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Abstract. We determine the complexity of torsion-freeness of �nitely presented groups in

Kleene's arithmetical hierarchy as �

0

2

-complete. This implies in particular that there is no

e�ective listing of all torsion-free �nitely presented groups, or of all non-torsion-free �nitely

presented groups.

0. Introduction. One way of describing a group G is to give its presentation, i.e., to

write G as

G = hx

i

(i 2 I) j Ri

(where fx

i

j i 2 Ig is a set of \generators" and R (the set of \relators") is a set of words

in fx

i

; x

�1

i

j i 2 Ig such that G

�

=

F=H where F is the free group generated by fx

i

j i 2 Ig

and H is the normal subgroup of F generated by R. If we can �nd a free group F of �nite

rank and a �nite set of relators R, then we call G a �nitely presented group.

Groups arising in applications, such as fundamental groups in topology, often are given

naturally via their presentations. Unfortunately, a �nite presentation does not yield very

good information about the group. Novikov [No55] and Boone [Bo54-57] showed that in

some �nitely presented groups, one cannot even tell whether a particular word in x

1

; : : : ; x

n

and their inverses is the identity in G. (Such groups are said to have unsolvable word

problem.) Further work of Baumslag, Boone, and Neumann [BBN59] revealed that many

other properties of elements of G also cannot be determined from words denoting the

elements.
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2 THE COMPLEXITY OF TORSION-FREENESS

On the other hand, the �nite presentation of a group G also does not allow us to

determine almost any conceivable global property of G, such as whether G is trivial, �nite,

abelian, torsion-free, simple, etc. This follows immediately by a theorem of Adian [Ad57,

Ad57a] and Rabin [Ra58], stating that any Markov property of a �nitely presented group

cannot be e�ectively determined from its presentation. (A property of �nitely presented

groups is called Markov if it holds of some �nitely presented group G

+

and fails in any

�nitely presented group containing some �nitely presented group G

�

.)

Once a problem turns out to be undecidable, it is natural to ask exactly how complicated

the problem is. Computability (or recursion) theory provides a tool for measuring com-

plexity of unsolvable problems in the form of Kleene's arithmetical hierarchy. For n > 0,

a property is called �

0

n

if it can be expressed (in the language of arithmetic) by a formula

of the form 9~x

1

8~x

2

9~x

3

: : :Q~x

n

R(~x

1

; : : : ; ~x

n

) where R contains only bounded quanti�ers;

it is �

0

n

if it can be expressed by a formula of the form 8~x

1

9~x

2

8~x

3

: : :Q~x

n

R(~x

1

; : : : ; ~x

n

).

By Post's Theorem, a property is (recursively) enumerable (i.e., the set of all objects sat-

isfying the property can be e�ectively listed) i� it is �

0

1

; and a property is decidable (i.e.,

can be determined by an e�ective algorithm) i� it is both �

0

1

and �

0

1

. By a theorem of

Kleene, these classes of properties form a proper hierarchy satisfying for all n > 0 that

�

0

n

;�

0

n

� �

0

n+1

\�

0

n+1

� �

0

n+1

;�

0

n+1

. A property P is called �

0

n

-hard if any �

0

n

-property

P

0

can be e�ectively reduced to it, i.e., there is a computable function f such that, for

any (code for a mathematical object) m, P

0

holds of m i� P holds of f(m); a prop-

erty is �

0

n

-complete if it is both �

0

n

and �

0

n

-complete. Note here that �

0

n

gives an upper

bound on the complexity of a property whereas �

0

n

-hardness gives a lower bound; thus

�

0

n

-competeness gives a precise classi�cation of a property in terms of computability and

de�nability. (�

0

n

-hardness and �

0

n

-completeness are de�ned analogously.)

The above-mentioned Adian-Rabin Theorem actually shows that any Markov property

is �

0

1

-hard. Since many Markov properties, such as being trivial, �nite, abelian, etc., are

also enumerable and so �

0

1

, these properties are thus in fact �

0

1

-complete. Other Markov

properties, however, such as being solvable, simple, torsion-free, or having a decidable word

problem, are not readily seen to be �

0

1

. One of these, having a decidable word problem,

was shown by Boone and Rogers [BR66] to be �

0

3

-complete.

1. The theorem. The main result of this paper is to establish the completeness of the

only other Markov property known to be complete at a level other than �

0

1

:

Theorem. The property of a �nitely presented group being torsion-free is �

0

2

-complete.

(Thus, of course, the property of a �nitely presented group not being torsion-free is �

0

2

-

complete.)

This theorem has an immediate consequence about e�ective enumerations of �nitely

presented groups:

Corollary. There are no e�ective listings of (presentations of) all torsion-free �nitely

presented groups, or of all non-torsion-free �nitely presented groups.

Proof. If there were such an e�ective listing then the set of all �nite presentations of such

groups would be enumerable, i.e., �

0

1

, contradicting the above theorem. �
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2. The proof of the theorem. The proof is based on two important theorems of

combinatorial group theory, the Higman Embedding Theorem and Britton's Lemma.

We �rst recall that a group G = hX j Ri is recursively presented if X is a �nite set of

generators and R is a (recursively) enumerable set of relators; and that G is in�nitely re-

cursively presented if X is a countable set of generators and R is a (recursively) enumerable

set of relators.

Our proof proceeds by a sequence of reductions, each given by a proposition:

Proposition 1. The property of a recursively presented group being torsion-free can be

e�ectively reduced to the property of a �nitely presented group being torsion-free.

Proposition 2. The property of an in�nitely recursively presented group being torsion-free

can be e�ectively reduced to the property of a recursively presented group being torsion-free.

Proposition 3. The property of an in�nitely recursively presented group being torsion-free

is �

0

2

-hard (in fact, �

0

2

-complete).

Proof of the theorem. The property of a �nitely presented group being torsion-free is readily

seen to be �

0

2

:

G is torsion-free i� 8w8n > 0(w

n

6=

G

1 or w =

G

1)

where w ranges over words on X and their inverses and n ranges over integers. (Note that

equality in G, denoted by =

G

, is enumerable and thus �

0

1

.)

But, by Propositions 1, 2, and 3, the property of a �nitely presented group being

torsion-free is also �

0

2

-hard, establishing the theorem. �

It now remains to verify the propositions. We �rst need another de�nition.

A group G is called an HNN-extension (or Britton extension) of a group H = hX j Si

(for a set of generators X and a set of relators S) if G = hX; t j S;Ri where t is a generator

(called a stable letter) not occurring in X and R is a set of relators (i.e., words) of the

form a

t

i

b

�1

i

(where i ranges over some (possibly in�nite, or possibly empty) index set I)

such that the map sending each a

i

to b

i

induces an isomorphism of the subgroups of H

generated by the a

i

's and the b

i

's, respectively. (This latter condition is often called the

isomorphism condition.)

Proof of Proposition 1. Given (a presentation of) a recursively presented group H = hX j

Si, we must e�ectively produce (a presentation of) a �nitely presented group G such that G

is torsion-free i� H is. We note that the Higman Embedding Theorem embeds a recursively

presented group H into a �nitely presented group G. A careful analysis of the proof (e.g.,

in [Ro95]) shows that G is obtained from H by a �nite sequence of HNN-extensions. But,

by Britton's Lemma, HNN-extensions preserve torsion-freeness, i.e., G is torsion-free i� H

is, as desired. �

Proof of Proposition 2. Given (a presentation of) an in�nitely recursively presented group

H = hX j Si, we must e�ectively produce (a presentation of) a recursively presented group

G such that G is torsion-free i� H is.
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Let X = fx

1

; x

2

; : : :g. Let H

0

be the free product H ? ha; bi where ha; bi is a free group

of rank 2. We now form an HNN-extension of H

0

by a stable letter t:

G = ha; b; x

1

; x

2

; : : : ; t j R; a

t

b

�1

; a

b

n

t

(x

n

b

a

n

)

�1

(n > 0)i

Note here that the isomorphism condition holds since both fa

b

n

j n � 0g and fbg[fx

n

b

a

n

j

n > 0g freely generate subgroups in H

0

.

But now G is an HNN-extension of H

0

, which in turn trivially is an HNN-extension of

H; so G is torsion-free i� H is. Finally, G is �nitely generated, namely, by a and t. �

Proof of Proposition 3. We use the well-known fact (see, e.g., [So87, p. 66]) that the (index)

set of all in�nite enumerable sets is �

0

2

-complete. Given (an index for) an enumerable set

W , we must thus e�ectively produce (a presentation of) an in�nitely recursively presented

group G such that W is in�nite i� G is torsion-free.

We let G = hx

1

; x

2

; � � � j Ri where the set of relators is enumerated as follows: Start

with R = fx

2

1

g and enumerate the set W stage by stage, enumerating at most one element

at any stage. At the stage at which the nth element (in the order of enumeration) enters

W , enumerate into R the set fx

n

; x

2

n+1

g.

Now, if W is �nite, say, it contains n elements, then we have

R = fx

2

1

; x

1

; x

2

2

; x

2

; : : : ; x

2

n

; x

n

; x

2

n+1

g;

so G = hx

1

; x

2

; � � � j x

1

; x

2

; : : : ; x

n

; x

2

n+1

i

�

=

hx

n+1

; x

n+2

; � � � j x

2

n+1

i, which has a torsion

element x

n+1

of order 2. On the other hand, if W is in�nite, then R = fx

2

1

; x

1

; x

2

2

; x

2

; : : :g,

so G = hx

1

; x

2

; � � � j x

1

; x

2

; : : : i = 1, which is torsion-free. �

3. Open Questions. As mentioned in the introduction, some Markov properties are

not known to be (and in fact conjectured not to be) �

0

1

: Solvability is only known to be

�

0

3

, residual �niteness and simplicity are only known to be �

0

2

, etc. Our technique above,

however, does not seem to work for these properties since these are not properties localized

at some element and thus not preserved under HNN-extensions.
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