
Computable Categoricity of Trees of Finite Height

Steffen Lempp

Department of Mathematics
University of Wisconsin-Madison

Charles McCoy
Department of Mathematics

University of Wisconsin-Madison

Russell Miller
Department of Mathematics

Queens College – C.U.N.Y.

Reed Solomon

Department of Mathematics
University of Connecticut∗

August 3, 2004

Abstract

We characterize the structure of computably categorical trees of finite height, and
prove that our criterion is both necessary and sufficient. Intuitively, the characterization
is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it
is equivalent to a Σ0

3-condition. We show that all trees which are not computably
categorical have computable dimension ω. Finally, we prove that for every n ≥ 1 in
ω, there exists a computable tree of finite height which is ∆0

n+1-categorical but not
∆0

n-categorical.

∗The first author was partially supported by NSF grant DMS-9732526 and by the Vilas Foundation of the
University of Wisconsin. The second author was partially supported by a VIGRE grant to the University of
Wisconsin. The third author was partially supported by a VIGRE postdoc under NSF grant number 9983660
to Cornell University. The fourth author was partially supported by an NSF postdoctoral fellowship.

1

1 Introduction

Computability theorists have developed powerful techniques for studying computational prop-
erties of the natural numbers. Many of these techniques can be applied to more general alge-
braic structures once they are suitably coded into the natural numbers. In this article, we use
tools from computability theory to study computational problems for trees of finite height.

We begin with some general definitions and background in computable model theory. Let
A be a countable structure over a fixed computable language whose domain |A| is a subset of
ω. The degree of A is the Turing degree of the atomic diagram of (A, a)a∈|A|. In particular, if
the language is finite, then A is computable if |A| is a computable set and the interpretations
of the function and relation symbols are all computable. Throughout this paper, we assume
that all structures are coded into the natural numbers.

In computable model theory, one frequently works in a given class of countable algebraic
structures such as abelian groups, partial orders, fields, or as in this paper, finite height
trees. Any computable structure from one of these classes is isomorphic to infinitely many
other computable structures. It may happen, however, that two computable structures are
isomorphic, yet that the only isomorphisms between them are noncomputable (as maps from
one domain to the other). If so, then these structures lie in distinct computable isomorphism
classes of the isomorphism type of the structure. On the other hand, if there exists a com-
putable function taking one structure isomorphically to the other, then the two structures lie
in the same computable isomorphism class.

The computable dimension of a computable structure is the number of computable iso-
morphism classes of that structure. The most common computable dimensions are 1 and ω,
and many classes of algebraic structures are known to admit only these computable dimen-
sions. The following theorem is a compilation of results due to Goncharov ([12]); Goncharov,
Dzgoev ([13]); Goncharov, Lempp, Solomon ([14]); LaRoche ([22]); Metakides, Nerode ([23]);
Nurtazin ([28]); and Remmel ([29], [30]).

Theorem 1.1 Computable structures in the following classes have computable dimension 1 or
ω: algebraically closed fields, real closed fields, abelian groups, linear orders, Boolean algebras,
and ordered abelian groups.

On the other hand, Goncharov ([11]) proved that for each 0 < n ≤ ω, there exist structures
with computable dimension n. Since then, many classes of structures have been discovered
which admit computable dimension n for each 0 < n ≤ ω. The following examples come from
Goncharov ([11]); Goncharov, Molokov, Romanovskii ([15]); Hirschfeldt, Khoussainov, Shore,
Slinko ([16]); and Kudinov ([21]).

Theorem 1.2 For each 0 < n ≤ ω, there are computable structures in the following classes
with computable dimension n: graphs, lattices, partial orders, nilpotent groups, and integral
domains.

2

There are many other natural computational questions that one can ask about the mem-
bers of these algebraic classes. For example, is it possible for the computable dimension of
A to change when a single constant is named? What are the possible degree spectra for a
structure or for a relation on a structure within each class? The degree spectrum of A is
the set of Turing degrees d for which there is an isomorphic copy of A of degree d. The
degree spectrum of a relation U on A is the set of degrees d such that there is an isomorphic
computable copy of A for which the image of U in this copy has degree d.

Hirschfeldt, Khoussainov, Shore and Slinko ([16]) gave highly effective coding methods
which show that for the classes of structures from Theorem 1.2, any answer to the above
questions which can occur in a countable model, can actually occur within these classes.
More specifically, they show that for each of these classes and for each nontrivial countable
structure M, there is a structure A from that class such that

1. the degree spectrum of M is equal to the degree spectrum of A,

2. the computable dimension of M is the same as the computable dimension of A,

3. for each x ∈ |M|, there is an a ∈ |A| such that (M, x) has the same computable
dimension as (A, a),

4. for each S ⊂ |M|, there is a U ⊂ |A| such that the degree spectrum of the relation S
with respect to M is the same as the degree spectrum of U with respect to A.

These results suggest that the algebraic structure on the members of these classes interacts in
a trivial way with the computational structure in the sense that any “pathological” computa-
tional behavior which can occur in a countable model can actually occur within these classes
of structures. For example, Slaman ([32]) and Wehner ([34]) independently proved that there
is a computable model M whose degree spectrum contains all degrees except 0. Therefore,
by the result above, there are graphs, lattices, and so on with this property.

Because Property (2) above fails for the classes in Theorem 1.1, the interaction between
the algebraic structure on the members of these classes and their computational structure
is nontrivial in the sense that the algebraic structure necessarily limits the types of compu-
tational behavior that can occur. It is therefore interesting to ask about how the algebraic
structure and the computational properties interact. For example, Downey and Jockusch ([7])
showed that every low Boolean algebra has a computable copy. Therefore, it is not possible
for a Boolean algebra to have a degree spectrum consisting of all degrees except 0. On the
other hand, by Miller ([25]), there is a linear order which has copies in every ∆0

2 degree except
0. The question of whether a linear order can have a spectrum consisting of all degrees except
0 remains open. The reader is referred to [16] for a more detailed survey of similar results.

We would hope for a fine line separating the classes of structures which behave as in
Theorem 1.1 and those which behave as in Theorem 1.2. In the class of groups, the fact
that abelian groups fall in Theorem 1.1 and nilpotent groups fall in Theorem 1.2 gives a
reasonably sharp distinction. To sharpen the difference further, we could weaken nilpotent

3

groups to torsion free nilpotent groups (that is, nilpotent groups in which no element except
the identity has finite order) and we could add structure to the abelian groups by making
them ordered. In both cases, the classes retain their previous possible computable dimensions.

For ring structures and ordered structures, the story is quite different. There is a large gap
between algebraically or real closed fields (Theorem 1.1) and integral domains (Theorem 1.2).
The obvious open question is what are the possible computable dimensions for computable
fields. For ordered structures, there is a gap between linear orderings and Boolean algebras
(Theorem 1.1) and lattices and partial orderings (Theorem 1.2). Trees are one obvious class
of structures which falls within this gap and therefore they are of particular interest. It is
not immediately apparent whether one would expect trees to admit only limited coding, like
linear orders, or to admit very general coding, like partial orders, with respect to computable
dimension and the other properties mentioned above. Our main result says that with respect
to computable dimension, they have limited behavior in that they must have computable
dimension 1 or ω. It would therefore be interesting to explore the answers to the other
computational questions for trees.

In addition to proving that finite height trees must have dimension 1 or ω, we give an
algebraic characterization for when they have computable dimension 1. If the computable
dimension of A is 1, we say that A is computably categorical. This notion is somewhat
analogous to the concept of categoricity in ordinary model theory: a theory is categorical
in a given power κ if all models of the theory of power κ are isomorphic. Computable
categoricity, however, is a property of structures, not of theories: a computable structure A
is computably categorical if every other computable structure which is isomorphic to A is
computably isomorphic to A.

A standard example of a categorical theory is the theory of dense linear orders without
end points, which is categorical in power ω. One proves this by taking two arbitrary countable
dense linear orders and building an isomorphism between them by a back-and-forth construc-
tion. The same construction allows us to prove that the structure Q is computably categorical.
(More formally, let (ω,≺) be a computable linear order isomorphic to (Q, <). Then (ω,≺) is
computably categorical.)

Characterizations of computable categoricity have been found for several types of struc-
tures. The following examples comes from Goncharov, Dzgoev ([13]); Goncharov, Lempp,
Solomon ([14]); and Remmel ([29], [30]).

Theorem 1.3 The following equivalences for computable categoricity hold.

1. A computable linear order is computably categorical if and only if it has a finite number
of pairs of adjacent elements.

2. A computable Boolean algebra is computably categorical if and only if it has a finite
number of atoms.

3. A computable ordered abelian group is computably categorical if and only if it has finite
rank.

4

There are a number of natural generalizations for computable categoricity, two of which
are important for this article. A computable structure A is relatively computably categorical
if for every isomorphic (not necessarily computable) copy B, there is an isomorphism between
A and B which is computable from the degree of B. It follows directly from this definition
that any structure which is relatively computably categorical is also computably categorical.
For linear orders and Boolean algebras, the notions of computable categoricity and relative
computable categoricity coincide. However, this is not always the case. In general, computable
categoricity does not imply relative computable categoricity without addition assumptions on
the structures involved.

Theorem 1.4 (Kudinov ([20])) There is a computable A for which the Π0
1 diagram is de-

cidable and which is computably categorical but not relatively so.

By the following result of Goncharov, Kudinov’s example is the best possible in terms of
decidable fragments.

Theorem 1.5 (Goncharov ([8])) Let A be a computable structure for which the Π0
2 diagram

is decidable. Then, A is relatively computably categorical if and only if it is computably
categorical.

In the present paper we consider computable trees of finite height, and develop a struc-
tural criterion for such trees which is equivalent to both computable categoricity and relative
computable categoricity. There are a number of definitions for trees, but for our purposes, a
tree consists of a universe T with a strict partial order ≺ on T such that for every x ∈ T ,
≺ well-orders the set of ≺-predecessors of x in T , and such that T contains a least element
under ≺ called the root. We view our trees as growing upward with the root r at the base.
A tree is computable if T is a computable set and ≺ is a computable relation. Without loss
of generality, we can restrict ourselves to trees whose domain is an initial segment of ω. An
index for T is then an index for the characteristic function of ≺.

Because we are only concerned with trees of finite height, we can define the level of a node
x ∈ T by

levelT (x) = |{y ∈ T : y ≺ x}|.

A more formal definition sets the level of the root to be 0 and inductively defines levelT (x) =
sup{levelT (y) + 1 : y ≺ x}, thereby also covering the case of an element with infinitely many
predecessors. The level of a node is not generally computable, but it can be approximated
from below by the computable function f(x, s) = |{y < s : y ≺ x}| which is increasing in the
variable s and which has the property that for all x ∈ T , levelT (x) = lims f(x, s). The height
of T is defined by

ht(T) = sup
x∈T

(levelT (x) + 1).

A path γ through T is a maximal linearly ordered subset of T . Thus, for a finite height tree,
the height of T is the greatest n such that T contains a path with n elements. In a tree of

5

finite height n, we say that a node is established if it lies on a path of length n, and (for
computable trees) established at stage s if it lies on a path of length n which is contained in
the approximation Ts at stage s. (If a node is established at stage s, then at that stage we
know what its level in T must be, since no more predecessors of the node can appear at later
stages.)

We define our structural criterion for computable categoricity by induction on the height
of the tree.

Definition 1.6 Let (T,≺) be a tree of finite height, and x a node of T , with immediate
successors {xi : i ∈ I}. Let T [xi] = {y ∈ T : xi � y}. We say that x is of strongly finite type
if it satisfies the following conditions:

i. There are only finitely many isomorphism types in the set {T [xi] : i ∈ I}, each of which
is of strongly finite type; and

ii. For each j and k in I, if T [xj] embeds into T [xk], then either T [xj] and T [xk] are
isomorphic, or the isomorphism type of T [xk] appears only finitely often in {T [xi] : i ∈
I}.

T itself is of strongly finite type if every node in T is of strongly finite type, or equivalently,
if the root node is of strongly finite type. (By part (i), it is also equivalent to require that
every minimal ω-branch point in T be of strongly finite type.)

Notice that ht(T [xi]) < ht(T) for every i ∈ I, so that the concept is well-defined for every
tree of finite height. Also, finite trees are automatically of strongly finite type, having no
ω-branch points. We also have a weaker criterion.

Definition 1.7 Using the same notation, we say that x is of finite type if it satisfies:

i. There are only finitely many isomorphism types in the set {T [xi] : i ∈ I}, each of which
is of finite type; and

ii. Every isomorphism type which appears infinitely often in the set {T [xi] : i ∈ I} is of
strongly finite type; and

iii. For each j and k in I, if T [xj] embeds into T [xk], then either T [xj] and T [xk] are
isomorphic, or the isomorphism type of T [xj] appears only finitely often in {T [xi] : i ∈
I}, or the isomorphism type of T [xk] appears only finitely often in {T [xi] : i ∈ I}.

T itself is of finite type if every node in T is of finite type. Again, this is equivalent to every
minimal ω-branch point being of finite type.

We can now state our main theorem.

Theorem 1.8 For a computable tree (T,≺) of finite height, the following are equivalent:

6

1. T is of finite type;

2. T is computably categorical;

3. T has finite computable dimension;

4. T is relatively computably categorical.

The proof of Theorem 1.8 is contained in Sections 2, 3 and 4. In Section 2, we show
that finite type implies relative computable categoricity, which in turn implies computable
categoricity. In Sections 3 and 4, we show that any tree which is not of finite type cannot be
computably categorical, which in turn implies that it is not relatively computably categorical.
The proof proceeds by induction, with Section 3 containing the base case and Section 4
containing the inductive argument. This establishes the equivalence of conditions 1, 2 and 4.
We also show, in Section 4, that if a computable tree does not have finite type, then it must
have infinite computable dimension. This establishes the equivalence of condition 3 with the
other conditions.

To our knowledge, this is the first example of a structural criterion for computable cat-
egoricity which needs to be defined by recursion. Notice, however, that this criterion only
applies to trees of finite height. The following result handles the case of infinite height trees.

Theorem 1.9 (Miller ([24])) The computable dimension of every computable tree of infi-
nite height is ω (regardless of whether or not the tree has ω-branch points).

Together, Theorems 1.8 and 1.9 show that trees, like linear orders, cannot exhibit the
behavior of the structures listed in Theorem 1.2. Chisholm ([4]) has some related unpublished
work for intrinsically 1-computable trees. A computable tree T is 1-computable if its Σ0

1

diagram is computable and T is intrinsically 1-computable if every computable copy of T
is 1-computable. Chisholm proved that every intrinsically 1-computable tree is computably
categorical. Notice, however, that intrinsic 1-computability is a strong assumption for trees,
as Chisholm also showed that every intrinsically 1-computable tree is intrinsically decidable.
(That is, every computable copy of the tree is decidable.)

Once we know that there are computable trees of finite height with infinite computable
dimension, it is natural to ask exactly how difficult it is to compute an isomorphism between
arbitrary pairs of such trees. (For computable trees without the restriction to finite height,
the isomorphism problem is Σ1

1-complete as computable trees can be used to code arbitrary
computable ordinals.) In Section 5 we begin to answer this question for finite height trees by
showing that no degree 0(n) is capable of computing an isomorphism between every pair of
isomorphic computable trees of finite height. More specifically, a computable structure A is
called ∆0

n-categorical if for every computable B isomorphic to A, there is a ∆0
n-isomorphism

from A to B. In this notation, ∆0
1-categoricity is equivalent to computable categoricity. In

Section 5, we show the following theorem.

7

Theorem 1.10 For every n ≥ 1 there is a computable tree of finite height which is ∆0
n+1-

categorical but not ∆0
n-categorical.

Another natural question to ask is how difficult it is to express the property “T is com-
putably categorical”. On its face, our structural criterion is an analytic predicate of similar
complexity to stating the definition of computable categoricity. However, Ash, Knight, Man-
nasse and Slaman ([3]) showed that for any computable language L, a computable L-structure
is relatively computably categorical if and only if it has a formally Σ0

1 Scott family. In Section
2, we show that computable trees of finite height and finite type have formally Σ0

1 Scott fami-
lies consisting of finitary formulas. (In fact, any formally Σ0

1 Scott family can be transformed
into one consisting of finitary formulas.) It is known (see Proposition 6.10 in Ash, Knight
([2])) that the existence of such families is described by a Σ0

3 condition. Therefore, since com-
putable categoricity and relative computable categoricity coincide for trees of finite height,
there is a Σ0

3 predicate which expresses “T is computably categorical”. Theories are known
to exist in which the property of computable categoricity is strictly more complex than Σ0

3;
we refer the reader to [35] for details.

It is important to note that our definition of tree is based on a partial order ≺. In other
papers, “tree” is sometimes defined using the infimum function ∧, where the infimum x ∧ y
of x and y is the ≺-maximal z such that z � x and z � y. One can define ≺ from ∧ by
a ≺ b if and only if a ∧ b = a. Therefore, the notions of tree in terms of ∧ and ≺ are
classically bi-interpretable, and if (T,∧) is a computable tree, then so is the corresponding
(T,≺). However, the computability of ≺ need not imply computability of ∧. Therefore, by
choosing a definition based on ≺ rather than ∧, we consider a broader class of computable
trees. In Section 6, we give a brief discussion and conjecture about criteria for computable
categoricity of trees in the language of the infimum.

By a homomorphism of trees, we mean a map which respects the partial orders, but need
not preserve infima. Similarly, an embedding is a one-to-one homomorphism T →֒ T ′. We
will frequently use the equivalence relation ≡ given by

T ≡ T ′ ⇐⇒ T →֒ T ′ →֒ T.

A tree (T ′,≺′) is a subtree of (T,≺) if T ′ ⊆ T and the inclusion map respects the partial
orders. Thus the infimum of two elements in T may not be the same as their infimum in T ′.
(This broader notion of subtree is another reason for choosing a definition of tree based on ≺
rather than ∧.) Also, the root of T may be distinct from the root of T ′, as in the case of the
subtrees T [x], which we will consider frequently. If x ∈ T , then T [x] = {y ∈ T : x � y}. The
partial order on T [x] is the restriction to T [x] of the partial order ≺ on T . Therefore T [x] is
a subtree of T with root x. If x is an immediate successor of the root in T , then we refer to
T [x] as a successor tree (of the root) in T . We define the height of T above x by

htx(T) = ht(T [x]).

8

2 Relatively computably categorical trees

In [8], Goncharov gave a syntactic condition which, under some extra hypotheses, is equivalent
to computable categoricity. In [3] Ash, Knight, Mannasse, and Slaman proved that this
condition is actually equivalent, with no extra hypotheses needed, to the stronger notion of
relative computable categoricity. In fact, they proved a more general result which applies to
relative α-categoricity for any α < ωCK

1 . In order to understand these statements fully, one
would need to know about computable infinitary formulas as defined by Ash. However, all
formulas we will need in this paper are finitary. Thus we state the relevant definitions and
results correctly and completely, but we provide some clarifying remarks.

Definition 2.1 Let L be a computable language, and let A be a computable L-structure.
A formally Σ0

1 Scott family for A is a c.e. collection Θ of computable Σ1 formulas (possibly
infinitary) so that

1. there is a finite tuple ~c so that for any θ(~x) ∈ Θ, all of the parameters appearing in θ
are among ~c;

2. for each tuple ~a ∈ A of distinct elements, there is a θ(~x) ∈ Θ so that A |= θ(~a);

3. for each θ ∈ Θ, each tuple ~a ∈ A of distinct elements and each tuple ~a′ ∈ A of distinct
elements, if A |= θ(~a) ∧ θ(~a′), then (A,~a) ∼= (A,~a′).

Note that since we talk about a c.e. set of formulas, we must have some way of assigning
code numbers to the computable formulas. Note also that any finitary existential formula is
(logically equivalent to) a computable Σ0

1 formula. Again, throughout this paper, we will deal
only with finitary formulas.

Theorem 2.2 (Ash-Knight-Mannasse-Slaman [3]) Let L be a computable language, and
let A be a computable L-structure. Then A is relatively computably categorical iff A has a
formally Σ0

1 Scott family.

The forward direction of this result is difficult and requires a forcing construction. The other
direction follows from a straightforward back-and-forth argument. In this section, we use the
easy direction of Theorem 2.2 to show that a tree with finite type is relatively computably
categorical, and thus computably categorical.

Definition 2.3 Using the same notation as the introduction, we say that x has weakly finite
type if there are only finitely many isomorphism types in the set {T [xi] : i ≥ 1}, each of which
has weakly finite type. T itself has weakly finite type if every ω-branch point in T has weakly
finite type.

Definition 2.4 Let T be a tree of finite height with root node r, and let x ∈ T , x 6= r. Tx is
defined to be ({z ∈ T : z is not comparable to x} ∪ {r},≺T).

9

We need to prove a few facts about this operation.

Lemma 2.5 Let T be a tree of finite height with root node r. Let x, y ∈ T , x, y 6= r, and x, y
incomparable.

1. Tx is a tree.

2. (Tx)y = (Ty)x.

3. If T has weakly finite type, then so does Tx.

Proof. 1. The ordering relation on Tx is inherited from T , and the root node of T , by definition,
is in Tx.

2. Since each tree inherits its relation from T , we need only show that the two trees have the
same underlying set. Note that r is a member of both trees. Let z 6= r be a member of (Tx)y.
Then z is incomparable with x, since it belongs to Tx. (The operation never adds elements
to a tree, so (Tx)y ⊆ Tx.) And by definition, z is incomparable with y in T , since the relation
on Tx is inherited from T . Consequently, z ∈ (Ty)x. By symmetry, (Tx)y = (Ty)x.

3. We induct on the height of T . First note that the definition only applies to trees of height
≥ 2. If ht(T) = 2, then x is an immediate successor of r with no successors, so the claim is
obviously true.

Let ht(T) = n + 1. If x is an immediate successor of r, then Tx = T − T [x], which has
weakly finite type. If x is strictly above an immediate successor r1 of r, then we must first
understand exactly how Tx looks. Let (ri

1)i∈I be the immediate successors of r1 in the tree
(T [r1])x. (The set I might be finite or infinite.) Then the tree Tx is as follows:

1. T − T [r1] ⊆ Tx; and

2. for each i ∈ I, the tree ((T [r1])x)[r
i
1] is attached directly above r.

By induction, (T [r1])x has weakly finite type. Consequently, each ω-branch point of
(T [r1])x has only finitely many types directly above it. Therefore, there are only finitely
many isomorphism types in the set {((T [r1])x)[r

i
1] : i ∈ I}. And so, if r is an ω-branch point

in Tx, then it has weakly finite type. Moreover, since (T [r1])x has weakly finite type and T
has weakly finite type, all other ω-branch points of Tx have weakly finite type. Thus, Tx has
weakly finite type.

Based on part 2 of the preceding lemma, if x, y are incomparable nodes in T , we write Tx,y

for (Tx)y = (Ty)x. One further piece of notation we use is to denote the isomorphism type of
a tree T [x] by ot(T [x]).

Lemma 2.6 If T has weakly finite type, then the set {ot(T [x]) : x ∈ T} is finite.

10

Proof. We induct on the height of T . If ht(T) = 1, then it’s clear. Let ht(T) be n+1, let r be
its root node and its immediate successors be members of the sequence (ri)i∈I . Whether I is
finite or infinite, the set {ot(T [ri]) : i ∈ I} is finite, since T has weakly finite type. Moreover,
by the induction hypothesis, for each i ∈ I, the set {ot(T [z]) : z ≻ ri} is finite. Consequently,
{ot(T [x]) : x ∈ T} = {ot(T)} ∪ {ot(T [ri]) : i ∈ I} ∪

⋃

i∈I{ot(T [z]) : z ≻ ri} is finite. (Even if
I is infinite, there are only finitely many different sets in this union by the comments above.)

Based on Lemma 2.6, we could restate Definition 2.3 by saying the a finite height tree T
has weakly finite type if and only if it has finitely many orbits under automorphisms of T .

Lemma 2.7 If T has weakly finite type and T has root node r, then the set {ot(Tx) : x 6= r}
is finite.

Proof. We induct on the height of T . If ht(T) = 2, then there is only one element in the set
{ot(Tx) : x 6= r}.

Let ht(T) = n+ 1. Let the immediate successors of r be members of the sequence (ri)i∈I ;
and let r1, . . . , rk be the successors so that for all i ∈ I, there is 1 ≤ j ≤ k with T [ri] ∼= T [rj].
By induction, we know that for each 1 ≤ j ≤ k, there are pj ∈ N and r1

j , . . . , r
pj

j ≻ rj so that
for each x ≻ rj, there is 1 ≤ q ≤ pj with (T [rj])x

∼= (T [rj])r
q
j
. It is clear from the description of

Tx in the proof of Lemma 2.5 that the set {ot(Trj
) : 1 ≤ j ≤ k}∪

⋃

1≤j≤k{ot(Tr
q
j
) : 1 ≤ q ≤ pj}

is equal to {ot(Tx) : x 6= r}.

The proof of the next two lemmas will use induction on the degree of ω-branching, which
we define formally below. Intuitively, T has degree m ω-branching if and only if the following
two conditions hold: first, there is a chain of elements in T which contains m many elements
which are ω branching and second, for any chain of elements in T , there are at most m many
elements in the chain which are ω-branching.

Definition 2.8 Let T be a finite height tree.

1. T has degree 0 ω-branching iff it is finite;

2. T has degree n+ 1 ω-branching iff

a. T does not have degree n ω-branching; and

b. if x is a minimal ω-branch point of T with immediate successors ri, i ≥ 1, then for
each i ≥ 1, there is m ≤ n so that T [ri] has degree m ω-branching.

Lemma 2.9 If T1 and T2 have weakly finite type and T1 6 →֒ T2, then there is a finite subtree
T ′

1 ⊆ T1 such that T ′
1 6 →֒ T2.

11

Proof. We induct on the height of tree T1. If ht(T1) = 1, then T1 →֒ T2.
Let T1 have height n + 1. We induct on the degree of ω-branching in T1. First, if the

degree is 0, then T1 is finite, so T ′
1 = T1.

Let T1 have degree m+ 1 ω-branching. We induct on the height of T2. If ht(T2) = 1, then
T1 is infinite, but T2 is finite, so the desired conclusion is clear.

Let T2 have height p + 1. We induct on the degree of ω-branching in T2. If the degree is
0, then then T1 is infinite, but T2 is finite.

Let T2 have degree q + 1 ω-branching.

Case 1: The root node r of T1 is finite branching with immediate successors r1, . . . , rk. By
induction on the height of T1, for each i ∈ {1, . . . , k} and each s ∈ T2, if T1[ri] 6 →֒ T2[s], then
there is a finite subtree (T1[ri])

s ⊆ T1[ri] so that (T1[ri])
s 6 →֒ T2[s]. Consequently, by Lemma

2.6, for each i ∈ {1, . . . , k}, there is a single finite T1[ri]
′ ⊆ T1[ri] so that for all s ∈ T2, if

T1[ri] 6 →֒ T2[s], then T1[ri]
′ 6 →֒ T2[s]. (We may assume that ri ∈ T1[ri]

′ for each i ∈ {1, . . . , k}.)
Define T ′

1 ⊆ T1 as follows:

1. r ∈ T ′
1;

2. T1[ri]
′ ⊆ T ′

1 for each i ∈ {1, . . . , k}.

We claim that T ′
1 6 →֒ T2. Assume otherwise that f : T ′

1 →֒ T2. Then f maps r, r1, . . . , rk to
some s, s1, . . . sk so that

1. s is below all of s1, . . . , sk;

2. no two of s1, . . . , sk are comparable; and

3. T1[ri]
′ →֒ T2[si] for all 1 ≤ i ≤ k.

Consequently, by the way in which we defined each T1[ri]
′,

1. s is below all of s1, . . . , sk;

2. no two of s1, . . . , sk are comparable; and

3. T1[ri] →֒ T2[si] for all 1 ≤ i ≤ k.

Therefore, T1 →֒ T2, a contradiction.

Case 2: The root node r is an ω-branch node with immediate successors ri, i ≥ 1, where
r1, r2, . . . , rk, rk+1, . . . , rl are such that

1. T1[r1], . . . , T1[rk] are all of the direct successor trees of r whose isomorphism types occur
finitely often directly above r;

12

2. T1[rk+1], . . . , T1[rl] are direct successor trees of r whose isomorphism types occur in-
finitely often directly above r;

3. for all j, j′ with k + 1 ≤ j < j′ ≤ l, T1[rj] 6∼= T1[rj′]; and

4. for all i ≥ 1, there is j ≤ l so that T1[ri] ∼= T1[rj].

Case 2a: The root node s of T2 is an ω-branch node of T2 with immediate successors si, i ≥
1, where s1, s2, . . . st, st+1, . . . , su have properties analogous to those of r1, . . . , rk, rk+1 . . . , rl.
Consider T3 ⊂ T1 defined as follows:

1. r ∈ T3;

2. T1[ri] ⊂ T3 for each 1 ≤ i ≤ k.

If T3 6 →֒ T2, then by induction on the degree of ω-branching in T1, there is a finite subtree
T ′

1 ⊆ T3 ⊆ T1 so that T ′
1 6 →֒ T2. So assume that T3 →֒ T2. Thus, it cannot be the case that

each T1[rk+1], . . . , T1[rl] embeds into one of T2[st+1], . . . , T2[su]. Otherwise, T1 →֒ T2. (T2 with
countably many more copies of each of T2[st+1], . . . T2[su] attached directly above s is a tree
isomorphic to T2 itself.)

Let T1[rα1
], . . . , T1[rαv

] be a list of all the trees among T1[r1], . . . , T1[rk] which individually
do not embed into any T2[st+1], . . . , T2[su]. Similarly, let T1[rβ1

], . . . , T2[rβw
] be a list of all

those among T1[rk+1], . . . , T1[rl] with this property. Consider the tree T ∗
1 ⊆ T1 defined as

follows:

1. r ∈ T ∗
1 ;

2. T1[rα1
], . . . , T1[rαv

] ⊂ T ∗
1 ;

3. for each i ∈ {1, . . . , w}, T ∗
1 contains infinitely many copies of T1[rβi

] directly above r.

This tree cannot be embedded into the subtree {s} ∪ T2[s1]∪ · · · ∪ T2[st]; otherwise T1 →֒ T2.
By induction on the degree of ω-branching of T2, there is a finite number µ and a tree T̂1 so
that

1. r ∈ T̂1;

2. T1[rα1
], . . . , T1[rαv

] ⊂ T̂1;

3. for each i ∈ {1, . . . , w}, T̂1 contains exactly µ copies of T1[rβi
] directly above r; and

4. T̂1 6 →֒ {s} ∪ T2[s1] ∪ · · · ∪ T2[st].

13

In fact, T̂1 6 →֒ T2. Why? Assume otherwise that f : T̂1 →֒ T2. None of the roots of
the copies of T1[rα1

], . . . , T1[rαv
], T1[rβ1

], . . . , T2[rβw
] can be mapped to a point in T2[si] with

i ≥ t + 1. Thus, f : T̂1 →֒ {s} ∪ T2[s1] ∪ · · · ∪ T2[st], a direct contradiction. And so, by
induction on the degree of ω-branching of T1, there is a finite subtree T ′

1 ⊆ T̂1 ⊂ T1 such that
T ′

1 6 →֒ T2.

Case 2b: The root node s of T2 has finitely many immediate successors. We proceed by
induction on the number of immediate successors s has. First assume that s has only one
immediate successor s1. Since the root node r of T1 has infinitely many immediate successors,
we know, by induction on the height of T2, that there is a finite tree T ′

1 ⊂ T1 so that

1. r ∈ T ′
1;

2. r has at least two immediate successors in T ′
1; and

3. T ′
1 6 →֒ T2 − {s1}(∼= T2[s1]).

Of course, this implies that T ′
1 6 →֒ T2; if f : T ′

1 →֒ T2, then f(r) ∈ T2[s1] or s1 6∈ range(()f),
since s1 is the sole immediate successor of s, and r has at least two.

Assume that s has t + 1 immediate successors s1, . . . , st+1 in T2. Of course, for each
j ∈ {1, . . . , t + 1}, T1 6 →֒ T2 − T2[sj]. Therefore, by induction on the number of immediate
successors of the root node s, for each j ∈ {1, . . . , t+1}, there is a tree (T1)

j ⊂ T1 and a finite
number µj so that

1. r ∈ (T1)
j ;

2. for each i ∈ {1, . . . , k}, T1[ri] ⊂ (T1)
j;

3. for each i ∈ {k+ 1 . . . , l}, (T1)
j contains exactly µj many copies of T1[ri] directly above

r; and

4. (T1)
j 6 →֒ T2 − T2[sj].

Let µ = max{µj : j ∈ {1, . . . , t+ 1}}. Define T ∗
1 as follows:

1. r ∈ T ∗
1 ;

2. for each i ∈ {1, . . . , k}, T1[ri] ⊂ T ∗
1 ;

3. for each i ∈ {k + 1 . . . , l}, T ∗
1 contains exactly µ many copies of T1[ri] directly above r.

Assume, without loss of generality, that the immediate successors of r in T ∗
1 can be listed as

r1, . . . , rw. If for some v1, . . . , vw ∈ T2, f : T ∗
1 →֒ T2 and f(ri) = vi for 1 ≤ i ≤ w, then the

following must be true:

14

a. for each 1 ≤ j ≤ t+ 1, there is 1 ≤ i ≤ w so that vi � sj ; and

b. (T1 − T ∗
1) ∪ {r} 6֒→ (T2)v1,...,vw

(where (T2)v1,...,vw
is defined in Definition 2.5).

Otherwise, (T1)
j →֒ T2 − T2[sj] for some j or T1 →֒ T2.

Notice that if v1, . . . , vw satisfy a. above, then ht((T2)v1,...,vw
) < ht(T2). And so, by induc-

tion on the height of tree T2, it must be the case that for each tuple ~v = v1, . . . , vw ∈ T2 which
satisfy a. and b. above, there is a finite number κ~v and a subtree T ~v ⊆ (T1 − T ∗

1) ∪ {r} so
that

1. r ∈ T ~v;

2. for each i ∈ {k + 1, . . . , l}, T ~v contains exactly κ~v many copies of T1[ri] directly above
r; and

3. T ~v 6 →֒ (T2)v1,...,vw
.

Therefore, by Lemma 2.7, there is a single number κ and a single tree T̂ ⊆ (T1 − T ∗
1)∪{r} so

that

1. r ∈ T̂ ;

2. for each i ∈ {k + 1, . . . , l}, T̂ contains exactly κ many copies of T1[ri] directly above r;
and

3. for each list of incomparable elements v1, . . . , vw which satisfy a. and b. above, T̂ 6 →֒
(T2)v1,...,vw

.

Finally, define T̂1 ⊆ T1 as follows:

1. r ∈ T̂1;

2. for each i ∈ {1, . . . , k}, T1[ri] ⊂ T̂1;

3. for each i ∈ {k+1, . . . , l}, T̂1 contains exactly µ+κ many copies of T1[ri] directly above
r.

A straightforward argument similar to ones previously given shows that T̂1 6 →֒ T2. Therefore,
by induction on the degree of ω-branching in T1 it must be the case that there is a finite
T ′

1 ⊆ T̂1 ⊂ T1 so that T ′
1 6 →֒ T2.

Lemma 2.10 If T1 and T2 have strongly finite type, and T1 →֒ T2 →֒ T1, then T1
∼= T2.

15

This lemma need not hold if either T1 or T2 is only of finite type. For instance, let T1 be
the tree ω<3, with x � y iff x is an initial segment of y, and delete {〈0, n〉 : n ∈ ω} from
T1 to get T2 (or let T2 be any other tree of height 3 in which T1 embeds). Recall that the
equivalence relation ≡ on all trees is defined by

T ≡ T ′ ⇐⇒ T →֒ T ′ →֒ T.

So the lemma says that for trees of strongly finite type, ≡ and ∼= are identical.

Proof. We induct on the height of T1. If ht(T1) = 1, then the result is obvious.
Let ht(T1) = n+1. We induct on the degree of ω-branching of T1. If the degree is 0, then

T1 is finite. Therefore, if T1 →֒ T2 →֒ T1, then both trees are finite of the same size, so any
embedding must be an isomorphism.

Let the T1 have degree q + 1 ω-branching. Let r be the root node of T1 and s be the root
of T2. It is clear that ht(T1) = ht(T2), and that in any embedding of one into the other, the
root node must be mapped to the root node.

Case 1: r has finitely many immediate successors. First, we argue that s must have the same
number of immediate successors. Let r have immediate successors r1, . . . , rm. Let p be the
number of trees among T1[r1], . . . , T1[rm] which have height equal to n. Since T1 →֒ T2 →֒ T1,
the number of such immediate successors of s must also be p, and in the embeddings, a
successor at the base of a tree of height n must be mapped to a successor at the base of a
tree of height n.

If r has no more immediate successors, then s cannot either, because T2 →֒ T1. Otherwise,
let h1 be the greatest number < n so that r has an immediate successor ri with ht(T1[ri]) = h1,
and let p1 be the number of such ri’s. First, notice that s cannot have a successor si with h1 <
ht(T2[si]) < n, since T2 →֒ T1, and all of the successors ri of r with ht(T1[ri]) > h1 are images of
successors si of s with ht(T2[si]) = n. Moreover, s must have exactly p1 immediate successors
si with ht(T2[si]) = h1, since T1 →֒ T2 →֒ T1. Continuing in this fashion we complete the
argument that r and s must have exactly the same number of immediate successors.

We complete this case by arguing by induction on the number of immediate successors of
r, s. First, if r has only one immediate successor r1, and s has only one immediate successor
s1, then obviously, T1[r1] →֒ T2[s1] →֒ T1[r1]. By induction on the height on the trees,
T1[r1] ∼= T2[s1], so T1

∼= T2.
Assume that r has immediate successors r1, . . . , rm+1 and s has immediate successors

s1, . . . , sm+1. By induction on the height of the trees, there must be a successor ri of r so that

1. T1[ri] has height n; and

2. T1[ri] is maximal among T1[r1], . . . , T1[rm+1] with respect to embedding; i.e., if j 6= i
and T1[ri] →֒ T1[rj], then T1[ri] ∼= T1[rj].

Assume, without loss of generality, that it is r1.

16

Now consider f : T1 →֒ T2 and g : T2 →֒ T1. Since T1[r1] has height n, there are
1 ≤ j, k ≤ m + 1 such that f : T1[r1] →֒ T2[sj] and f : T1 − T1[r1] →֒ T2 − T2[sj]; and
g : T2[sj] →֒ T1[rk] and g : T2 −T2[sj] →֒ T1 −T1[rk]. However, then T1[r1] →֒ T1[rk], so by our
choice of T1[r1], we know that T1[r1] ∼= T1[rk]. Consequently, by induction on the height of
trees, T1[r1] ∼= T2[sj]; and by induction on the number of immediate successors the root node
has, T1 − T1[r1] ∼= T2 − T2[sj]. Therefore, T1

∼= T2.

Case 2: r is an ω-branch node with immediate successors ri, i ≥ 1, and s is an ω-branch
node with immediate successors si, i ≥ 1. First, consider the subtree T ′

1 ⊆ T1 which is defined
as follows:

1. r ∈ T ′
1;

2. T1[ri] ⊆ T ′
1 iff T1[ri] has height n.

Define T ′
2 similarly. Of course T ′

1 →֒ T ′
2 →֒ T ′

1.
Next, consider the subtree T ′′

1 ⊆ T ′
1 defined as follows:

1. r ∈ T ′′
1 ;

2. T1[ri] ⊆ T ′′
1 iff T1[ri] ⊆ T ′

1 and the isomorphism type of T1[ri] occurs only finitely often
directly above r.

Define T ′′
2 similarly. We claim that T ′′

1 →֒ T ′′
2 →֒ T ′′

1 . To see this, let T1[rj] ⊂ T ′′
1 . Of course,

it must be the case that T1[rj] →֒ T2[sk] for some T2[sk] ⊂ T ′
2. If T2[sk] 6⊂ T ′′

2 , then the
isomorphism type of T2[sk] occurs infinitely often directly above s. Since ht(T2[sk]) = n, it
must be the case that T2[sk] →֒ T1[rl], where the isomorphism type of T1[rl] occurs infinitely
often directly above r0. However, then T1[rj] →֒ T1[rl], a contradiction to the fact that T1 has
strongly finite type. And so, T2[sk] ⊂ T ′′

2 . Consequently, T ′′
1 →֒ T ′′

2 . A symmetric argument
shows that T ′′

2 →֒ T ′′
1 . By induction on the degree of ω-branching of T1, T

′′
1
∼= T ′′

2 .
Next, let T1[rj] ⊂ T ′

1 − T ′′
1 . Of course, it must be the case that T1[rj] →֒ T2[sk] for some

T2[sk] ⊂ T ′
2−T

′′
2 . Similarly, T2[sk] →֒ T2[rl] for some T1[rl] ⊂ T ′

1−T
′′
1 . But then T1[rj] →֒ T1[rl],

so T1[rj] ∼= T1[rl], since T1 has strongly finite type. By induction on the height of the trees,
T1[rj] ∼= T1[sk]. Similarly, let T2[sp] ⊂ T ′

2−T
′′
2 . Then T2[sp] ∼= T1[rt] for some T1[rt] ⊂ T ′

1−T
′′
1 .

Therefore, {r} ∪ (T ′
1 − T ′′

1) ∼= {s} ∪ (T ′
2 − T ′′

2). Consequently, T ′
1
∼= T ′

2.
Finally, we claim that if f : T1 →֒ T2, then f : {r} ∪ (T1 − T ′

1) →֒ {s} ∪ (T2 − T ′
2). Let

T1[rj] 6⊆ T ′
1, and let f : T1[rj] →֒ T2[sk]. It cannot be the case that T2[sk] ⊆ T ′′

2 , because,
as we have seen, the number of immediate successors y of s with T2[y] ⊆ T ′′

2 is exactly the
same as the number of immediate successors x of r with T1[x] ⊆ T ′′

1 , and each such x must
be sent to such an y. Also, it cannot be the case that T2[sk] ⊆ T ′

2 −T ′′
2 ; otherwise, as we have

seen, it would be the case that T2[sk] ∼= T1[rl] where T1[rl] occurs infinitely often immediately
above r; but T1[rj] 6 →֒ T1[rl], since T1 has strongly finite type. Thus f : T1[rj] →֒ T1[sk], where
T1[sk] ⊆ T1 − T ′

1. Therefore, f : {r} ∪ (T1 − T ′
1) →֒ {s} ∪ (T2 − T ′

2). A symmetric argument
shows that {s} ∪ (T2 − T ′

2) →֒ {r} ∪ (T1 − T ′
1). Therefore, by induction on the height of the

trees, {r} ∪ (T1 − T ′
1)

∼= {s} ∪ (T2 − T ′
2). And so, T1

∼= T2.

17

Lemma 2.11 If T has strongly finite type, then T has a formally Σ0
1 Scott family of finitary

formulas with no parameters.

Proof. First, note that if T is a tree and T ′ is a finite tree, then we can say that T ′ can be
embedded in T [x] with a finitary existential formula ψ(x).

We induct on the height of tree T . Let r be the root node of T . If ht(T) = 1, then
T = {r}, so {x = x} is the desired Scott family.

Let ht(T) = n+1. Let r have immediate successors (ri)i∈I . First, let r1, . . . , rk, rk+1, . . . , rl

be such that

1. T1[r1], . . . , T1[rk] are all of the direct successor trees of r whose isomorphism types occur
finitely often directly above r;

2. T1[rk+1], . . . , T1[rl] are direct successor trees of r whose isomorphism types occur in-
finitely often directly above r (this list is empty if I is finite);

3. for all j, j′ with k + 1 ≤ j < j′ ≤ l, T1[rj] 6∼= T1[rj′]; and

4. for all i ∈ I, there is j ≤ l so that T1[ri] ∼= T1[rj].

Next, for each j ∈ {1, . . . , l}, let T ′
j be such that

1. T ′
j ⊆ T [rj];

2. T ′
j is finite; and

3. for all i ∈ I, if T [rj] 6 →֒ T [ri], then T ′
j 6 →֒ T [ri].

Finally, for each 1 ≤ j ≤ l, let Ψj be the Turing machine which enumerates the formally Σ0
1

Scott family for T [rj].
Given a tuple of variables ~x = x1, . . . , xt of length t, we consider all 7-tuples ρt =

〈a, j, s, P, σ, τ, s′〉, where

1. a ∈ {0, 1} and 1 ≤ j ≤ t: if a = 0, then no member of ~x is going to “represent” r; if
a = 1, then xj is going to “represent” the root node r.

2. s ≤ max{|I|, t−a}, P is a partition of {1, . . . , t} ({1, . . . , t}−{j} if a = 1) into s pieces:
for the part of ~x remaining, we divide it into subtuples ~y1, . . . , ~ys according to P .

3. σ = 〈i1, . . . , is〉 is an s-tuple so that

a. for each 1 ≤ µ ≤ s, iµ ∈ {1, . . . , l};

b. for each 1 ≤ µ ≤ s, |~yµ| ≤ |T [riµ]|; and

c. for each 1 ≤ µ < ν ≤ s, if iµ = iν , then iµ ∈ {k + 1, . . . , l}.

18

4. τ is an s-tuple of natural numbers: for each 1 ≤ µ ≤ s, τ(µ) tells us which formula to
use from the formally Σ0

1 Scott family for T [riµ].

5. s′ is a natural number.

Now we form the formula γρt
(~x):

1. If in 1. above, a = 1, then γρt
includes a conjunct which says that xj is at the bottom

of a chain of length n+ 1; otherwise, γρt
includes a conjunct which says that there is v0

so that v0 ≺ ~x.

2. For each tuple ~yµ and each tree T [riµ] from 2. and 3. above, γρt
includes conjuncts

γµ(~yµ) so that

a. if j1, . . . , jwµ
is a complete list of the elements of {1, . . . , k} so that T [riµ] →֒

T [rj1], . . . , T [rjwµ
], but T [riµ] 6∼= T [rj1], . . . , T [rjwµ

] (and thus Lemma 2.10 implies
T [rj1], . . . , T [rjwµ

] 6 →֒ T [riµ]), then γµ(~yµ) includes the conjunct which says

∃v0v1 · · · vwµ+1[v0 is at the bottom of a chain of length n+ 1; v1, . . . , vwµ
, vwµ+1 are

incomparable; for each 1 ≤ p ≤ wµ, T
′
jp

→֒ T [vp], and vp is at the bottom of a chain
of length ht(T [rjp

]); ~yµ � vwµ+1, and T ′
iµ

→֒ T [vwµ+1]];

b. if both of the following are true about Ψiµ :

i. Ψiµ halts on input τ(µ) (a natural number) in less than s′ steps and outputs
a formula δ(~z); and

ii. |~yµ| is the number of free variables actually appearing in δ(~z),

then γµ(~yµ) includes the conjunct δ(~yµ). Otherwise, it includes the conjunct ⊥
(falsity).

3. For each 1 ≤ µ < ν ≤ s so that iµ 6= iν , but T [riµ] ∼= T [riν], γρt
(~x) includes a conjunct

which says ∃v1v2[v1 and v2 are incomparable; each is at the bottom of a chain of length
ht(T [riµ]); ~yµ � v1 and ~yν � v2].

Let Θ = {γρt
(~x) : t ∈ ω, ~x is a t-tuple, and ~x, ρt are as above }. We claim that Θ is a

formally Σ0
1 Scott family of the desired form. First, since we explicitly describe how to form

the formulas γρt
, Θ is certainly c.e. Next, if ~a is a t-tuple of distinct elements of T , then it

is obvious to see that there is going to be some γρt
(~x) which it satisfies. Finally, assume that

~a = a1, . . . , at and ~b = b1, . . . , bt are two tuples of distinct elements so that T |= γρt
(~a)∧γρt

(~b).

We must show that (T,~a) ∼= (T,~b).

First, it must be the case that ~a contains the root node r iff ~b does, and that aj = r iff
bj = r. Next, since T |= γρt

(~a), ~a (perhaps without aj) is sorted into ~a1,~a2, . . . ,~as (according
to the substitution of ~aµ for the subtuple of variables ~yµ for each 1 ≤ µ ≤ s) so that for each
1 ≤ µ ≤ s the following things are determined:

19

1. all elements in a single tuple ~aµ are contained in the same direct successor tree of r;

2. ~aµ belongs to a direct successor tree of r of order type that of T [riµ];

3. for all ν with 1 ≤ ν ≤ s and ν 6= µ, some element of ~aµ and some element of ~aν are not
contained in the same direct successor tree of r; and

4. ~aµ satisfies the formula δ(~z), obtained from the formally Σ0
1 Scott family for T [riµ].

To see 2., notice that clause a. in the formation of γ~yµ
guarantees that ~aµ is contained in a

direct successor tree of r which embeds T ′
iµ

, and hence T [riµ]. Therefore, we know that ~aµ

is either contained in a direct successor tree of order type T [riµ] or one of the finitely many
non-isomorphic direct successor trees which embed T [riµ]. But the rest of clause a. rules out
all other possibilities.

To see 3., assume that in 2. we have determined that the type of the direct successor tree
to which ~aµ belongs is the same as the type of the direct successor tree to which ~aν belongs.
Then γρ(~a) contains a conjunct which says that ∃v1v2[v1 and v2 are incomparable; each of
v1, v2 is at the bottom of a chain of length ht(T [riµ]); and v1 � ~aµ; and v2 � ~aν].

Of course, the tuple~b is sorted by γρt
in exactly the same way. Therefore, by the definition

of a Scott family, r has immediate successor trees T1, . . . , Ts, T
′
1, . . . , T

′
s so that for all 1 ≤ p 6=

q ≤ s the following are true:

1. Tp 6= Tq, and T ′
p 6= T ′

q;

2. ~ap ∈ Tp; ~bp ∈ T ′
p; and

3. (Tp,~ap) ∼= (T ′
p,
~bp).

And so, (T,~a) ∼= (T,~b).

Our next result shows that finite type implies relative computable categoricity in Theorem
1.8.

Theorem 2.12 If T has finite type, then T has a formally Σ0
1 Scott family of finitary formu-

las.

Proof. We induct on the height of T . If ht(T) = 1, then T is finite, so T has strongly finite
type, and the previous result applies. Let ht(T) = n+ 1, and let r be the root node of T .

Case 1: r has only finitely many immediate successors r1, . . . , rm. Then T [r1], T [r2], . . . , T [rm]
all have finite type, and hence all have formally Σ0

1 Scott families by induction. For each
1 ≤ i ≤ m, let ~ci be the parameters of T [ri] which appear in the Scott family for T [ri]. Let
the tuple of parameters of our formally Σ0

1 Scott family be ~c = r, r1, . . . , rm,~c1, . . . ,~cm.
Let ~a be a tuple of distinct elements in T , and let ~x be a corresponding tuple of variables.

We construct the formula γ~a(~x) as follows:

20

1. if any ai ∈ ~a is equal to an element c of our parameter set, then we include the conjunct
xi = c;

2. let ~a′ be the tuple ~a with such elements removed, and let ~x′ be the corresponding tuple
of variables; we include a conjunct which says that ~x′ ∩ ~c = ∅;

3. we divide the tuple ~a′ into subtuples ~a1, . . . ,~am so that ~ai ∈ T [ri] (some subtuples
might be empty); we divide the tuple of variables ~x′ into ~x1, . . . , ~xm accordingly; for
each 1 ≤ i ≤ m, we include the conjunct which says that ~xi � ri;

4. for each tuple ~ai, we search until we find the first formula δi from the formally Σ0
1 Scott

family for T [ri] which ~ai satisfies; we include the conjunct δi(~xi).

Let Θ = {γ~a(~x) : ~a ∈ T is a tuple of distinct variables}. It is clear that Θ is a formally Σ0
1

Scott family of finitary formulas.

Case 2: r has infinitely many immediate successors ri, i ≥ 1. As usual, let r1, . . . , rk, . . . , rl

be such that

1. T1[r1], . . . , T1[rk] are all of the direct successor trees of r whose isomorphism types occur
finitely often directly above r;

2. T1[rk+1], . . . , T1[rl] are direct successor trees of r whose isomorphism types occur in-
finitely often directly above r;

3. for all j, j′ with k + 1 ≤ j < j′ ≤ l, T1[rj] 6∼= T1[rj′]; and

4. for all i ≥ 1, there is j ≤ l so that T1[ri] ∼= T1[rj].

By induction, each of the trees T [r1], . . . , T [rk] has a formally Σ0
1 Scott family of finitary

formulas. For each 1 ≤ i ≤ k, let ~ci be the parameters of T [ri] which appear in the Scott
family for T [ri]. Furthermore, notice that that the tree T −

⋃

1≤i≤k T [ri] has strongly finite
type. Therefore, by the previous lemma, this tree has a formally Σ0

1 Scott family of finitary
formulas with no parameters. Let the tuple of parameters of our formally Σ0

1 Scott family be
r, r1, . . . , rk,~c1, . . . ,~ck.

Let ~a be a tuple of distinct elements in T , and let ~x be a corresponding tuple of variables.
We construct the formula γ~a(~x) as follows:

1. if any ai ∈ ~a is equal to an element c of our tuple of parameters, then we include the
conjunct xi = c;

2. let ~a′ be the tuple ~a with such elements removed, and let ~x′ be the corresponding tuple
of variables; we include a conjunct which says that ~x′ ∩ ~c = ∅;

21

3. we divide the tuple ~a′ into subtuples ~a1, . . . ,~ak,~ak+1 so that ~ai ∈ T [ri] for 1 ≤ 1 ≤ k
and ~ak+1 ∈ T −

⋃

1≤i≤k T [ri] (some subtuples might be empty); we divide the tuple of
variables ~x′ into ~x1, . . . , ~xk, ~xk+1 accordingly; for each 1 ≤ i ≤ k, we include the conjunct
which says that ~xi � ri; for each element a of ~ak+1, we include a conjunct which says
that the corresponding variable x is incomparable to r1, . . . , rk;

4. for each 1 ≤ i ≤ k, we search until we find the first formula δi from the formally Σ0
1

Scott family for T [ri] which ~ai satisfies; we include the conjunct δi(~xi);

5. we search until we find a formula δk+1 from the formally Σ0
1 Scott family for T −

⋃

1≤i≤k T [ri] which ~ak+1 satisfies; we include the conjunct δk+1(~xk+1).

Let Θ = {γ~a(~x) : ~a ∈ T is a tuple of distinct variables}. It is clear that Θ is a formally Σ0
1

Scott family of finitary formulas.

3 Computably Non-Categorical Trees

To prepare for the induction that establishes Theorem 1.8, we will prove the following:

Proposition 3.1 Let T be a computable tree of finite height with root r. If r is not of finite
type but every other node in T is of finite type, then T is not computably categorical. Indeed,
T has computable dimension ω.

Our proof of Proposition 3.1 requires several distinct finite-injury constructions for the
different possible cases. In each construction we build a computable tree T ′ isomorphic to T
satisfying the requirements

Re : ϕe one-one and total =⇒ [(∃we ∈ T)T [we] 6∼= T ′[ϕe(we)]].

We guarantee that T ′ is isomorphic to T by building a ∆0
2 function f : T → T ′. f will either

be an isomorphism from T onto T ′ or it will be an isomorphism from T onto range(f). In the
latter case, T ′\range(f) will consist of successor trees of the root in T ′ each of which will have
the same isomorphism type as a successor tree of the root in T which occurs infinitely often
in T . Therefore, despite the extra successor trees, T and T ′ will be isomorphic. Goncharov
([10]) proved that if two computable structures are not computably isomorphic but are ∆0

2

isomorphic, then their computable dimension is ω. So, in the case where f is an isomorphism,
we get the infinite dimension part of the theorem for free. We make a separate argument at
the end of the section for the case when f does not map onto T ′.

The node we will be called the witness node for requirement Re, and will be approximated
by nodes we,s at each stage s. At certain stages we will need to find embeddings of Ts[we,s] into
other branches of T , in order to satisfy Re, and we may redefine f on the nodes in Ts[we,s].

22

(We assume that we work with a fixed approximation Ts of T by finite subtrees.) To ensure
that lims fs(x) exists for each x ∈ T , we impose the negative requirements:

Nx : lim
s
fs(x) converges.

In addition, for any y ∈ T ′, we need to insure that either lims f
−1
s (y) exists or y is permanently

placed into one of the auxiliary subtrees of T ′ which are not in the range of f but which occur
infinitely often as successor trees of the root in T . In the cases when we use such auxiliary
trees, this property will be easy to verify. In the other cases, we explicitly insure this property
by meeting the requirements for all u ∈ T ′:

Mu : lim
s
f−1

s (u) converges.

Clearly, satisfying all these requirements will prove the theorem.
By definition, a successor tree in T above an ω-branch point x of T is a tree T [y], where

y is an immediate successor of x. We use I to stand for an isomorphism type, and say that I
appears finitely often (resp. infinitely often) among the successor trees {T [y]} above x if there
are only finitely many (resp. infinitely many) immediate successors y of x such that T [y] ∼= I.
In general, when we speak of an isomorphism type I occurring in a tree T , we mean that
there is a node a ∈ T such that T [a] ∼= I.

The domain of T is always assumed to be ω, and we have a computable approximation to
T by:

Ts = {0, 1, . . . s− 1} ∪ {r},

where r is the root of T . We restate Lemma 2.10 because it will be used repeatedly.

Lemma 2.10 Suppose T and T ′ are two trees of finite height and strongly finite type. If each
of T and T ′ embeds into the other, then they are isomorphic.

Lemma 3.2 Suppose that T is a tree of finite height which is of finite type but not of strongly
finite type. Then there exists an ω-branch point y0 ∈ T such that all successor trees above y0

are of strongly finite type, and such that some successor tree which appears only finitely often
above y0 embeds into some successor tree appearing infinitely often above y0.

Proof. Let y0 be maximal in T among nodes which are not of strongly finite type. (This set
is non-empty, since it must include the root of T .) Then y0 must be ω-branching, and every
successor tree above y0 is of strongly finite type. The only way y0 can fail to be of strongly
finite type is for there to be distinct successor trees Tj →֒ Tk above y0 such that infinitely
many other successor trees above y0 are isomorphic to Tk. Since y0 is of finite type, however,
the isomorphism type of Tj must appear only finitely often above y0.

Lemma 3.3 Let {T1, . . . Tn} be any collection of trees of weakly finite type. Then there exist
finite trees S1, . . . Sn such that for all i and j:

Si →֒ Tj ⇐⇒ Ti →֒ Tj .

23

Proof. To build Si, consider the set Ai = {j ≤ n : Ti 6 →֒ Tj}. For each j ∈ Ai, there is a
finite subtree Si,j ⊆ Ti such that Si,j 6 →֒ Tj , by Lemma 2.9. Let Si be the union of all these
subtrees, for all j ∈ Ai. (If Ai is empty, take Si to be a single node.)

We will need a version of Kruskal’s Theorem for trees of weakly finite type. In order to
prove this theorem, we use labeled finite trees. For our purposes, a labeled finite tree is a
finite tree S together with a function l : S → {0, 1, ω}. The elements of the set {0, 1, ω} are
called labels and the function l is called the labeling function. Let S1 and S2 be labeled trees
with labeling functions l1 and l2. An embedding f : S1 →֒ S2 respects the labels if for every
x ∈ S1, l1(x) ≤ l2(f(x)). A proof of the following version of Kruskal’s Theorem can be found
in either [19] or [31]. (In fact, for our purposes, we can assume that there is a uniform finite
bound n on the heights of the trees Si. This assumption leads to a far simpler proof.)

Theorem 3.4 (Kruskal) Let {Si : i ∈ ω} be an infinite collection of finite trees, each with a
labeling li. Then there exist i < j in ω and an embedding f : Si →֒ Sj (preserving the infimum
function) such that for every x ∈ Si, li(x) ≤ lj(f(x)).

Lemma 3.5 (Kruskal’s Theorem for weakly finite type) Fix n ∈ ω, and let {Ti : i ∈
ω} be an infinite collection of trees of weakly finite type, with ht(Ti) ≤ n for all i. Then there
exist i < j in ω such that Ti can be embedded in Tj.

Corollary 3.6 Let {Ti : i ∈ ω} be an infinite collection of trees of weakly finite type, with
ht(Ti) ≤ n for all i. Then there exists m ∈ ω such that for every i > m, Ti can be embedded
in some Tj with j > i, and some Tk with k < i can be embedded in Ti.

Proof. By Lemma 3.5 both { i ∈ ω | ∀j > i (Ti 6 →֒ Tj) } and { i ∈ ω | ∀k < i (Tk 6 →֒ Ti) } must
be finite.

Proof of Lemma 3.5. We claim that given the collection {Ti}, we can build a corresponding
collection {Si} of labeled finite trees such that if i < j and there is an embedding of Si into
Sj which respects the labels, then Ti also embeds into Tj . To prove this claim, we induct on
n. The case n = 1 is easy, since there is only one possible tree, containing a single node; we
take Si = Ti for each i, labeling the node of each Si with 1.

Now assume the claim for n. For each tree Ti given by the lemma, let ri be the root of
Ti, and let Ii,1, . . . Ii,mi

be the (finitely many) distinct isomorphism types of successor trees
above ri. Then the inductive hypothesis applies to the set

{Ii,k : i ∈ ω, 1 ≤ k ≤ mi},

yielding a set {Si,k} of corresponding labeled finite trees. Define Si inductively as follows:

• Si has a root si, labeled with 1;

24

• Si has a chain ui,1 ≺ ui,2 ≺ · · · ≺ ui,n, each labeled with 0, and with ui,1 an immediate
successor of si

• For each isomorphism type Ii,k which appears only finitely often – say p times – among
the successor trees above ri in Ti, add p copies of the corresponding Si,k as successor
trees above si in Si, with the root of each of these successor trees labeled with a 1; and

• For each isomorphism type Ii,k which appears infinitely often among the successor trees
above ri in Ti, add a copy of the corresponding Si,k as a successor tree above si in Si,
but labeling its root with ω, rather than 1.

We have changed the labels on the roots of certain finite successor trees Si,k, but only by
changing the label of the root from 1 to ω, so we have not introduced any new embeddings
among the Si,k’s.

Now if f is an embedding of Si into Sj (j > i) which preserves infima and respects labels,
then f must map the root si to sj, since both trees have height n. (This was the purpose of the
chains {ui,k} and {uj,k}.) Hence each successor tree in Si maps into a distinct successor tree in
Sj , since f preserves infima. It follows that each isomorphism type among the successor trees
in Ti maps into some successor tree in Tj. Because of the labeling with 0, 1 and ω on Si, we
know that no Si,k maps into the chain above uj,1, and that each infinite-appearing successor
tree in Ti maps into an infinite-appearing successor tree in Tj (or possibly into an infinite-
appearing subtree of a finite-appearing successor tree in Tj). Finally, each finite-appearing
successor tree in Ti appeared just as many times in Si, and hence there must be sufficiently
many successor trees in Tj for each copy of the type to map to.

Applying Theorem 3.4 to our set {Si}, we get an f with precisely the properties required
by the claim. Hence some Ti embeds into some Tj with j > i.

We will be interested in the minimal elements (under embedding) of various sets of trees
of weakly finite type. Let T be a set of trees of weakly finite type for which there is a finite
bound on the height of the trees appearing in T . Lemma 3.5 says that T together with the
embeddability relation forms a well-quasi-order. Therefore, T satisfies both the descending
chain condition that any strictly descending chain in T under embeddability is finite and
the incomparable chain condition that any anti-chain under the embeddability relation is
finite. (See [19] for more details on these properties. We are using the fact that a quasi-order
is a well-quasi-order if and only if it satisfies both of these conditions.) In this context, the
appropriate definition of “minimal” is based on equivalence classes under ≡ rather than under
∼=.

Definition 3.7 T ∈ T is minimal in T if for every T ′ ∈ T such that T ′ →֒ T , we have
T ≡ T ′.

For trees of strongly finite type, this is equivalent to the standard definition of minimal
under ∼=, by Lemma 2.10. However, trees of weakly finite type do not necessarily satisfy

25

this lemma; they form only a quasi-order under →֒, not a partial order. (The notion of a
quasi-order plays no explicit role in the paper after the next corollary.)

Corollary 3.8 Let T be an infinite collection of trees of weakly finite type, with ht(T) ≤ n
for all T ∈ T . Then there exists a finite set M ⊆ T of minimal elements of T (under the
embedding relation) such that for every T ∈ T there exists T ′ ∈ M with T ′ →֒ T .

Proof. Let S be the set of all minimal elements of T , and let M contain exactly one repre-
sentative from each ≡-equivalence class in S. Then the incomparable chain condition implies
that M must be finite, and the descending chain condition implies that every T ∈ T contains
a subtree from M.

This corollary will frequently be applied with T being either the set {T : T 6 →֒ T0} (for
some fixed T0) or the set {T : T0 →֒ T & T0 6∼= T}. We will need one last general fact about
embeddings between finite height trees of finite type.

Lemma 3.9 Let T0 and T1 be finite height trees of finite type and let Ii be the finite set of
isomorphism types of successor trees which occur infinitely often immediately above the root
in Ti. If T0 ≡ T1, then I0 = I1.

Proof. We will write Ti[x] ∈ Ii to indicate that the tree Ti[x] is a successor tree of the root in
Ti and that its isomorphism type occurs in Ii.

Consider any T0[x] ∈ I0 and suppose that T0[x] embeds in some T1[y] ∈ I1. Further,
suppose that T1[y] embeds in some T0[z] ∈ I0. Composing these two embeddings gives that
T0[x] →֒ T0[z]. But, because T0 has finite type and both T0[x] and T0[z] occur infinitely often,
it must be that T0[x] ∼= T0[z]. Furthermore, T0[x], T1[y] and T0[z] all have strongly finite type
since they occur infinitely often. The two embeddings T0[x] →֒ T1[y] →֒ T0[z] ∼= T0[x] show
that T0[x] ∼= T1[y] by Lemma 2.10.

The argument in the previous paragraph establishes the lemma except in the case when
there is a type I ∈ Ii which does not embed in any type J ∈ I1−i. Without loss of generality,
assume that there is a type I ∈ I0 which does not embed in any type in I1. In this case we
will derive a contradiction to the fact that T0 and T1 have finite height.

For any c ∈ Tj , we say that c occurs in the finite part of Tj if c ∈ Tj [a] for some a at level 1
of Tj for which Tj [a] is one of the finitely occurring isomorphism types at level 1. Otherwise,
we say that c occurs in the infinite part of Tj .

We define a notion of rank for our fixed isomorphism type I. A node a ∈ Tj has rank
rk(a) ≥ 0 if I embeds in Tj[a]. A node a has rank rk(a) ≥ n + 1 if there are infinitely many
nodes c for which a ≺ c and rk(c) ≥ n. There are a number of simple facts that follow from
this definition.

Fact 1. If rk(a) ≥ n, then ht(Tj [a]) ≥ ht(I) + n. This fact follows by an induction on n.
Fact 2. If c lies above the root in T1 and rk(c) ≥ 0, then c is in the finite part of T1. This

fact follows since I →֒ T1[c] and I1 contains no isomorphism types into which I embeds.

26

Fact 3. If c lies above the root in T0 and rk(c) ≥ 1, then c occurs in the finite part of
T0. For a contradiction, assume that c occurs in the infinite part of T0. Then c must occur
in some successor tree T0[a] of the root whose isomorphism type is in I0. However, by Fact
1, ht(T0[a]) > ht(I), so T0[a] 6∼= I. This means I →֒ T0[a] is an embedding relation between
distinct infinitely occurring isomorphism types at level 1 of T0, which contradicts the fact that
T0 has finite type.

Fact 4. For any k, n ≥ 1, if a1, . . . , ak ∈ Tj satisfy rk(ai) ≥ n, then there are b1, . . . , bk ∈
T1−j which satisfy rk(bi) ≥ n. To establish this fact, fix any embedding f : Tj →֒ T1−j and let
bi = f(ai). The result follows by induction on n.

By Fact 1, to derive a contradiction with the fact that T1 has finite height, it suffices to
show that for each n ≥ 1, T1 must have a node a with rk(a) ≥ n. We establish this by
induction on n. Fix embeddings f : T0 →֒ T1 and g : T1 →֒ T0.

For the case of n = 1, we claim that the fact that I does not embed into any element
of I1 implies that there is an a ∈ T1 for which rk(a) ≥ 1. To prove this claim, consider the
embedding f : T0 →֒ T1. Each copy T0[d] of I in the infinite part of T0 must map into the
finite part of T1 under f . Therefore, there must be a node a at level 1 of T1 (in the finite
part) for which infinitely many copies of I embed into T1[a]. For this a, rk(a) ≥ 1.

Assume by induction that the fact that I does not embed into any element of I1 implies
that there is an a ∈ T1 with rk(a) ≥ n.

Fix a1 ∈ T1 such that rk(a1) ≥ n. We claim that there is an element a2 ∈ T1 with a2 6= a1

and rk(a2) ≥ n. To prove this claim, notice that by Fact 4, we know that g(a1) = b1 ∈ T0

satisfies rk(b1) ≥ n. Furthermore, setting c1 = f(b1), we have that rk(c1) ≥ n.
We split into two cases depending on whether a1 = c1 or a1 6= c1. If a1 6= c1, then we let

a2 = c1 and we are done with the claim. Otherwise, if a1 = c1, then f(b1) = a1 and g(a1) = b1.
Therefore f maps T0[b1] into T1[a1] and g maps T1[a1] into T0[b1], and moreover, restricting f
to T0 \ T0[b1] and restricting g to T1 \ T1[a1] shows that (T0 \ T0[b1]) ≡ (T1 \ T1[a1]). By the
induction hypothesis (which applies since we have only removed a portion of the finite parts
of T0 and T1 by Facts 2 and 3 and therefore not changed the infinite part of either tree), there
is an element a2 ∈ T1 \ T1[a1] for which rk(a2) ≥ n. This establishes the claim.

More generally, for any k ≥ 1, if a1, . . . , ak ∈ T1 have rk(ai) ≥ n, then we can fix
g(a1) = b1, . . . , g(ak) = bk ∈ T0 with rk(bi) ≥ n. Setting ci = f(bi) and splitting into cases
as above, we get the existence of ak+1 ∈ T1 with rk(ak+1) ≥ n. Therefore, there must be
infinitely many nodes in the finite part of T1 which have rank ≥ n. We can fix a node a at
level 1 of T1 (and in the finite part) for which infinitely many of these nodes occur in T1[a].
Then, rk(a) ≥ n+ 1 as required.

We now begin the constructions which will ultimately prove Proposition 3.1. Suppose T
has finite height, but is not of finite type. In this section we consider the case when the root
r is the only node of T which fails to be of finite type. Then T must be ω-branching at r, and
we write x0, x1, . . . for the immediate successors of r in T . We present several constructions
concerning various ways in which T could fail to have finite type and we prove in each case
that T is not computably categorical. After these constructions, we prove Proposition 3.1 by

27

showing that we have considered all possible cases. We present the first proof in the most
detail since many of the later arguments will have similar features.

Lemma 3.10 Let T be a tree of finite height with root r, and suppose that each node above
r in T is of finite type. Suppose there is an isomorphism type I0 which is not of strongly
finite type and appears infinitely often as a successor tree above r. If only finitely many other
isomorphism types I ′ appearing above r satisfy I ′ →֒ I0, then T is not computably categorical.

Proof. First, we establish that there is a ∆0
2 procedure which identifies the immediate suc-

cessors x of r such that T [x] ≡ I0. Let F be the set of all isomorphism types I appearing
as successor trees above r such that I 6 →֒ I0. Let {I1, . . . Im} be a set of minimal elements
(under →֒) of F as given by Corollary 3.8, so that every I ∈ F is a supertree of some Ii. By
Lemma 3.3, each Ii (i > 0) contains a finite subtree Si such that Si 6 →֒ I0. Therefore, a node
x at level 1 in T satisfies T [x] →֒ I0 if and only if ∀s∀i ≤ m(Si 6 →֒ Ts[x]).

Consider the finite number of isomorphism types I ′ →֒ I0. For each such I ′ for which
I0 6 →֒ I ′, there is a finite subtree Q′ of I0 such that Q′ 6 →֒ I ′. Taking the union of these finite
trees Q′ gives a finite tree Q such that Q →֒ I0 and for all I ′ as above, Q 6 →֒ I ′. Therefore,
an immediate successor x of r satisfies T [x] ≡ I0 if and only if

∀s∀i ≤ m(Si 6 →֒ Ts[x]) ∧ ∃s(Q →֒ Ts[x]).

Since we can clearly identify the immediate successors of r in a ∆0
2 manner, this definition

shows that we can identify the immediate successors x of r which satisfy T [x] ≡ I0 with a ∆0
2

procedure.
During the construction, we try to identify trees T [x] for which x is an immediate successor

of r and T [x] ≡ I0. We say that we believe T [x] ≡ I0 at stage s if x is an immediate successor
of r in Ts, Q →֒ Ts[x] and Si 6 →֒ Ts[x] for all i ≤ m. Without loss of generality, we assume
that the finite tree Q has the same height as I0. Therefore, if we believe T [x] ≡ I0 at stage s,
then any embedding of Ts[x] into I0 must send x to the root node of I0.

Since it is of finite type and not of strongly finite type, I0 must contain an ω-branching
node y0 satisfying Lemma 3.2. Fix such a node y0 and let J denote the isomorphism type
of I0[y0]. By Lemma 3.2, there exist successor isomorphism types J0 →֒ J1 of J with J0

occurring only finitely often above y0 and J1 occurring infinitely often above y0. Moreover,
Lemma 3.2 ensures that both J0 and J1 are of strongly finite type, so Lemma 2.10 guarantees
that J1 6 →֒ J0.

We will build a tree T ′ and an embedding f : T → T ′ such that T ′ is equal to the range
of f together with infinitely many copies of I0 which are attached to the root of T ′. Our
strategy to diagonalize against ϕe : T → T ′ being an isomorphism will roughly be to identify
subtrees T [z] which satisfy T [z] ≡ J0. Once we find such a subtree, we make sure that J1

embeds into our subtree T ′[ϕe(z)]. Because J1 6 →֒ J0, it cannot be that T ′[ϕe(z)] ∼= T [z]. (In
fact, it cannot even be that T ′[ϕe(z)] →֒ T [z].)

Consider the finite number of isomorphism types I which occur as successor trees in T and
which satisfy I ≡ I0. By Lemma 2.6, each such I contains only finitely many isomorphism

28

types of the form I[a] for a ∈ I. Therefore, we can list the types of all such I[a] where I
is as above and a ∈ I as K1, . . . , Kn. (This list includes the types of trees I[a] of any level,
not just the types of the successor trees of the root of I.) As above, we can use finite trees
to distinguish these types up to ≡-equivalence. That is, for K1 there are finitely many types
Ki 6 →֒ K1. List these trees as Ki1 , . . . , Kil. For each k ≤ l, there is a finite subtree S ′

ik
of Kik

such that S ′
ik
6 →֒ K1. Similarly, there are finitely many Kj such that K1 6 →֒ Kj. For each such

Kj , there is a finite subtree S ′′
j of K1 such that S ′′

j 6 →֒ Kj. Taking the union of these trees
yields a finite subtree S ′′ of K1 such that S ′′ 6 →֒ Kj for any such j. Therefore, if T [x] ≡ I0
and x ≺ u, then T [u] ≡ K1 if and only if

∀s∀k ≤ l(S ′
ik
6 →֒ Ts[u]) ∧ ∃s(S ′′ →֒ Ts[u]).

At stage s, we believe that Ts[u] ≡ K1 if and only if the following conditions are satisfied:
there is a node x ≺ u in Ts such that we believe Ts[x] ≡ I0; S

′′ →֒ Ts[u]; and for all k ≤ l,
S ′

ik
6 →֒ Ts[u].
We can perform similar calculations for the other types Ki. During the construction, if x

is an immediate successor of r with x ≺ u for some u and we believe T [x] ≡ I0, then we can
determine using finite trees which Kj we believe satisfies T [u] ≡ Kj (if any). From the nature
of the conditions, it is clear that if we believe infinitely often that T [x] ≡ I0 and T [u] ≡ Kj ,
then in fact these equivalences hold.

Notice that the isomorphism types J , J0, and J1 occur among the types K1, . . . , Kn.
Furthermore, by Lemma 3.9, for any node y such that T [y] ≡ J , T [y] must have infinitely
many successor trees which are isomorphic to J1.

We begin to describe the construction. Assume that T is approximated in finite stages by
Ts. Without loss of generality, we assume that we know the root of T . We build T ′

s and a
sequence of embeddings fs : Ts → T ′

s. T
′
s will consist of the range of fs (which is a finite tree

isomorphic to Ts by fs) together with finitely many subtrees which are isomorphic to I0 and
which are attached to the root of T ′

s.
We say that a tuple 〈x, y, z〉 is special in T if x is an immediate successor of the root,

T [x] ≡ I0, x ≺ y, T [y] ≡ J , z is an immediate successor of y, and T [z] ≡ J0. We say that
〈x, y, z〉 is special at stage s + 1 if x, y, z ∈ Ts and we believe all of these conditions at stage
s. Because we have ∆0

2 approximations to these conditions, we know that 〈x, y, z〉 is special
in T if and only if there is a stage s such that for all t ≥ s, 〈x, y, z〉 is special at stage t.

Recall that we have requirements Re, which attempts to diagonalize against ϕe being an
isomorphism, and Nu, which attempts to make the limit of fs(u) defined so that f is ∆0

2.
The basic strategy for Re is to define a witness tuple 〈x, y, z〉 which we believe is special and
wait for ϕe(x) = x′, ϕe(y) = y′, and ϕe(z) = z′ to converge. We next want to determine if
we believe that 〈x′, y′, z′〉 is going to be special in T ′. This amounts to letting f−1

s (x′) = a,
f−1

s (y′) = b and f−1
s (z′) = c, and asking whether we currently believe 〈a, b, c〉 is special in T .

If the answer is no, then it appears that Re is not an isomorphism and we do not need to
diagonalize. If the answer is yes, then we want to actively diagonalize.

Assume that not only do we believe that 〈x, y, z〉 and 〈a, b, c〉 are special in T at stage s of
the construction, but they really are special in T . Then, there is an embedding of Ts[a] →֒ I0

29

which maps c to the base of a tree of type J1. (We prove the existence of such an embedding
below when we do the formal construction.) Therefore, we can diagonalize by using the
embedding of Ts[a] into I0 to turn T ′

s[x
′] into a copy of I0 for which T ′

s[z
′] becomes a tree

into which J1 embeds. We now know J1 →֒ T ′[z′] and T [z] →֒ J0. Therefore, if ϕe is an
isomorphism, then T ′[z′] →֒ T [z] and hence J1 →֒ J0, which contradicts our choice of J0.

We also need to redefine fs+1 on Ts[a] since we have turned T ′
s[x

′] into I0 and we do not
know that Ts[a] has isomorphism type I0. Therefore, we add new elements to T ′

s+1 and define
the map fs+1 to send the tree Ts[a] to these new elements. Notice that once an element y′ ∈ T ′

has left the range of f , it will never return to the range of f . Therefore, we have that for all
y′ ∈ T ′, either f−1

s (y′) converges or y′ is permanently part of an auxiliary copy of I0. Hence
we do not need to explicitly discuss the requirements Mu in this construction.

This action of changing the map so that fs(a) 6= fs+1(a) conflicts with the requirements
of the form Nu for u ∈ Ts[a]. To fix this problem, we give Re e+ 1 many witness tuples with
distinct first components and we do not allow Re to use the tuple 〈x, y, z〉 to diagonalize if
f−1

s (ϕe(x)) ≺ u for any u ≤ e. That is, we give Nu higher priority than Re if u < e. Since each
Nu can stop Re from using at most one node at level one with which to diagonalize, assigning
e + 1 tuples to Re is enough to guarantee that either Re will be allowed to diagonalize with
one of these tuples or Re will be satisfied in a trivial way, such as ϕe not being one-to-one or
not respecting the ordering.

There is a second possible worry for the basic strategy for Re. Assume that 〈x, y, z〉 is a
witness tuple for Re and 〈x′, y′, z′〉 is as above. Since T ′

s consists of the range of fs together
with additional copies of I0, it is possible that the elements of 〈x′, y′, z′〉 sit in one of the copies
of I0. In this case, it makes no sense to look at f−1

s on the values x′, y′ and z′ since these
elements are not in the range of fs. Of course, if it is not the case that x′ ≺ y′ ≺ z′ in T ′

s,
then we have beaten ϕe trivially. Otherwise, Re can check if x′ is the root of the copy of I0, y

′

is the root of a tree which is ≡ J and z′ is the root of a tree which is ≡ J0. (We will assume
that when we add a copy of I0 to T ′, we add a “nice” copy in which we know the isomorphism
type of each subtree of the form T ′[a] for a in this copy of I0. This is possible since I0 contains
only finitely many such isomorphism types.) If not, then Re has already won. If so, then Re

can win by turning T ′[z′] into a copy of J1 (which is possible because J0 →֒ J1) and adding
a new copy of the old T ′[z′] above T ′[y′]. Because T ′[y′] bounds infinitely many copies of J1,
adding an extra copy does not change its isomorphism type. So, we still have T ′[y′] ≡ J and
T ′[x′] ∼= I0. This action wins Re as above, since J1 →֒ T ′[z′] and T [z] →֒ J0.

However, notice that if we performed this action infinitely often with the same copy of I0,
then we might move the same subtree of this copy of I0 infinitely often and not have a copy
of I0 in the limit. Therefore, we need to restrict this action from happening infinitely often.
When a requirement Re creates a copy of I0, it marks it with the same priority as Re. We
only allow requirements Ri with i < e to diagonalize using this copy of I0 as described above.
This causes only finitely additions to the tree after it is defined, so it really does have type I0
in the limit.

Because Re is not allowed to use a witness tuple 〈x, y, z〉 when ϕe(x) converges to the root

30

of a copy of I0 which is marked by a requirement of higher priority, we have to allow Re extra
witness tuples. Each time Ri with i < e marks a new copy of I0, Re is given an extra witness
tuple. This action will only occur finitely often, so in the end, Re has e+n+1 many witness
tuples, where n is the number of copies of I0 marked by requirements of higher priority. We
cannot fix the number n at the beginning of the construction since finitely often a requirement
of higher priority may create a copy of I0 thinking that it is diagonalizing against a particular
witness tuple only to discover later that this witness tuple was not actually special.

We turn to a more formal description of the construction. At each stage s, we define a
finite list of tuples which are special at that stage and which have distinct first components.
More formally, let 〈x0, y0, z0〉 be the ≤N-least tuple (under a fixed coding of N3) that is special
at stage s. Let 〈xi+1, yi+1, zi+1〉 be the ≤N-least tuple greater than 〈xi, yi, zi〉 which is special
at stage s and such that xi+1 is not equal to xj for any j ≤ i. List these tuples at stage s by

〈x0,s, y0,s, z0,s〉, . . . , 〈xps,s, yps,s, zps,s〉.

At stage s, we assign e + n + 1 many of these tuples to the requirement Re, where n is the
number of copies of I0 created by requirements of higher priority by stage s. If there are not
enough tuples for Re to get its full set of tuples, then it is not assigned any tuples. Re may
be later declared to be satisfied by one of the tuples it has been assigned. If that tuple ever
changes, then Re is said to be injured and it is no longer satisfied.

Because there are infinitely many copies of I0 attached to the root of T , there is an infinite
set of special tuples in T which have pairwise distinct first components. Therefore, each tuple
of the form 〈xm,s, ym,s, zm,s〉 is eventually defined and reaches a limit 〈xm, ym, zm〉, which is a
special tuple in T . So, each requirement Re is eventually assigned a complete set of special
tuples.

At stage s+1 we extend the isomorphism fs to fs+1 : Ts+1 → T ′
s+1 by adding fresh elements

to T ′
s+1, unless there exists an Re requirement with e ≤ s which requires attention. If some

Re requires attention, we let the highest priority such requirement act. Below we define when
Re requires attention and what action Re takes when it is allowed to act.

Assume that Re is assigned the tuple 〈x, y, z〉 during the construction. Re waits for ϕe(x),
ϕe(y) and ϕe(z) to converge to some x′, y′, and z′ respectively. Once these computations
converge (say at stage s + 1), Re checks for two possible easy wins. First, if any of the
elements is not in T ′

s, then Re wins by making sure that these elements are all placed in T ′
s+1

and they do not satisfy x′ ≺ y′ ≺ z′. Second, if either ϕe is not one-to-one or x′ is equal to
the root in T ′ or it is not the case that x′ ≺ y′ ≺ z′, then ϕe cannot be an isomorphism and
Re wins without performing any action.

Assume that Re does not win trivially and that it has not been declared satisfied by one
of its tuples. The action for Re splits into two cases. Either x′, y′ and z′ are all in the range of
fs or else one of these elements falls outside the range of fs. We first consider the case when
all the elements are in the range of fs. In this case, Re checks if 〈f−1

s (x′), f−1
s (y′), f−1

s (z′)〉 is
special. If not, then Re does not require attention. If this tuple is special, then Re checks if
there is an element u ∈ T with u < e and f−1

s (x′) ≺ u. If so, then the requirement Nu takes
precedence over Re and prevents Re from acting. Otherwise, Re requires attention.

31

When Re is allowed to act, it begins a concurrent search for one of the following:

1. an embedding T ′
s[x

′] →֒ I0 which sends x′ to the root of I0 and sends z′ to the base of a
tree into which the isomorphism type J1 embeds; or

2. a stage t ≥ s at which we no longer believe 〈f−1
s (x′), f−1

s (y′), f−1
s (z′)〉 is special.

One comment is necessary to explain condition (1). Because I0 has finite type and is com-
putable, we can assume that we have a nice copy of I0 in which we know the isomorphism
type of each subtree I0[a]. Therefore, we know which subtrees J1 embeds into, so we can
search for an embedding as in (1) in an effective manner. In the sublemmas verifying this
construction, we show that this search procedure must terminate.

If we see (2) happen first, then we no longer think that Re requires attention with this
tuple. We extend our tree to T ′

s+1 as if no requirement had required attention and go to the
next stage. If we see (1) happen first, then we perform the following actions:

• turn T ′
s[x

′] into a copy of I0 with x′ as the root and z′ as the root of a tree into which
J1 embeds; and

• add extra elements to T ′ to be the new images of the elements above f−1
s (x′) in T under

fs+1; and

• leave fs+1 = fs on all other elements from T ; and

• add new elements to T ′ to correspond to the elements in Ts+1 \ Ts and define fs+1 in
the obvious way;

• declare Re satisfied with this tuple.

In this case, we say that Re acts at this stage. Notice that the elements in the new copy of
I0 in T ′ are outside of the range of fs+1. Also, as in the comments explaining the search in
(1) above, we know exactly how this copy of I0 is constructed in the sense that we know the
isomorphism type of each subtree. Furthermore, if Re is never injured after this stage, then
〈x, y, z〉 is one of the final tuples assigned to Re. In this case, T [z] ≡ J0 but J1 →֒ T ′[z′].
Since ϕe(z) = z′ and J1 6 →֒ J0, ϕe cannot be an isomorphism.

We still need to see what action to take if one of the elements x′, y′ or z′ is not in the
range of fs. Because we did not get an easy win for Re, it must be the case that x′ ≺ y′ ≺ z′

all sit in some successor tree of the root in T ′
s. Since one of these elements is not in the range

of fs, this successor tree must be one of the trees of type I0 added to T ′
s. If this copy of I0

was created by a requirement of higher priority than Re, then Re does not act at this stage
and it ignores this particular witness tuple in future calculations (since it already knows that
it is not allowed to diagonalize with this tuple). Otherwise, because we know how such a
copy of I0 was constructed, we can check whether x′ is the root of this copy of I0, whether
y′ has infinitely many successor trees of type J1, whether z′ is an immediate successor of y′,
and whether z′ is the base of a subtree which is ≡ J0. If any of these conditions fail, then we

32

say that Re is satisfied by this tuple since ϕe does not appear to be an isomorphism. If all
of these conditions hold, then we add a new subtree above y′ of the same type as the subtree
above z′ and we add elements to the subtree above z′ to turn it into a copy of J1. (In this
case, we say that Re acts at this stage.) Because y′ must bound infinitely many copies of J1,
we still have a tree of type I0 and now we have diagonalized against ϕe being an isomorphism.
We declare Re satisfied by this tuple.

This completes the description of the construction. We verify that it succeeds in the
following sublemmas.

Sublemma 3.11 In the case when x′, y′ and z′ are in the range of fs, the concurrent search
procedure between (1) and (2) terminates.

Proof. Assume that (2) does not occur. Then, f−1
s (x′) is an immediate successor of r in

T , f−1
s (z′) is an immediate successor of f−1

s (y′), T [f−1
s (x′)] ≡ I0, T [f−1

s (y′)] ≡ J , and
T [f−1

s (z′)] ≡ J0. Because T [f−1
s (x′)] ≡ I0, we can fix an embedding ψ : T [f−1

s (x′)] →֒ I0.
We have already observed that ψ(f−1

s (x′)) is the root of I0. Because T [f−1
s (y′)] ≡ J , we know

that f−1
s (y′) has infinitely many successor trees of type J1. Since T [f−1

s (z′)] ≡ J0, we know
that T [f−1

s (z′)] →֒ J1.
Consider the restriction of ψ to the finite tree Ts[f

−1
s (x′)]. Let a be a node at level 1 in

T [f−1
s (y′)] which has type J1 and is not in Ts[f

−1
s (y′)]. Fix an embedding ξ of Ts[f

−1
s (z′)] into

T [a] which sends f−1
s (z′) to a and let ψ(a) = b ∈ I. Notice that J1 →֒ I[b] and ψξ maps

Ts[f
−1
s (z′)] into I[b] with ψ(ξ(f−1

s (z′))) = b. Define ψ′ on Ts[f
−1
s (x′)] by making it equal to ψ

for all nodes that are not in Ts[f
−1
s (z′)] and equal to ψξ on all nodes in Ts[f

−1
s (z′)]. Because

fs is an isomorphism between the finite trees T ′
s[x

′] and Ts[f
−1
s (x′)], we can abuse notation

and view ψ′ as an embedding from T ′
s[x

′] into I0. Notice that ψ′ has exactly the properties
required for condition (1).

Sublemma 3.12 Each Re requirement only acts finitely often.

Proof. Let s be a stage after which all Ri for i < e do not act. In particular, they do not
create new copies of I0, so the number of witness tuples required by Re is fixed at this stage.
Let t ≥ s be a stage at which Re has a full set of witness tuples and each such tuple is
actually special in T . Suppose Re acts with the tuple 〈x, y, z〉 after stage t. Then Re declares
itself satisfied with this tuple and remains satisfied forever since 〈x, y, z〉 is never taken away.
Therefore, Re acts at most once after stage t.

Sublemma 3.13 For each u ∈ T , fs(u) reaches a limit as s→ ∞.

Proof. The value of fs(u) can only change if some requirement Re diagonalizes using a witness
x such that f−1

s (ϕe(x)) ≺ u. However, only requirements Re with e ≤ u can act in this way.
Therefore, once these requirements have stopped acting, the value of fs(u) cannot change.

Sublemma 3.14 Each requirement Re is eventually satisfied.

33

Proof. Let n be the number of copies of I0 created during the construction by requirements
of higher priority. Let s be a stage at which Re has been assigned its final set of tuples,
〈xi, yi, zi〉 for i < e+n+1, and all requirements of higher priority have stopped acting. For a
contradiction, assume that ϕe is an isomorphism from T to T ′. Let t ≥ s be a stage at which
ϕe has converged on all entries in the tuples assigned to Re. Let 〈x′i, y

′
i, z

′
i〉 denote these image

tuples. Since Re did not get an easy win, we can assume that the values in these image tuples
are either in the range of ft or in a copy of I0 constructed by stage t.

For any tuple 〈xi, yi, zi〉 which is mapped by ϕe into a copy of I0, the image tuple 〈x′i, y
′
i, z

′
i〉

is special in T ′ since ϕe is an isomorphism. Also, since the witness tuples for Re have distinct
first components, if two witness tuples are mapped to copies of I0, then these copies are
distinct (or else we win trivially). Therefore, if at least n + 1 many tuples are mapped to
copies of I0, then at least one of these copies of I0 was not created by a requirement of
higher priority. In this case, we immediately diagonalize with such a tuple and Re is won
permanently.

Otherwise, there are at least e + 1 many witness tuples whose images lie in the range of
ft. It is possible that some requirements of lower priority will act in a manner which causes
some of these witness tuples 〈x′i, y

′
i, z

′
i〉 to be contained in a copy of I0 in T ′ at a later stage.

If ever we reach a point where n+ 1 of the witness tuples are in copies of I0, then Re wins as
in the previous paragraph.

If this does not happen, then for at least e+1 many tuples the values of f−1 on each entry
in 〈x′i, y

′
i, z

′
i〉 is not changed by any requirement of lower priority. Each of these tuples sits in

a distinct cone immediately above the root of T ′. Since the requirements Nu for u < e can
only protect e many of these cones, there must be an unprotected image tuple with which Re

enters the concurrent search of conditions (1) and (2). Because ϕe is an isomorphism, by the
∆0

2 approximation to special tuples, Re must eventually see that 〈f−1
t (x′i), f

−1
t (y′i), f

−1
t (z′i)〉

is special. From here, Re will begin the concurrent search procedure and must discover an
embedding as in condition (1). At this point, Re diagonalizes, contradicting the fact that ϕe

is an isomorphism. This finishes the proof of Lemma 3.10.

Lemma 3.15 Let T be a tree of finite height, ω-branching at its root r, such that all nodes
above r are of finite type. Let x0, x1, . . . be the immediate successors of r in T . If I0 is an
isomorphism type such that infinitely many i satisfy T [xi] →֒ I0 and infinitely many j satisfy
both I0 →֒ T [xj] and T [xj] 6 →֒ I0, then T is not computably categorical.

Proof. Let T be the set of all isomorphism types of successor trees above r in T , let F ⊂ T
be the set of types which do not embed into I0 and let E contain those types in F into
which I0 embeds. By Corollary 3.8, E and F − E each has a finite set of minimal elements,
which we denote by E0 and F0, with every element of E lying above an element of E0 (in the
embeddability order), and every element of F −E lying above an element of F0. (Notice that
no element of E can lie below an element of F − E , but it is possible for an element of F − E
to lie below an element of E .) Lemma 3.3 yields a finite collection of finite subtrees, one Si

in each Ji ∈ F0 and one Ri in each Ki ∈ E0, such that no Si embeds into any other Sj or into

34

I0, and no Ri embeds into any other Rj , Sj or I0. The important facts about these relations
are that for all I ∈ T ,

I ∈ F ⇔ ∃Si(Si →֒ I) or∃Ri(Ri →֒ I)

∃Ri(Ri →֒ I) ⇔ I ∈ E .

At each stage s, we define the witness elements w0,s < · · · < wps,s at that stage to be those
nodes x ∈ Ts which we currently think are at the base of a successor tree of the root in T
whose isomorphism type is not in F . More specifically, we look for x satisfying:

• x is an immediate successor of r in Ts; and

• No Si →֒ Ts[x]; and

• No Ri →֒ Ts[x].

Then for each e, we = limswe,s exists, since infinitely many successor trees embed into
I0. We assign e + 1 many witnesses to the requirement Re. (If there are not e + 1 many
witnesses available for Re, then it is not assigned any witnesses.) Because the limit of we,s

exists for each e, each requirement will eventually be assigned a full set of witnesses which
never change. We need e+ 1 many witnesses since at most one witness may be forbidden by
each of the requirements Nu for u < e.

We build T ′ in stages as T ′
s, and we build a ∆0

2-isomorphism f : T → T ′ by finite ap-
proximations fs : Ts → T ′

s. At stage s + 1, we extend fs to fs+1 by adding fresh elements to
T ′

s+1, unless the following conditions hold for some requirement Re and one of its witnesses
we,s. (Here we abuse notation slightly by letting we,s stand for an arbitrary witness node for
Re at stage s. This conflicts with our indexing of the witness nodes above, but it makes the
connection between we,s and the requirement Re clearer.)

• ϕe,s(we,s)↓∈ T ′
s; and

• ϕe,s(we,s) is an immediate successor of fs(r) in T ′
s; and

• No Si →֒ T ′
s[ϕe,s(we,s)]; and

• No Ri →֒ T ′
s[ϕe,s(we,s)]; and

• it is not the case that f−1
s (ϕe,s(we,s)) ≺ u for any u ∈ T with u ≤ e (this represents the

restraint placed on Re by Nu for u < e).

If these conditions hold for some e ≤ s, then let e be the highest priority requirement for
which these conditions hold. We attempt to diagonalize to meet Re by searching for a stage
t > s such that either

1. f−1
s (ϕe(we,s)) is not an immediate successor of r in Tt; or

35

2. Some Si →֒ Tt[f
−1
s (ϕe(we,s))]; or

3. Some Ri →֒ Tt[f
−1
s (ϕe(we,s))]; or

4. There is an immediate successor x of r in Tt such that Tt[x]∩Ts = ∅ and T ′
s[ϕe(we,s)] →֒

Tt[x] and also some Ri →֒ Tt[x].

If any of the first three conditions hold, then we define fs+1 and T ′
s+1 as if no requirement

needed attention. In this case, it appears that ϕe is not an isomorphism since either ϕe(we,s)
is not the base of a successor tree in T ′ or ϕe(we,s) is the base of a successor tree which does
not embed into I0. However, if we = we,s, then we is the base of a successor tree in T which
does embed into I0.

If the fourth condition holds, then we add Tt[x] to our current copy of T , and define fs+1

to map Tt[x] onto T ′
s[ϕe(we,s)], adding fresh elements to T ′ above ϕe(we,s) to form a copy of

Tt[x]. We also add more fresh elements to T ′ to be the new image of Ts[f
−1
s (ϕe(we))] under

fs+1. Thus fs+1 is still an isomorphism, but hereafter T ′[ϕe(we,s)] will grow as a copy of some
successor tree containing Ri. By definition of Ri, this successor tree cannot be embedded into
I0. On the other hand, if we = we,s, then T [we] can be embedded into I0. Hence Re will be
satisfied.

If none of conditions 1-3 hold for any t, then T [f−1
s (ϕe(we,s))] does not lie above any

minimal element of F , so it must embed into I0. Since infinitely many successor trees above
r are supertrees of I0 and do not embed into I0, we see that condition 4 must then apply for
some t > s. Therefore, this search procedure terminates.

If at some later stage s′ we have we,s′+1 6= we,s′, then Re and all lower priority requirements
are injured at that stage. This happens if we,s′ is no longer an immediate successor of r, or
if some Ri or Si embeds into Ts′[we,s′]. However, such injuries can only happen finitely often
for each e, since we,s converges. Therefore, each requirement Re only acts finitely often.

Since Re has e+ 1 many witnesses and the requirements Nu for u < e protect at most e
many successor trees of the root in T from having the value of fs changed on them, Re must
have some witness for which it is allowed to redefine fs if it needs to in order to diagonalize.
(As in the previous construction, if ϕe is not one-to-one or does not respect the ordering, then
we win trivially and we cease trying to diagonalize.) Therefore, every requirement of the form
Re is eventually satisfied. Finally, notice that f−1

s (y) only changes if y ∈ T ′
s[ϕe,s(we,s)] and

Re acts at stage s. In this case, some Ri →֒ T ′
s+1[ϕe,s(we,s)] and therefore no Rk strategy ever

redefines f−1
t for t > s on this subtree in an attempt to diagonalize again. Therefore, f−1

s (y)
reaches a limit for each y ∈ T ′.

The tree T ′ built by this process is computable, and isomorphic to T , since at each stage
we have a homomorphism fs from Ts into T ′

s, with fs(r) = r, whose range is all of T ′
s. Our

construction makes clear that f = lims fs exists, since each Re requirement must respect the
Nu requirements for u < e. This finishes the proof of Lemma 3.15.

Lemma 3.16 Let T be a tree of finite height with root r, such that all nodes above r are
of finite type. Suppose there exist distinct isomorphism types I0, I1, . . . and Iω appearing as

36

successor trees above r. Suppose further that for every i, Ii →֒ Iω, and that Iω appears
infinitely often as a successor tree above r. Then T is not computably categorical.

Notice that we do not require that I0, I1, . . . Iω be the only isomorphism types appearing
as successor trees above r.

Proof. First we apply Corollary 3.8 to the set of successor trees above r which do not embed
into Iω, and use Lemma 3.3 to choose finite subtrees R1, . . . Rm of the minimal elements of
this set, such that no Rj embeds into Iω.

Case 1. If there are only finitely many i such that Ii →֒ Iω 6 →֒ Ii, then we will appeal
to Lemma 3.19. Since there are finitely many such Ii, there is a finite subtree S ⊆ Iω such
that S 6 →֒ Ii for any such Ii. Hence the immediate successors x of r such that T [x] ≡ Iω are
precisely those x satisfying:

• (∀s)(∀j)Rj 6 →֒ Ts[x]; and

• (∃s)S →֒ Ts[x].

This set is ∆0
2 and infinite, and for all x0 and x1 in the set we have T [x0] →֒ Iω →֒ T [x1], so

indeed Lemma 3.19 will apply. (Also, the proof of Lemma 3.19 will not depend on Lemma
3.16 at all.)

Case 2. Now suppose that there are infinitely many i such that Ii →֒ Iω 6 →֒ Ii. In this
case, we build T ′ and an embedding f : T → T ′ such that T ′ is equal to the range of f plus
extra copies of Iω added as immediate successors of the root. Because Iω occurs infinitely
often as a successor tree of the root in T , we have that T and T ′ are isomorphic. As before,
we build T ′ and f in stages such that at each stage s, T ′

s is equal to the range of fs plus
finitely many copies of Iω.

We pick one immediate successor y0 of r in T such that T [y0] ∼= Iω, and use this finite
information to identify our witness nodes. Our goal is to identify witness nodes x ∈ T such
that T [x] →֒ Iω 6 →֒ T [x] and then to diagonalize by making T ′[ϕe(x)] ∼= Iω. Because T [x] →֒ Iω
if and only if for each Ri, Ri 6 →֒ T [x], we can measure that x is an immediate successor of the
root such that T [x] →֒ Iω in a ∆0

2 way. To measure whether Iω 6 →֒ T [x], at stage s, for each
x which is an immediate successor of r in Ts, we define

t(x, s) = µt[t ≥ x & Tt[y0] 6 →֒ Ts[x]].

Then we choose the witness nodes w0,s, . . . wps,s to be those x which are successors of the root
in Ts (and hence for which t(x, s) is defined) and no Rj embeds into Ts[x]. We index these
witnesses so that

t(w0,s, s) ≤ t(w1,s, s) ≤ · · · ≤ t(wps,s, s)

with we,s <N we+1,s for any e such that t(we,s, s) = t(we+1,s, s).
Clearly, if x appears as a witness node at infinitely many stages s, then x must be an

immediate successor of r and T [x] →֒ Iω. Moreover, for an immediate successor x such that

37

Iω →֒ T [x], we must have lims t(x, s) = ∞. On the other hand, if T [x] is of one of the infinitely
many types Ii for which Iω 6 →֒ Ii, then Iω 6 →֒ T [x], and there is some t and some finite tree
Si such that Si ⊆ Tt[y0] and Si 6 →֒ T [x]. Therefore, lims t(x, s)↓≤ t. Hence for each of these
latter values of x, there must be an e with limswe,s ↓= x. We write we for this x, and note
that since there are infinitely many such x, the limit we must exist for all e. This gives us our
witness nodes. We assign e + 1 many witness to the requirement Re. (As before, we abuse
notation when we describe the action of requirement Re at stage s by denoting its witness by
we,s.)

At stage s+ 1 of the construction, we extend our previous map fs to Ts+1. We do this by
adding fresh elements to the image T ′

s+1, unless some requirement Re requires attention. We
say that Re requires attention if there exists a witness we,s for Re such that ϕe,s(we,s)↓ (say
ϕe,s(we,s) = y), y is an immediate successor of the root in T ′

s, y is in the range of fs, and it
is not the case that f−1

s (y) ≺ u for some u < e. Notice that if Re does not require attention
because y is not an immediate successor of the root in T ′, then we win Re trivially as long
as we,s = we. If y is a successor of the root of T ′

s but Re does not require attention because
y is not in the range of fs, then y is the root of a tree of type Iω in T ′. Again, if we,s = we,
then we have won Re trivially. And if y ≺ u for some u < e, then we do not allow Re to act
on this witness we,s since the action could damage the negative requirement Nu.

If Re is the highest priority requirement needing attention, then we check if some Rj

embeds into T ′
s[y]. If so, then we know T ′

s[y] 6 →֒ Iω. Assuming we,s turns out to be a true
witness, T [we,s] 6∼= T ′[y] and we have won Re. If no Rj embeds in T ′

s[y], then we attempt to
diagonalize. Search concurrently until we find

1. some Rj →֒ Tt[f
−1
s (y)] for t ≥ s; or

2. some witness w0,t, . . . , we,t changes; or

3. an embedding of T ′
s[y] into Iω appears.

By the definition of Rj , we know that this search procedure must terminate.
If the search in (1) or (2) is successful, then we do not need to do anything for Re. Either

we do not really believe that we,s is the correct witness, or we believe that when we get to
stage t we will win Re easily because Rj →֒ T ′

t [y].
If the search in (3) is successful, then we add fresh elements to T ′

s+1 above y to make
T ′

s+1[y]
∼= Iω. (Notice that since Iω is of finite type, we can execute this step all at once, using

a nice copy of Iω constructed from only finitely much information.) Also, add more fresh
elements to T ′

s+1 to be the new image of Ts[f
−1
s (y)] under fs+1. Thus, we have redefined f on

Ts[f
−1
s (y)], but as in the previous arguments, because Re must respect Nu for u < e, this can

happen only finitely often. Moreover, if we = we,s, then T [we] will not be isomorphic to Iω,
hence not isomorphic to T [ϕe(we)], satisfying requirement Re. Finally, notice that for y ∈ T ′,
we only change f−1

s (y) when we remove y from the range of f . However, when this happens,
y permanently becomes part of an auxiliary copy of Iω.

38

The next lemma is not a separate case of our overall proof of Proposition 3.1, but it will
be used later in the proof of Lemma 3.18.

Lemma 3.17 Let T be a tree of finite height with root r. Let x0, x1, . . . be the immediate
successors of r in T , and assume that every xi is of finite type. Moreover, assume that there
exists an infinite ∆0

2 set G ⊆ {xi : i ∈ ω} such that

1. if xi ∈ G and T [xi] ∼= T [xj], then xj ∈ G,

2. every T [xi] with xi ∈ G embeds into infinitely many T [xj] with xj ∈ G, and

3. for each xi ∈ G, {xj : T [xj] ∼= T [xi]} is a finite subset of G.

Then T is not computably categorical.

Proof. We construct a computable tree T ′ isomorphic to T , such that for every e, if ϕe were
an isomorphism from T to T ′, then one of the ∼=-classes described in the lemma would be
infinite. Let Gs be a computable approximation to G, with every Gs finite. At each stage s
we define a finite subtree Ds ⊂ T with Ds ⊆ Ds+1 and an isomorphism fs : Ds → T ′

s, such
that fs converges to a ∆0

2-isomorphism f : T → T ′. We will choose infinitely many witness
elements wj

i for each (total one-to-one) function ϕi.
We begin by motivating our strategy for a single Re requirement. For simplicity of nota-

tion, we assume thatG is computable, as adding the ∆0
2 approximation toG is straightforward.

Re begins with a single witness w0
e ∈ G and waits for a stage s such that ϕe(w

0
e) converges.

If ϕe(w
0
e) ∈ T ′

s and f−1
s (ϕe(w

0
e)) 6∈ G, then Re is satisfied and we do not perform any action.

(Notice that by condition (1) on G, if some x ∈ G we have f−1(ϕe(x)) 6∈ G, then ϕe cannot
be an isomorphism from T to T ′.) Otherwise, if either ϕe(w

0
e) 6∈ T ′

s or f−1
s (ϕe(w

0
e)) ∈ G, we

begin our action for Re.
Search for a t > s and an x ∈ T such that x ∈ G, T ′

s[ϕe(w
0
e)] →֒ Tt[x], and Tt[x] is disjoint

from Ds. If f−1
s (ϕe(w

0
e)) is in G, then we must find such an x since T [f−1

s (ϕe(w
0
e))] embeds

into T [y] for infinitely many y ∈ G. (If ϕe(w
0
e) 6∈ T ′

s, then the embedding condition is trivial
and we merely look for Tt[x] which is disjoint from Ds.) We now define the map fs+1 by
changing the map fs on Ts[f

−1
s (ϕe(w

0
e))]. Use the embedding of T ′

s[ϕe(w
0
e)] into Tt[x] and add

extra elements to T ′
s+1 to make fs+1 map Tt[x] onto T ′

s+1[ϕe(w
0
e)]. Add more new elements

to T ′
s+1 to serve as the new image of Ts[f

−1
s (ϕe(w

0
e))] under fs+1. For all other points in Ds,

let fs+1 = fs. We now have defined fs+1 on Ds+1, which is equal to Ds plus Tt[x]. Finally,
we define w1

e = x. (Notice that we can speed up the approximation of T to assume that
Ds+1 ⊆ Ts+1.)

Repeat the above procedure, but working with w1
e instead of w0

e . Notice that if we keep
extending our map fs+1 to copy the successor trees it is currently defined on, we will get that
f is an isomorphism between T ′[ϕe(w

0
e)] and T [w1

e]. Therefore, if ϕe is an isomorphism,

T [w0
e]
∼= T ′[ϕe(w

0
e)]

∼= T [w1
e].

39

By repeating this process (and assuming that ϕe continues to converge on all of our witnesses
wn

e and is well behaved – see below), we get a sequence of witnesses wn
e such that if ϕe is an

isomorphism, then T [wn
e] ∼= T [wn+1

e] for all n. This contradicts the fact that the isomorphism
types given by nodes in G occur finitely often. Notice that we change the map f as we go from
fs to fs+1 on Ts[f

−1
s (ϕe(w

n
e))] and we also change the map from f−1

s to f−1
s+1 on T ′

s[ϕe(w
n
e)].

Since we are not turning T ′
s[ϕe(w

n
e)] into an auxiliary tree, we will need to explicitly address

the requirements Mu for the first time.
By well behaved, we mean that ϕe is one-to-one, that it maps the root to the root, that

it maps comparable nodes to comparable nodes, and that it maps incomparable nodes to
incomparable nodes. If we ever see any of these conditions violated, then we know ϕe is not
an isomorphism and we can stop working on Re. In all of the work below, we assume that
we stop work on Re if we get an easy win because it is not well behaved in this sense.

Combining the basic strategy for Re with the Ni strategies is a little more subtle than
in previous constructions because one Re requirement can cause infinitely many changes in
the map fs. Before redefining fs on Ts[f

−1
s (ϕe(w

n
e))], we check if f−1

s (ϕe(w
n
e)) ≺ m for any

m from 0, . . . , 〈e, n〉 in T . If not, then we act as above. If it is below any such m, then we
cannot redefine fs on this subtree. We also employ a similar strategy to deal with the Mi

strategies. That is, if ϕe(w
n
e) ≤ 〈e, n〉, then Re cannot use wn

e as a witness since this would
involve redefining f−1

s (ϕe(w
n
e)). In either case, Re must repick its witness wn

e . If n > 0, we
declare that wn

e is undefined. This forces us to repeat the cycle above for wn−1
e and gives

us a new (large) witness wn
e . Assuming that ϕe is well behaved, this new witness gives us

a different value for f−1
s (ϕe(w

n
e)) (which we assume is in G). Since each point in G is an

immediate successor of the root in T , we will have to repeat this process at most 2〈e, n〉 + 1
many times before we are guaranteed to be allowed to redefine fs. If n = 0, then we need to
choose a new initial witness w0

e . To do this, we declare that the old w0
e is disallowed for Re

and we let the new w0
e be the least element of G which has not been disallowed for Re. If

ϕe is well behaved, then we will have to redefine our initial witness in this fashion at most
2〈e, 0〉 + 1 many times. Therefore, we eventually get our infinite sequence of witnesses and
win.

We also need to see how different R strategies work together. Each Re will have some
finite (possibly empty) list of witnesses w0

e , . . . , w
n
e at stage s. We say that wi

j has higher
priority than wp

q if 〈i, j〉 < 〈p, q〉. Consider an Re strategy working with other R strategies. If
Re has a largest witness wn

e and ϕe(w
n
e) converges with f−1

s (ϕe(w
n
e)) ∈ G, then in addition to

checking whether f−1
s (ϕe(w

n
e)) is below any of the numbers 0, . . . , 〈e, n〉 in T , Re also checks

whether f−1
s (ϕe(w

n
e)) is equal to any other wm

i . If so, then changing fs on Ts[f
−1
s (ϕe(w

n
e))]

could damage the requirement Ri. Therefore, Re checks if the node wm
i has higher priority

than wn
e . If so, then Re cannot change the map on this cone, so it acts as when it was

restricted by an N or M requirement. If not, then it causes all wm
i of lower priority to

become undefined and goes ahead with its action as above.
Notice that this action may allow Ri to injure Re even though e < i. However, only

finitely many witnesses wm
i can injure a given wn

e , and therefore, wn
e will eventually reach a

40

limit which Re can use.
We now present the full construction, which is nothing more than the above description

with the ∆0
2 guessing for elements of G. We start by setting D0 = {r} and T ′

0 = {0}, with
f0(r) = 0.

At stage s + 1, we make a preliminary definition of our witnesses by induction on i from
0 ≤ i ≤ s. If w0

i,s ∈ Gs, then let w0
i,s+1 = w0

i,s and wj
i,s+1 = wj

i,s for all j > 0 such that wj
i,s is

defined. If w0
i,s 6∈ Gs or w0

i,s is not defined, then w0
i,s+1 and all lower priority witnesses wn

e,s+1

are undefined (even if some of these were defined earlier in the induction). Next, we check if
some new initial witness w0

k,s+1 can be defined. If there is a k ≤ s and an element x ∈ Gs

such that w0
k,s+1 is undefined, x /∈ {wj

i,s+1 : 〈i, j〉 < 〈k, 0〉}, and x is not disallowed for w0
k,

then we let w0
k,s+1 be the least such x. Make all lower priority witnesses undefined.

We then find the least pair 〈i, j〉 such that ϕi,s is well behaved, wj
i,s+1 is defined, wj+1

i,s+1 is

not defined, ϕi,s(w
j
i,s+1) ↓, and either f−1

s (ϕi,s(w
j
i,s+1)) ∈ Gs or ϕi,s(w

j
i,s+1) /∈ T ′

s. (If there is
no such pair, we end the stage, let Ds+1 = Ds ∪ {s} and fs+1 = fs plus add one fresh element
fs+1(s) to T ′

s+1 if needed.) If ϕi,s(w
j
i,s+1) ∈ T ′

s, then check the following two conditions for

compatibility with the appropriate N and R requirements. (In the case when ϕi,s(w
j
i,s+1) 6∈ T ′

s,
we can skip these checks.)

First, check for compatibility with the N and M requirements. If ϕi(w
j
i,s+1) > 〈i, j〉 and

there is no k ≤ 〈i, j〉 such that f−1
s (ϕi(w

j
i,s+1)) ≺ k in Ts, then go to the check in the next

paragraph. Otherwise, if j > 0, declare wj
i,s+1 undefined and begin the next stage. If j = 0,

then declare w0
i,s+1 disallowed for w0

i , make w0
i,s+1 undefined and go to the next stage. (In

both of these cases, we extend Ds to Ds+1 = Ds ∪ {s}, add an extra element to T ′
s+1, and

define fs+1 on this new element if necessary.)
Second, check for compatibility with the R requirements. If there is no higher priority

wn
e,s+1 such that ϕi(w

j
i,s+1) = fs(w

n
e,s+1), then go to the next paragraph. Otherwise, if there

is such a wn
e,s+1 and j > 0, declare wj

i,s+1 undefined and begin the next stage. If j = 0, then
declare w0

i,s+1 disallowed for w0
i , make w0

i,s+1 undefined and go to the next stage. (Handle
Ds+1, T

′
s+1 and fs+1 as in the previous paragraph.)

If both of these checks are successful, search for the least stage t > s+ 1 such that either

• ∃x ∈ Gt(Tt[x] ∩Ds = ∅ & T ′
s[ϕi(w

j
i,s+1)] →֒ Tt[x]); or

• ϕi,s(w
j
i,s+1) ∈ T ′

s and f−1
s (ϕi,s(w

j
i,s+1)) /∈ Gt.

In the latter case we repeat the above process for the next pair 〈i, j〉 ≤ s which appears
to need attention. In the former case, we set wj+1

i,s+1 = x, add elements to T ′
s+1 above (and

possibly including) the node ϕi(w
j
i,s+1) to make a copy of Tt[x], and define fs+1 to map Tt[x]

onto these elements, according to the embedding we found. If this requires redefining fs+1 on
elements of Ds which had mapped into T ′

s[ϕi(w
j
i,s+1)] under fs, we add fresh elements to T ′

s+1

to be their images. For all other elements of Ds, fs+1 takes the same value as fs. We add the
elements of Tt[x] to Ds+1 and we enumerate s into Ds+1, adding a fresh element as its image
in T ′

s+1 if necessary. Thus T ′
s+1 is the bijective image of Ds+1 under fs+1.

41

We claim that the search for stage t must eventually terminate. If f−1
s (ϕi(w

j
i,s+1)) /∈ G,

this is clear. If f−1
s (ϕi(w

j
i,s+1)) ∈ G, then there are infinitely many other nodes x ∈ G such

that T [f−1
s (ϕi(w

j
i,s+1))] →֒ T [x]. Eventually we find a node x (in Gt but not necessarily in G)

with such an embedding, such that T [x] ∩Ds = ∅, and we use it. Finally, if ϕi(w
j
i,s+1) /∈ T ′

s,

then T ′
s[ϕi(w

j
i,s+1)] is considered to be empty, hence embeds trivially into Tt[x] for the first

x /∈ Ds to appear in any later Tt ∩Gt.
The verification that the construction succeeds is essentially as described in the informal

setting. The witness w0
0,s can only be changed if it leaves Gs or if ϕ0(w

0
0,s) converges either

to 0 or such that f−1
s (ϕ0(w

0
0,s)) ≺ 0 in T . Therefore, this witness is only injured finitely

often due to the ∆0
2 nature of G and is injured at most once by each of the requirements

N0 and M0. Since no other requirement can injure w0
0,s, this witness eventually reaches its

final value. Similarly, for each wj
i,s, once the higher priority witnesses have reached their final

values (which may include never being defined again), this witness suffers finite injury due
to the fact that G is ∆0

2, finite injury due to the restraints of N and M, and finite injury
due to the restraints of the higher priority witnesses for R requirements. Therefore, for every
witness wj

i,s, there is a stage t such that either wj
i,s has stabilized by stage t or wj

i,s is never
defined after stage t.

Since each witness stabilizes, Ri only changes fs finitely many times for each potential
witness wj

i,s. Therefore, because of the restraint imposed by the N requirements, f(x) =
lims fs(x) exists for all x ∈ T and because of the restraint of the M requirements, f−1(y) =
lims f

−1
s (y) exists for all y ∈ T ′. Thus f gives a ∆0

2-isomorphism from T to T ′.
If ϕi is indeed well behaved and total, then we define a growing sequence of nodes

w0
i,s, . . . , w

j
i,s which eventually settle down to w0

i , . . . , w
j
i . If f−1(ϕi(w

j
i)) /∈ G, then ϕi cannot

be an isomorphism, since the lemma assumes that if T [x] ∼= T [y], then (x ∈ G ⇐⇒ y ∈ G).
If f−1(ϕi(w

j
i)) ∈ G, then eventually the second clause in the search for stage t will never again

apply, and we will find a t and an x which we define to be wj+1
i .

Once wj+1
i has converged, we define fs(w

j+1
i) = ϕi(w

j
i). This action may be injured finitely

many times, but eventually it settles on a final wj+1
i with f(wj+1

i) = ϕi(w
j
i). We know that

f is an isomorphism from T to T ′. If ϕi were an isomorphism as well, then we would have

T [wj
i]
∼= T ′[ϕi(w

j
i)]

∼= T [wj+1
i]

for every j, the first isomorphism being ϕi and the second being f−1. But w0
i ∈ G (since we

check this immediately at every stage), and wk
i 6= wj

i for all k 6= j, since each new wk
i is always

chosen as a node in T not yet in the domain Ds of fs. This contradicts the assumptions of
the lemma, so T and T ′ cannot be computably isomorphic.

Lemma 3.18 Let T be a tree of finite height, such that the root r has infinitely many imme-
diate successors x0, x1, Assume that all nodes above r are of finite type, and that there
are infinitely many isomorphism types in the set {T [xi]}. Suppose that only finitely many of
these isomorphism types appear infinitely often as successor trees above r, and that for each

42

such type I, only finitely many other types appearing above r embed into I. Then T is not
computably categorical.

Proof. Let T be the set of isomorphism types of successor trees in T and let I be the set
of types in T which embed in any of the infinite-occurring types (including the infinitely-
occurring types themselves). By assumption I is finite. We let {Si} be a finite collection of
finite trees such that no Si embeds into any element of I, yet every T [xi] /∈ I has some Si

as a subtree. (Here we use Corollary 3.8 and Lemma 2.9.) The elements of I are precisely
those types into which no Si embeds. Therefore, there is a ∆0

2 guessing process to identify all
successor trees above r whose type is in I.

Notice further that by Corollary 3.6, we infer that of the elements of T −I, all but finitely
many embed into infinitely many other elements of T − I. Let

U = {xi : T [xi] ∈ T − I & (∃m)(∀j ≥ m)T [xi] 6 →֒ T [xj]}

be this finite set. We will concern ourselves with the set F of immediate successors x of r in
T such that T [x] ∈ T − I and T [x] embeds into infinitely many other elements of T − I. We
have a ∆0

2-approximation Fs for F , and we may assume that each Fs ∩ U = ∅.
Case 1. Suppose there are only finitely many equivalence classes E0, . . . Ep under ≡ among

{T [x] : x ∈ F}. At least one must be infinite, so assume that E0, . . . Eq are the infinite classes
and Eq+1, . . . , Ep are the finite ones. Since each isomorphism type occurs only finitely often in
each Ei, we have that the set

X = {x ∈ F : T [x] ∈ Eq+1 ∪ · · · ∪ Ep}

is finite. Let G = F −X. Since F is ∆0
2 and X is finite, G is ∆0

2. G is exactly the kind of set
to which we can apply Lemma 3.17. Therefore, T is not computably categorical.

Case 2. Suppose there are infinitely many equivalence classes under ≡ among {T [x] :
x ∈ F}. We will write Ej →֒ Ek to indicate that some (hence all) elements of Ej embed into
some (hence all) elements of Ek. For each class Ek, pick one representative T [xik], and apply
Corollary 3.6 to {T [xik] : k ∈ ω}. (We do not need this procedure of picking elements to
be computable since we only use it to obtain a finite amount of information detailed below.)
This gives us a K such that for all k ≥ K, there are infinitely many j > k such that Ek →֒ Ej.

Consider the equivalence classes E0, . . . , EK−1. Divide these classes and renumber them so
that E0, . . . , Eq are the finite ones. Then, just as above in Case 1, the set

X = {x ∈ F : T [x] ∈ E0 ∪ · · · ∪ Eq}

is finite. Therefore, G = F −X is a ∆0
2 set to which we can apply Lemma 3.17. Therefore,

T is not computably categorical.

Oddly, the remaining case turns out to be the hardest. This is the situation in which
we have infinitely many isomorphism types appearing above r, all of finite type, with every

43

such isomorphism type embedding into every other one. One would think that with so many
embeddings at hand the proof would be easy. Alternatively, Lemma 2.10 shows that infinitely
many of these types must fail to be of strongly finite type, hence must have embeddings
available within them to satisfy all the requirements. Curiously, the presence of so many
types and embeddings interferes with the availability of non-strongly-finite types, and vice
versa, so that in the end we must use a completely different approach. The following lemma
will not be used directly in the proof of Proposition 3.1, but it is necessary to finish the proof
of Case 1 in Lemma 3.16.

Lemma 3.19 Let T be a tree of finite height with root r, such that every successor tree above
r is of finite type. Suppose there is an infinite set X = {x0, x1, . . .} of immediate successors
of r satisfying:

1. X is ∆0
2; and

2. For all xi, xj ∈ X, T [xi] ≡ T [xj]; and

3. {T [xi]} includes infinitely many distinct isomorphism types.

Then T is not computably categorical.

Proof. To simplify the proof, we will assume that X contains every immediate successor of r
in T . The finite-injury construction we present can readily be adapted to the more general
case, using ∆0

2-approximations to X. We begin by presenting the particular case in which
ht(T) = 4. As no tree of height < 4 satisfies the hypotheses of the lemma, this will serve as
the base case for an induction on the height of T . Suppose ht(T) = 4 and every successor tree
above r embeds into every other such successor tree, and there are infinitely many isomorphism
types occurring among these successor trees and they are all of finite type. Each time a node
becomes established at level 1 in T , we know that it is the root of a successor tree, so we
define it to be the next xi. Since the successor trees all embed into each other, they must all
have the same height – namely 3, since ht(T) = 4 – so every node at level 1 of T eventually
is identified as xi for some i. Also, it is not hard to see that since each T [xi] has finite type,
each T [xi] must be ω-branching at its root for the conditions of the lemma to hold.

If y is an immediate successor of any xi, then the isomorphism type of T [y] is determined
by the number of immediate successors y has. By Lemma 3.9, since T [xi] ≡ T [xj] are finite
type trees, they have exactly the same infinitely occurring successor trees. Therefore, there
is a finite list n1 < n2 < · · · < nk such that nj ≤ ω for each 1 ≤ j ≤ k, and for every i, the
successor trees in T [xi] which occur infinitely often are the nj-branching trees of height 2 for
1 ≤ j ≤ k. We next show that k = 1. Suppose that k > 1. Under this assumption, T [xi] has
an infinitely occurring successor tree which embeds into a nonisomorphic infinitely occurring
successor tree. Since this violates the definition of finite type, we must have k = 1. Let γ = n1

be such that the unique infinitely occurring successor tree in every T [xi] is γ-branching.
Furthermore, we claim that for any m such that γ < m ≤ ω, each T [xi] has exactly

the same number of m-branching successor trees. To see this fact, first suppose γ < ω,

44

T [xi] has ui many ω-branching trees, T [xj] has uj many ω-branching trees and ui < uj.
We know T [xj] →֒ T [xi], so each ω-branching successor tree in T [xj] must map into an
ω-branching successor tree in T [xi], and because of the heights of the trees, two different
ω-branching successor trees in T [xj] cannot map into the same ω-branching successor tree in
T [xi]. Therefore, we have an immediate contradiction. Second, fix the maximal m < ω such
that γ < m and T [xi] has vi many m-branching successor trees for some vi > 0. (Because
T [xi] has finite type, it has only finitely many different isomorphism types among its successor
trees. Therefore, either there is no m with γ < m < ω such that T [xi] has an m-branching
successor tree, in which case we have established our claim, or there is a maximal such m.)
Each of these trees must map into a successor tree in T [xj] which is at least m-branching
(but not ω-branching since those successor trees are already mapped to by the ω-branching
successor trees in T [xi]) and no two such m-branching successor tree in T [xi] can map into
the same successor tree in T [xj]. Therefore, T [xj] must have at least vi many successor trees
which are at least m-branching but not ω-branching. However, if T [xj] has a successor tree
that is more than m-branching but less than ω-branching, then it has no place to map to
under T [xj] →֒ T [xi]. Therefore, T [xj] has at least vi many successor trees which are exactly
m-branching. By switching the roles of T [xi] and T [xj], we see that T [xj] must have exactly
vi many successor trees which are m-branching. We can obviously continue this process with
the next largest number which is less than m, greater than γ and such that T [xi] has at least
one successor tree with that number of branches.

We now know that any T [xi] and T [xj] must look identical with respect to their successor
trees which are more than γ-branching. However, there must be infinitely many different
isomorphism types among the T [xi] trees. These differences in isomorphism type must be
due to the successor trees which are less than γ-branching. Therefore, infinitely many T [xi]
contain a node w at level 1 in T [xi] which has fewer than γ immediate successors. We will use
as our witness nodes those nodes w with < γ immediate successors, with at most one witness
node in each successor tree. When necessary to diagonalize, we add more successors to ϕe(w)
in T ′ so that it has exactly γ successors.

We identify the witness nodes as follows. At any given stage, the witness node in T [xi]
should be that node x ∈ T [xi] with < γ successors which has levelTs

(x) = 2 and which has
gone the longest without acquiring any new successors. That is, for each x at level 1 in T [xi],
let

tx = (µt ≥ x)[all successors of x in Ts are in Tt],

and choose as the witness node in T [xi] at stage s the smallest x such that tx is minimal.
However, it is possible that T [xi] contains no nodes with < γ successors, so we must search

among different successor trees. At first, we choose w0,s to be the witness node in T [x0]. If
this witness node changes at some subsequent stage s1, then we choose w0,s1+1 to be the
witness node in T [x1]. If at a subsequent stage s2 the witness node in T [x1] changes, then we
change w0,s2+1 back to the (current) witness node in T [x0], then T [x1] again, then T [x2], then
back to T [x0], and so on. In general, let sk be the next stage (if any) after sk−1 at which w0,s

changes, and choose w0,1+sk
to be the witness node in T [xi] at stage 1 + sk, where k = 〈i, j〉.

45

The properties proved above guarantee that there must be infinitely many T [xi] containing
nodes x such that x is an immediate successor of xi and such that x has < γ successors, so
eventually w0,s converges to some w0. At the same time, we do the same for the witness node
w1,s for R1, looking only at witness nodes in successor trees T [xj] in which w0,s has never yet
been located, and so on by a standard finite-injury process.

Sublemma 3.20 For every e, we = lims we,s exists and has < γ successors in T .

Proof. Assume by induction that the lemma holds for all i < e. Then each of w0, . . . we−1

lies above one of x0, . . . xk, for some k. By our assumptions about T , there must be a node
y in some T [xj] with j > k such that levelT (y) = 2 and y has < γ successors. Assume that
this y is chosen to have minimal ty among all such nodes in T [xj]. (Hence y acquires no new
successors after stage ty. If there is more than one y with minimal ty, we take y to be the
smallest of them.)

Pick a stage s0 by which x0, . . . xj are all established, so that T [xj] will be available to us
when we define we,s at all s ≥ s0. (Hence we,s will never be undefined after s0.) If we,s fails
to converge to a limit, then it must be in T [xj] at infinitely many stages s, according to our
instructions for choosing we,s. Since ty is minimal, we must have we,s = y at cofinitely many
of the stages such that we,s ∈ T [xj]. Hence we,s = y at some stage s > ty. But then we,s = y
for all subsequent stages s as well, proving the sublemma. (Possibly we,s converged to some
other limit in some other T [xk] instead of converging to y, of course.) However, in any case,
the construction guarantees that the limit must have < γ successors in T .

We build T ′ by copying T at each stage s, with the following provision. Find each e ≤ s
such that we,s is defined and ϕe,s(we,s) ↓ (say y = ϕe,s(we,s)) and f−1

s (y) lies at level 2 in Ts

and has fewer than γ successors in Ts. If there is no such e, simply extend fs to fs+1 by
adding new elements to T ′

s+1. If there is, then for the least such e, add new elements to T ′

so that y has exactly γ successors in T ′. We also add new elements to T ′ to be the image of
Ts[f

−1
s (y)] under fs+1. The elements of T ′

s+1[y] will not lie in the image of the limit f , but T
and T ′ will still be isomorphic, since every xi has infinitely many immediate successors with
exactly γ successors of their own. Notice that as in previous constructions with auxiliary
trees, if a node y ∈ T ′ is removed from the range of f , then it permanently becomes part
of an auxiliary γ-branching subtree of T ′. We have simply added one more such node above
f(xi) in T ′ during this redefinition of f . The only injuries to Re occur when wi,s+1 6= wi,s for
some i < e. Thus we have ensured that y = ϕe,s(we,s) has γ successors in T ′, while we,s has
< γ successors in Ts. If we,s = we, then we,s acquired no new successors in T after stage s,
leaving Re satisfied.

Two minor modifications to this strategy are required for R and N strategies to work
together. First, as we have done before, we assign e+ 1 many witnesses to Re and we check
whether f−1

s (y) ≺ u for u < e before allowing Re to act. This modification insures that
f = lims fs exists and that T ∼= T ′. Second, since there are parts of T ′

s which are not in the
range of fs, it is possible that y lies at level 2 in T ′

s but it is not in the range of fs. In this

46

case, y already has γ successors because of the action of some R requirement. Therefore, if
we,s = we, then Re has already won without needing to act.

We now assume by induction that for all trees T with ht(T) < n satisfying the hypotheses
of the lemma, we have a construction of a tree T ′ which is isomorphic to T but not computably
isomorphic to it. Let ht(T) = n, and suppose that every successor tree above r embeds
into every other such successor tree, and that there are infinitely many isomorphism types
occurring among these successor trees and that they are all of finite type. Each time a node
becomes established at level 1 in T , we know that it is the root of a successor tree, so we
define it to be the next xi. Since the successor trees all embed into each other, they must
all have the same height – namely n − 1, since ht(T) = n – so every node at level 1 of T
eventually is identified as xi for some i.

Notice that for xi and xj at level 1 in T , we have that T [xi] ≡ T [xj] and that both of
these trees are of finite type. Therefore, by Lemma 3.9, the set of isomorphism types which
occur infinitely often among the successor trees of xi in T [xi] is exactly the same as the set of
isomorphism types which occur infinitely often among the successor trees of xj in T [xj]. Let
these types be I1, . . . Ip. We will consider two cases.

Case 1. Suppose there are infinitely many i such that some finite-appearing successor
tree in T [xi] embeds into one of I1, . . . Ip. Then (without loss of generality) there must be
infinitely many i such that some finite-appearing successor tree in T [xi] embeds into I1.
The construction in this case will be much the same as the construction in the case where
ht(T) = 4. The witness nodes will be roots of finite-appearing successor trees in various T [xi],
and we will embed those finite-appearing trees into successor trees in T [xi] isomorphic to I1
when necessary to satisfy the requirements. In this general case, however, it is more difficult
to locate the witness nodes.

Since I1 has strongly finite type, we can use finitely much information to construct a nice
copy of I1. By a nice copy, we mean both that we know the isomorphism type of every subtree
of the form I1[a] and also that x ≺ y implies that x < y. We use this copy of I1, along with
the notion of a basic embedding, to pick out witness nodes in T .

Definition 3.21 Two nodes x and y in a tree S are siblings if they have the same immediate
predecessor in S. (This includes the case x = y.)

Definition 3.22 An embedding ψ : S →֒ T is basic if it maps the root of S to the root of
T and for every pair of siblings y0 < y1 in T , if T [y0] ∼= T [y1] and y1 ∈ range(ψ), then also
y0 ∈ range(ψ) and ψ−1(y0) < ψ−1(y1). (Here, of course, < refers to the standard ordering on
ω, not to the tree structure of T or S.)

The intuition for building a (not necessarily computable) basic embedding is that, having
mapped x to ψ(x), we consider the immediate successors x0, x1, . . . of x in numerical order
(so xi < xi+1 for all i). Having defined ψ on x0, . . . xi, we choose an isomorphism type above
ψ(x) into which to map S[xi+1], and let ψ(xi+1) be the least root y of a successor tree of that
isomorphism type above ψ(x) such that y is not already in the range of ψ. The only problem

47

with this algorithm is that several successor trees from S may have to map into the same
finitely occurring successor tree in T . We show how to handle this problem below. Notice
that for our nice copy of I1, it is computable for finite trees S, uniformly in S, whether a
basic embedding of S into I1 exists, and also whether any specific map ψ : S → I1 is a basic
embedding or not.

We prove the following sublemmas about basic embeddings. Although they apply to any
trees of strongly finite type, we will apply them to our nice copy of I1.

Sublemma 3.23 Let S be a tree with finite type and U be a tree with strongly finite type. If
there is an embedding f : S →֒ U , then there is a basic embedding g : S →֒ U .

Proof. We proceed by induction on the height of U . If U has height 1, then S must have
height 1 and they both consist only of a root. The basic embedding g sends the root of S
to the root of U . Assume U has height greater than 1 and that we know the theorem by
induction for all trees of lower heights.

Fix the embedding f and define g to send the root of S to the root of U . We describe
how g behaves on all successor trees S[x] of the root in S by splitting into two cases. Let
y0, y1, . . . be all the nodes at level 1 in U numbered so that i < j implies yi < yj . Assume that
the successor trees U [yi] for i ≤ n are exactly the successor trees whose isomorphism types
occur only finitely often in U . (The proof below does not depend on the fact that the finitely
occurring successor trees have roots which are less than the roots of the infinitely occurring
successor trees. It does, however, simplify the notation.) We first consider those successor
trees of S that f embeds into some U [yi] for i > n and second we consider those successor
trees of S which f embeds into some yi for i ≤ n.

Let xi0 < xi1 < · · · be the nodes at level 1 in S such that f embeds S[xik] into one of the
infinitely occurring isomorphism types of successor trees in U . Fix jk to be the index of the
node yjk

at level 1 in U such that f : S[xik] →֒ U [yjk
]. Define g on the trees S[xik] by recursion

on k. Let g(xik) = y where y is the ≤N–least node at level 1 in U such that U [y] ∼= U [yjk
] and

y is not in the range of g yet. Since S[xik] →֒ U [y], by induction there is a basic embedding
of these trees. Let g be defined on S[xik] to be such an embedding.

Next, consider the successor trees S[x] in S such that f maps S[x] into one of the finitely
occurring isomorphism types of successor trees in U . Notice that if f maps two successor
trees S[x1] and S[x2] into the same successor tree U [y], then y is not in the range of f . We
consider each of the finitely occurring isomorphism types separately. Fix one of these types
and assume without loss of generality that U [y0], . . . , U [ym] are the successor trees with this
isomorphism type and that y0 < · · · < ym. For i ≤ m, let Yi be the set of nodes x at level
1 in S such that f maps S[x] into S[yi]. We consider first the sets Yi which have size 1 and
then the sets which have size at least 2. (Of course, it is possible that some Yi are empty and
we ignore these sets.)

For each Yi with size 1, fix the unique successor tree in S which maps into U [yi]. Let
xi0 < · · · < xik be the root nodes of these successor trees. Define g(xil) = yl for l ≤ k. Since
we know S[xil] →֒ U [yl], we can extend our definition of g (by the induction hypothesis) to
be a basic embedding between these subtrees.

48

We consider the remaining Yi with size at least 2 individually. Fix such a Yi and let
x0, x1, . . . ∈ Yi be the nodes of level 1 in S such that f embeds S[xk] into U [yi]. (This list
may be either finite or infinite.) Consider an auxiliary tree Si formed by taking a root node
and attaching the trees S[xk] immediately above the root. Let u ≤ m be the least index such
that we have not defined g mapping into U [yu] yet. By our assumptions, we know that Si

embeds in U [yu]. (Notice that this is where we use the fact that Yi has size at least 2. In
this case, the node yi was not in the image of f because f mapped more than one successor
tree into U [yi].) By the induction hypothesis, there is a basic embedding of Si into U [yu].
Let g be the restriction of such a basic embedding to all nodes in Si except the root node.
This definition of g maps all of the S[xk] trees into U in a basic way. (That is, any violation
of the requirement on the images of siblings in the restricted version of g would have been a
violation of the restriction on the basicness of the embedding of Si.) Performing the action
of the last two paragraphs for each isomorphism type of a finitely occurring successor tree in
U completes the description of g.

Sublemma 3.24 Let U be a finite height tree of strongly finite type and let f : U →֒ U .
Then for all x at level 1, we have that f(x) is at level 1 and U [x] ∼= U [f(x)]. (We are not
claiming that f is an isomorphism, which it need not be, but only that these successor trees
are isomorphic.)

Proof. Fix a node x at level 1 in U such that f(x) 6= x. We split into the cases when U [x] is
a finitely occurring isomorphism type and when U [x] is an infinitely occurring isomorphism
type.

Suppose U [x] is a finitely occurring isomorphism type and there is some m < n such that
fm(x) = fn(x). Now f , being an embedding, has a one-to-one inverse g, with dom(g) =
range(f). So fn−m(x) = gm(fn(x)) = gm(fm(x)) = x, forcing

U [x] →֒ U [f(x)] →֒ U [fn−m(x)] = U [x].

Since these are strongly finite trees, U [x] ∼= U [f(x)] by Lemma 2.10, and moreover, 1 ≤
level(f(x)) ≤ level(fn−m(x)) = 1.

Now suppose U [x] is a finitely occurring isomorphism type but there is no m < n such that
fn(x) = fm(x). We first show that there must be a n1 such that level(fn1(x)) > 1. Because
U [x] is a finitely occurring isomorphism type and U has strongly finite type, if U [x] →֒ U [y]
and level(y) = 1, then U [y] is a finitely occurring successor tree. Fix y such that level(y) = 1
and f embeds U [x] into U [y]. There are two possibilities, either y ≺ f(x) (in which case
level(f(x)) > 1 and we are done) or y = f(x) (in which case level(f(x)) = 1). If f(x) = y,
then we repeat the above process to gain information about f 2(x). Since U [y] = U [f(x)] is
a finitely occurring successor tree, f must embed U [f(x)] into a finitely occurring successor
tree U [z] with level(z) = 1. Again, either we have z ≺ f 2(x) (in which case we are done) or
z = f 2(x). In the latter case, we repeat the process again. Each time we repeat this process,
we either find that level(fn(x)) > 1 (and we are finished) or fn(x) is the root of another
finitely occurring successor tree. Since fn(x) 6= fm(x) for all n 6= m, we can never repeat the

49

root of a particular finitely occurring successor tree during this process. Because there are
only finitely many finitely occurring successor trees, this process must stop at some value n1

with level(fn1(x)) > 1.
Let x1 be the node at level 1 such that x1 ≺ fn1(x). We next show that it is not the

case that fk(x1) = x1 for some k. For a contradiction, assume that fk(x1) = x1 for some k.
Then, because f p+k(x1) = f p(x1) for all p, there must be a node y1 such that fn1(y1) = x1.
However, then we have fn1(y1) = x1 ≺ fn1(x), so y1 ≺ x which implies that y1 is the root.
Since f must take the root to the root, this gives the desired contradiction.

Repeating the argument above for x1, there must be an n2 such that level(fn2(x1)) > 1.
Therefore,

level(fn1+n2(x)) > level(fn2(x1)) > 1

and hence level(fn1+n2(x)) > 2. If we now let x2 be the node of level 1 such that x2 ≺
fn2(x1), we can repeat the argument to show there is an n3 such that level(fn1+n2+n3(x)) > 3.
Repeating this process contradicts the fact that U has finite height. Therefore, it cannot be
the case that fk(x) 6= x for all k. We have now shown that f must permute the successor
trees U [x] which have finitely occurring isomorphism types.

It remains to consider x such that U [x] has an infinitely occurring isomorphism type. By
the argument above, f cannot map U [x] into a finitely occurring isomorphism type because
it must permute those types. Therefore, f must embed U [x] into some U [z] which has an
infinitely occurring isomorphism type. However, this means that U [x] ∼= U [z] since U has
strongly finite type and hence we must have f(x) = z.

Sublemma 3.25 If T1
∼= T2 have strongly finite type and f : T1 →֒ T2, then for all x at level

1 in T1, f(x) is at level 1 in T2 and T1[x] ∼= T2[f(x)].

Proof. Let g be any isomorphism from T2 to T1. This sublemma follows from Sublemma 3.24
by considering gf : T1 →֒ T1. Notice that as in the proof of Sublemma 3.24, if T1[x] has
finitely occurring isomorphism type, then T2[f(x)] has finitely occurring isomorphism type.
Furthermore, if y is at level 1 in T2 and T2[y] has finitely occurring isomorphism type, then y
is in the range of f .

Sublemma 3.26 Let U be a finite height tree of strongly finite type, f : U →֒ U , and
k < ht(U). For all nodes x at level k, f(x) has level k and U [x] is isomorphic to U [f(x)].

Proof. This follows by induction on k using Sublemma 3.24.

Sublemma 3.27 Let T1
∼= T2 be finite height trees of strongly finite type. There is exactly

one basic embedding f : T1 →֒ T2 and f is an isomorphism.

Proof. We proceed by induction on the height of T1. The case for height 1 is trivial. Assume
the sublemma holds for all trees of height less than the height of T1. By Sublemma 3.23, we
know that there is a basic embedding f : T1 →֒ T2. We need to show that f is onto (and
therefore is an isomorphism) and is unique.

50

We know that f sends the root of T1 to the root of T2. Consider any node x at level 1
in T2. We have already seen that if x has an infinitely occurring isomorphism type then x
cannot be equal to f(y) where T1[y] has finitely occurring type. Also, if x is not in the range
of f , then we have an immediate contradiction since some z > x with T2[z] ∼= T2[x] must be
in the range of f because T1 has infinitely many nodes u at level 1 with T1[u] ∼= T2[x]. This
contradicts the fact that f is basic. Therefore, x must be in the range of f . Furthermore, if
x is the k-th node at level 1 in T2 with its isomorphism type (where we measure k-th using
the ≤N–ordering), it must be the case that f(u) = x where u is the k-th node in T1 with this
type. Therefore, for nodes at level 1 in T1 with infinitely occurring isomorphism types, the
map f is uniquely determined. By induction, the values of f above these nodes are uniquely
determined and give an isomorphism between the successor trees.

If T2[x] is a finitely occurring type, then we already know that x = f(y) for some y ∈ T1.
By an argument similar to the one above, the value of y is uniquely determined, and by the
induction hypothesis, f is a uniquely determined isomorphism from T1[y] to T2[x].

Sublemma 3.28 For each basic embedding ψ : S →֒ I1, the restriction of ψ to S∩{r, 0, . . . s}
is also a basic embedding. (Here r is the root of S.)

This is clear from the definition of basic embedding.

Sublemma 3.29 Let S and I1 be finite height trees such that S is of finite type and I1 is
of strongly finite type. Suppose every basic embedding S →֒ I1 includes the node y of I1 in
its image. Then there is an s such that every basic embedding of S ∩ {r, 0, 1, . . . , s} into I1
includes y in its image.

It then follows from Sublemma 3.28 that every basic embedding of every S ∩{0, 1, . . . , t} into
I1 with t ≥ s includes y in its image.

Proof. Our argument is purely classical and we do not claim (or need) any effectiveness in
this sublemma. We proceed by induction on the height of I1. The case when I1 has height 1
(and hence consists of only the root) is trivial. Assume that the height of I1 is greater than 1
and that the sublemma holds for all trees of shorter height. We split the argument into two
cases: when y is contained in one of the finitely occurring successor trees in I1 and when y
is contained in one of the infinitely occurring successor trees in I1. It suffices to show that if
y is contained in the range of all basic embeddings, then there is a finite subtree U of S for
which all basic embeddings of U into I1 hit y.

First, consider the case when y is contained in one of the finitely occurring successor trees
of I1. Let S1 be the subtree of S consisting of the root plus all the successor trees which do not
embed into any infinitely occurring successor tree in I1. Let J1 be the subtree of I1 containing
the root and all the finitely occurring successor trees in I1. We denote the successor trees in
J1 by J1[z0], . . . , J1[zl]. Notice that not only does S1 →֒ J1, but there is a basic embedding
S →֒ I1 such that S \ S1 is mapped into I1 \ J1. This basic embedding can be obtained by

51

fixing a basic embedding S1 →֒ J1 and then mapping each successor tree S[x] not in S1 (by
induction on x) by a basic embedding into I1[z] where z is the <-least node at level 1 in I1\J1

which has not yet been mapped into.
We denote the finitely occurring successor trees in S1 by S1[x0], . . . , S1[xk] with the as-

sumption that x0 < · · · < xk. For simplicity of notation, we assume that there is only one
isomorphism type for an infinitely occurring successor tree in S1 (the general case when there
are finitely many such isomorphism types will be clear from the argument below) and we
denote these successor trees S1[y0], S1[y1], . . . with the assumption that y0 < y1 < · · · . We
make no assumptions about the <-ordering between elements xi and yj.

We claim that for any z ∈ J1 at level 1, either infinitely many copies of S1[y0] can be
embedded into J1[z] or else there is a finite upper bound mz on the number of copies of S1[y0]
that can be embedded into J1[z]. To see this fact, consider an auxiliary tree U formed by
taking a root with infinitely many copies of S1[y0] as successor trees. (Notice that since S1[y0]
has finite type, so does U .) Because U has finite type, we know that it embeds into J1[z] if
and only if all of its finite subtrees embed into J1[z]. Therefore, if U 6 →֒ J1[z], then we obtain
a finite bound mz as above. Since there are only finitely many successor trees in J1, we let m′

be a finite number such that for all z ∈ J1 at level 1, if m′ copies of S1[y0] embed into J1[z],
then infinitely many copies of S1[y0] embed into J1[z]. Finally, since there are l + 1 many
successor trees in J1, then we let m = m′(l + 1). The point of m is that we know that if m
many copies of S1[y0] are embedded into J1, then at least m′ many must have been embedded
into some J1[zj] and hence infinitely many copies of S1[y0] could have been embedded into
that successor tree.

We next define a finite tree S ′
1 ⊂ S1 whose basic embeddings into J1 will encode (in a

way made precise below) the possible successor trees J1[v] that a successor tree S1[u] could
be sent to by a basic embedding of S into I1. S ′

1 consists of the root plus successor trees
S ′

1[xi] ⊂ S1[xi] for i ≤ k and S ′
1[y0], . . . , S

′
1[ym]. Each of the S ′

1[yi] trees are isomorphic with
S ′

1[y0] ⊂ S1[y0]. We pick these finite trees to have the following embedding properties, where
z ranges over all nodes at level 1 in J1.

1. S ′
1[xi] 6 →֒ I1[v] for any v ∈ I1 \ J1 (and the same for S ′

1[yi]).

2. S ′
1[xi] →֒ J1[z] if and only if S1[xi] →֒ J1[z] (and similarly for S ′

1[yi]).

3. If S1[xi] →֒ J1[z] only by sending xi to z, then the same property holds for S ′
1[xi] (and

similarly for S ′
1[yi]).

4. Consider all possible choices of nonrepeating sequences u0, . . . , uq with each ua equal
either to some xi (with i ≤ k) or some yj (with j ≤ m). Let U denote the tree formed
by taking a root and successor trees S1[u0], . . . , S1[uq] and let U ′ denote the finite tree
formed by taking a root and successor trees S ′

1[u0], . . . , S
′
1[uq]. Then, U →֒ J1[z] if and

only if U ′ →֒ J1[z].

The fact that we can pick finite subtrees with properties (1), (2) and (4) is clear from Lemma
2.9. To see that we can get property (3), suppose that all finite subtrees of S1[xi] containing

52

xi can be embedded into J1[z] without sending xi to z. Then for one of the finitely many
isomorphism types of the successor trees in J1[z], arbitrarily large subtrees of S1[xi] can be
embedded into this type. But, then S1[xi] can be embedded into a successor tree of J1[z] with
this type, and hence there is an embedding of S1[xi] into J1[z] which does not send xi to z.

Property (1) says that any embedding S ′
1 →֒ I1 must actually send S ′

1 into J1. Properties
(2) and (4) together say that any embedding S ′

1 →֒ J1 can be extended to an embedding
S1 →֒ J1 and hence to an embedding S →֒ I1. Property (3) says that if this extension requires
that a node at level 1 in S1 map to a node at level 1 in J1, then this requirement was already
present for the embedding of S ′

1.
For any basic embeddings f, g : S ′

1 →֒ J1, we say f ∼ g if and only if the following two
conditions hold.

∀i ≤ k ∀j ≤ l
(

(f(xi) ∈ J1[zj] ↔ g(xi) ∈ J1[zj]) ∧ (f(xi) = zj ↔ g(xi) = zj)
)

∀i ≤ m ∀j ≤ l
(

(f(yi) ∈ J1[zj] ↔ g(yi) ∈ J1[zj]) ∧ (f(yi) = zj ↔ g(yi) = zj)
)

It is clear that ∼ is an equivalence relation and that up to ∼ equivalence, there are only
finitely many basic embeddings S ′

1 →֒ J1. Let f0, . . . , fq be a list containing one element from
each equivalence class. For a basic embedding g : S →֒ I1, we say that g ∼ fi if the restriction
of g to S ′

1 is equivalent to fi.
Our definition of m and the properties (1)–(4) above insure that for every basic embedding

g : S →֒ I1, there is an fi such that g ∼ fi and that for each fi, there is a basic embedding
g : S →֒ I1 such that g ∼ fi. It is in this sense that the embeddings f0, . . . , fq encode
information about the possible basic embeddings of S into I1 when restricted to S1.

We use the fi embeddings to prove the sublemma in the case when y is a node in J1. First,
by the properties of the previous paragraph, a node zj at level 1 in J1 is in the range of all
basic embeddings S →֒ I1 if and only if zj is in the range of fi for all i ≤ q. Therefore, the
finite tree S ′

1 is large enough to determine if the roots of the finitely occurring successor trees
in I1 are in the range of all basic embeddings.

Second, suppose that y ∈ J1[zj], but y 6= zj . For each i ≤ q, we define a tree Ui corre-
sponding to fi. Fix i and consider all u ∈ {x0, . . . , xk, y0, . . . , ym} such that fi maps S ′

1[u]
into J1[zj]. We split the definition of Ui into two cases. If fi maps less than m′ copies of trees
of the form S ′

1[ya] into J1[zj], then let Ui consist of a root plus the successor trees S1[u] for
which fi maps S ′

1[u] into J1[zj]. If fi maps at least m′ many S ′
1[ya] trees into J1[zj], then let

Ui consist of a root plus the successor trees S1[xb] for which fi maps S ′
1[xb] into J1[zj] plus

infinitely many successor trees isomorphic to S1[y0]. In either case, we know that Ui embeds
into J1[zj] = I1[zj]. Since the height of I1[zj] is strictly less that the height of I1, we can
apply the induction hypothesis on height from the beginning of the sublemma. There is a
finite subtree U ′

i such that every basic embedding of U ′
i into I1[zj] has y in its range. We

expand each finite tree S ′
1[u] to include the finite tree U ′

i ∩ S1[u]. Once we have expanded S ′
1

by performing this action for each i ≤ q, we have that each basic embedding S ′
1 →֒ J1 must

include y in its range.
We now consider the case when y is an element of one of the infinitely occurring successor

53

trees in I1. We begin by establishing facts about about when an infinitely occurring successor
tree I1[x] is not in the range of every basic embedding S →֒ I1. (Think of x as the node
at level 1 in I1 such that y ∈ I1[x].) First, if there is a basic embedding which sends two
successor trees of S into I1[x], then x is obviously not in the range of this embedding. Second,
if there is some basic embedding f such that x is not in the range of f , then there is a basic
embedding g such that range(g)∩ I1[x] = ∅. To see this second fact, let x = x0 < x1 < · · · be
the nodes at level 1 in I1 with xi ≥ x and I1[x] ∼= I1[xi]. Since f is basic and x 6∈ range(f), we
know that for all i, xi 6∈ range(f). Fix isomorphisms hi : I1[xi] → I1[xi+1] which are also basic
embeddings. (Such maps exist by Sublemma 3.27.) Define g(u) as follows. If f(u) 6∈ I1[xi] for
any i, then g(u) = f(u). If f(u) ∈ I1[xi], then let g(u) = hi(f(u)). Thus, g shifts the image
of f on I1[xi] to I1[xi+1]. Because xi 6∈ range(f), g is a basic embedding.

From the previous paragraph, we see that if x is the node at level 1 in I1 such that y ∈ I1[x],
then x must be in the range of all basic embeddings and each basic embedding maps a single
successor tree S[u] into I1[x]. We next show there is a bound on how big u can be. For a
contradiction, assume that there is no such bound. Let J1, . . . , Jm be the isomorphism types
of successor trees in S that can be embedded into I1[x] by a basic embedding. Assume that
J1, . . . , Jl are types which occur finitely often as successor trees in S and Jl+1, . . . , Jm are types
which occur infinitely often. Because there is no bound on the u such that S[u] is embedded
into I1[x] by a basic embedding, there must be basic embeddings which map all occurrences
of the types J1, . . . , Jl in S as well as arbitrarily many copies of each of the types Jl+1, . . . , Jm

into the successor trees I1[v] with v < x. However, as we saw above, if arbitrarily many
finite copies of some Ji can be embedded into some I1[v], then infinitely many copies can be
embedded into I1[v]. Therefore, there must be a basic embedding which sends all copies of
the types J1, . . . , Jm from S into the successor trees I1[v] for v < x. This means that there is
a basic embedding which does not map into I1[x] at all, contradicting our assumption that y
is in the range of all basic embeddings.

We conclude that if I1[x] ∩ range(f) 6= ∅ for all basic f (and hence x ∈ range(f)), then
there is a bound on the elements u at level 1 such that S[u] is mapped into I1[x] by a basic
embedding. We can therefore limit the “level 1 width” of S which we need to consider when
looking at how much of S is required to force the basic embeddings to intersect I1[x]. This
bound means that by an argument similar to the one when y was assumed to be from a finitely
occurring successor tree in I1, we isolate a finite tree U ⊂ S such that every basic embedding
U →֒ I1 must hit x. From here, we again consider the finitely many successor trees in S which
could map into I1[x] by a basic embedding and apply the inductive hypothesis on the height
to handle the nodes y ∈ I1[x] with y 6= x.

We now begin our description of the construction for Case 1 of Lemma 3.19. The witness
node in T [xi] at stage s will be a node z at level 1 in Ts[xi] such that Ts[z] →֒ I1 but for
which we believe T [z] 6∼= I1. The first condition is easy to check, using our canonical copy of
I1. To satisfy the second condition, we want there to be a basic embedding of T [z] into I1
which is not surjective. Since I1 is of strongly finite type, Sublemma 3.27 will then ensure
that T [z] 6∼= I1, and we will use this fact to diagonalize.

54

At stage s, we define the witness node in Ts[xi] by finding the least pair 〈z, y〉 such that
z is at level 1 in Ts[xi] and there is a basic embedding of Ts[z] into I1 whose image does not
contain y. We set vi,s = 〈z, y〉, since it appears at this stage that T [z] is the successor tree we
want in T [xi], and define this z to be the witness node in T [xi] at stage s.

Sublemma 3.30 lims vi,s converges if and only if there exists z at level 1 in T [xi] such that
T [z] embeds into I1 but is not isomorphic to I1.

Proof. Assume lims vi,s = vi = 〈z, y〉. Then T [z] must embed into I1, by Lemma 2.9. On the
other hand, there must be a basic embedding of T [z] into I1 which omits y from its image,
by Sublemmas 3.23 and 3.29, and then Sublemma 3.27 ensures that T [z] 6∼= I1.

Conversely, suppose that for some z with levelT [xi](z) = 1 we have T [z] →֒ I1 but T [z] 6∼= I1.
By Sublemma 3.23, there is a basic embedding of T [z] into I1, which cannot be surjective
because T [z] 6∼= I1. Thus there must be a least pair 〈z, y〉 such that some basic embedding
of T [z] into I1 omits y. By Sublemma 3.28, we will have vi,s ≤ 〈z, y〉 for all sufficiently large
s. Consider any pair 〈z′, y′〉 < 〈z, y〉. By our choice of 〈z, y〉, no basic embedding of T [z′]
into I1 omits y′, so Sublemma 3.29 ensures that vi,t 6= 〈z′, y′〉 for sufficiently large t. Thus
lims vi,s = 〈z, y〉.

However, it is possible that T [xi] does not contain any finite-appearing successor tree
which embeds into I1, so we must search among different successor trees. At first, we choose
w0,0 to be the witness node in T [x0]. If v0,s1

6= v0,0 at some subsequent stage s1, then we
choose w0,s1

to be the witness node in T [x1] at stage s1. If at a subsequent stage s2 we have
v1,s2

6= v1,s1
, then we change w0,s2

back to the witness node in T [x0] at stage s2, then T [x1]
again, then T [x2], then back to T [x0], and so on, just as in the construction for trees of height
4. By the assumption of Case 1 (which began on page 47), lims vi,s converges for infinitely
many i, so w0,s must eventually converge to some w0. At the same time, we do the same for
the witness node w1,s for R1, looking only at witness nodes in successor trees T [xj] in which
w0,s has never yet been located, and so on by a standard finite-injury process. The following
sublemma is now clear:

Sublemma 3.31 For every e, we = lims we,s exists and T [we] →֒ I1 and T [we] 6∼= I1.

We build T ′ by copying T at each stage, with the following provision. Find each e ≤ s
such that we,s is defined and ϕe,s(we,s)↓ (say y = ϕe,s(we,s)) and f−1

s (y) lies at level 2 in Ts. If
there is no such e, simply extend fs to fs+1 by adding new elements to T ′

s+1. If there is such
an e, then for each such e, we check whether there exists a basic embedding of Ts[f

−1
s (y)] into

I1 (recall that this is a computable condition using our nice copy of I1). If no such embedding
exists, then we are assured that T [f−1

s (y)] 6 →֒ I1, so if we,s = we, then Re will be satisfied.
If such an embedding does exist, then we add elements to T ′

s+1[y] to make it a copy of I1,
and add more new elements to T ′

s+1 to be the new image of Ts[f
−1
s (y)] under fs+1. Hence

T ′[ϕe(we,s)] ∼= I1, so if we,s = we, we have satisfied Re. Notice that fs+1 is no longer onto

55

T ′
s+1 since we have added a copy of I1. However, we know that I1 occurs infinitely often as a

successor tree above xi in T , so T and T ′ are still isomorphic. Ri is injured if we,s+1 6= we,s

for some e < i.
As with the case for trees of height 4, there are two minor modifications necessary for this

strategy. First, we give 2e+1 many witnesses to each Re strategy and force this requirement
to respect Nu and Mu for u < e. That is, Re is forbidden to use we,s if u ≺ f−1

s (ϕe,s(we,s))
for some u < e or if ϕe,s(we,s) < e. The reason for explicitly adding the Mu requirements
will become clear below when we discuss the general case where our set of nodes X from
the statement of Lemma 3.19 is ∆0

2 rather than computable. Second, it is possible that
ϕe(we,s) = y lies in a copy of I1 in T1. In this case, if we = we,s, then Re is satisfied without
any further action.

We end this case with some comments on how to combine the ∆0
2 approximation for the

xi elements with the strategy just described. Suppose we have an element x which we think is
an xi element and we diagonalize at stage s using a successor of x. This means that we want
to create a copy of I1 as a successor tree of T ′[fs(x)]. The worry is that if we put I1 down all
at once, it may turn out that x is not one of the xi elements, and even worse, that x has no
successor tree of type I1. Such an outcome could destroy our isomorphism. Therefore, we fix
an approximation I1,s to I1 by finite subtrees. Instead of putting down all of I1 at once as a
successor tree of T ′[fs(x)], we build up I1 by putting down I1,t at stage t ≥ s. Furthermore,
before putting down I1,t, we check for either

1. evidence that x is not an xi element; or

2. a successor y of x such that y is bigger than any number seen so far in the construction
and I1,t embeds into T [y].

This search procedure must terminate since if x is an xi element, then x has infinitely many
successor trees of type I1. The reason for including clause (2) in the search is that if we find
evidence that x is not an xi element at stage t + 1, then we can use the successor tree T [y]
found at stage t to map to the copy of I1,t currently sitting as a successor tree of T ′

t [ft(x)].
Since we can correct any mistakes caused by the ∆0

2 approximation, it is straightforward to
add it in as a formal part of the above construction. Finally, notice that when we take into
account this ∆0

2 approximation procedure, we can have elements y ∈ T ′ which leave the range
of f and later return to the range of f . This is the reason why we need to explicitly add the
Mu requirements into this construction.

Case 2. If Case 1 (which began on page 47) does not apply, then there are only finitely
many T [xi] in which some finite-appearing successor tree embeds into any of I1, . . . , Ip. We
assume finitely much information, namely the roots of those finitely many successor trees,
and ignore them in our construction, defining the elements xi to be those nodes at level 1 in
T which are not roots of these finitely many successor trees.

Consider any embedding T [xi] →֒ T [xj] among these nodes at level 1 in T . Since no
successor tree which occurs finitely often in T [xi] can embed into any of I1, . . . , Ip, we know
that they must embed into the successor trees which occur finitely often in T [xj]. Of course,

56

the same relation holds for embeddings T [xj] →֒ T [xi]. Therefore, if we let Ti (respectively
Tj) be the tree formed by taking a root and adjoining all of the finitely occurring successor
trees in T [xi] (in T [xj] respectively), then we have Ti ≡ Tj.

Sublemma 3.32 Fix f : Ti →֒ Tj and g : Tj →֒ Ti. Then for any u ∈ Ti at level 1, there is
a v ∈ Tj at level 1 such that Ti[u] ≡ Tj [v], and vice versa.

Proof. Fix any u1 ∈ Ti at level 1 and let v1 ∈ Tj be such that v1 is at level 1 and f maps
Ti[u1] →֒ Tj [v1]. If g maps Tj[v1] →֒ Ti[u1], then we are done, so assume this does not happen.
Let u2 6= u1 be at level 1 in Ti such that g maps Tj [v1] →֒ Ti[u2].

Fix v2 ∈ Tj at level 1 such that f maps Ti[u2] →֒ Tj [v2]. We claim that v2 6= v1. For
a contradiction, suppose that v2 = v1. Then f maps Ti[u2] →֒ Tj[v2] = Tj [v1] and g maps
Tj [v1] →֒ Ti[u2]. Therefore, Ti[u2] ≡ Tj [v1] which means f(u2) = v2 = v1. But, f also maps
Ti[u1] →֒ Tj[v1], so v1 ≺ f(u1). Together, these statements imply that f(u2) ≺ f(u1), which
contradicts the fact that u1 and u2 are incomparable nodes at level 1 in Ti.

We now check whether g maps Tj [v2] →֒ Ti[u1]. If so, then we have

Ti[u1] →֒ Tj [v1] →֒ Ti[u2] →֒ Tj [v2] →֒ Ti[u1].

In this case, Ti[u1] ≡ Ti[u2] ≡ Tj [v1] ≡ Tj [v2] with f(u1) = v1, f(u2) = v2, g(v1) = u2 and
g(v2) = u1, which means we are done. Otherwise, fix u3 ∈ Ti at level 1 such that u3 6= u1 and
g maps Tj[v2] →֒ Ti[u3].

We claim that u3 6= u2. For a contradiction, suppose that u3 = u2. Then g maps Tj[v2] →֒
Ti[u3] = Ti[u2] and f maps Ti[u2] →֒ Tj[v2]. Therefore, Tj[v2] ≡ Ti[u2] and so g(v2) = u2.
But, g also maps Tj[v1] →֒ Ti[u2] which means u2 ≺ g(v1). Therefore, g(v2) ≺ g(v1). This
contradicts the fact that v1 and v2 are incomparable nodes at level 1 in Tj .

We next let v3 be a node at level 1 in Tj such that f maps Ti[u3] →֒ Tj[v3]. We claim
that v3 is not equal to either v1 or v2. For a contradiction, suppose v3 = v1. Then f
maps Ti[u3] →֒ Tj [v3] = Tj [v1] and the composition gfg maps Tj[v1] →֒ Ti[u3]. Therefore,
Ti[u3] ≡ Tj[v1] and f(u3) = v3 = v1. But, we also know that f maps Ti[u1] →֒ Tj[v1] which
implies v1 ≺ f(u1). Together, these statements say that f(u3) ≺ f(u1) which contradicts the
fact that u1 and u3 are incomparable nodes at level 1 in Ti. The argument that v3 6= v2 is
similar.

We continue by induction. Suppose u1, . . . , un are pairwise distinct nodes at level 1 in Ti

and v1, . . . , vn are pairwise distinct nodes at level 1 in Tj such that f maps Ti[uk] →֒ Tj [vk]
(for k ≤ n) and g maps Tj [vk] →֒ Ti[uk+1] (for k < n). We check if g maps Tj [vn] →֒ Ti[u1]. If
so, then

Ti[u1] ≡ · · · ≡ Ti[un] ≡ Tj [v1] ≡ · · · ≡ Tj[vn]

and f(uk) = vk (for k ≤ n), g(vk) = uk+1 (for k < n) and g(vn) = u1. In this case, we are
done.

Otherwise, we fix un+1 6= u1 at level 1 in Ti such that g maps Tj [vn] →֒ Ti[un+1]. We argue
as above that un+1 6= uk for all k ≤ n. We let vn+1 be a node at level 1 in Tj such that f

57

maps Ti[un+1] →֒ Tj[vn+1]. We argue as above that vn+1 6= vk for all k ≤ n. We are now in
position to continue the induction.

Since there are only finitely many nodes at level 1 in Ti and Tj , this process must come
to an end. Therefore, we get our result in the end. Notice that this proof shows that the
number of nodes at level 1 in Ti is less that or equal to the number of nodes at level 1 in Tj .
If we switch the roles of Ti and Tj , we get that for any u ∈ Tj at level 1, there is a v ∈ Ti at
level 1 such that Tj [u] ≡ Ti[v]. Therefore Ti and Tj have the same number of nodes at level
1.

This sublemma tells us that each T [xi] has the same number of finitely occurring successor
trees. Let y1, . . . , yq be the roots of the finitely occurring successor trees in T [x0]. We define
an equivalence relation by yi ∼ yj if T [yi] ≡ T [yj]. The embedding relation →֒ between these
classes is well defined. Furthermore, we know by Sublemma 3.32 that the classes defined in a
similar way for the finitely occurring successor trees of any other T [xi] are exactly the same
and each equivalence class has exactly the same size.

For each yn, fix a finite tree Sn ⊂ T [yn] such that Sn does not embed into any of the
infinite types I1, . . . , Ip. Furthermore, for each m ≤ q such that T [yn] 6 →֒ T [ym], we extend
Sn to a finite tree such that Sn 6 →֒ T [ym]. Of course, these finite trees Sn have the same
properties relative to the finitely occurring successor trees above any other T [xi]. Therefore,
we can use these trees to identify the finitely many finitely occurring successor trees above
each node xi. That is, for each xi we look for the appropriate number of successors y such
that T [y] contains one of these finite trees. Furthermore, given a ∆0

2 procedure to identify the
nodes xi, there is a ∆0

2 procedure to identify the successors y of xi for which T [y] is a finitely
occurring successor tree and to determine which equivalence class T [y] belongs to.

There are infinitely many different isomorphism types among the trees {T [xi] : i ∈ ω}.
Since they all have the same infinite-occurring isomorphism types, we may fix an equivalence
class E such that {T [y] : y ∈ T ∧ y ∈ E} contains infinitely many different isomorphism types.
(Here we are interpreting E as a class including successor nodes from each of the trees T [xi].
By the comments above, we have a ∆0

2 procedure to identify y ∈ E .) Moreover, every T [y]
with y ∈ E is of height at most n − 2, since levelT (y) = 2. Our construction of T ′ therefore
uses induction on height, for which we regard the height 4 case given above as the base case.
We identify elements of E above the various xi and do the same construction on them that
we did for a tree T with ht(T) ≤ n− 1.

To be more specific, suppose that E = {zi|i ∈ ω}. We begin the proof of Lemma 3.19
again, using the zi elements in place of the xi elements. The only change in the hypothesis of
the lemma is that each zi is at level 2 rather than at level 1. However, this change does not
affect the argument at all. That is, the fact that T [zi] ≡ T [zj] implies that each T [zi] has the
same infinitely occurring successor trees. We denote the isomorphism types of these trees by
J1, . . . , Jb. If there are infinitely many i for which T [zi] has a finitely occurring successor tree
which embeds in one of J1, . . . , Jb, then we may assume without loss of generality that there
are infinitely many i which work with J1. We run exactly the same argument as in Case 1,
looking for appropriate successors of the zi with which to diagonalize. Otherwise, if there are

58

not infinitely many such i, we are back in Case 2 and we repeat this process over again with
nodes at level 3. Since T has finite height, this process must stop. This completes the case of
a height n tree, and also completes the proof of Lemma 3.19.

Proof of Proposition 3.1. Let T be as in the statement of Proposition 3.1. Let r be the root
of T , and let x0, x1, . . . be the immediate successors of r in T . Then every node above r in T
is of finite type. Since r is not of finite type, there must be infinitely many of these successor
trees. We consider the three ways in which r could fail to be of finite type as in Definition
1.7.

First, suppose there is an isomorphism type I which occurs infinitely often as a successor
tree of r and which does not have strongly finite type. We split into two cases. If there are
only finitely many isomorphism types of successor trees of r which embed into I, then Lemma
3.10 shows that T is not computably categorical. If there are infinitely many isomorphism
types of successor trees of r which embed into I, then Lemma 3.16 implies that T is not
computably categorical. Therefore, we can assume that any isomorphism type which occurs
infinitely as a successor tree of r has strongly finite type.

Second, suppose there exist distinct isomorphism types I0 and I1 such that each occurs
infinitely often as a successor tree to r and I0 →֒ I1. Since we can assume I0 and I1 have
strongly finite type and they are not isomorphic, we must have I1 6 →֒ I0 by Lemma 2.10. We
can now apply Lemma 3.15. Let the indices i be those for which T [xi] ∼= I0 and let the indices
j be those for which T [xj] ∼= I1. There are infinitely many such indices i and j, T [xi] →֒ I0,
I0 →֒ T [xj] and T [xj] 6 →֒ I0. Therefore, Lemma 3.15 proves that T is not computably
categorical. We can now assume that there is no embedding between isomorphism types
which occur infinitely often as successor trees of r. By Lemma 3.5, we know that there can
only be finitely many isomorphism types which occur infinitely often as successor trees of r.

Finally, let T be the set of isomorphism types which occur among the successor trees of
r. It could be that T is infinite. We split into two cases. If there is an infinitely occurring
isomorphism type I for which I ′ →֒ I for infinitely many I ′ ∈ T , then we can apply Lemma
3.16. Otherwise, the finitely many isomorphism types which occur infinitely often each have
only finitely many isomorphism types from T which embed into them. This situation is
exactly the hypothesis for Lemma 3.18. Thus we have proved Proposition 3.1.

In the cases above in which we constructed a ∆0
2 isomorphism f between T and T ′, the

computable dimension of T must be ω by Goncharov [10]. However, we can see this more
directly (and prove it in the remaining cases) simply be rewriting the positive requirements:

R〈e,i〉 : ϕe one-one and total =⇒ [(∃we ∈ Ti)Ti[we] 6∼= T ′[ϕe(we)]].

Here {Ti} is assumed to be a finite sequence of computable trees isomorphic to T , and the T ′

which we construct to satisfy these requirements will be of a different computable isomorphism
class from each of them. In the original construction, T actually served a dual purpose, as
both the template for T ′ and the computable isomorphism type to be avoided. Here we always
use T0 as the template, but diagonalize simultaneously against all the Ti.

59

4 Induction

In this section, we prove the second half of Theorem 1.8, that trees which are not of finite type
cannot be computably categorical, and indeed must have computable dimension ω. Section 2
established the converse of this statement, and Section 3 enables us to use induction to prove
the following proposition.

Proposition 4.1 Let T be a tree of finite height but not of finite type. Then T is not com-
putably categorical.

Proof. The proof uses induction on the height n of T . The base case n = 2 is trivial, since
every tree of height ≤ 2 is of finite type. Let r be the root of T , with immediate successors
x0, x1, If every node xi is of finite type, then Proposition 3.1 shows that T has infinite
computable dimension. So we may suppose that some isomorphism type I0 appearing above r
is not of finite type. (Without loss of generality we assume that T [x0] ∼= I0.) By the inductive
hypothesis, I0 must not be computably categorical, so there is a computable tree U which is
isomorphic to T [x0] but not computably isomorphic to it, and we may take the domain of U
to be the computable set T [x0]. Let V be identical to T , only with U in place of T [x0]. Then
V is computable and isomorphic to T .

Now we assume for a contradiction that T is computably categorical. Then there must
exist a computable isomorphism ϕ from V to T , which must map U to some other successor
tree T [xj] computably isomorphic to U . (Hence j 6= 0.) Moreover, ϕ would then have to map
T [xj] (which is also a successor tree in V) to yet another successor tree T [xk] computably
isomorphic to U , and so on. Therefore, the isomorphism type I0 must appear infinitely often
above r in T .

Moreover, since I0 appears infinitely often above r, we can build another computable tree
isomorphic to T , simply by adding any computable copy of I0 as a new successor tree above
r. Since this copy can be of any computable isomorphism type for I0, the same argument
as above shows that every computable isomorphism type of I0 must appear infinitely often
as a successor tree above r. Indeed, under the assumption that T is computably categorical,
we see that for each such computable isomorphism type this process would yield an infinite
c.e. set of roots of successor trees of that computable isomorphism type.

Since I0 is not computably categorical, we have at least two of these c.e. sets, say C1 and
C2. The idea is to use elements of C1 = {w0, w1, . . .} as witness elements when we build T ′.
We wait until ϕe,s(we) converges, and then redefine the ∆0

2-isomorphism f : T → T ′ so that
from stage s on, T ′[ϕe(we)] is built computably isomorphic to T [ye], where C2 = {y0, y1 . . .}.
(Namely, define fs+1(f

−1
s (ϕe(we))) = ye.) The difficulty is that at the stage s at which ϕe(we)

converges, we do not know if T ′
s[ϕe(we)] embeds into I0 or not, since f−1

s (ϕe(we)) may or may
not lie in a successor tree in T isomorphic to I0. To handle this difficulty, we appeal to a
corollary of Kruskal’s Theorem.

Corollary 4.2 Let {Si : i ∈ ω} be an infinite set of finite trees. Then there exists m ∈ ω
such that for every j there is an i ≤ m such that Si →֒ Sj.

60

Proof. If the set {Sj : (∀i < j)[Si 6 →֒ Sj]} were infinite, it would contradict Kruskal’s Theorem.
Hence we may take m to be the greatest index in this set. The corollary follows by an easy
induction on the indices > m.

Let J be the set of all finite trees S which do not embed into I0. Then Corollary 4.2 yields
a finite subset S ⊆ J such that for every S ∈ J there is some S ′ ∈ S such that S ′ →֒ S.
Moreover, no S ′ ∈ S embeds into I0.

The witness elements for our construction will be the nodes we described above. Since the
set C1 is infinite and computably enumerable, we need not use ∆0

2 guessing, either for them
or for the corresponding nodes ye ∈ C2. (Technically, we will use ∆0

2-guessing, but with a
simple method of renaming the elements of C1 and C2.)

A requirement Re requires attention at stage s if s is the least stage such that ϕe,s(we)
converges to some w′

e ∈ T ′
s. At each stage s, we simply extend fs to fs+1 mapping Ts+1 to

T ′
s+1 by adding fresh elements to T ′

s+1 as needed, except on those successor trees Ts[we] such
that Re requires attention. For those e, we search for the least t ≥ s such that one of the
following holds:

1. levelTt
(f−1

s (w′
e)) 6= 1; or

2. some S ′ ∈ S embeds into Tt[f
−1
s (w′

e)]; or

3. T ′
s[w

′
e] embeds into Tt[ye].

If either (1) or (2) holds, then again we simply extend fs to fs+1 on Ts+1[we] by adding fresh
elements to T ′

s+1, without redefining fs+1 on any nodes. However, if (3) holds, then we may
need to redefine f .

The idea of the redefinition of f is as follows. Let a = f−1
s (w′

e). Currently, using fs, T
′[w′

e]
is being built by copying T [a] and T ′[fs(ye)] is being built by copying T [ye]. We use the em-
bedding in (3) to define fs+1 so that T ′[w′

e] begins copying T [ye] and T ′[fs(ye)] begins copying
T [a]. This successfully diagonalizes because T [we] and T [ye] are not computably isomorphic.
Before performing this switch, we need to check that no higher priority requirements will be
injured. We ask first whether w′

e lies in the set

Pe,s = {fs(y0), . . . fs(ye−1)} ∪ {w′
i : i < e & ϕi,s(wi)↓= w′

i}.

If it does, then we cannot redefine f without possibly injuring some Ri of higher priority, so
instead we eliminate we from our enumeration of C1 and pick ws+1 to be the witness node
for Re. (At future stages, we will refer to this node as we.) However, if this elimination has
already happened 2e times for different values of we at previous stages, and the elements of
Pe,s have not changed since those stages, then we need not perform the elimination again (nor
redefine f at all), since in this case ϕe must map all 2e+ 1 of those different values of we into
Pe,s and hence cannot be one-to-one.

If w′
e /∈ Pe,s, then we may proceed without injuring any higher-priority requirement. (If

w′
e = fu(yj) for some j > e at some later stage u, we will simply ignore that yj and renumber

61

C2 with the element yj+1 as yj instead, thereby possibly injuring a lower-priority requirement
once.) Let g be the embedding of T ′

s[w
′
e] into Tt[ye]. (We may assume g(w′

e) = ye.) Define
fs+1(x) = g−1(x) for all x in the image of g, and add fresh elements to T ′

s+1 to be the range of
all of T [ye] under fs+1. For all sufficiently large elements x ∈ T [ye], we may take fs+1(x) = x.
Thus fs+1 now maps T [ye] to T ′[w′

e].
We also must redefine fs+1 on the set A = f−1

s (T ′
s[w

′
e]). Now since fs is an isomorphism

from Ts to T ′
s, A

∼= T ′
s[w

′
e] must embed into I0 via a lifting of the same g, so we may find an

embedding h of A into T [ye]. We add enough elements of T [ye] to Ts+1 so that A →֒ Ts+1[ye],
then combine this embedding with fs : Ts[ye] →֒ T ′

s[fs(ye)], adding fresh elements to Ts+1 as
needed, to define fs+1 on A. Thus fs+1 maps T [f−1

s (w′
e)] to T ′[fs(ye)]. This completes the

construction.
With the redefinition, we see that now T [ye] is not only isomorphic to T ′[w′

e], but actually
computably isomorphic to it via f , since f is the identity map on cofinitely much of T [ye].
If ϕe were an isomorphism from T to T ′, then f−1 ◦ ϕe would be a computable isomorphism
from T [we] onto T [ye], which is impossible, by our choice of we and ye. Hence Re is satisfied.

Moreover, if either (1) or (2) holds for w′
e, then Re must again be satisfied. This is clear

for (1), since levelT (we) = 1. If (2) holds, then some S ∈ S embeds into T ′[w′
e], but not into

T [we] (by our choice of S). Hence clearly Re is satisfied.
We must show that when we search for a stage t in the construction, we do eventually find

one. Suppose levelT ′(w′
e) = 1, and suppose that no S ∈ S embeds into T [f−1

s (w′
e)]. By our

choice of S, this guarantees that every finite subtree of T [f−1
s (w′

e)] embeds into I0. But T ′
s[w

′
e]

is isomorphic to Ts[f
−1
s (w′

e)], hence must embed into I0. Since T [ye] ∼= I0, we will eventually
find a stage t and an embedding satisfying (3).

The redefinition process does no injury to any other Re. The only possibility for injury
among the requirements occurs when elements of C1 or C2 must be ignored or renamed,
as described above, and when this happens each requirement respects the higher-priority
requirements, so ultimately each Re is satisfied.

Moreover, redefinition of f can only occur finitely often on any T [x], and redefinition of
f−1 can only occur finitely often on any T ′[x′], since each requirement is injured only finitely
often. (Our care in making fs(we) /∈ Pe,s ensured this for f−1.) Hence f is a bijection between
T and T ′. Since our redefinitions always respected the partial order we were building on T ′,
T ′ is computable and f is an isomorphism. But since each Re holds, there is no computable
isomorphism from T to T ′, contradicting our assumption that T was computably categorical.

Corollary 4.3 Every computable tree T of finite height but not of finite type must have
infinite computable dimension.

Proof. Because we proved Proposition 4.1 by contradiction, we do not know if there are two
computable copies of T which are ∆0

2-isomorphic but not computably isomorphic. Therefore,
we cannot apply Goncharov’s result that a pair of computable structures which are ∆0

2-
isomorphic but not computably isomorphic must have computable dimension ω. Instead, the

62

proof proceeds by induction on the height of T . Assume T is a tree of finite height which
does not have finite type. If every successor tree in T has finite type, then we are done by
the results in Section 3. Otherwise, we fix y ∈ T at level 1 such that T [y] does not have finite
type. By the induction hypothesis, T [y] must have infinite computable dimension.

For a contradiction, assume that T has finite computable dimension m. Fix representatives
T 0, . . . , Tm−1 of the computable isomorphism classes of T and fix nodes yi ∈ T i at level 1 such
that T [y] ∼= T i[yi]. To run a diagonalization argument as above, we need to find appropriate
c.e. sets Ci in T i and C in T . We define these sets and specify their exact properties below.

First, we define Ci for a fixed i < m. Let xi
e denote the nodes at level 1 in T i and

assume that yi = xi
0. Let U0, . . . , Um−1 be computable copies of T i[xi

0] defined on the same
numbers as T i[xi

0] which are pairwise not computably isomorphic and are not computably
isomorphic to T i[xi

0]. Let T i
j (for j < m) be the computable tree formed by taking T i and

replacing T i[xi
0] by Uj. Since the computable dimension of T i is m, one of the T i

j trees
must be computably isomorphic to T i. Without loss of generality, assume it is T i

0 and fix
an isomorphism f : T i

0 → T i. f must send U0 to some successor tree T i[xi
j0

] with xi
j0

6= xi
0.

Thus, T i[xi
j0

] is a successor tree in T i
0 and f must send this tree to some T i[xi

j1
]. Repeating

this process, we get a c.e. set of nodes xi
jk

for successor trees in T i which are computably
isomorphic to U0. We denote these nodes by wi

e and we let Ci be the c.e. set of these nodes.
Second, we define C. Let xe, for e ∈ ω, denote the nodes at level 1 in T and assume that

y = x0. Let V0, . . . , Vm−1 be computable copies of T [x0] which are not computably isomorphic
to any of the trees U0, . . . , Um−1 used in the definition of Ci for any i. (It does not matter if we
reuse computable isomorphism types when defining Ci and Cj for i 6= j, but we need to have
different computable isomorphism types when we define C. There are enough computable
isomorphism types to accomplish these requirements because T [x0] has infinite computable
dimension.) Let Tj (for j < m) be the computable tree formed by taking T and replacing
T [x0] by Vj. By the same argument as in the last paragraph, we obtain a c.e. set C of nodes
ue at level 1 in T such that T [ue] is computably isomorphic to (without loss of generality) V0.
We can sum up the important properties of these c.e. sets by:

• T i[wi
e]
∼= T [y] for e ∈ ω and i < m;

• T [ue] ∼= T [y] for e ∈ ω;

• T [uk] ∼= T i[wi
e] for e, k ∈ ω and i < m, but not by a computable isomorphism.

We build T ′ ∼= T which is not computably isomorphic to any T i by an argument very
similar to the one given above. We build T ′ in stages together with a ∆0

2-isomorphism f :
T → T ′. We index the witnesses in C as u〈e,i〉 with e ∈ ω and i < m and we use the nodes
wi

e to diagonalize against ϕe being an isomorphism from T i to T ′. The strategy to defeat ϕe

and T i is to wait for ϕe(w
i
e) to converge to some vi

e ∈ T ′ at stage s. Let a = f−1
s (vi

e). We
have that fs maps Ts[a] to T ′

s[v
i
e] and maps Ts[u〈e,i〉] to T ′

s[fs(u〈e,i〉)]. As above, we either find
evidence that we have an easy win or else we find an embedding of T ′

s[v
i
e] into T [u〈e,i〉]. In

the latter case, we use this embedding to define fs+1 so that it swaps the action of fs on the

63

successor trees, by making T ′[vi
e] start to copy T [u〈e,i〉] and making T ′[fs(u〈e,i〉)] start to copy

T [a]. As above, this successfully diagonalizes since we know that T i[wi
e] is not computably

isomorphic to T [u〈e,i〉]. The formal details of this argument are essentially as above.

We note that for trees T in which nodes at levels ≥ 1 are not of finite type, these proofs
only establish the existence of infinitely many computable isomorphism classes of copies of T ,
without giving us any actual idea how to construct copies in such classes. To construct copies
in new classes would require a direct proof in the style of the Lemmas of Section 3, instead
of the less-edifying proofs by contradiction in Proposition 4.1 and Corollary 4.3.

5 ∆0
n-categoricity

The goal of this section is to prove the following theorem.

Theorem 5.1 For each n ≥ 1, there is a computable finite height tree T such that T is
∆0

n+1-categorical but not ∆0
n-categorical.

We actually prove a slightly stronger statement by considering a more restrictive definition
of trees. In this section, we define a tree to be a set T ⊆ ω<ω which is closed under initial
segments. Such trees are obviously trees in the earlier sense, but they have the additional
feature that the successor relation is computable. Therefore, we really establish Theorem 5.1
for computable finite height trees which have a computable successor relation.

Proof. The strategy for this proof is to show by induction on n ≥ 1 that for any infinite and
coinfinite Σ0

n (if n is odd) or Π0
n (if n is even) relation P (x), there are computable trees TP and

SP such that TP and SP are ∆0
n+1-isomorphic but any isomorphism between them computes

P (x). For the purposes of presenting a general outline, suppose n is odd, so TP needs to code
a Σ0

n relation P (x).
TP will be ω-branching at the root, with the property that for any node τ at level 1, TP [τ]

has one of two distinct isomorphism types. Trees of one type are called coded Σ0
n trees and

trees of the other type are called uncoded Σ0
n trees. There will be a computable sequence of

nodes τx ∈ TP such that each τx is at level 1 and

P (x) ⇔ TP [τx] is a coded Σ0
n tree.

We will be able to say exactly what the isomorphism type of TP is. It ω-branches at
the root and has infinitely many nodes τ at level 1 for which TP [τ] is a coded Σ0

n tree and
infinitely many nodes at level 1 for which TP [τ] is an uncoded Σ0

n tree. This description of the
isomorphism type of TP will allow us to build a computable tree SP which is isomorphic to
TP , but for which we know exactly which nodes at level 1 correspond to coded Σ0

n trees and
which do not. Therefore, we will be able to compute P (x) from any isomorphism between SP

and TP .

64

To fill in the details of this outline, we first show how to code a Σ0
1 relation. Next, we

show how to pass from the coding of a Σ0
1 relation to a coding for a Π0

2 relation, and how
to pass from the coding of a Π0

2 relation to the coding of a Σ0
3 relation. Finally, we outline

the general procedure for coding a Σ0
n+1 relation from the coding of a Π0

n relation, and the
procedure for coding a Π0

n+1 relation from the coding of a Σ0
n relation.

First, we show how to code an infinite and coinfinite Σ0
1 relation P (x). Assume that

∀x(P (x) ⇔ ∃dR(x, d))

where R is computable. Let TP ⊆ ω<ω be the computable set given by the closure of the
following conditions under initial segments.

1. For all n,m, 〈n,m〉 ∈ TP .

2. For all n,m, 〈n,m, 0〉 ∈ TP if and only if m is the least number such that R(n,m) holds.

TP has height 4 and is ω-branching at the root. If P (n) holds, then TP [〈n〉] is a tree of height
3 which ω-branches at the root and has a unique node at level 2 (in the restricted tree). We
refer to any tree with this isomorphism type as a coded Σ0

1 tree. If P (n) does not hold, then
TP [〈n〉] is ω-branching at the root and has no nodes at level 2. We refer to any tree with this
isomorphism type as an uncoded Σ0

1 tree. Notice that the coded and uncoded Σ0
1 trees are

not isomorphic.
To give a slightly more general perspective, we need to distinguish coding a Σ0

1 relation
and coding a Σ0

1 sentence. To code the Σ0
1 relation P , we build a tree TP which is ω-branching

and for each 〈n〉 ∈ TP , we let TP [〈n〉] code the Σ0
1 sentence P (n). That is, we effectively

generate a tree TP [〈n〉] which is a coded Σ0
1 tree if the Σ0

1 sentence P (n) is true and is an
uncoded Σ0

1 tree if the Σ0
1 sentence P (n) is false.

The isomorphism type of TP is uniquely determined by the following facts: the root of TP

is ω-branching, and for every τ ∈ T at level 1, TP [τ] is either a coded Σ0
1 tree or an uncoded

Σ0
1 tree, with infinitely many of each type. Furthermore, TP has the property that

P (n) ⇔ TP [〈n〉] is a coded Σ0
1 tree.

To see that TP is ∆0
2-categorical, suppose that T is computable and isomorphic to TP .

For any τ ∈ T at level 1, T [τ] is a coded Σ0
1 tree if and only if ∃σ0, σ1(τ ≺ σ0 ≺ σ1). 0′

can determine which nodes τ ∈ T are at level 1 and can tell whether T [τ] is a coded or
uncoded Σ0

1 tree. If T [τ] is a coded Σ0
1 tree, then 0′ can determine the unique node at level

2 in T [τ]. Of course, 0′ can also determine this information in TP , so we can easily build the
∆0

2 isomorphism.
To see that TP need not be ∆0

1-categorical, assume P (x) is noncomputable. Let SP ⊆ ω<ω

be the closure of the following conditions under initial segments.

1. For all n,m, 〈n,m〉 ∈ SP .

2. If n is even, then 〈n, 0, 0〉 ∈ SP .

65

SP is a computable tree and by the description of the isomorphism type of TP , SP
∼= TP . In

addition,
SP [〈n〉] is a coded Σ0

1 tree ⇔ n is even.

For any isomorphism f : TP → SP , P (n) holds if and only if f(〈n〉) = 〈m〉 for some even
number m. Therefore, the fact that P is noncomputable implies that f cannot be ∆0

1.
We turn to coding an infinite and coinfinite Π0

2 relation P (x) such that

P (x) ⇔ ∀c∃dR(x, c, d),

where R is computable. Let TP ⊆ ω<ω be the closure of the following conditions under initial
segments. (We give both an informal and a formal description of these conditions. Later, we
will trust the reader to fill in the formal descriptions.)

1. TP is ω-branching at the root. Formally, let 〈1〉 ∈ TP and 〈pn〉 ∈ TP for all primes p
and all n ≥ 1. To clarify the coding below, view 〈1〉 as 〈20〉.

2. For all n and m, TP [〈2n, m〉] is the tree defined above for coding the Σ0
1 sentence ∀c ≤

m∃dR(n, c, d). Formally, for all i, 〈2n, m, i〉 ∈ TP and 〈2n, m, i, 0〉 ∈ TP if and only if i
is the least number such that ∀c ≤ m∃d ≤ iR(n, c, d).

3. For all odd primes p and all n ≥ 1, TP [〈pn〉] consists of n − 1 copies of the coded
Σ0

1 tree and infinitely many copies of the uncoded Σ0
1 tree. Formally, for all m and i,

〈pn, m, i〉 ∈ TP , and 〈pn, m, i, 0〉 ∈ TP if and only if i < n− 1.

If P (n) holds, then TP [〈2n〉] is ω-branching at the root, and every node at level 1 (in this
restricted tree) is the base of a coded Σ0

1 tree. We call any tree with this isomorphism type a
coded Π0

2 tree.
For an odd prime p and n ≥ 1, the tree TP [〈pn〉] is ω-branching at the root and at level

1 has exactly n− 1 many coded Σ0
1 trees and infinitely many uncoded Σ0

1 trees. We call any
tree with this isomorphism type an (n − 1)-uncoded Π0

2 tree. Notice that if P (n) does not
hold, then TP [〈2n〉] is an m-uncoded Π0

2 tree for some m.
Just as in the Σ0

1 case, we have given a procedure for effectively constructing a tree TP [〈2n〉]
from the Π0

2 sentence P (n). This tree is a coded Π0
2 tree if the Π0

2 sentence P (n) holds and
it is an m-uncoded Π0

2 tree (for some m) if the Π0
2 sentence P (n) is false. The other trees of

the form TP [〈pn〉] are added so that the isomorphism type of TP will be independent of the
choice of P , as long as P is infinite.

We can now describe the isomorphism type of TP precisely. TP is ω-branching at the root
and consists of infinitely many coded Π0

2 trees and infinitely many m-uncoded Π0
2 trees for

each m. Furthermore, we have

P (n) ⇔ TP [〈2n〉] is a coded Π0
2 tree.

To see that TP is ∆0
3-categorical, fix a computable tree T which is isomorphic to TP . For

any τ ∈ T at level 1, T [τ] is a coded Π0
2 tree if and only if

∀σ
(

(τ ≺ σ ∧ ¬∃δ(τ ≺ δ ≺ σ)) → T [σ] is a coded Σ0
1 tree

)

.

66

Since the property of being a Σ0
1 tree can be expressed in a Σ0

1 manner, this predicate is Π0
2.

Similarly, the predicate which says T [τ] is an n-uncoded Π0
2 tree (for a fixed value of n) is Σ0

2.
Formally, T [τ] is an n-uncoded Π0

2 tree if and only if there are disjoint τ0, . . . , τn−1 such that
τ ≺ τi and T [τi] is a coded Σ0

1 tree and for all disjoint τ0, . . . , τn such that τ ≺ τi, at least
one τi is not the root of a coded Σ0

1 tree. Since expressing T [σ] is a coded Σ0
1 tree is a Σ0

1

statement, this entire expression is the conjunction of a Σ0
1 and a Π0

1 statement, and hence is
Σ0

2.
Assume that T is a computable tree which is isomorphic to TP . By the comments above,

0′′ can determine which nodes at level 1 in TP and T are the base of coded Π0
2 trees and which

are the base of n-uncoded Π0
2 trees. Once we match these nodes up, we can use 0′ to build

the isomorphism above level 1, since we are essentially back in the case of Σ0
1 trees.

Because we can describe the isomorphism type of TP precisely, we can build a computable
tree SP ⊆ ω<ω which is isomorphic to TP and for which

A = {x|SP [〈x〉] is a coded Π0
2 tree }

is computable. To see that TP need not be ∆0
2-categorical, consider the case when P (x) is

Π0
2-complete. If f : TP → SP is an isomorphism, then P (x) ⇔ f(x) ∈ A. Therefore, f cannot

be ∆0
2 without contradicting the Π0

2-completeness of P .
The last example we consider before the general case is how to code the Σ0

3 relation

P (x) ⇔ ∃b∀c∃dR(x, b, c, d).

We first code P (x) into a computable tree TP ⊆ ω<ω as follows.

1. TP is ω-branching at the root. In this case, we let 〈n〉 ∈ TP for all n.

2. For each n: TP [〈n〉] is ω-branching at the root; for each m, TP [〈n〉] has infinitely many
nodes at level 1 each of which is the root of the tree for the Π0

2 sentence ∀c∃dR(n,m, c, d);
and for each m, TP [〈n〉] has infinitely many nodes at level 1 each of which is the root of
the m-uncoded Π0

2 tree.

If P (n) holds, then TP [〈n〉] consists of infinitely many coded Π0
2 trees as well as infinitely

many m-uncoded Π0
2 trees for each m. We refer to any tree with this isomorphism type as

a coded Σ0
3 tree. If P (n) does not hold, then TP [〈n〉] consists of infinitely many m-uncoded

Π0
2 trees for each m, and nothing else. We refer to any tree with this isomorphism type as an

uncoded Σ0
3 tree. As above, we are coding the Σ0

3 sentences P (n) by effectively constructing
a tree TP [〈n〉] which is a coded Σ0

3 tree if the Σ0
3 sentence P (n) is true and is an uncoded Σ0

3

tree if the Σ0
3 sentence P (n) is false.

We can describe the isomorphism type of TP precisely as follows. TP is ω-branching at
the root and consists of infinitely many coded Σ0

3 trees and infinitely many uncoded Σ0
3 trees.

To see that TP is ∆0
4-categorical, let T be any computable tree which is isomorphic to TP .

For any τ ∈ T at level 1, T [τ] is a coded Σ0
3 tree if and only if

∃τ2(τ < τ2 ∧ level(τ2) = 2 ∧ T [τ2] is a coded Π0
2 tree).

67

Since determining if T [τ2] is a coded Π0
2 tree is Π0

2, this predicate is Σ0
3. Therefore, 0′′′ can

determine which nodes at level 1 in T and TP are the base of a coded Σ0
3 tree and which are

the base of an uncoded Σ0
3 tree. Once these nodes are matched up correctly, 0′′ can build the

rest of the isomorphism as in the previous case. Therefore, TP is ∆0
4-categorical.

Since we can describe the isomorphism type of TP exactly, we can build a computable tree
SP ⊆ ω<ω which is isomorphic to TP and such that

A = {n|SP [〈n〉] is a coded Σ0
3 tree }

is computable. As above, if P (x) is Σ0
3-complete, there cannot be a ∆0

3 isomorphism between
TP and SP .

We now present two general constructions. First, we use a construction similar to the Π0
2

coding to pass from a Σ0
n coding to a Π0

n+1 coding. Let P (x) be an infinite and coinfinite
Π0

n+1 relation such that
P (x) ⇔ ∀aR(x, a)

where R is Σ0
n. Assume that we have defined the isomorphism types for a coded Σ0

n tree
and an uncoded Σ0

n tree and that such trees are not isomorphic. Assume that these trees are
defined in such a way that given any Σ0

n sentence we can effectively construct a tree which
is a coded Σ0

n tree if the sentence is true and is an uncoded Σ0
n tree if the sentence is false.

Furthermore, assume that there is a Σ0
n sentence which is true in the coded Σ0

n tree and false
in the uncoded Σ0

n tree. We define TP as the closure of the following conditions under initial
segments.

1. TP is ω-branching at the root. Formally, we put 〈1〉 ∈ TP and 〈pu〉 ∈ TP for all primes
p and u ≥ 1.

2. For all u and m, TP [〈2u, m〉] is constructed to code the Σ0
n sentence ∀a ≤ mR(u, a).

3. For all odd primes p and u ≥ 1, TP [〈pu〉] consists of (u− 1) copies of the coded Σ0
n tree

and infinitely many copies of the uncoded Σ0
n tree.

If P (u) holds, then the root of TP [〈2u〉] is ω-branching and the nodes at level 1 in this tree
are all roots of coded Σ0

n trees. We refer to any tree with this isomorphism type as a coded
Π0

n+1 tree.
If P (u) does not hold, then the root of TP [〈2u〉] is ω-branching, and the trees above the

nodes at level 1 contain infinitely many copies of the uncoded Σ0
n tree and for some m,

exactly m copies of the coded Σ0
n tree. We refer to any tree with this isomorphism type as an

m-uncoded Π0
n+1 tree.

The isomorphism type of TP is uniquely determined by the fact that the root is ω-branching
and TP consists of infinitely many copies of the coded Π0

n+1 tree and infinitely many copies
of the m-uncoded Π0

n+1 tree for each m.
For any computable tree T isomorphic to TP and any τ ∈ T at level 1, T [τ] is a coded

Π0
n+1 tree if for all m, there are distinct nodes τ0, . . . , τm such that for all i < m,

τ < τi ∧ level(τi) = 2 ∧ TP [τi] is a coded Σ0
n tree. (1)

68

This condition is Π0
n+1 by our assumption on the complexity of determining if a tree is a coded

Σ0
n tree. Furthermore, T [τ] is an m-uncoded Π0

n+1 tree if there exist distinct nodes τ1, . . . , τm
such that for all 1 ≤ i ≤ m, equation (1) holds (for m = 0 this check is vacuous), but for all
choices of nodes τ1, . . . , τm+1, there is some 1 ≤ i ≤ m+ 1 such that

(τ < τi ∧ level(τi) = 2) → TP [τi] is an uncoded Σ0
n tree.

Altogether, this condition is the conjunction of a Σ0
n statement and a Π0

n statement.
To see that TP is ∆0

n+2-categorical, notice that each of the conditions in the previous
paragraph can be determined by 0(n+1). Therefore, given any computable tree T isomorphic
to TP , 0(n+1) can match up the nodes at level 1 correctly. The fact that the rest of the
isomorphism can be built follows by induction.

To see that Tp is not ∆0
n+1-categorical, consider the case when P (x) is Π0

n+1-complete.
Because we know the isomorphism type of TP exactly, we can build a computable tree SP

such that
A = {m|SP [〈m〉] is a coded Π0

n+1 tree }

is computable. If f : TP → SP is an isomorphism, then P (x) holds if and only if f(〈2x〉) = 〈m〉
for some m ∈ A. Therefore, f cannot be ∆0

n without contradicting the fact that P is Π0
n+1-

complete.
It remains to show how to pass from a Π0

n coding to a Σ0
n+1 coding. Let P (x) be an infinite

and coinfinite Σ0
n+1-complete relation given by

P (x) ⇔ ∃aR(x, a)

where R is Π0
n. Assume that we have determined the isomorphism types for the coded and

m-uncoded Π0
n trees with the corresponding complexity results as above. We define the

computable tree TP as the downward closure of the following conditions.

1. TP is ω-branching at the root. Formally, for all u, 〈u〉 ∈ TP .

2. For each u: TP [〈u〉] is ω-branching at the root; for each m, TP [〈u〉] has infinitely many
nodes at level 1 each of which is the root of tree coding the Π0

n sentence R(u,m); and
for each m, TP [〈u〉] has infinitely many nodes at level 1 each of which is the root of an
m-uncoded Π0

n tree.

If P (u) holds, then TP [〈u〉] is ω-branching at the root and contains infinitely many copies
of the coded Π0

n tree and infinitely many copies of the m-uncoded Π0
n tree for each m. We

refer to any tree with this isomorphism type as a coded Σ0
n+1 tree.

If P (u) does not hold, then TP [〈u〉] is ω-branching at the root and consists of infinitely
many copies of the m-uncoded Π0

n tree for each m. In particular, there are no coded Π0
n trees

in TP [〈u〉]. We refer to any tree with this isomorphism type as an uncoded Σ0
n+1 tree.

Let T be a computable tree isomorphic to TP and suppose τ ∈ T is a level 1 node. T [τ]
is a Σ0

n+1 coded tree if and only if there is a τ2 ∈ T such that

τ < τ2 ∧ level(τ2) = 2 ∧ T [τ2] is a coded Π0
n tree.

69

By assumption on the complexity of Π0
n trees, this condition is Σ0

n+1. As above, this condition
implies that TP is ∆0

n+2-categorical. To show that TP is not ∆0
n+1-categorical, we define a tree

SP and argue as above.

6 Trees Under the Infimum Function

We end this paper with a brief discussion about trees defined using the infimum function and
a conjecture about when they are computably categorical. We have already mentioned (see
Section 1) that if (T,∧) is computable, then the corresponding (T,≺) is also computable.
However, it is simple to build a tree T in which ≺ is computable and ∧ is not. Start with 0 as
the root, and make every even number a successor of 0 at level 1. To diagonalize against the
possibility that ϕe computes ∧, we wait until ϕe(〈4e+2, 4e+4〉)↓= 0, and if this ever happens,
we add the next available odd number x to T at level 1 with x ≺ 4e+ 2 and x ≺ 4e + 4. T
will have domain ω and height 3, and ≺ will be computable, but our diagonalization ensures
that ∧ is not computable.

The notion of an embedding depends strongly on whether we define trees using ≺ or ∧.
Consider the following two trees:

I
0 1

I

It is easy to embed I0 into I1 with respect to ≺, but there is no embedding of I0 into I1
respecting ∧. (The infimum of any pair of distinct nodes in I0 is the root, whereas no possible
image of I0 in I1 has the same property.) For the remainder of this section, therefore, we will
speak of ≺-embeddings and ∧-embeddings, to distinguish these two types of embeddings. In
the rest of the paper, of course, “embedding” always means ≺-embedding. Notice that for
an isomorphism, it does not matter which notion we use. That is, any isomorphism between
trees under ≺ is also an isomorphism of the same trees under ∧ (and conversely).

The simple example above creates problems when one investigates computable categoricity.
Consider the tree T which consists of a root with infinitely many copies of I0 and infinitely
many copies of I1 (and nothing else) as successor trees above the root. This tree has height 4,
and (T,≺) is not of finite type, hence not computably categorical, by Theorem 1.8. However,
(T,∧) is computably categorical. Clearly we can build a computable copy of (T,∧), and
given any two computable copies, we can find the root of each, then identify successor trees of
each type in each copy and match them up. In particular, every successor tree contains three
pairwise-incomparable nodes a, b, and c, and once those nodes have appeared, we simply
compute a∧ b, a∧ c, and b∧ c. The successor tree is of type I0 iff these three infima are equal.

We do have the following result.

70

Lemma 6.1 Any computably categorical tree (T,≺) will still be computably categorical when
re-interpreted as (T,∧), assuming only that the function ∧ so defined is computable.

Proof. If a computable structure (T ′,∧′) is isomorphic to (T,∧), then the corresponding
(T ′,≺′) is also computable, hence isomorphic to (T,≺) via some computable ϕ. As noted
above, the isomorphism ϕ must also preserve infima, so it is an isomorphism of (T,∧) onto
(T ′,∧′) as required.

To determine computable categoricity for trees under the infimum function, therefore,
we need to consider ∧-embeddings rather than ≺-embeddings. Fortunately, one of our main
tools, Kruskal’s Theorem (stated as Theorem 3.4), yields not only ≺-embeddings but also
∧-embeddings. The first step, therefore, is to refine the notion of being of finite type by
referring to ∧ instead of ≺.

Definition 6.2 1. A tree T is of strongly finite ∧-type if it satisfies Definition 1.6 when
the word “embedding” is replaced everywhere by “∧-embedding.”

2. A tree T is of finite ∧-type if it satisfies Definition 1.7 when the word “embedding” is
replaced everywhere by “∧-embedding” and “strongly finite type” is replaced everywhere
by “strongly finite ∧-type.”

Notice that in our example from the previous page, (T,∧) has finite ∧-type but (T,≺) does
not have finite ≺-type.

We conjecture that with these definitions, the proofs from Sections 2, 3, and 4 will go
through with relatively few modifications, as long as one always refers to ∧-embeddings and
(strongly) finite ∧-type. Thus we would have the analogue of Theorem 1.8:

Conjecture 6.3 For a computable tree (T,∧) of finite height, the following are equivalent:

1. T is of finite ∧-type;

2. (T,∧) is computably categorical;

3. (T,∧) has finite computable dimension;

4. (T,∧) is relatively computably categorical.

In [24], Miller proved the corresponding result for computable trees (T,∧) of infinite
height: the computable dimension of (T,∧) must be ω. Together with Conjecture 6.3, this
would answer the question of computable categoricity for all trees under the infimum function.

71

References

[1] C.J. Ash; Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic
34 (1987), 1-14.

[2] C.J. Ash & J.F. Knight; Computable Structures and the Hyperarithmetic Hierarchy (Am-
sterdam: Elsivier Science 2000.)

[3] C. J. Ash, J. F. Knight, M. Mannasse, & T. Slaman; Generic copies of countable struc-
tures, Annals of Pure and Applied Logic 42 (1989), 195-205.

[4] J. Chisholm; On intrisically 1-computable trees, unpublished manuscript.

[5] J.N. Crossley, A.B. Manaster, & M.F. Moses; Recursive categoricity and recursive sta-
bility, Annals of Pure and Applied Logic 31 (1986), 191-204.

[6] R.G. Downey; On presentations of algebraic structures, in Complexity, Logic, and Re-
cursion Theory, ed. A. Sorbi (New York: Dekker, 1997), 157-205.

[7] R.G. Downey & C.G. Jockusch; Every low Boolean algebra is isomorphic to a recursive
one, Proceedings of the American Mathematical Society 122 (1994), 871-880.

[8] S.S. Goncharov; Autostability and computable families of constructivizations, Algebra
and Logic 14 (1975), 647-680 (Russian), 392-409 (English translation).

[9] S.S. Goncharov; Autostable models and algorithmic dimensions, Handbook of Recursive
Mathematics, vol. 1 (Amsterdam: Elsevier, 1998), 261-287.

[10] S.S. Goncharov; Nonequivalent constructivizations, Proc. Math. Inst. Sib. Branch Acad.
Sci. (Novosibirsk: Nauka, 1982).

[11] S.S. Goncharov; The problem of the number of non-self-equivalent constructivizations,
Algebra and Logic 19 (1980), 401-414 (English translation).

[12] S.S. Goncharov; Groups with a finite number of constructivizations, Soviet Math. Dokl.
19 (1981) 58-61.

[13] S.S. Goncharov & V.D. Dzgoev; Autostability of models, Algebra and Logic 19 (1980),
45-58 (Russian), 28-37 (English translation).

[14] S.S. Goncharov, S. Lempp & R. Solomon; The computable dimension of ordered abelian
groups, to appear in Advances in Mathematics.

[15] S.S. Goncharov, A.V. Molokov & N.S. Romanovskii; Nilpotent groups of finite algorith-
mic dimension, Siberian Math Journal 30 (1989), 63-68.

72

[16] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, & A.M. Slinko; Degree spectra and com-
putable dimension in algebraic structures, Annals of Pure and Applied Logic 115 (2002),
71-113.

[17] B. Khoussainov & R.A. Shore; Computable isomorphisms, degree spectra of relations,
and Scott families, Annals of Pure and Applied Logic 93 (1998), 153-193.

[18] B. Khoussainov & R.A. Shore; Effective model theory: the number of models and their
complexity, Models And Computability: Invited Papers from Logic Colloquium ’97, ed.
S.B. Cooper & J.K. Truss, LMSLNS 259 (Cambridge: Cambridge University Press,
1999), 193-240.

[19] J.B. Kruskal; Well quasi-ordering, the tree theorem, and Vázsonyi’s conjecture, Trans-
actions of the American Mathematical Society 95 (1960), 210-225.

[20] O.V. Kudinov; An autostable 1-decidable model without a computable Scott family of ∃
formulas, Algebra and Logic 35 (1996), 255-260 (English translation).

[21] O.V. Kudinov; An integral domain with finite algorithmic dimension, unpublished
manuscript.

[22] P. LaRoche, Recursively presented Boolean algebras, Notices Amer. Math. Soc. 24
(1977), A-552, research announcement.

[23] G. Metakides & A. Nerode; Effective content of field theory, Ann. Math. Logic 17 (1979),
289-320.

[24] R.G. Miller; The computable dimension of trees of infinite height, to appear in Journal
of Symbolic Logic.

[25] R.G. Miller; The ∆0
2 spectrum of a linear order, Journal of Symbolic Logic 66 (2001),

470-486.

[26] C.St.J.A. Nash-Williams; On well-quasi-ordering finite trees, Proc. Cambridge Phil. Soc.
59 (1963), 833-835.

[27] A.T. Nurtazin; Computable classes and algebraic criteria of autostability, thesis from
Math. Inst. Siberian Branch of SSSR Acad. Sci., Novosibirsk, 1974 (Russian).

[28] A.T. Nurtazin; Strong and weak constructivizations and enumerable families, Algebra
and Logic 13 (1974), 177-184.

[29] J.B. Remmel; Recursively categorical linear orderings, Proceedings of the American Math-
ematical Society 83 (1981), 387-391.

[30] J.B. Remmel; Recursive isomorphism types of recursive Boolean algebras, Journal of
Symbolic Logic 46 (1981), 572-594.

73

[31] S.G. Simpson; Nonprovability of certain combinatorial properties of finite trees, Har-
vey Friedman’s Research on the Foundations of Mathematics, ed. L. A. Harrington,
M. D. Morley, A. Scedrov & S. G. Simpson (Amsterdam: North-Holland, 1985), 87-
117.

[32] T.A. Slaman; Relative to any nonrecursive set, Proceedings of the American Mathematical
Society 126 (1998), 2117-2122.

[33] R.I. Soare; Recursively Enumerable Sets and Degrees (New York: Springer-Verlag, 1987).

[34] S. Wehner; Enumerations, countable structures, and Turing degrees, Proceedings of the
American Mathematical Society 126 (1998), 2131-2139.

[35] W. White, On the complexity of categoricity in computable structures, Mathematical
Logic Quarterly 49 6 (2003), 603-614.

Department of Mathematics

University of Wisconsin

480 Lincoln Drive

Madison, WI 53706-1388

E-mail: lempp@math.wisc.edu

E-mail: cmccoy1@nd.edu

Department of Mathematics

Queens College – C.U.N.Y.

65-30 Kissena Blvd.

Flushing, New York 11367

E-mail: rmiller@forbin.qc.edu

196 Auditorium Road

University of Connecticut U-3009

Department of Mathematics

Storrs, CT 06269-3009

E-mail: solomon@math.uconn.edu

74

