ≤ wt(µ)+1, 

Φe,wt(µ)(Ai
wt(µ)

,x)↓ = Φe,wt(µ-)(Ai
wt(µ−)

,x)↓ = Φe,wt(µ)(Ai
wt(µ)

,x)↓ = Ξσ(x), 

and (3.1) follows.

Subcase 2.3:  µ2 = τ2.  Then µ- has type 1, so no elements enter any set at µ.

(3.1) now follows by induction.

Subcase 2.4:  µ2 ⊃ τ2.  Fix α1 ⊂ Λ0 such that τ2^〈α1〉 ⊆ µ2.  τ2  cannot have

finite outcome along µ2, else by (2.4), some derivative of τ2 would have infinite outcome

along λ(µ -) and Case 1 would have been followed.  Hence τ2 has infinite outcome along

µ2.  By (2.4), all derivatives of τ2 along λ(µ -) have finite outcome along λ(µ -).  As µ2 ⊃

τ2 and there are no links on T2, τ2 is λ2(µ -)-free, so λ(µ -)-consistent.  By (2.11) and

Substep 4.2 of Section 2 and as the conditions for Case 1 do not hold, there will be at least

(x+1)-many derivatives of τ2 along λ(µ -), so there will be such a derivative γ1 which has

the responsibility for argument x, and by the above, γ1 has finite outcome along λ(µ -).
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Hence if δ ⊆ µ - and γ  = δ
-
 is the principal derivative of γ1 along µ -, then

Φe,wt(γ)(A0
wt(γ)

,x)↓ = Φe,wt(γ)(A1
wt(γ)

,x)↓ = Ξσ(x) with use ≤ wt(γ).  By Lemma 2.1 and

(2.6), λ(δ)- = γ1 ≠ λ(δ), λ(δ) ⊆ λ(β) for all β such that γ ⊂ β ⊆ µ -, and any element

entering A0 or A1 at any β such that γ ⊆ β ⊆ µ - is of the form wt(up(β)) with λ(δ) ⊆

up(β) ⊆ λ(β).  By (2.1) and (2.2), wt(up(β)) ≥ wt(λ(δ)) > wt(δ) > wt(γ).  Hence

Φe,wt(µ-)(A0
wt(µ−)

,x)↓ = Φe,wt(µ-)(A1
wt(µ−)

,x)↓ = Ξσ(x) with use ≤ wt(γ).  At node µ , an

element is placed into Ai for at most one i ≤ 1.  Hence by induction, (3.1) must continue to

hold for the other value of i.  ■

The above lemmas easily yield the following theorem of Lachlan [L] and Yates [Y].

Theorem 3.4 (Minimal Pair):  There exist nonrecursive r.e. degrees a and b such that

a∧b = 0.  ■

4.  A Minimal Pair with Non-Low Jumps.    In this section, we indicate how to add

requirements to construct a minimal pair of r.e. degrees with non-low jumps.  These

requirements will be needed in Section 5, where we construct a minimal pair of r.e. degrees

whose jumps form a minimal pair over 0'.We note that the type 0 requirements will then be

automatically satisfied, and we can either remove them, or choose to leave them in.  In

order to minimize modifications, we choose to have them remain.

The Requirements:  We add to our previous list of requirements the requirements

Re,i
0,2

 stating that Ai
'  ≠ Φe(Ø') for all e ∈ N and i ≤ 1.  Each such requirement is said to have

type 0 and dimension 2.  

The Basic Module:  Non-lowness requirements.  We satisfy the requirement

Re,i
0,2

 by constructing a partial recursive functional ∆i of two variables which is total on

oracle Ai such that for some x, if |{u: Φe(Ø;u,x)↓ = 0}| = ∞ then limv∆i(Ai;v,x) = 1, if |{u:

Φe(Ø;u,x)↓ = 0}| < ∞ then limu∆i(Ai;u,x) = 0, and such that for all x, limu∆i(Ai;u,x)↓.

Each such requirement assigned to a node σ of T2 will be associated with some x.  The

nodes ν of T1 derived from σ will be associated with a lower bound wt(ν) on u, and the

nodes η of T0 derived from σ will be associated with a stage s = wt(η) as well, which will

provide an upper bound on u.  Given x and a node η ∈ T0 working on the requirement for

these parameters, we declare an axiom ∆i,s(Ai
s;v,x) = 0 with use u = wt(up(η))+1 for all v
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≤ wt(η) for which no current axiom exists, whenever there is no u such that u ≤ u ≤ wt(η)

and Φe,s(Ø;u,x)↓ = 0.  If there is such a u, then we place wt(up(η)) ∈ Ai, and redefine

∆ i,s(Ai
s;v,x) = 1 with use wt(up(η))+1 for all v ≤ wt(η) for which no current axiom exists.

There are two possible types of outcomes.  If, during the construction, there are only

finitely many u such that Φe,t(Ø;u,x)↓ = 0, then ∆(Ai;v,x) = 0 for cofinitely many v, and

either limuΦe(Ø;u,x)↑, or limuΦe(Ø;u,x)↓ ≠ 0.  This outcome will be called the finite

outcome on T0 and gives rise to an infinite outcome on T1 and a finite outcome on T2.  If

we see infinitely many such u, then we place numbers into Ai whenever such u are

discovered, allowing us to reset ∆ i(A i;v,x) = 1 for cofinitely many v.  Thus if

limuΦe(Ø;u,x)↓, then limuΦe(Ø;u,x) = 0 ≠ 1 = limv∆i(Ai;v,x).  This outcome will be called

the infinite outcome on T0 and gives rise to a finite outcome on T1 and an infinite

outcome on T2.  ■

We note that no changes need to be made in Section 2.  Several additions need to be

made for the construction for the requirement Re,i
0,2

.  If η is a node of T0 assigned to such a

requirement, ν = up(η), and σ = up(ν), then Mη is the sentence ∃u≤wt(η)(u ≥ wt(ν) &

Φe,wt(η)(Ø;u,wt(σ))↓ = 0).  A new case must also be added to the construction to handle

these requirements.

Construction, Case 4:  η is associated with the requirement Re,i
0,2

.  Let ν  =

up(η) and σ = up(ν).  Let ξ be chosen as in Section 3, depending on the truth of Mη.  If

Mη is false, set ∆i,wt(ξ)(Ai
wt(ξ)

;v,wt(σ)) = 0 with use wt(ν)+1 for all v ≤ wt(η) such that

∆i,wt(η)(Ai
wt(η)

;v,wt(σ))↑ .  If Mη is true, place wt(ν) ∈  Ai
wt(ξ)

 if η  is not the initial

derivative of up(η) along ξ, and define ∆i,wt(ξ)(Ai
wt(ξ)

;v,wt(σ)) = 1 with use wt(ν)+1 for all

v ≤ wt(η) such that either ∆i,wt(η)(Ai
wt(η)

;v,wt(σ))↑, or ∆i,wt(η)(Ai
wt(η)

;v,wt(σ))↓ with use ≥

wt(ν)+1.

At the end of each step of the construction, no matter which requirement η is

working on, we define some new axioms as follows.  For all ρ ⊂ λ(η) which is associated

with the requirement Re,i
0,2

, and for which there is a v ≤ wt(η ) such that

∆i,wt(ξ)(Ai
wt(ξ)

;v,wt(up(ρ))) has not yet been defined, we define an axiom with value m

determined as follows.  We assume, without loss of generality, that ρ is the longest

derivative of up(ρ) along λ(η).  We set m = 0 if ρ has infinite outcome along λ(η), and m

= 1 otherwise.  The use of this axiom is wt(ρ)+1.  ■
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We need an additional case for the Recursiveness Lemma.

Lemma 4.1 (Recursiveness Lemma): For all i ≤ 1, ∆i(Ai) is total and recursive in Ai.

Proof:  Recall that, since we still follow the end of the construction in Section 3,

we define ∆i(Ai;v,x) = 0 for all v and x for which no value is assigned by the construction,

so ∆i(Ai) is total.  Thus we must recursively enumerate those 〈v,x〉 for which this will be

the case.  As λ is one-to-one and recursive and satisfies (2.1)-(2.3), we can recursively

determine whether there is a σ ∈ T2 such that x = wt(σ) and Re,i
0,2

 is associated with σ for

some e.  If the answer in no, then ∆i(Ai;v,x) = 0 for all v.  

Suppose that such a σ exists, and let x = wt(σ).  In order for an axiom ∆i(Ai;v,x) =

m to be declared for some v and m during the main part of the construction, σ must have an

initial derivative µ along λ(η) for some η ⊂ Λ0.  It follows from (2.11) and Lemma 2.1

that such an η must lie in the Λ0-block containing out2(σ), or in the next Λ0-block.  If no

such η exists, then ∆i(Ai;v,x) = 0 for all v.

  Suppose that such an η exists.  By the last paragraph of the construction above, the

construction will declare an axiom ∆i,wt(ξ)(Ai
wt(ξ)

;v,x) = m at ξ with use wt(ξ) ≥ x as long

as µ ⊆ λ(ξ) and v ≤ wt(ξ); and if this condition fails, then the construction will never

declare an axiom ∆i,wt(δ)(Ai
wt(δ)

;v,x) = m for any δ ⊇ ξ.  As the use of any axiom declared

after ξ is ≤ v+1, we can recursively enumerate those v for which no final axiom will be

declared by the construction.  ■

We now note that no change is required in the proofs of Lemmas 3.2 and 3.3.

(Note that in the proof of Lemma 3.3, we never use the fact that dim(Re,i
0,1

) = 1.)  Hence it

remains to show that Re,i
0,2

 is satisfied for all e and i ≤ 1.

Lemma 4.2:  For all i ≤ 1 and e, Re,i
0,2

 is satisfied.

Proof:  Fix e and i.  By Lemma 2.3, Re,i
0,2

 is assigned to a node σ ⊂ Λ2.  Let x =

wt(σ).  First assume that σ has finite outcome along Λ2.  By (2.4) and Lemmas 2.1(v) and

2.2,  σ has a principal derivative π ⊂ Λ1 which has infinite outcome along Λ1, and π has

infinitely many free derivatives along Λ0, all of which have finite outcome along Λ0.  By

Lemma 2.1, fix η ⊂ Λ0 such that η- is the initial derivative of π along Λ0.  Let µ be the

initial derivative of σ along Λ1.  If µ ≠ π, then [µ,π] will be a primary Λ1-link.  Hence by
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(2.10), for all δ such that η ⊆ δ ⊂ Λ0, if up2(δ) = σ, then up(δ) ⊇ π; and by (2.8), for all

δ such that η ⊆ δ ⊂ Λ0, if up2(δ) = σ, then up(δ) ⊆ π.  It now follows from the last

paragraph of the above construction that for all v ≥ wt(η), ∆ i(Ai;x,v) = 0 with use

wt(π)+1.  Hence limv∆i(Ai;x,v) = 0.  Now as all derivatives of π have finite outcome

along Λ0, and infinitely many such derivatives exist along Λ0, there are infinitely many δ ⊂

Λ0 such that for all u for which wt(π) ≤ u ≤ wt(δ), Φ e,wt(δ)(Ø;u,x) ≠ 0.  Thus if

limuΦe(Ø;u,x)↓ = m, then m ≠ 0.  We now see that Re,i
0,2

 is satisfied in this case.

Now assume that σ has infinite outcome along Λ2.  By Lemma 2.2, σ has infinitely

many free derivatives along Λ1, and by (2.4), all derivatives of σ along Λ1 have finite

outcome along Λ1.  Let π be the initial derivative of σ along Λ1 (so π is also the principal

derivative of σ along Λ1).  Suppose that the axiom ∆i,wt(ξ)(Ai
wt(ξ)

;x,v) = 0 is defined at ξ ⊂

Λ0.  Then by the end of the construction and Case 4, there is a δ ⊂ ξ such that up2(δ) = σ,

this axiom has use wt(up(δ))+1, and up(δ) has infinite outcome along λ(ξ).  Thus a λ(ξ)-

link [π,up(δ)] is formed.  As π ⊂ Λ1, no ν such that η ⊆ ν ⊂ Λ0 can switch any ρ ⊂ π.

Hence by (2.10) and as all derivatives of σ have finite outcome along Λ1, there must be a ν

such that η ⊆ ν ⊂ Λ0 and ν switches up(δ).  But then we place wt(up(δ)) ∈ Ai
wt(ν)

, and

redefine the axiom ∆i,wt(ν)(Ai
wt(ν)

;x,v) = 1.  Thus there can be no axiom ∆i(Ai;x,v) = 0 for

any v.  Fix v, and fix the shortest τ ⊂ Λ1 such that up(τ) = σ and wt(τ) > v.  Let τ0 be the

principal derivative of τ  along Λ 0 , and fix µ ⊂ Λ0  such that µ - = τ 0 .  Then

∆i,wt(µ)(Ai
wt(µ)

;x,v) = 1 with use ≤ wt(τ)+1.  By (2.6) any element entering A0 or A1 at any

β such that µ ⊆ β ⊂ Λ0 is of the form wt(up(β)) with up(β) ⊃ τ, and by (2.1) and (2.2),

wt(up(β)) > wt(τ).  Hence for all v, ∆i(Ai;x,v) = ∆i,wt(µ)(Ai
wt(µ)

;x,v) = 1.  Now infinitely

many derivatives of σ have finite outcome along Λ1; fix such a derivative σ ⊂ Λ1.  If µ is

the principal derivative of σ along Λ0, then Φe,wt(µ)(Ø;x,u) = 0 for some u ≥ wt(σ), so

Φe(Ø;x,u) = 0.  Hence there must be infinitely many u such that Φe(Ø;x,u) = 0, so

limuΦe(Ø;x,u) ≠ 1, and the lemma follows.  ■

Theorem 4.3:  There are recursively enumerable degrees a and b such that a',b' > 0'

and a∧b = 0.

Proof:  Immediate from Lemmas 3.1-3.3, 4.1, and 4.2.  ■
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5.  A Minimal Pair Whose Jumps Form a Minimal Pair over 0'.  In this

section, we show how to construct r.e. degrees a and b such that a',b' > 0', a∧b = 0,

and a'∧b' = 0'.  This construction will require us to start at a higher level tree, T3, and

also to use a form of backtracking, a notion introduced in [LL2].  The backtracking

machinery was developed to allow nodes to influence the construction even when they do

not lie on the current approximation to the true path on all trees.  Our proof will use some

of the lemmas from [LL2] without proof, so will not be self-contained.  We begin by

introducing the additional requirements which will be imposed on the construction.

The requirements:  We add to our previous list of requirements the requirements

Re
1,3 stating that there is a recursive functional Ξ  such that if limuΦ e(A0;u,x) =

limuΦe(A1;u,x) is total for all x, then limuΦe(A0;u,x) = limvΞ(Ø;v,x) for all x.  Each such

requirement is said to have type 1 and dimension 3.  By Posner's Lemma [P] and

Shoenfield's Limit Lemma [S], it suffices to satisfy these requirements.  We note that a

different Ξ = Ξσ is constructed for each σ ∈ T3 dealing with this requirement, and the

requirement will be satisfied by Ξσ for that σ which lies along the true path.  ■

The Basic Module:  Minimal pair requirements over 0'.  The basic module for

Re
1,3 will be a finite tree consisting of two comparable nodes, of types (1,0) and (1,1).  One

finite tree for each requirement will begin along each infinite path through the top tree T3,

and will continue until we have completed a path through this finite tree.  The first node

will have dimension 2, and the second will have dimension 3.  The node of dimension 2

will be responsible for checking if the functional Φe is total on oracles A0 and A1 (checking

for totality is a Π2-sentence), while the second node will try to satisfy the requirement

under the assumption that the functionals are total on these oracles, possibly by

constructing a recursive functional Ξ.  As the two nodes work on requirements of different

dimensions, we will separate them on the other trees, but will require that certain

subrequirements of the first node always precede a given subrequirement of the second

node.  

An argument x will be assigned to derivatives of the second node of this module on

T2. Such a derivative will be responsible for showing that limuΞ(Ø;u,x) exists and

computes limvΦe(A0;v,x) whenever this latter limit exists and equals limvΦe(A1;v,x).  

A number u will be assigned to each derivative δ ∈ T1 of the first node of the

module of T2 (u will be the weight of the node which begins the subblock containing δ).

Such a derivative δ checks to see if Φe(A0;v,x)↓ and Φe(A1;v,x)↓ for all v,x ≤ u.  A

number u will be assigned to each derivative γ ∈T1 of the second node of the module of T2
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to which x has been assigned (u will be the weight of the node which begins the subblock

containing δ).  Such a derivative will try to find numbers y,z ≥ u such that Φe(A0;y,x)↓ ≠

Φe(A1;z,x)↓.  Failing to find such y and z, the node will have the responsibility to define

Ξ(Ø;u,x).

Suppose that σ is a node of T0 which is a derivative of a node of type (1,0) to

which x and u have been assigned.  A number s = wt(σ) will be assigned to σ.  σ will act

as follows.  We ask if Φe,s(A0
s ;v,x)↓ and Φe,s(A1

s ;v,x)↓ for all v,x ≤ u.  If the answer is

yes, then we follow the infinite outcome on T0.  This will allow us to protect these

computations; no other action is taken.  If the answer is no, then we follow the finite

outcome on T0.  We will now have to deal, on T0, with other nodes derived from up(σ), so

make infinitely many attempts to find a yes answer to this question.  If none is ever found,

then either Φe(A0;v,x)↑ or Φe(A1;v,x)↑ for some v,x ≤ u.  Thus Re
1,3 will be satisfied, and

we will never have to deal with the second node of the module on T3.

Suppose that τ is a node of T0 which is a derivative of a node of type (1,1) to which

x and u have been assigned.  A number s = wt(τ) will be assigned to τ.  Action on T0 for

the module associated with τ is as follows.  We ask if there are y,z ∈ [u,s] such that

Φe,s(A0
s ;y,x)↓ ≠ Φe,s(A1

s ;z,x)↓.  If the answer is yes, then we follow the infinite outcome

on T0, and will preserve this disagreement as long as the node is derived from a node on

the true path of T1.  If this outcome is followed for infinitely many derivatives of up2(τ)

along the true path of T1, then limuΦe(A0;u,x) ≠ limuΦe(A1;u,x), so Re
1,3 will be satisfied.

If the answer is no, then we follow the finite outcome on T0, and declare an axiom

Ξs(Ø;u,x) = Φe,s(A0
s ;u,x).  We show that if the answer is always no, then for all t ≥ s,

either Φe,t(A0
t ;u,x) = Ξs(Ø;u,x) or Φe,t(A1

t ;u,x) = Ξs(Ø;u,x).  Hence if we encounter such

a requirement for every x on T1, then if limuΦe(A0;u,x)↓ = limuΦe(A1;u,x)↓ for all x, then

limuΞ(Ø;u,x) = limuΦe(A0;u,x) for all x.  ■

It is possible to have σ2|τ2 ∈ Τ2, both acting for Re
1,3, and both derivatives of σ ∈

T3.  Furthermore, a derivative σ1 of σ2 on T1 may want to define an axiom Ξσ(Ø;u,x) = m,

and a derivative τ1 of τ2 on T1 may want to define an axiom Ξσ(Ø;u,x) = n ≠ m.  If we

allow this situation to occur when σ1 ⊂ τ1, then it will prevent limuΞσ(Ø;u,x) from being

defined.  Thus higher priority nodes on T2 must allow their derivatives to act to capture a

disagreement Φe,s(A0
s ;y,x) ≠ Φe,s(A1

s ;z,x) even when they are not on the true path.  If,

infinitely often, we find σ1 and τ1 as above, then such action will ensure that

limuΦe(A0;u,x) ≠ limuΦe(A1;u,x), and hence that Ξσ need not be defined.  

More precisely, we handle the situation mentioned in the above paragraph as
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follows.  Let ρ2 = σ2∧τ2.  We will show that the above problem can arise only if ρ3 =

up(ρ2) extends an infinite outcome of σ, and σ1 has infinite outcome along a derivative ρ1

of ρ2 which, in turn, has infinite outcome along a derivative τ1 of τ2.  Instead of declaring

an axiom with output n, we act for ρ1 instead of τ1 to give it a finite outcome.  (The action

taken for ρ1 will allow us to show that limits exist.)  This will put all antiderivatives of σ1

back on the approximation to the true path, and injure at most one of the computations seen

by τ1.  Thus σ1 will see disagreeing computations, and will be able to switch its outcome

also.  (We call this process a one-step backtracking process.)  If this happens infinitely

often, then σ2 will have infinite outcome along the true path Λ2, so σ will have finite

outcome along the true path Λ3, and ρ3 will not lie on the true path.  If this happens only

finitely often, then ρ2 will have sufficiently many derivatives which are free to act

according to the dictates of the sentence generating action, and we will be able to show that

if ρ3 and ρ2 are on the true paths of their respective trees, then the subrequirement

associated with ρ2 is satisfied.

We will need to make sure that σ1 lies on the approximation to the true path after ρ1

is switched.  Thus whenever σ  is on the current approximation to the true path of T3, and

we have encountered a derivative of σ working on argument x earlier in the construction,

we will need to have a derivative of σ  working on argument x along the current

approximation to the true path of T1.  This procedure for ensuring that such derivatives

exist is similar to what was done in Substep 4.2 of Section 2, but is carried out for T2

rather than for T1.  Substep 4.2 also needs to be modified to take the new requirements into

account.  We now list the revised Substep 4.2 for k = 1, and the new version of this

substep for k = 2.

Revisions to Step 4 of Section 2

Step 4:  Basic modules are assigned on T3, rather than on T2, in the way

described for all the individual basic modules.  For those modules described in Section 2

which were originally assigned to T2, finite and infinite outcomes are interchanged on T3.

The process of deciding whether to complete Step 4 in Substep 4.1 requires revision.  If k

= 0, or if k = 1, ξ- = η and η has finite outcome along ξ, or if k = 2 and η is the initial

derivative of up(η), then Step 4 for η is completed in Substep 4.1, and we begin Step 4 for

ξ next.  Otherwise, we go to Substep 4.2.1 below for ξ if k = 1, to Substep 4.2.2 if k = 2

and η has finite outcome along ξ, and to Substep 4.2.3 if k = 2 and η has infinite outcome

along ξ.  These substeps add derivatives for minimal pair requirements of dimensions 2

and 3 which seem to be on the true path of the next tree up.  On T1, these derivatives serve

to witness that one side of a computation has been injured, when a previous witness has
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been switched off the true path; this provides a true path computation which prevents

derivatives of lower priority nodes on T2 from destroying the other computation, until the

currently destroyed computation recovers.  On T2, this allows us to have free derivatives

working on argument x once we have begun to work on x.  Thus conflicts between nodes

which want to declare different values for an axiom can be resolved by the one step

backtracking process described above.

Substep 4.2.1:  k = 1.  We iterate this substep, beginning at ξ ∈ T1 and

assigning requirements to γ ⊇ ξ, until either we fail to find ρ below, or we reach γ ⊃ ξ

such that γ - has infinite outcome along γ.  When we decide, at γ, that this substep will no

longer be followed, we return to the beginning of Step 4 for γ.  Suppose that either γ = ξ or

that γ - has finite outcome along γ.  We search for the shortest ξ-consistent ρ ∈ T2 of type 1

and dimension 2 or 3 such that ρ has a derivative along η, if ρ  comes from a module for a

requirement of dimension 2 then |{µ ⊂ γ: µ is λ(ξ)-free & up(µ) = ρ}| < wt(ξ)+1, and if ρ 

comes from a module for a requirement of dimension 3, then there is no derivative of ρ

which extends ξ.  If such a ρ exists, then the requirement assigned to γ is the requirement

which has previously been assigned to the corresponding ρ.  (We have the added clause

that γ is λ(ξ)-free which was not required in Section 3, as if T2 is the last tree, then this

property automatically holds.)

Substep 4.2.2:  k = 2 and η has finite outcome along ξ.  We iterate this substep,

beginning at ξ ∈ T2 and assigning requirements to γ ⊇ ξ, until either we fail to find ρ

below, or we reach γ ⊃ ξ such that γ - has infinite outcome along γ.  When we decide, at γ,

that this substep will no longer be followed, we return to the beginning of Step 4 for γ.

Suppose that either γ = ξ or that γ - has finite outcome along γ.  We search for the shortest

ξ-consistent ρ ∈ T3 of type (1,1) and dimension 3 such that ρ has a derivative along η and

|{µ ⊂ γ: µ is λ(ξ)-free & up(µ) = ρ}| ≥ z, where z is determined below and z ≥ wt(ξ)+1.

We choose the smallest possible z to ensure that for each x ≤ wt(ξ), there is a λ(ξ)-free

derivative of ρ to which x is assigned.  If such a ρ exists, then the requirement assigned to

γ is the requirement which has previously been assigned to the corresponding ρ.

Substep 4.2.3:  k = 2 and η  has infinite outcome along ξ.  We iterate this

substep, beginning at ξ ∈ T2 and assigning requirements to γ ⊇ ξ, until either we fail to

find ρ below, or we reach γ ⊃ ξ such that γ - has infinite outcome along γ.  When we

decide, at γ, that this substep will no longer be followed, we return to the beginning of Step

4 for γ.  Suppose that either γ = ξ or that γ - has finite outcome along γ.  We search for the
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shortest ξ-consistent ρ ∈ T3 of type (1,1) and dimension 3 such that ρ has a derivative

along η, and there is an x which is assigned to a derivative of ρ along η, but x is not

assigned to a ξ-free derivative of ρ.  If such a ρ exists, fix the smallest corresponding x.

Then the requirement assigned to γ is the requirement which has previously been assigned

to the corresponding ρ, and the argument x is assigned to γ.  (For the reader familiar with

[LL2], Substeps 4.2.2 and 4.2.3 allow us to carry out a one-step backtracking process.)

■

Lemma 2.1 is still true.  Its proof needs to be modified to take the revisions to

Substep 4.2 into account, but this is done essentially as before, so we will not present a

proof.  Lemma 2.2 for n = 3 is also still true, but its proof requires consideration of how

derivatives on T0 of free nodes on T1 can be restrained by links derived from primary links

on T2.  Roughly speaking, one can show that there are infinitely many segments of blocks

such that all nodes along them are nonswitching and compute initial segments of the true

paths of all trees, and which contain derivatives of all currently consistent nodes.  Such a

lemma is proved in a general setting in [LL2], and requires a careful analysis of how links

are formed.  We refer the reader to [LL2] for the required lemmas and the proof of Lemma

2.2.  Lemma 2.3 follows exactly as in Section 2.

The construction of Section 3 requires two new cases for the new requirements, in

addition to the case added in Section 4.  First, however, we need to define the sentence Mη

for η ∈ T0 derived from a module of dimension 3 working for Re
1,3.  If η has type (1,0),

let s = wt(η) and let u be the weight of the node which begins the subblock containing

up(η); then Mη is the sentence 

∀x≤u∀v≤u(Φe,s(A0
s ;v,x)↓ & Φe,s(A1

s ;v,x)↓).  

If η has type (1,1), let s = wt(η), let u be the weight of the node which begins the subblock

containing up(η), and let x = |{δ ⊂ up2(η): up(δ) = up3(η) & δ is λ2(η)-free}|; then Mη is

the sentence 

∃y≤s∃z≤s(y ≥ u & z ≥ u & Φe,s(A0
s ;y,x)↓ ≠ Φe,s(A1

s ;z,x)↓).

Revisions to the Construction of Section 3

Case 5:  η has type (1,0) and is derived from a module of dimension 3.  No action

is taken.
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Case 6:  η has type (1,1) and dimension 3. Let σ = up3(η).  If Mη is true, then no

action is taken.  Suppose that Mη is false.  Fix the argument x which is assigned to up2(η).

Search for the longest σ ⊂ up(η), if any, such that if µ  is the initial derivative of σ

along Λ0, then:

(5.1) up3(σ) = σ, the argument x is assigned to up(σ), σ has type (1,1) and has infinite 

outcome along up(η), Φe,wt(η)(A0
wt(η)

;u,x) ≠ Φe,wt(µ)(A0
wt(µ)

;v,x), where u and v are

the parameters assigned to η  and σ respectively; and

(5.2) Either σ is λ(η)-free, or there is a λ(η)-link [ν,π] which restrains σ  and such that σ

is π-free and π  is λ(η)-free.

(It will suffice, in (5.1), to look at computations from A0 alone, as these will previously

have been found equal to the corresponding computations from A1, and neither will have

been destroyed.  Furthermore, if there is an inequality in the limit, then we will be able to

find one for u and v as in (5.1), and as both the A0 and A1 computations will agree, we

will be able to preserve an inequality through a one-step backtracking process in which at

most one of A0 or A1 receives a new element.)  If no σ satisfying (5.1) exists, let σ =

up(η).  Let m = Φe,wt(µ)(A0
wt(µ)

;v,x).  (At µ, we have begun to define Ξσ on argument x,

and this definition corresponds to some node σ2 which may lie on the true path of T2.  We

will continue to define axioms for argument x in such a way to ensure that the desired limit

will exist.  If there are conflicting axioms, then we will return σ2 = up(σ) to the true path,

and take advantage of the conflicting axioms to find a finite outcome for a new derivative of

σ2.)  Define Ξσ,s(Ø;z,x) = m with use 1 for all z ≤ u such that Ξσ,t(Ø;z,x)↑ for all t < s.

(This definition will ensure the existence of limit = m, unless we are able to force a

disagreement below.  If infinitely many disagreements are forced, then limits need not

exist.)  

This case is now complete unless σ ≠ up(η); so suppose that this condition holds,

and fix the longest π satisfying (5.2) if it exists.  If no such π exists, set η = η .  Suppose

that π exists.  If [ν,π] is a primary λ(η)-link, let η be a nonswitching extension of η such

that up(η) = π, and let η be the node such that η- = η and η switches π.  Otherwise (i.e., if

the link is not primary), let η be a nonswitching extension of η such that up2(η) = up(π),

and let η be the node such that η- = η and η switches up(π).  (Note that the process of

finding η requires successively taking nonswitching extensions until we have a derivative
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of up(π) (up2(π), resp.).)  

Let ξ be a nonswitching extension of η such that up(ξ) = σ (as σ is π-free, it will

follow from [LL2: Lemmas 3.5 and 4.5] that such a ξ will exist), and let ξ be the node

such that ξ- = ξ and ξ has infinite outcome along ξ. We specify that ξ ⊂ Λ0.  The process

of determining ξ is called backtracking.  Action taken to place elements in sets for all

nodes δ of type 0 between η and ξ is carried out as in the previous cases, according to the

outcome specified by ξ for δ rather than according to the truth of the sentence Mδ.  ■

Requirements introduced in previous sections will be satisfied.  The proofs are

virtually the same as those given earlier.  We need to show, however, that the backtracking

process never determines the outcome of the principal derivative of a node all of whose

antiderivatives lie along the true path, and if such a node has infinitely many free

derivatives along the true path, then the backtracking process never determines outcomes

for any of these nodes.  

Lemma 5.1:  Fix µ ⊂ Λ0 such that upj(µ) is Λi-free for all i ≤ 3.  Then the outcome of µ

is determined by the validity of Mµ.

Proof:  Suppose that the outcome for µ is determined by backtracking η to ξ, i.e.,

η ⊆ µ ⊂ ξ.  Let σ = up3(η).  (We will show that there is a ν ⊆ η such that [ν,ξ-] is a

primary ξ-link, so all nodes µ of T0 whose outcomes are determined in the process of

backtracking from η to ξ- are restrained by a Λ0-link ending at ξ-, hence are not free.  Thus

we will only need to verify the Lemma for µ = ξ-.)  If η ⊂ δ ⊆ η, then δ does not switch a

node of T1.  Hence as an initial derivative of λ(η) cannot place any elements into A0 or A1,

no elements enter A0 or A1 for such δ.  The construction can place an element into at most

one of A0 or A1 at η.  If η ⊂ δ ⊆  ξ, then δ does not switch a node of T1.  Hence as an

initial derivative of λ(η) cannot place any elements into A0 or A1, no elements enter A0 or

A1 for such δ.  Now a minimal pair requirement is assigned to ξ, so no element enters A0

or A1 at ξ.  Thus the backtracking process from η to ξ allows elements ≤ wt(η) to enter

only one of A0 or A1.  Also, if σ1 = up(ξ) works for u = wt(up(ξ)) and x, then a minimal

pair requirement is assigned to σ1.  Hence no element enters A0 or A1 at any derivative of

σ1.  As σ1 ⊂ λ(η), it follows from (2.6) that all elements entering A0 or A1 at any node

between the initial derivative  ν of σ1 along Λ0 and η are of the form wt(β ) for some β ⊃
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σ1.  Hence as was the case for η , the computations seen at ν cannot be injured.  Let s =

wt(η), t = wt(ν), r = wt(ξ), and let y be the weight of the node determining the subblock

containing up(η).  Then either 

Φe,r(A0
r ;u,x) = Φe,t(A0

t ;u,x) ≠ Φe,s(A1
s ;y,x) = Φe,r(A1

r ;y,x) 

or 

Φe,r(A1
r ;u,x) = Φe,t(A1

t ;u,x) ≠ Φe,s(A0
s ;y,x) = Φe,r(A0

r ;y,x).  

As σ1 ⊂ up(η) and u is the weight of the subblock containing σ1, y ≥ u by (2.1).  Hence as

ξ- has infinite outcome along ξ, ξ specifies an outcome for ξ- in accordance with the

validity of its associated sentence.  Let ν  be the initial derivative of ξ-  along Λ0.  By

Lemma 2.1(iii), ν ⊆ η.  Thus [ν,ξ- ] is a Λ0-link which restrains all δ such that η ⊆ δ ⊂ ξ-,

and the lemma follows in this case.  ■

We now show that, whenever we have nodes wanting to define conflicting axioms

for x, then σ as in (5.1) will exist .

Lemma 5.2:  Fix x, η ∈ T0, and σ ∈ T1 such that (5.1) holds.  Assume that for all σ ⊂

up(η) such that up3(σ) = up3(σ) = σ and x is assigned to up(σ), if µ and ν are the principal

derivatives of σ and σ, respectively, along η, and u and v are the parameters assigned to σ

and σ, respectively, then Φe,wt(µ)(A0
wt(µ)

;u,x) = Φe,wt(ν)(A0
wt(ν)

;v,x).  Then there is a σ ⊂

up(η) such that (5.1) and (5.2) both hold for σ in place of σ.  Furthermore, if ξ is chosen

as in Case 6 for σ, then either up(η) ⊆/  λ(ξ) or up(η) has finite outcome along λ(ξ).

Proof:  There are several cases to consider.  Let η1 = up(η) and η2 = up2(η).

Case 1:  η1 is not the initial derivative of η2 along λ(η).  By Lemma 2.2(i), the

principal derivative σ of η2 along λ(η) is λ(η)-free.  By Lemma 2.1(i), σ  ⊂ λ(η).  Hence

by hypothesis, σ satisfies (5.1) and (5.2).

Case 2:  η1 is the initial derivative of η2 along λ(η).  Let η0 be the initial

derivative of η1 along η.  We first show that η = η0.  For suppose otherwise.  Fix the
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longest σ ⊂ up(η) which satisfies (5.1) and is the principal derivative of up(σ) along λ(η).

Let s = wt(η0), t = wt(η), and let u be the weight of the node α determining the subblock in

which η1 lies.  By the construction, x ≤ lh(α) ≤ wt(α) = u.  Furthermore, whenever a node

of type (1,1) on T2 is α-consistent, the corresponding node of T2 of type (1,0) and in the

same module must also be α-consistent.  Hence by Substep 4.2.1, Φe,s(A0
s ;x,u)↓ =

Φe,s(A1
s ;x,u)↓.  As η1 ⊂ λ(η) and as no elements enter sets at a node dealing with a

requirement of type 1, any element entering A0 or A1 at any δ such that η0 ⊆ δ ⊆ η is of

the form wt(κ) for some κ ⊃ η1.  By (2.1), (2.2) and Lemma 2.1, for any such κ, wt(κ) >

u.  Hence Φe,t(A0
t ;x,u)↓ = Φe,t(A1

t ;x,u)↓ = Φe,s(A1
s ;x,u)↓.  But then by hypothesis (setting

η1 = σ), it must be the case that η = η0.  

As η1 is the initial derivative of η2 along λ(η) and σ2  has a derivative σ ⊂ η1, it

follows from (2.4) that up(σ) ⊇/  η2.  Also, by Lemma 2.1(i), η2 = λ2(η).  We consider the

remaining possibilities for the relative location of σ2 and η2 on T2.

Case 2.1:  σ2 ⊂ η2.  σ2 cannot be η2-free, else x would not be assigned to both

σ2 and η2.  As all links on T2 are primary, σ2 must be restrained by a primary η2-link.  Let

σ = up(σ2), and note that σ = up(η2).  It now follows from (2.6) and (2.10) that σ is τ2-

consistent for all τ2 such that σ2 ⊆ τ2 ⊆ η2.  Hence by Substep 4.2.3, if [µ2,π2] and

[µ2,π2] are two primary η2-links restraining σ2 and π2 ⊂ π2, then there is a σ2 such that

up(σ2) = σ, x is assigned to σ2, and π2 ⊂ σ2 ⊂ π2.  By Lemma 2.1(iii), σ2 will have a

principal derivative σ1 such that σ ⊂  σ1 ⊂ λ(η).  By hypothesis, we would choose σ1 in

place of σ in Case 2, yielding a contradiction.  

We thus see that there is a unique π2 for which an η2-link [µ2,π2] restrains σ2.

Hence σ2 must be π2-free.  As [µ2,π2] is an η2-link, π2 is not the initial derivative of

up(π2) along λ(π2).  By [LL2: Lemma 4.1], links are nested, so π2 is λ(η)-free.  Hence if

we take a nonswitching extension of η until we reach the initial derivative π0 of a new

derivative π1 of π2 on T0, and then give π0 finite outcome at η, it will follow from (2.4)

that λ3(η) = λ(π2).  (For (λ(η))- = π1, π1 has finite outcome along λ(η), and π1 is not the

initial derivative of π2  along λ(η).)  Now by Lemma 2.2(i), that σ will satisfy both (5.1)

and (5.2).

Case 2.2:  σ2 | η2.  Let ρ2 = σ2∧η2.  Fix α,β such that ρ2^〈α〉 ⊆ σ2 and ρ2^〈β〉

⊆ η2, and note that α ≠ β.  We compare the locations of ρ3 = up(ρ2) and σ = up(σ2) =

up(η2) on T3.  (We will obtain a contradiction except in Case 2.2.5 where σ has infinite

outcome along ρ3.)
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Case 2.2.1:  ρ3 ⊂ σ.  Suppose that ρ3^〈γ〉 ⊆ σ.  Then out(ρ3^〈γ〉) = γ is

contained in every derivative of σ on T2, and γ - is the principal derivative of ρ3 along every

derivative of σ on T2.  Hence ρ2 = γ - and α = β = γ, a contradiction.

Case 2.2.2:  ρ3 | σ.  Let δ3 = ρ3∧σ .  Fix α ≠ β such that δ3^〈β〉 ⊆ ρ3 and

δ3^〈α〉 ⊆ σ.  Then β
-
 is the principal derivative of δ3 along ρ2, but as ρ2 ⊂ σ2 , β

-
 is not

the principal derivative of δ3 along σ ⊃ δ3.  By (2.4), β
-
 must have finite outcome along

ρ2.  Again by (2.4), α -
 is the principal derivative of δ3 along both σ2 and η2, α -

 has

infinite outcome along α ⊆  σ2,η2.  Hence α ⊆ ρ2.  But then by (2.4), α -
 would be the

principal derivative of δ3 along ρ2, a contradiction.

Case 2.2.3:  ρ3 = σ.  As α ≠ β, ρ2 must have infinite outcome along either σ2 or

η2, and up(σ2) = up(η2) = up(ρ2) = σ, contradicting (2.8).

Case 2.2.4:  σ ^ 〈α〉 ⊆ ρ3 and α -
 has infinite outcome along α.  By Lemma

2.1(iii) and (2.8), no derivative of σ can extend any derivative of ρ3, contradicting the

assumption that σ2 ⊃ ρ2.

Case 2.2.5:  σ^〈α〉 ⊆ ρ3 and α -
 has finite outcome along α.  We first show that

ρ2 is λ2(η)-free, by contradiction.  For assume not, and let [µ2,π2] be a λ2(η)-link

restraining ρ2.  By (2.4), the conditions of Case 2.2, and as σ ⊂ η1, ρ2 must have finite

outcome γ along π2 ⊂ λ2(η), and σ ⊂ γ.  By the existence of σ, (2.1) and (2.2), it follows

that x ≤ lh(σ) ≤ wt(σ) ≤ wt(γ) ≤ wt(ρ2^〈γ〉).  As σ ⊂ ρ3,  σ  is ρ3-free, so as, by the

conditions of Case 2, η2 is a derivative of σ which extends π2, σ must be κ 2-consistent for

all κ2 such that π2 ⊆ κ 2 ⊆ η2.  Thus it follows from Subcase 4.2.2 that there is a

derivative σ2 of σ such that ρ2 ⊂ σ2 ⊂ π2.  As σ2 is not λ2(η)-free, σ2 ≠ η2.  Since σ is

not λ(η)-free, it follows from Lemma 2.1(ii) and (2.4) that the principal derivative of σ2

along λ(η) must extend σ, contrary to the maximality of lh(σ).

As σ
2
 ⊆/  λ2(η), σ must be restrained by a primary η1-link [µ1,π1], with up(µ1) =

up(π1) = ρ2, and by [LL2: Lemma 4.3] (the lemma states that if a node π1 is not restrained

by a λ(η)-link, then π1 is λ(η)-free) and the preceding paragraph, π1 is λ(η)-free.  Now

up3(π1) = ρ3 ⊃ σ, so by (2.10), σ  must be λ3(π1)-free.  As σ ⊂ π1, it follows by a weight

argument as in the preceding paragraph and by Subcase 4.2.2 that there is a derivative σ2
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of σ along λ(π1) which is λ(π1)-free.  Hence if we choose η in Step 6 for π1, then η

provides a finite outcome for π1.  As up(µ1) = up(π1), π1 is not an initial derivative of

up(π1), so by (2.4), λ2(η) = λ(π1).  By Lemma 2.2, the principal derivative σ1  of σ2

along η is η-free and π1 is λ(η)-free, so σ1 will satisfy (5.1) and (5.2).

We now note that at ξ, we switch the outcome of σ from infinite to finite.  By the

above cases, σ ⊆ up(η).  Hence the lemma follows.  ■

We now show that Re
1,3 is satisfied.

Lemma 5.3:  Fix e.  Suppose that limuΦe(A0;u,x)↓ = limuΦe(A1;u,x)↓ for all x, and that

Φe(A0) and Φe(A1) are total.  Then there is a recursive function Ξτ such that for all x,

limvΞτ(Ø;v,x)↓ = limuΦe(A0;u,x).

Proof:  By Lemma 2.3, there is a node σ ⊂ Λ3 such that Re
1,3 is assigned to σ of

type (1,0).  First assume that σ has infinite outcome along Λ3.  By (2.4) and Lemma 2.2, σ

has a free principal derivative σ2 which has finite outcome along Λ2.  By (2.4) and Lemma

2.2, σ2 has a free principal derivative σ1 which has infinite outcome along Λ1.  By Lemma

5.1, (2.4) and Lemma 2.2, σ1 has infinitely many free derivatives along Λ0 whose

outcomes are not determined by the backtracking process.  Thus for infinitely many s, there

are x,u ≤ wt(σ1) such that either Φe,s(A0
s ;u,x)↑ or Φe,s(A1

s ;u,x)↑.  Hence either Φe(A0) is

not total, or Φe(A1) is not total.  Thus Re
1,3 is satisfied in this case.

Next suppose that σ has finite outcome along Λ3.  Then by Lemma 2.3, there is a

node τ ⊂ Λ3 such that τ- = σ, τ has type (1,1) and Re
1,3 is assigned to τ.  First assume that

τ has finite outcome along Λ3.  By (2.4) and Lemma 2.2, τ has a free principal derivative

τ2 which has infinite outcome along Λ2.  By (2.4) and Lemma 2.2, τ2 has infinitely many

free derivatives τ1 along Λ1, all of which have finite outcome along Λ1.  By (2.4), Lemma

2.2, and Lemma 5.1, infinitely many such τ1 have free principal derivatives whose infinite

outcome along Λ0 is determined by the truth of the sentence assigned to this principal

derivative.  Fix such a τ1, and its principal derivative τ0 along Λ0.  Let s = wt(τ0), and let

τ1 work for x and u.  Then there are y and z such that u ≤ y,z ≤ s and Φe,s(A0
s ;y,x)↓ ≠

Φe,s(A1
s ;z,x)↓.  Hence both computations have use ≤ s.  As τ1 ⊆ λ(τ0) and τ1 ⊂ Λ1, it

follows from (2.6) and the construction that all elements placed in A0 or A1 for ν ⊂ Λ0

such that ν ⊇ τ0 are of the form wt(ρ) for some ρ ⊃ τ1.  By (2.1), (2.2) and Lemma 2.1,

for all such ρ, wt(ρ) > wt(τ0) = s.  Thus Ai|s+1 = Ai
s|s+1 for all i ≤ 1, so 
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Φe(A0;y,x) = Φe,s(A0
s ;y,x) ≠ Φe,s(A1

s ;z,x) = Φe(A1;z,x).  

As there are infinitely many τ1 each giving rise to a different τ0 which works on a different

u, it follows that if limvΦe(Ai;v,x)↓ for all i ≤ 1, then limvΦe(A0;v,x) ≠ limvΦe(A1;v,x), so

Re
1,3 is satisfied in this case.

Finally, suppose that τ has infinite outcome along Λ3.  By (2.4) and Lemma 2.2, τ

has infinitely many free derivatives along Λ2, all having finite outcome along Λ2, and each

associated with a different x.  Furthermore, each x is associated with one of these free

derivatives.  Fix x and the free derivative τ2 of τ along Λ2 which is associated with x.

Now by (2.4) and Lemma 2.2, τ2 has a free principal derivative which has infinite outcome

along Λ1.  Furthermore, by Lemma 5.2, all nodes ν1 ⊂ τ1 which are working for Φe on

argument x and are principal derivatives must specify the same value for the axioms they

wish to declare.  Thus by the construction limuΞτ(Ø;u,x)↓, and the value of the limit is that

which τ1 wishes to specify.  Furthermore, Ξτ is a total recursive function.  Now by (2.4),

Lemma 2.2, and Lemma 5.1, τ1 has infinitely many free derivatives along Λ0 whose

outcomes are determined by the truth of their respective sentences.  By Substep 4.2 of the

construction, there must be a free node σ1 ⊂ τ1  such that up3(σ1) = σ, and up(σ1) is

associated with x.  By an argument on uses similar to the one in Lemma 5.1, if u is the

weight of the node determining the subblock containing τ1, then any computation

Φe,s(A0
s ;u,x)↓ or Φe,s(A1

s ;u,x)↓ which is discovered for a node κ1 on T1 cannot be

destroyed as long as κ1 still lies on the path of T1 being computed, as the elements entering

A0 or A1 after the initial derivative of κ1 are of the form wt(δ) for some δ ⊃ κ1, and for

such δ , wt(δ) is larger than the use of the computation.  Now by the choice of outcome for

τ, Φe,s(A0
s ;u,x) = Φe,s(A1

s ;u,x).  By Lemma 5.2, each sentence associated with a free

derivative of τ1 must specify the same value for Φe,s(A0
s ;u,x) = Φe,s(A1

s ;u,x).  Hence if

limvΦe(A0;v,x) = limvΦe(A1;z,x), then limvΦe(A0;v,x) = limuΞτ(Ø;u,x), and  Re
1,3 is

satisfied  ■

As all requirements are satisfied, we have succeeded in proving:

Theorem 5.4:  There are r.e. degrees a and b such that a'|b', a∧b = 0, and a'∧b' =

0'.  ■

There are many other types of requirements which can be added to get stronger

results.  For example, the highness requirements of [LL2] can be used to obtain Cooper's
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result [C] that there is a high minimal pair.  The requirements to make sets high2 of [LL2]

can be introduced to make a and b in Theorem 5.3 high2, and so to make a' and b' high

over 0'.  The satisfaction of requirements requires a more careful development of

backtracking as in [LL2: Section 5], or an analysis as in [LL1], if one follows the basic

modules of [LL2].  It would also seem that one should be able to use the general

framework of [LL2] to show that there are r.e. degrees a and b which are intermediate in

the high/low hierarchy such that for all n, a(n) and b(n) form a minimal pair over 0(n).

Other results on minimal pairs, such as Cooper's result [C] that every high degree

bounds a minimal pair (of high degrees) (see also Shore and Slaman [SS]) can be proved in

this framework, but require more machinery to be introduced.  One needs to replace the use

of the recursion theorem in [SS], or the existence of a function in the high degree which

dominates every recursive function [C], by the Ambos-Spies method [A] which replaces

the recursion theorem.  The backtracking process for this theorem is much more complex

than the one presented here, and needs to be carried out over many, not necessarily

consecutive, stages.  Rather than presenting a proof here, we plan to present, in another

paper, a metatheorem on the framework which will allow us to more easily derive this

result.  One might expect the following results.  For all n, and every highn degree h, there

are highn r.e. degrees a,b ≤ h such that for all j < n, a(j)∧b(j) = 0(j); and for every

intermediate degree d, there are intermediate degrees a,b ≤ d such that for all j, a(j)∧b(j)

= 0(j).
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