
THE UNIVERSITY OF CHICAGO

TOPICS IN RECURSIVELY ENUMERABLE SETS AND DEGREES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY

STEFFEN LEMPP

CHICAGO, ILLINOIS

JUNE, 1986

ACKNOWLEDGEMENTS

I wish to thank all the people who through their support and encouragement

made this thesis possible. I am indebted most of all to my thesis advisor, Prof.

Robert I. Soare, who spent many hours with me and taught me clarity and precision

in recursion theory; also to my "second advisor", Prof. Theodore A. Slaman, who

gave me many new and innovative ideas; as well as to Prof. Leo Harrington and

Prof. Carl G. Jockusch, Jr., who suggested new techniques and problems.

Finally, I wish to thank my wife Brenda for her patience and encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .

LIST OF ILLUSTRATIONS

NOTATION

ABSTRACT

INTRODUCTION

CHAPTER I: A HIGH STRONGLY NONCAPPABLE DEGREE

CHAPTER II: THERE IS NO DEEP DEGREE

CHAPTER III: E"- AND II"-COMPLETE INDEX SETS

CHAPTER IV: w-DEGREES .

BIBLIOGRAPHY

iii

ii

iv

v

viii

1

5

. 23

. 46

. 77

. 85

LIST OF ILLUSTRATIONS

Diagram 1. Sets and Functionals used

Diagram 2. The ?-strategy

Diagram 3. The R-strategy

Diagram 4. The $-strategy .

Diagram 5. The }./-strategy

Diagram 6. The A-side

Diagram 7. The A-side

Diagram 8. Copy Cn

iv

6

12

13

14

15

28

29

. 41

NOTATION

Our notation is fairly standard and generally follows Soare's forthcoming book

"Recursively Enumerable Sets and Degrees" [Sota].

We consider sets and functions on the natural numbers w = {1, 2, 3, ... }. Usu

ally lower-case Latin letters a, b, c, ... denote natural numbers; f, g, h, ... total func

tions on w; Greek letters il1, \Ii, ... , cp, '1/1, •.• partial functions on w; and upper-case

Latin letters A, B, G, ... subsets of w. For a partial function cp, cp(x) ! denotes that

x E domcp, otherwise we write cp(x) t. We identify a set A with its characteristic

function XA. f ~ x denotes f restricted to arguments less than x, likewise for sets.

We let A C B denote that A ~ B but A f. B; A ~· B that A - B is finite;

and A Coo B that A ~ B and IE - Al = oo. A LJ B will denote the disjoint

union. For each n E w, we let (x1,x2 ,. • .,xn) denote the coded n-tuple (where

x; ::; (xi, x2,. . ., Xn) for each i); and (x); the ith projection function, mapping

(x1 , x2,. . ., Xn) to x;. A[k] = {y I (y, k) E A} denotes the kth "row" of A; and

A [<I] - u A[k]
- k<l •

In a partial order, x I y denotes that x and y are incomparable. [k,1) denotes

the interval {n E w I k::; n <I}.

The logical connectives "and" and "or" will be denoted by /\ and V, respectively.

We allow as additional quantifiers (in the meta-language) (300 x), (3<00 x), and (a.e.

x) to denote that the set of such x is infinite, finite, and cofinite, respectively.

{e} (or 'Pe) and We ({e}X (or il1:J and Wf) denote the eth partial recursive

function and its domain (with oracle X) under some fixed standard numbering.

::; 1 and ::;T denote one-one and Turing reducibility, respectively, and =1 and =T

the induced equivalence relations. The use of a computation il1:(x) (denoted by

u(X; e, x)) is 1 plus the largest number from oracle X used in the computation

if il): (x) !; and 0 otherwise (likewise for u(X; e, x, s), the use at stage s). Sets,

functionals, and parameters are often viewed as being in a state of formation, so,

v

when describing a construction, we may write A (instead of the full Lachlan notation

A., A[s), or At[s) for the value at the end of stage s or at the end of substage t of

stage s).

In the context of trees, p, a, r, ... denote finite strings; iai the length of a; <J~T

the concatenation of a and r; (a) the one-element string consisting of a; (anbm . ..)

the finite string consisting of n many a's, followed by m many h's, ... ; a<:;; r (a c r)

that a is a (proper) initial segment of r; a <L r that for some i, a ~ i = r ~ i and

a(i) <A r(i) (where <A is a given order on A and T <:;; A<w); and a:.:::; r (a< r)

that a <L T or a <:;; r (a Cr).

The set [T] of infinite paths through a tree T <:;;A <w is {p E Aw I (\ln)[p ~ n E

T)}. The extendible part of a tree Tis {a ET I (3p E [T))[a C p)}. The part of a

tree above a is T(a) = { r I a~r E T}.

In 0111-priority arguments, we use the following conventions: Upper-case let

ters at the beginning of the alphabet are used for sets A, B, 0, ... and functionals

r, ti., ... constructed by us; those at the end of the alphabet are used for sets

U, V, W, . . . and functionals <P, \I!, ... constructed by the opponent. A functional <P

(\l!,E>,. ..) is viewed as an r.e. set of triples (x,y,a) (denoting <P"(x) != y), and the

corresponding Greek lower-case letter rp ('1/J,iJ, .• .) denotes a modified use function

for <P (w, E>,. ..), namely, rp(x) = lal-1 (so changing X at rp(x) will change .pX (x)).

Parameters, once assigned a value, retain this value until reassigned.

Strategies are identified with strings on the tree corresponding to their guess

about the outcomes of higher-priority strategies and are viewed as finite automata

described in flow charts. In these flow charts, states are denoted by circles, in

structions to be executed by rectangles, and decisions to be made by diamonds. To

initialize a strategy means to put it into state init and to set its restraint to zero.

A strategy is initialized at stage 0 and whenever specified later. At a stage when a

strategy is allowed to act, it will proceed to the next state along the arrows and ac

cording to whether the statements in the diambnds are true (y) or false (n). Along

vi

the way, it will execute the instructions. Half-circles denote points in the diagram

where a strategy starts from through the action of another strategy. Sometimes,

parts of a flow chart are shared, the arrows are then labeled i and ii. The strat

egy control decides which strategy can act when. For some further background on

0111-priority arguments, we refer to Soare ([Sota] or [So85])

There will be no cross references between chapters, so all references refer to

theorems, equations, etc. within the same chapter.

vii

ABSTRACT

In Chapter I, we exhibit a high strongly noncappable degree.

Chapter II answers negatively the question whether a deep degree exists. It

also shows a weak converse of this.

Chapter III is devoted to index sets. We define a family of properties on

hyperhypersimple sets and show that they yield index sets at each level of the

hyperarithmetical hierarchy. We also classify the index set of quasimaximal sets, of

coinfinite r.e. sets not having an atomless superset, and of r.e. sets major in a fixed

nonrecursive r.e. set.

Chapter IV investigates properties of the partial order of w-degrees. We show

that the w-degree of 01 splits and that there is a minimal pair in the r.e. w-degrees.

A forcing argument shows that the w-degrees below 0(w) do not form an upper

semilattice.

viii

Perseverance is a great element of success.

If you knock long enough and loud enough at the gate,

you are sure to wake up somebody.

Henry Wadsworth Longfellow

INTRODUCTION

The question of whether a construction can be done effectively appears frequently

throughout mathematics and particularly in mathematical logic. Classical recursion

theory deals with this question on the set w of nonnegative integers. The most fre

quently studied constructions yield sets of natural numbers which are computable

(recursive), can be enumerated in a recursive way (recursively enumerable, abbre

viated r.e.), or are limits of a recursive approximation. This thesis focuses on the

structures of the lattice c of r.e. sets and of the upper semilattice R of r.e. degrees.

The early study of R revealed certain "nice" properties. For example, the Sacks

Splitting Theorem [Sa63a] showed that any nonrecursive r.e. degree is the supre

mum of two incomparable r.e. degrees. The Sacks Density Theorem [Sa64] showed

that R is a dense partial order. These and other results led Shoenfield [Sh65] to

conjecture that if a ER satisfies a diagram D(X) in the language .C = { O, 1, S, U}

of upper semilattices and D 0 (x,y) is a consistent extension of D(x), then there is

b ER such that a and b satisfy D 0 (x,y). A consequence of this would be that

no two incomparable r.e. degrees have an infimum (cap to some lower r.e. degree).

This was refuted independently by Lachlan [La66] and Yates [Ya66] through the

construction of a minimal pair (capping to 0). Yates [ibid.] also showed that some

r.e. degrees are noncappable (not half of a minimal pair). Soare [So80] defined the

notion of a strongly noncappable (s.n.c.) degree (an r.e. degree =f O, O' that does

not have an infimum with any incomparable r.e. degree). Ambos-Spies [AS84]

proved the existence of s.n.c. degrees and various stronger results, but all his such

degrees were constructed by finite injury arguments and thus are low. A (much

more difficult) O'"-priority argument in Chapte,r I of this thesis establishes the exis

tence of a strongly noncappable degree, which is high and thus is not obtainable by

1

2

Ambos-Spies's methods. This is a step in the characterization of the range of the

jump operator (halting problem) on certain classes of r.e. degrees. Which degrees

actually are the jumps of s.n.c. degrees still remains an open question. A recent

related result by Cooper [Cota] (and independently by Shore [Shta]) shows that.

the range of the jump operator on the set of cappable degrees is not the set of all

degrees r.e. in and above (REA in) O'.

Adding the jump operator to the language of the structure of R complicates the

picture even more: The Sacks Jump Theorem [Sa63b] asserts that any degree REA

in 01 is the jump of an r.e. degree (even uniformly). However, a recent result by

Shore [Shta] shows that even a slight extension is impossible. He constructed two

degrees a and b REA in 0 1 such that a U b < 0 11
, but for any r.e. (even ~2) degree

c < 01
, either a or b is not r.e. in c. He thus established that it is not always

possible to simultaneously invert the jump on two degrees REA in 01 and their join.

In the last few years, two major problems about the existence of certain nonrecur

sive "extremely low" degrees (i.e., degrees with properties stronger than lowness)

were solved negatively: Soare and Stob [SS82] refuted the existence of a super/ow

degree (a nonrecursive r.e. degree a such that any degree REA in a is actually r.e.).

A closely related question is whether there is a deep degree (a nonrecursive r .e. de

gree w such that for all r.e. degrees a, (auw)' =a'). This question had been raised

by Bickford and Mills and had been worked on since by several mathematicians.

A joint result with Slaman in Chapter II of this thesis shows that there is no deep

degree. We also show a weak converse: There is a nonrecursive low r.e. degree that

does not join to a high degree with any other low r .e. degree, this question first

being raised by Jockusch.

Most questions concerning the jump remain open and will prove fertile ground

for future research.

Chapter III deals with index sets, i.e., sets of indices of partial recursive (p.r.)

functions and r.e. sets that are defined through the p.r. functions or r.e. sets they

3

code. The early results in index sets used geometric arguments in one- or two

dimensional arrays: Rogers showed the E3 and TI3-completeness of the index sets

of recursive and simple sets, respectively, in a finite injury argument. Lachlan,

D.A. Martin, R.W. Robinson, and Yates (1968, unpublished, later appearing in

Tulloss [Tu71]) showed the TI4-completeness of the index set of maximal sets in an

infinite injury argument. Tulloss [ibid.] also mentions for the first time the question

whether the index set of quasimaximal sets is E 5-complete. However, the geometric

method was too complex at higher levels of the arithmetical hierarchy. During the

1970 's, progress in index sets was mainly made in other areas by several Russian

mathematicians as well as L. Hay.

Schwarz [Schta] was the first to introduce induction into index set proofs (in the

r.e. degrees) and was able to show that the index sets of lown and highn r.e. sets are

En+a and En+4-complete, respectively. Solovay [JLSSta] then extended Schwarz's

methods to show the Ew+1-completeness of the index sets of low<w (!own for some

n) and of high<w (highn for some n) r.e. sets as well as the Tiw+1-completeness of

the index set of intermediate degrees (degrees neither low <w nor high<w).

We exhibit a family of algebraically invariant properties Lw, ,w-definable in c,
that yields index sets at any level of the hyperarithmetical hierarchy. The proof is

based on induction and Lachlan's theorem [La68] that any E 3-Boolean algebra is

isomorphic to the lattice of r .e. supersets of some r .e. set (modulo finite sets). It uses

tree arguments and the fact that the Cantor-Bendixson rank of a tree corresponds to

certain properties of the lattice of r.e. supersets of the set constructed. A corollary

shows the E 5-completeness of the index set of quasimaximal sets, thereby settling

this long-open question. Further results classify the index sets of atomlessless sets

and of r.e. sets major in a fixed nonrecursive r.e. set.

Interesting open questions in index sets include whether major subsets (in some

r.e. superset) or cuppable degrees yield E 5-complete index sets.

Chapter IV returns to questions about the jump. Jockusch, Lerman, Soare,

4

and Solovay [JLSSta] defined a reflexive, transitive relation ::;w on r.e. degrees by

a ::;w b iff (3n)[a(n) ::;T b(nl]. This relation easily extends to all Turing degrees

and induces equivalence classes, called w-degrees. They showed the density of the

r .e. w-degrees (even more strongly, that any interval of r .e. w-degrees allows an

independent set of r.e. w-degrees of size ~0). In Chapter IV, we show that the

w-degree of 01 splits in the r.e. w-degrees, and we exhibit a minimal pair of r.e.

w-degrees. We also show that the w-degrees do not form an upper semilattice by

constructing two nonarithmetical w-degrees below o(w) not having a supremum. It

is still open whether this is also true in the r .e. w-degrees.

CHAPTER I

A HIGH STRONGLY NONCAPPABLE DEGREE

1. THE THEOREM
Soare [So80] defined:

DEFINITION: An r.e. degree a =JO, 01 is strongly noncappable (s.n.c.) if a does not

have an infimum with any incomparable r.e. degree v, i.e., in the r.e. degrees,

(1) (\lv)(\lu) [a Iv/\ u :'O a, v-> (3b)[b :'O a, v /\bi ul].

Ambos-Spies [AS84] showed the existence of various low s.n.c. degrees. We prove

in this chapter:

THEOREM. There is a high strongly noncappable degree.

PROOF: Actually, we will prove, similarly to Ambos-Spies, a slightly stronger re

sult, namely, we will construct a high r.e. degree a =J 0 1 such that in the r.e. degrees,

(2) (\lv)(\lu)[u <a/\ v i a-> (3b)[b :'O a, v /\ b i ul).

(This implies (1) by letting u :'O v also.)

2. THE REQUIREMENTS

We will build a high r.e. set A of s.n.c. degree by satisfying the following three

requirements:

To ensure that A is high we let J be an r.e. set which in the limit codes 0 11 as

follows:

(3) (\le) [(e E 0"-> J[Ze] =* 0) /\(et/:- 011 -> J[Ze] = wi 2el)].

5

D.e,i <I>e

6

reli v
-------.,) e

-------.,) B,
IJi i

Diagram 1. Sets and functionals used

Then the usual thickness requirements will suffice to make A high:

(4) Pe: A[2eJ =* J[2eJ.

To make A incomplete we require for all e:

(5)

where K = 0' (although we could in this construction replace K by any nonrecursive

r .e. set W). Our basic strategy for Ne will be the Sacks preservation strategy, using

a typical tree argument to deal with infinite injury from the P-strategies but a new

coding strategy for such injury from the S-strategies as explained below.

To ensure (2) for strong noncappability, we stipulate that for all e,

(6) Re : Ue = <I>1 -> [A :::;T Ue V Ve :::;T A V (3Be)[Be :::;T A, Ve /\ Be i_ Uel],

where { Ue, Ve, <I>e }eEw is an enumeration of all triples of r.e. sets U, V and func

tionals <I> (given by the opponent), and where the Be are built by us. (See Diagram

1.)

However, the Re are still too complicated to be satisfied at one level of the tree,

so we split each Re up into

(7) ' A Re : Ue = <I> e -> Be :::;T A, Ve,

7

and for all i E w,

(8) Se,i : Ue = <!)~ /\ Be = iJ!f• -+ A :S:T Ue V Ve :S:T A,

where { \[I; hEw is an enumeration of all functionals iJ! (given by the opponent).

For the sake of Re, we will build functionals El., Se such that

(9) n · u - ;r.A ~ B - eA /\ B i:;v. ft...e· e-'J!e-----,.- e- e e=,_.e •

For Se,i, we will construct functionals r e,i, b.e,i such that

(10)

The Re and Se,i will correspond to actual strategies.

The strategies for satisfying the requirements will be arranged on nodes of a tree.

Each strategy will be responsible for one requirement of type)./, P, R, or S and

will from now on be called }./-, P-, R-, or S-strategy. (We will suppress indices

whenever they are clear from the context.)

3. MAKING A S.N.C.

In order to be able to restrain U through A, we will require that

(11)

Then <!)A~"[s] ~ x = u. ~ x and A 8 ~ u = A ~ u implies U8 ~ x = U ~ x.

We also tacitly assume that all use functions cp.(x), etc. are increasing in x and

nondecreasing in s.

For satisfying R., we have to ensure first of all Re. Each Re-strategy a will build

its version of Se as direct permitting on a-stages (Ve,s ~ x = Ve ~ x /\ s E S"'- -+

Be,s(x) = Be(x)), and we will therefore not me~tion Se any more. However, Ve and

Se are used by many strategies on the cone below the Re-strategy. Therefore, in

our infinite injury setting, direct permitting requires that the strategy responsible

8

for building Ee (i.e., the Re-strategy) allows a strategy below on the tree to act

immediately if the latter wants to put a number into Be and thus needs a Ve

change to correct Be. A version of the functional 0e will be built explicitly by each

R.-strategy as the length of agreement between U and if>: increases. Notice thus

that an R-strategy only builds a functional, but does not enumerate numbers into

any set or impose any restraint. Its outcomes are q,A f U (called 1, in which case

0 will be finite), and (a guess that) q,A = U (called O, in which case it has to ensure

that eA is total and eA = B).

An Se,i-strategy f3, which will only ever act if it is below the outcome 0 of an

R.-strategy on the tree, will mainly try to "code Ve into A" by gradually building

r e,i and putting 'Ye,;(x) into A whenever r~;(x) t f V.(x) to ensure the correctness

of r e,i· If Ve = K then this would make A complete and thus injure one of the N

strategies below, say, ry :::i (3. So the key to the whole construction is the feature that

the N-strategy ry helps the Se,i-strategy (3 prove Be f wf• and then immediately

shuts f3 off. The outcomes of the Se,i-strategy f3 are again 0 (infinite action) and 1

(finite action).

Now consider an Ne-strategy ry, and assume it is on the true path and thus has

to satisfy its requirement. The strategies to the left of ry only have finite effect;

ry will put up restraint against the strategies to the right of and below ry. So the

only strategies dangerous to ry lie above it on the tree, and they are either Pe• or $

strategies. The former are no problem: ry knows the outcome (either Ai 2e'J =* wl 2•']

or Al2•'1 =* 0). For each $-strategy f3 Cry for which ry guesses that f3 puts infinitely

many numbers into A, ry will take over (J's responsibility and try to put up a

candidate x for B(x) f \[Ju (x).

If ry succeeds in finding a suitable candidate, there are two possibilities: Either

V will change and allow x into B, while the .>/-strategy preserves Wu (x) = O; thus

B(x) = 1 f 0 = wU(x). Then (J's requirement has been satisfied by ry, therefore

f3 can be shut off and has finite outcome. So ry is not on the true path after all,

9

and its restraint will have the same priority as if it were imposed by f3 (since no

E :2 /3~ (0) will act ever again). The other possibility is that V does not change,

which constitutes another step towards showing that V :::;T A.

The strategy 'Y may have to act even when it is not its turn since it needs to

redefine a functional of much higher priority. Thus 'Y might injure higher-priority

strategies which have increased their restraint since 'Y acted last. Therefore, when

ever some .At-strategy 'Y' changes states (while it is its turn), the strategy control will

initialize all strategies E > "f 1 to prevent them from injuring 'Y'. This is compatible

with the rest of the construction since each .At-strategy 'Y on or to the left of the

true path will act only finitely often.

On the other hand, if "f fails to find a suitable candidate, then f3 has to make !::>.

total and ensure that Au = A. So again (J's requirement will be ensured by "f.

Candidates for showing B-/= Wu must have the property that 1J(x) > cp(1fi(x)) so

that we can put x into B, put 1J(x) into A to correct EJA(x), and at the same time

restrain A~ (cp(¢(x)) + 1) to preserve U ~ (1/i(x) + 1) and thus wu(x) = 0. Now an

R-strategy can wait with the definition of EJA (x) until q,A ~ (y + 1) is defined (for

some y depending on x), but not for wu (x) (which may not be defined at all). So

we introduce the A-recursive computation function of A,

cA(x) = µs[A. ~ (x + 1) =A~ (x + 1))

for the given enumeration of A, and its recursive approximation

cA(x,s) = (µt:::; s)[A8 ~(x+1) =At~ (x + 1)).

Now if U <TA,¢ is a U-recursive function, and S is an infinite recursive set then

and thus if in addition q,A = U and cp is increasing then

10

If U < T A, this will ensure that an .Al-strategy below an S-strategy can find enough

candidates x for B(x) f. wu(x) with i?(x) > ip(,P(x)) by having at stages+ 1 the

R-strategy put i?(x) > ip(cA(x,s)). (The function CA is Ambos-Spies's function "I

as explained in Lemma 1 of [AS84].) So if an .Al-strategy "I cannot find a suitable

candidate for an S-strategy fJ C "f, we can allow "f to shut off fJ eventually.

The outcome of the .Al-strategy "f is the lim inf of the restraint that "f imposes on

the lower-priority strategies. Note that only the .Al-strategies want to restrain A.

4. THE FULL CONSTRUCTION

We will first describe the tree of strategies and then give the full module for each

type of strategy (in a flow chart) and explain the strategy control to see how the

strategies interact.

Let A>1, Ap, AR., and As be the sets of outcomes of the .Al-, P-, R-, and $

strategies (where A>1 = w and Ap = AR. = As = { O, 1}), and let A be their union.

The tree of strategies is

(12) T = { e E A<w I (Vk < IEl)[E(k) E A>1,Ap,AR,,As fork 0,1,2,3 mod 4]}.

To each node E E T, we assign a type of strategy (.Al, P, R, S for I El = 0, 1, 2, 3 mod

4) and a number e(e) (or (e(E),i(e))) = le~-k (for some k E {0,1,2,3}) so that E

works on requirement .Ale(e)> Pe(e)> Re(e)> or Se(e),;(e)· Then for each infinite path

h E [T], there is exactly one strategy E c h working on each requirement. Fixing e

and i, notice that if a is the R.-strategy a c h and fJ is the s.,;-strategy fJ c h, we

have that a c fr (Furthermore, fJ will not act at all unless a~ (o) ~ fJ, i.e., unless

fJ guesses that if/~ = u •.)
Each Pe-strategy e is assigned to De = wl 2•J for its thickness strategy. Each

strategy e of type R or S is effectively assigned to an infinite recursive subset De

of w so that

(13) LJ
e of type R. or S eEw

11

All N-strategies ry 2 a~(o) (where a is a fixed R.-strategy) also help each S.,;

strategy (J with a~(O) ~ (J Cry build its part of the set Be, so each ry is effectively

assigned an infinite recursive subset E'J such that for fixed a,

(14) LJ
'l'2" ~(o)

')' of type N

E2=w.

Let also r(ry) (or r, for short) denote the A-restraint imposed by the N-strategy ry

(as defined below), and

(15) r'(e) = max{r(ry) [ry < e}

(or r', for short) the A-restraint imposed on e by all stronger strategies. (Recall

that only N-strategies impose restraint, so r(E) = -1 for all other strategies e.)
At each stage s, we will build substage by substage the approximation 08 -

max{ e I e acted at stages} to the true path f E [T] (where [o.[::::: s). We say 8

is a E-stage (EE se) iff E ~ 88 • In this particular construction, each strategy that

acts at substage t of stage s will decide which strategy will act at substage t + 1

(or whether we should go on to stage s + 1). 0 will always be the strategy to act

at substage o. (When an R- or an S-strategy E lets an N-strategy 1 below it act

first, then the action of ry will not count towards the definition of 08 or as a separate

substage.) Any strategy E > L 08 will be initialized as soon as 08 has been defined

far enough (i.e., at the least substage t at which ot[sj <L E).

The P-strategies are the easiest to describe. They ensure that A is high. Recall

that the r.e. set J codes 011 in the limit on the even rows. Then a P.-strategy I acts

as described in Diagram 2.

The strategy to play next will be l~(O) if Ak2
e] # A\2•1 where t =max{ t' < s I

t' E 8(}, and 1~(1) otherwise.
i

Each R.-strategy a is responsible for building its version of the functional e.,
and it is the node where the construction of its version of the r .e. set Be originates

on the tree. Then a proceeds as described in Diagram 3.

y

put least such

x into A

12

(3x > r')
[x E J[2eJ _ Ai2eJ]

n

Diagram 2. The P-strategy

Here m(x) (the assigned use for eA(x)) is the least y ED"' - A such that y:;::

previous values of i?(x) and greater than !?(x-1), \O(cA(x,s)), and r'.

An }/-strategy "Y 2 a~(O) is ready to special-act if:

(i) "Y has put up a candidate X(k) for an Se,;-strategy f3(k) 2 a~(O) at a previous

stage s 0 ;

(ii) "Y has not been initialized since stage s 0 ;

(iii) no element entered A~ (r,0 ("Y) + 1) since stage s0 , but V(k) ~ X(k) has changed

since stage so; and

(iv) no candidate for any /J(j) with j :'::'. k has been permitted since "Y was initialized

for the last time.

In this case, "Y goes to spact k and on to the next state and gets a permitted

candidate X(k) for f3(k) through its special action (until "Y is initialized if ever).

The strategy control will end the current stage if a lets some }/-strategy special

act. Otherwise, the next strategy to act will be a~(O) if a just enumerated a new

let leftmost

such "(act

n

13

N-strategy 'Y :J a

is ready to special-act

(3x)

[EJA(x) j/\

q,A ~ (cA(x, s) + 1) =

U ~ (cA(x, s) + l)]

for least such x:

let eA(x) = B(x),

!?(x) = m(x)

Diagram 3. The R-strategy

14

let Gp= 0, let 'l'd be undefined

delay #1

delay #3

son1e

has a permitted

candidate for /3
y

so1ne

delay #2
is ready to leave

waiti for

let leftmost such
f3 go to next state

n {3 = f3(;) "Y'-.~-----'

for some

')' 2 {3~(0}: ')' $ ')'d,

') E G~, and')' is in
waiti for
f3 = f3(;) n

y
>"------~ let 'l'd be the leftmost such ')

for son1e

')' 2 {3~(0}: ') $ /d,

and / is in wait;

for f3 = f3ti) n

add leftmost such ')to Gp

(3x) [E:lA(x) l A

(I'A(x) l--> rA(x) 'I V(x)

Ar'< 7(x))]
n

let /d be undefined

>:::0
---'l let rA(x) = V(x), let /(x) = n(x)

y

put 1(x) into A;
for the leftmost ./,'-strategy
')' 2 {3~{0) such that /(x) $ r(')),
let 'l' perform injury action;

cancel all e > ')

Diagram 4. The $-strategy

increment

p by +I, let r0 = r

15

let r = ro = O, let p = -1

y
put X(k) into B(k)> if etk)(X(k)) j
then put ti(kj(X(kJ) into A;
if now in waiti for i ~ k,
then let r = ro, else let r0 = r;

~---Jcancel all e > 'Y
~-'>!<'.~~-

y

y ii

put up least x E Cui

~--'as candidate Zif) for f3i;1 1 r---'
incren1ent j by + 1 jj

Diagram 5. The)/-strategy

16

axiom for E>, else it will be a~(l).

An S.,;-strategy j3 will only ever act if a~(o) t;;; j3 for the R.-strategy a c {3.

In this case, it will try to code Ve into A by building its version of r e,i to show

rA. = Ve unless some .Al-strategy below it helps it to satisfy Se i in some other way.
e,i '

Therefore, j3 can be delayed in its action in various ways by .Al-strategies below. An

S.,;-strategy will thus act as described in Diagram 4.

Here n(x) is the least y E Df3 - A such that y 2: previous values of 'Y(x) and

greater than "f(x -1), i?(x), and r1
•

An ,,\/-strategy 'Y 2 /3~(0) performs injury action by going to injk (where j3 = f3(k))

and on to the next state.

Roughly speaking, 'Yd is the strategy that caused delay #3 the last time f3 could

act. (We agree that "(::; 'Yd is satisfied vacuously if 'Yd is undefined.) Its role is to

eventually stop j3 if some .Al-strategy below cannot find a candidate for j3. Before

'Y can delay /3, however, it has to be injured at least once by definition of C13. We

need Cf3 in Lemma 2 since for any s, C(3[s] is finite and thus well-ordered, whereas

u.Ew Cf3[s] may not be well-ordered.

The next strategy to act will be /3~ (0) if j3 enumerated a new axiom for r, else

it will be /3~(1).

(It is worthwhile to intuitively distinguish the different delays for f3 here: Delay

#1 is immediate and permanent and corresponds to the fact that B f \[tu. Delay

#2 is always temporary, the ,,\/-strategy below changes states, and then j3 resumes

its action. Delay #3 is permanent again, but will only be activated eventually,

corresponding to the outcome that A ::;T U. If j3 is on the true path f and makes

its r total, then each ,,\/-strategy 'Y with j3 C "(C f will eventually no longer be

injured by f3 since 'Y's candidate protects"(against /3.)

Finally, we will describe the most complicated of all strategies, the ,,\/-strategies.

Recall that an ,,\/-strategy 'Y is trying to restrain A in order to ensure { e }A f K.

Towards the strategies ~ > 'Y, 'Y will use the usual Sacks preservation strategy; 'Y

17

will have a guess about the .P-strategies \ C 'Yi against the (potentially infinite)

injury by the s.1,;1-strategies /3 with /3~(0) ~ '}', 'Y will try to put up candidates to

show wf,•' of Be'. The strategy 'Y will thus proceed as described in Diagram 5.

Here, p, r, and r0 are parameters defined in the diagram, roughly denoting the

protected length of agreement of K = {e}A, the A-restraint imposed by 7, and the

part of the A-restraint to preserve the protected length of agreement, respectively.

The other parameters are defined as follows: We call a computation {e}A(x) l

7-correct iff

(16) (Ve'< e) (Vz E w!2
•'] = D7)(4e'+1))

['Y(4e' + 1) = 0 /\ r'('Y ~ (4e1 +1)) < z < u(A;e,x)--> z EA],

i.e., if all .P-strategies \ C 'Y that act infinitely often will not destroy the computation

{e}A(x) J. Then the length of agreement of K = {e}A is defined by

(17) £= max{y I (Vz < y)[K(z) = {e}A(z) via a '}'-correct computation]}.

The use of the protected length of agreement is

(18) u =max{ u(A; e, y) I y ~ p + 1 }.

For the sake of simplicity, for fixed 7, we denote all S-strategies such that

f3(1) ~(O) C f3(2) ~(O) C · · · C f3(m) ~(O) ~ 'Y by /3e1l, ... ,/3em) (these are the strate

gies against which 'Y must put up a candidate), and all of the parameters of /3(j) are

temporarily denoted by Ben• <P(j) etc.

Let °'eil be the Reen-strategy such that °'(j) c /Jen· The set Cu) of possible

candidates for f3(j) is defined as the set of all y E E'Jc;J such that:

(i) y > r 1 and y > any previous candidate that 'Y put up for /3(j);

(ii) iI!~ClJ (y) ! = O;

(iii) u(j) ~ (.Pen (y) + 1) = <Pf;) ~ (.Pui (y) + 1) ! via a 7-correct computation;

(iv) et)~ (y+ l) ! and l?uJ(Y) > r',r; and

(v) cA(y,s) > .Peil(y).

18

If 1 changed states then all strategies e > 1 will be initialized. Otherwise, the

next strategy to act will be 1~(max{ r, r' }). (Recall that special action or injury

action does not count as 1's turn, and that after special action the current stage is

ended.)

(Intuitively, an Ne-strategy tries to protect one by one the length of agreement

of K = { e }A against $-strategies. Once it is in state getcandk and thus has a

permitted candidate for one of them, it assumes that it is to the left of the true

path and will no longer protect longer lengths of agreement.)

5. THE VERIFICATION

Let 08 be the string of strategies that act at stage s (except for special action and

injury action by the ,,\/-strategies). Let f = liminf, 88 be the true path on the tree

T.

The verification consists of several lemmas:

LEMMA 1 (INJURY LEMMA). No strategy e injures a strategy e' < e by putting

into A an element x ::; r (e').

PROOF: An R-strategy does not put elements into A at all. The P- and $-strategies

observe restraints by stronger strategies explicitly. Moreover, when an ,,\/-strategy

puts up a candidate, it is greater than stronger restraint so we only have to show

that this restraint will not increase until the candidate is cancelled or put into A.

But only the ,,\/-strategies e' < e impose stronger restraint. Whenever this restraint

increases, some ,,\/-strategy e < e has changed states, and therefore e must have

been initialized. I

LEMMA 2 (,,\/-STRATEGY LEMMA). Each ,,\/.-strategy 1 C f is injured at most

finitely often, is eventually in state waitl (waiting for l to increase), and Jim, l < oo

exists. {Thus lim8 r < oo exists, K =J { e }A, and N. is satisfied.)

PROOF: First notice that any strategy E <L f acts only finitely often. This is

trivial except for ,,\/-strategies. But whenever an ,,\/-strategy "(<L f performs

19

special action or injury action, it will need 'Y ~ 08 to act the next time.

We now use induction on bl and the fact that 'Y:::; liminf. 08 • Let so be minimal

such that, after stage so, if any e < 'Y acts then e is not an ,,\/-strategy and e c "f,

and such that every ,,\/-strategy 1' c 'Y is in state wait] and is not injured after stage

Thus, "I is initialized after stage s 0 only if some $-strategy fJ(i) (as defined for

1) with fJ(i) ~(O) ~"I lets 'Y perform injury action. Since no ,,\/-strategies 1' <L "I

ever act after stage so, none of these will start delaying any $-strategies fJ(i) (as

defined for "I) after stage s0 more than once (i.e., after they entered G13(;)); but

fJ(j)~(O) Cf, and therefore eventually, say, after stage s 1 2: s0, none of these will

ever delay any $-strategy fJ(j)o So after stage s1, for all j = 1,2, ... ,m, we have

that 'Yin 2: 'Y· Thus after stage s1 , once 'Y E G(j)> 'Y can delay fJ(i) until it has a

candidate against it. 'Y will therefore eventually no longer be injured. (Recall that

"I knows which elements will be put into A by ?-strategies I C "I after stage s 0 .)

But then as in the usual Sacks preservation strategy, K = {e}A would imply that

K is recursive, so lim8 l < oo exists and 'Y will eventually stop acting and be in

state wait] forever (waiting for f, to increase). So lim8 r < oo exists, K fo { e }A, and

Ne is satisfied. I

LEMMA 3 (?-STRATEGY LEMMA). For all e, Ai2e] =* Ji2ei. Thus A is high.

PROOF: Only the ,,\/-strategies impose restraint on A. Lemma 2 shows that this

restraint is finite along the true path. Ill

LEMMA 4 (R-STRATEGY LEMMA). If Ue = i!!1, then the Re-strategy a C f

makes Ele total and Be = El~. Thus Re is satisfied through a 's versions of Ele and

Be.

PROOF: Suppose by induction that after stage s0 , E>1 ~ x has been defined A

correctly; that if strategy e < a acts then e c a and e is not an ,,\/-strategy; that

xis already a candidate for the ,,\/-strategy 'Y :J a (if it ever will be) where x E EJ;

20

and that cJiA ~ (cA(x) + 1) has settled down. But then m(x) changes at most once,

namely, when"/ puts 1J(x) into A, and afterwards x will never again be a candidate.

So m(x) will eventually be constant, and thus eA(x) will eventually be defined

A-correctly. Thus E>A is total. Furthermore, B = eA since B only changes on x

when eA(x) is or becomes undefined. II

LEMMA 5 (DELAY #3 LEMMA). For any $-strategy (3 Cf, if (3 is delayed by

delay #3 cofinitely often, then eventually (3 is always delayed by delay #3 by some

fixed N-strategy "f = lim8 "id·

PROOF: Suppose (3 is not initialized after stage s0 • If (3 is delayed cofinitely often

by delay #3, then Gp,oo = UsEw Gp[s] is finite and thus well-ordered. Let 'Yo be the

leftmost"/ E Gp,oo that causes delay #3 for (3 infinitely often. Then 'Yo= Jim, "/d[s]

since whenever "/d[s] > 'Yo and later "/d[s'] ='Yo then (3 is not delayed by delay #3

at least once between stages s and s1 by the arrangement of delay #3. (This is the

reason for having "id and Gp in this construction.) Ill

LEMMA 6 (TOTAL f LEMMA). If Ue = <l11 then the Se,;-strategy (3 C f makes

its version of r1,; total and V = r e,i unless (3 is eventually permanently delayed by

one fixed N -strategy"/ ::2 (3~(0) through delay #1 or delay #3.

PROOF: Suppose that if any strategy e < (3 acts after stage so then e C (3 and

e is not an N-strategy; and that no e ::; (3 is initialized after stage so. Then (3

is never initialized after stage so, and so either it is permanently delayed by one

fixed N-strategy (by Lemma 5 for delay #3 and by the construction for delay #1)

and (3~(1) c f; or (3 is not delayed at infinitely many (3-stages. (Recall that delay

#2 was only temporary.) In the latter case, (3 can define or redefine r e,i infinitely

often.

Suppose by induction that after stage s1 2: s0 , r1,; ~ x has been defined A

correctly; and that Ve ~ (x + 1) = Ve,s ~ (x + 1) and E>1 ~ (x + 1) t A-correctly.

Then n(x) is constant after stage s 1 , so r1,;(x) will eventually be defined A-correctly.

21

Thus re,i is total. Furthermore, Ve(x) = I'~;(x) at least for all x > lim. r'[s] (since

'l'(x) ~ x). 1111

LEMMA 7 (CORRECT Be LEMMA). Let a C f be the Re-strategy. Then the

version of Be that originates at a is recursive in Ve by direct permitting on a-stages.

PROOF: Element x can enter Be only as a candidate through special action of the

JI-strategies ')' ::i a. This special action can only occur until the first a-stage s at

which V ~ x = V[s] ~ x. I

LEMMA 8 (S-STRATEGY LEMMA). Let a Cf be the Re-strategy. If, for a's

version of Be and fixed i, Ue = ifl1, Ue <TA, and Be = llif' then the Se,;-strategy

/3 C f is not eventually permanently delayed by JI -strategies. (Thus, by Lemma 6,

r e,i is total and Ve = r~;, so Se,i is satisfied.)

PROOF: By Lemma 5, we only have to show that no single JI-strategy')' delays /3

forever. This can only happen if')' 2 /3~(0) and /3~(1) c f. Suppose that after

stage so, 88 ~ /3~(1), that no S-strategy injures ')' ever again (since otherwise ')'

cannot delay f3 at the next /3-stage), and that '/' does not act ever again. If')' delays

/3 by delay #1 then Be f' wf· through the permitted candidate since 'I' is no longer

injured. If ')' delays /3 by delay #3 then we show that A :S'.T Ue as follows (this

defines Lie,i implicitly): '/' delays f3 because it cannot find a candidate for it. Let

C be the set of ally E EJ. - Be (where a is the Re-strategy a C /3) such that (at

some stages> so):

(i) y > r' and y > any previous candidate that 'I' put up for f3(f);

(ii) WU (y)[sj l= 0;

(iii) U ~ (,P(y) + l)[s] = if!A ~ (,P(y) + l)[s] l via a ')'-correct computation; and

(iv) eA[s] ~ (y + 1) l and i?[s](y) > r'[s], r[s].

Since U = if!A and B = Wu and r and r1 settle down, this is an infinite recursive

set, but then C = C n {y I cA(Y) > ,P(y)} has to be finite, or else the JI-strategy

22

/would find a candidate eventually. Since 7/; is total, we have that 7/; :<:;T U, and 7/;

dominates c A on the set G. Therefore, A is recursive in U. II

This concludes the proof of the theorem. Ill

CHAPTER II

THERE IS NO DEEP DEGREE

1. THE MAIN THEOREM
Bickford and Mills defined the notion of a deep degree:

DEFINITION (Bickford, Mills): An r.e. degree w > 0 is deep if for all r.e. degrees

a,

(1) a'=(auw)'.

They raised the question of whether a deep degree exists.

MAIN THEOREM (Lempp, Slaman). There is no deep degree.

PROOF: For each r.e. set W, we have to construct an r.e. set A such that

(2) R : w ::;T 0 v A' <T (A EB W)'.

Let us first show that A cannot be built uniformly in W. Suppose there is a

recursive function f such that for all e,

(3) w. ::;T 0 v W.f(e) <T (WJ(e) EB w.)'.

We will show that there is a recursive function g such that for all e

(4A) (We EB Wg(e)) 1 =T w:,
(4B) (W. <T 0'----> Wg(e) 1:.T w.) /\ (w. =T 0'----> Wg(e) =T 0').

Now pick a fixed point e0 for gf by the Recursion Theorem. Then

(5)

23

24

By our assumption (3) on f (which was supposed to pick a counterexample to W. 0

deep), W.0 has to be recursive. Therefore, Wgf(eo) is also recursive. This contradicts

our claim (4) about g (which is supposed to build nonrecursive sets).

The proof of (4) is a simple infinite injury argument. For given W = W., we

have to uniformly build A = Wg(e). To satisfy (W E& A)' ::;T W', we use the Sacks

preservation strategy (as in Sacks [Sa63b]); it preserves all possible computations

to keep (WE& A)' down; its restraint drops on W-true stages. In the attempt to

satisfy A 'LT W, we use the Sacks coding strategy, trying to code K into A (as in

Sacks [Sa64]). Note that this strategy makes A complete if W is complete.

2. THE REQUIREMENTS AND THE BASIC MODULE

Fix an r.e. set W. We use the limit lemma for showing (2) by building a functional

r such that Jim, fAEElW (-, s) of lim0 \[IA(-, v) for all \[I. A is constructed nonuniformly

as in the Lachlan Non-Diamond Theorem [La66] in the following way: We will

build a pair (A, r) consisting of an r.e. set A and a functional r, and a sequence

{(Aw, f w) }w functional of such pairs such that if (A, r) fails via Wo, then (Aw0 , f w0)

will work. The requirements will thus be as follows (for all pairs of functionals

(w, >ii)):

(6)
Rw,{!f : w ::;T 0 v limv wA(., v) i Jim. rAEElW (., s)

V limv ,j,A,,, (., v) of lim8 f~"' EIJW (., s).

Once we have shown that W ::;T 0 through one strategy, the requirements of

lower priority need not be satisfied. (We will from now on suppress the index \[! on

Aw and f 'I! for better legibility.)

The basic idea for the proof is to either force changes in W often enough to make

r (or f') different from \[! (or W) in the limit, or else to build an implicit recursive

functional Llw w (or b., for short) to show that W is recursive via b..
'

The highest priority here is to make r (and all f') total and to ensure that

Jim8 fAEElW (., s) (and all lim8 f'AEElW (., s)) exist.

25

To ensure the former for r, we will define rAGlW(x,s) at stages. At stage O,

we set rAEllW (x, 0) = 0 and its use 1(x, 0) = 0. If at a stage s1 > s, rAGlW (x, s)

becomes undefined because of a change in A or W, we will redefine it by the end of

stage s1
• This will either be done explicitly by a strategy on the tree, or implicitly

at the end of stage s', when the strategy control sets rAEllW (x, s) = rAGlW (x, s - 1)

and 1(x,s) = 1(x,s-l). We ensure that rAGlW(x,s) is redefined only finitely often

by setting the use 1(x,s) only equal to 0 and at most one other number.

To ensure that the limit of r exists, we commit ourselves that for all x and s,

rAG)W (x, s) ~ rAG)W (x, 8 + 1) ~ 1. So actually Jim, rAG)W (·, s) will be Et(j)W.

(There will be one modification later.) We do the same for the f'w.
The basic module (for one Rw i1r) can now informally be described as follows (call

'
this the A-side of the module):

(i) fix a candidate i (for Jim, rAE!)W (i, S) -f. limv IJ!A (i, V)),

(ii) start setting rAEllW(i, s) = 0 (until (iii) holds) at each stages,

(iii) wait for wA (i, v0) = 0 for some v0 (at stage si, say),

(iv) impose A-restraint on A~ (1f.>(i,v0) + 1),

(v) start setting rAE!lW (i, s) = 1 with 1(i, s) > 1/.>(i, v0) (until (ix) or (x) holds) at

each stage s,

(vi) wait for wA(i,v1) == 1 for some vi> v0 (at stage s2, say),

(vii) impose A-restraint on A~ (1/.>(i,vi) + 1),

(Notice that we have now put a squeeze on our opponent: either W ~

("l(i, s 1) + 1) changes, and we can reset rAE!lW (i, s') = 0 (for all s1
:::: s 1)

while 1JiA(i,·) has a flip (a switch from 0 to 1 back to 0), which we preserve;

or else W ~ ("l(i, st)+ 1) remains unchanged, which constitutes a step towards

showing that W is recursive. In the second case, the effect is to temporarily

restrain W until we reset rAE!lW (i, s') = 0 (for alls':::: s) by changing A below

1(i,s1). The idea is to run a copy of the module (ii)-(vii) (the A-side) until

this copy restrains W in a similar way. Our strategy threatens to compute W

26

recursively by restraining it by the A-side while rAEllW (i, s) = O, and by the

A-side while f'AEBW (!, s) = 0.)

(viii) start the A-side at (i) or restart the A-side at (ii) (until (ix) or (x) holds),

(ix) if W82 ~ 1(i,s1) of w. ~ 1(i,s1) at stage s, then irrnnediately reset

rAEJ)W (i, s') = 0 for 81 ~ s' ~ s, initialize the A-side, and go to (ii) (look

ing for a new v0 greater than the current v1),

(x) if the A-side reaches (vii), then stop it, put 1(i, s1) into A, reset rAEllW (i, s') = 0

for s 1 ~ s1 ~ s, cancel the part of the A-restraint for preserving A ~ (,P(i, vo) +
1) and A~ (,P(i,v1) + 1), and restart the A-side at (ii).

We will for this proof tacitly assume that for all x ands, ,P(x,s) ~ ,P(x,s + 1)

(and likewise for -$).
Continuing in this informal way, let us verify that the basic module satisfies the

requirement.

The outcomes can be classified as follows:

(a) finitary: One of the sides is waiting forever at (iii) or (vi) for wA(i,.) (or

~A(!,·)) to change. Then, if the limit for >It (or ~) exists at all, it must be

unequal to the limit of r (or r).
(b) >It-flip: The A-side gets infinitely many W-changes at (ix). Then limv wA(i,v)

cannot exist since we ensured infinitely many flips via A-restraint.

(c) ~-flip: The A-side gets infinitely many W-changes at (ix), the A-side only

finitely many. Then limv ~A(!, v) does not exist. Note that the candidate i

settles down, and that lim, rAEllW (i, s) still exists since rAEllW (i, s) is ultimately

set to 0 for every s.

(d) (hidden) recursive outcome: Both the A- and the A-side get only finitely many

W-changes at (ix) but both sides change states infinitely often. Then W will

turn out to be recursive. Recall that in this case we will not need the other

strategies to succeed, so we do not have to put this outcome on the tree.

The full module only requires two minor modifications:

27

1) If a strategy a has outcome (b) (or (c)) then the A-restraint (or A-restraint,

respectively) that a imposes on a weaker strategy (3 below this outcome on the tree

tends to infinity. So (3 has to be able to injure a in some controlled way (explicit

infury feature). But notice that a has some flexibility in preserving ili'-flips (or W

flips). It can afford to have the mth flip injured finitely often for each m until it

preserves it forever. Then a will still be able to preserve infinitely many flips if it

encounters infinitely many. But (3 may have to put elements into A (or A) to reset r
(or r)' so (3 has to wait with setting r (or f') equal to 1 until it would be allowed to

injure a if necessary (delay feature). Notice that (3 assumes infinitely many ili'-flips

(or W-flips) for a, so (3 can afford to wait.

2) Whenever a strategy a puts an element into A (or A), a strategy (3 below it

may be injured. However, the set that a puts in can be made strictly increasing,

so (3 (if it is below outcome (b) or (c) of a) will wait until the part of A (or A) it

wants to work on is cleared of possible injury by a (postponement feature). Notice

that (3 assumes that the number that a may want to put in increases to infinity, so

again (3 can afford to wait.

3. THE FULL CONSTRUCTION

We will first describe the tree of strategies, then the full module for each strat

egy, and finally the strategy control which supervises the interaction between the

strategies.

Let .A = {flip <A flip <A fin} be the set of outcomes. Notice that these outcomes

correspond to the outcomes (b), (c), and (a), respectively, of the basic module above,

that we collapsed all finitary outcomes into one, and that outcome (d) of the basic

module will not be put on the tree since then this one strategy alone will satisfy the

overall requirement from (2). Now let T = .A <w be the tree of strategies. Fix an

effective 1-1 correspondence between all requirements R.'fl ,y and the levels of the
'

tree (sets of nodes of equal length). Let each strategy work on the requirement of its

level. Also effectively associate each strategy with an infinite recursive set of integers

pick new i E 8 0 , let v? = o, define P(a),
let n = 1, let so= s, let r = O,

28

set fA«•W(i,s0) = O, set 'J(i,so) = 0
let n = m, let r = 1ji(i,v~l-I),
initialize A-side,

IE-------------1 (re)set fAll•W (i, s') = O,

71'--""

y

let v~ = v, let r = tf(i, vg), let s1 = s,

set fA<DW(i,si),;,, l, set 1(i,si) = u(n)

Jet vr = v, let r = !/i(i, vrl.
let s2 = s, start up A-side

~-'--!

Diagram 6. The A-side

set 1(i,s1
) = 0 for s's s

inj

let r = !/i(i, v~),
initialize A-side

redefine P(a),

reset rAew (i, s') = O,

set 'J(i, s') = 0 for •1 S -<1 S s

ii

incre1nent n by + 1,

initialize A-side

A-side

in hold

y

pick newt E 80 , let V? = O,
let n = I, let §0 = s, let f = 01

set r"""'(i,so) = o, set ty(t,so) = 0

let V{J = v, let f = ~(i, V3), let 81 = s 1

set f'Amw (i, 81) = !, set ')(i, si) = u(n)

y

let ti? = v, let f = .,b(i, ti?),
let 82 = s, start up A-side

n

29

1 t , , 1 t , ,/.(' ·•-1) e - n = m, e r = 'f' t, v1 ,

(re)set f'Aew (i, s') = O,

set ')(!, s') = 0 for s' '.5_ s

. let f = ,,b(i, vg)

y

y A-side

redefine P(a), reset f'A©W (i, s') = 0,

set ')(i, s') = 0 for 81 '.5_ s' '.5_ s

ii

incren1ent n by + 1

Diagram 7. The A-side

30

S°' =Sa (such that LJaET Sa = w), and let a work with pairs (i, 1:) E Sa X Sex.

Now the A-side and the A-side of the full module of a strategy a proceed as

described in Diagrams 1 and 2, respectively.

In general, unhatted parameters refer to the A-side, hatted ones to the A-side of

the module. We assume that ry, the use of r, is computed separately on A and W,

so fA<llW(x,s) t implies fA)('y(a:,s)+I)<llW\('y(x,s)+I)(x,s) t.
The parameters i, n, r, and vJ (for i = O, 1; k E w) are defined in the flow

chart and roughly denote the candidate for an inequality at which a is trying to

establish Jim, fA<llW (i, s) of limv wA (i, v), the number of the W-fiip that a is trying

to achieve now, the A-restraint a imposes, and the opponent's "stage" v at which

he establishes wA(i,v) = i for the kth time. The current stage is denoted bys. To

initialize a means to put both sides into init and to set the restraints to zero, to

initialize the A-side means to do this for the A-side only.

The following parameters referred to in the diagrams are defined in the text:

The A-side respects A-restraint r1 =max{ r(,8) J ,a~(/Hp) ~ a}, the A-restraint

imposed by strategies that a assumes will get finitely many W-flips and infinitely

many '1i-flips. Note that a can afford to do so since it assumes that r' has a finite

limit on the set of stages when it acts.

To organize the delay properly, the module defines P(a) and F(a) (whenever

indicated in the diagram) by setting it to a number greater than all current values

of P(&) (or F(&)) for any & ET.

We define u(n) (the assigned use for 'l(i, s 1)) to be the least y E Sa greater than

all of the following:

(i) 'l/i(i,vQ');

(ii) all previous values of the parameter 'l(i,si);

(iii) max{ r(,8) I .8~(Bip) <L a};

(iv) 'l/ip(ip,vi,~a)) for all ,8 with ,B~(Bip) ~a; and

(v) 'l(ip, v~.~)) for all ,8 with ,8 2 a~(Bip) or ,8 2 a~(Bfp).

31

(Here, r(f3) is the A-restraint imposed by (3. Notice that for (3 with (J~(flip) ~ a,

a observes only the part of the A-restraint imposed by (3 that it is not allowed to

injure.)

Likewise, u(n) (the assigned use for 1(1,si)) is the least y ES,, greater than all

of the following:

(i) ~(i:, vg);
(ii) all previous values of the parameter 1(i:, 81);

(iii) max{ i'(f3) I (3~(fl1p) <L a};

(iv) .(/Jf3(i:f3, v[.~"')) for all (3 with (J~(fllp) ~ a associated with the same \[I (and thus

A); and

(v) 1('if3, v~.~)) for all (3 with (3 :::J a~(flip) or (3 2 a~(flfp) associated with the

same \[I (and thus A).

(Notice that we will have i'(f3) = 0 for (3 with (3~ (flip) ~ a since (J's A-side will

just have been initialized.)

This ends the description of the full module of an individual strategy. We will

now describe the strategy control.

At stage O, the strategy control will set all parameters to 0 or 0 (except rAE!lW (x, s)

and '/' (x, s) for s > 0 and their hatted counterparts).

At each stage s > O, the strategy control will perform the following three steps:

1) It will let each strategy a whose A-side (or A-side) is in hold (or hold) go to

Wchange (or Wchange) and on to the next state if W, ~ '1'(i,s1) f W,2 ~ 'l'(i,s1)

(or W, ~ 1(1:, 81) f W,2 ~ 1(1:, 81), respectively). (Notice that this action does not

interfere with any other strategies.)

2) At each substage t :'Os of stages, some strategy a (with !al = t) will be eligible

to act. Strategy 0 will be eligible to act at substage O; if a acted at substage t, then

a~(a) will be eligible to act at substage t + 1 where a is the temporary outcome of

a (as defined below).

3) At the end of stage s, the strategy control will define fAE!lW (x, s') (and all

32

f'AE!)W (x, s')) for all x E w, all s1 ~ s as outlined before the description of the basic

module.

The rest of this section is devoted to describing in detail the action at substage t

under step 2. At each substage t, the strategy control will first check if the strategy

a that is eligible to act is delayed or postponed. a is delayed on the A-side if there

is some f3 with /]~(flip) ~a such that n(/3) ~ P(a) where n(/3) is {J's parameter n

(the number of the '¥-flip that /3 is trying to achieve now). Likewise, a is delayed on

the A-side if there is some f3 with /3~(flfp) ~ a and associated with the same W (and

thus A) such that n(/3) ~ P(a) where n(/3) is defined analogously. a is postponed on

the A-side if there is some /3 with /]~(flip) ~ a or /]~(flip) ~ a such that if a acted

now it would measure (in a decision), or restrain, A at or above "f(i(/3),s1(/3)).

Likewise, a is postponed on the A-side if there is some /3 with /3~ (flip) ~ a or

/]~(flip) ~ a associated with the same W (and thus A) such that if a acted now it

would measure or restrain A at or above ~(i(/3), s i(/3)).

If a is delayed or postponed then the strategy control will initialize all /3 > L a

and start the next substage with a~ (fin). Otherwise, we let a act according to the

flow chart on the A-side if that side is not in hold; and on the A-side otherwise.

(Notice that only one side of a will act unless the flow chart explicitly starts up the

action on the other side in which case both sides will act.)

If there is some f3 with /]~(flip) ~ a and a put some x ~ r(/3) into A, then

f3 has been injured explicitly by a on the A-side as x's entering A changes an A

computation that f3 was preserving. In this case, each such /3 will perform injury

action on the A-side as follows:

(i) if x ~ "!(i,s) or rA(!)W = 0 then /3 goes to injmp where m/3 =min{ m Ix~

ifJf3(if3,v'l:f3)} (the number of the least injured '¥-flip) and on to the next state;

(ii) otherwise, f3 goes to inj and on to the next state.

Likewise, if there is some f3 with /3~(flfp) ~ a associated with the same W and

(thus A) such that a put some x ~ f(/3) into A, then f3 has been injured explicitly

33

on the A-side, and we let f3 perform the corresponding injury action on the A-side

(using the hatted counterparts of the above).

Furthermore, the strategy control determines the temporary outcome a of a. It

will be:

(i) flip, if the A-side of a went from flip to waitO;

(ii) flip, if the A-side of a went from hold to waitO and, since the last time the A

side was in hold, the A-side went from flip to waitO and has not been initialized

or injured since (this is the time when a's A-restraint is low); and

(iii) fin, otherwise.

Finally, the strategy control will initialize all "f > L a~(a); if either side of a

changed states, it will also initialize all "f ;:::i a~ (fin).

4. THE VERIFICATION

Let 08 , the recursive approximation to the true path, be the string of strate

gies that act at stage s (excluding special action for W-change under step 1

of the construction, but including strategies that are delayed or postponed at

stage s). Let f = liminf. 08 be the true path, and let /o U{a E f I
a initialized at most finitely often} be the correct part of the true path (which is

possibly only a finite initial segment of f). Intuitively, / 0 will be finite if we dis

cover at that finite level of the tree that W is recursive. Otherwise, f = / 0 •

LEMMA 1 (INJURY FROM BELOW LEMMA). If a< f3 then at any stages, f3

injures a only explicitly {i.e., f3 does not injure r8 (a) or r8 (a) where the restraints

are measured at the end of stages}, and f3 does not inJ'ure a's first P(a) (or P(a))

many 'I!-fiips (or ~-flips).

PROOF: f3 can only injure a on the A-side at stage s if f3 ~ 8., i.e., if f3 acts at

stage s. At that stage, f3 will put its 't(i, s1) into A. This "f(i, s1) was defined at

stage s 1 < s, and at that time 't(i,s 1) > r 81 (a) if a~(flip) <L {3, and "f(i,s1) >

1/1.,(i.,,vi,~l)[si] if a~(flip) ~ f3. So, a has increased its restraint or 1/1.,(ia,vi,~l)

34

since stage s1, say, at stage s'. Now, if a <L fJ or a~(fin) <:;; fJ then fJ was

initialized and "l(i,s1) was initialized at stage s1
• So assume that fJ is not initialized

between stage s 1 ands. If a~(fllp) <:;; fJ then fJ explicitly respects a's restraint. If

a~(flip) <:;; fJ then a will perform injury action if fJ injures a.

Furthermore, at stage s1, "fp(ip, s1)[s1) > ,P,,(i,,, vi,~))[si). Now, no strategy

fl with fl <L fJ or /J~(fin) <:;; fJ can injure a's first P(fJ) many 'l!- flips without

fJ being initialized. If some fl with /J~(flip) <:;; fJ or /J~(flip) <:;; fJ injures a's first

P(fJ) many 'l!-flips then fl puts its "fp(iiJ, s 1,p) into A. But then fJ would have been

postponed with defining its "l(i, st) until after /l's injury to a. Any fl with fl > L fJ

or fl 2 fJ~(fin) is initialized after stage s 1 and therefore P(/J) > P(fJ) and fl cannot

injure a's first P(fJ) many 'l!-flips. No fl with fl 2 fJ~(flip) or fl 2 fJ~(flip) can

injure a's first P(fJ) many 'l!-flips between stage 81 and stage s, or else it would

also injure fJ, and ')'p(ip,s1,p) would be redefined. Therefore, ,P,,(i,,,vi,?l)[si) =

,P,,(i,,,vi,~l)[s), and so fJ will not injure a's first P(fJ) many flips.

The proof for the A-side is the same except that we note that fJ cannot injure a

on the A-side if a~(flip) <:;; fJ since the A-side of a has just been initialized and a's

A-restraint is zero whenever fJ acts. Ill

LEMMA 2 (NUMBER OF FLIPS LEMMA). If a <:;; Jo and a~(flip) C f then

lim8 n(a) = oo. If a<:;; Jo and a~(flip) Cf then lim. n(a) = oo, and lim8 n(a) < oo

exists.

PROOF: Assume that a is never initialized after stage s1
• Then n(a) is incremented

each time a~(flip) <:;; o.. Furthermore, for each n, n(a) can be decreased to n

through explicit injury only a finite number of times by Lemma 1 and the fact that

the P(fJ) increase. Therefore, lim. n 8 (a) = oo.

The analogous proof shows that lim8 n(a) = oo if we also assume that a~(flip) :'O

08 for all s > s' since the A-side of a goes from flip to wait6 infinitely often and is

initialized only a finite number of times.

On the other hand, n(a) can only decrease after stage s1 (or else we would have

35

a~(flip) c;::; 88 for some s > s'), so lim8 n(a) < oo exists. II

The fact that strategies are allowed to injure higher-priority strategies infinitely

often seems to prevent A from being low.

LEMMA 3 (INJURY FROM ABOVE LEMMA). If a C (3 then at any stages, a will

not injure (3 by putting x ~ r(f3) into A or x ~ f((3) into A.

PROOF: Note that any (3 2 a~(fin) will be initialized if a puts any number into

A or A. If /3 2 a~(flip) or (3 2 a~(fl1p) then (3 will be postponed until a cannot

injure it. Ill

Notice the unusual feature that for a C (3 c;::; f 0 , the weaker (3 may injure the

stronger a infinitely often (in a controlled way), but that (3 is too smart to be

injured infinitely often by a.

LEMMA 4 (DELAY LEMMA). If a C f and both 1JiA and '1tA are total, then a is

not delayed at cofinitely many a-stages (stages such that a c;::; 88).

PROOF: Suppose for the sake of contradiction that a is always delayed or postponed

at a-stages after some stage s1
, say. Now any delay is finite since lim. n(f3) = oo

(!im, n(f3) = oo) for each (3 with (3~(flip) c;::; a (f3~(fllp) c;::; a, respectively) by

Lemma 2, but P(a) (or P(a)) is constant after stage s1
• Ill

LEMMA 5 (CONVERGENCE LEMMA). (i) fAEllW IS total, and for all x,

lim, fAEllW (x, s) exists.

(ii) For all \Ji, ri"'EllW is total, and for all x, lim. ri"EJ)W (x, s) exists.

PROOF: It follows immediately from the construction (step 3) that fAEllW and

all ri"'EJ)W are total. All ri"'EllW have limits since we ensure ri"'EllW(x,s) ~
ri"EllW(x,s + 1) ~ 1. The same is almost true for fAEllW as well, except that

some strategy a may not be able to reset a computation fAEllW(i,s) = 1 on going

from hold to waito if 'Y(i,s1) ~ r1
• But for all (3 with f3~(fl1p) c;::; a, Iim.n(a) < oo

36

exists (by Lemma 3)' and thus so does limsESP r(a) < 00 where s/3 = { t I (J ~ Ot }.

So limrAaiw(i,s) also exists for those i. II

We now analyze the outcomes:

LEMMA 6 (FINITE OUTCOME LEMMA). Suppose a~ Jo and eventually neither

the A-side nor the A-side changes states. Then:

{i) the A-side of a is eventually in waito or waitl, or the A-side is in waitO or

waiti; and

{iz) either not limv IJiA (i, v)

lim8 f'AaiW (i, s) for the eventual candidates i and ?: of a.

PROOF: (i) By the construction and Lemma 4, that A-side can get stuck only in

waito, waitl, or hold. If the A-side is stuck in hold then the A-side must be stuck

in wait a or waiti.

(ii) By Lemma 4, the delay for a is finite. Suppose a is always postponed

after stage s1
, and that limv IJiA(i,v) = lim8 I'AalW(i,s) and limv WA(i,v) =

lim, f'AalW(i,s). Since IJiA and WA are total, their uses settle down. Furthermore,

the restraints used in the computation of u(n) and u(n) settle down. Finally, (J's

parameters ry(i,s 1) and "t(i,81) for (J~(flip) ~a or (J~(flip) ~a tend to infinity.

Therefore, a will eventually not be postponed. But then a will change states to

make the limit of r or f' different. I

LEMMA 7 (FLIP OUTCOMES LEMMA). (i) If a ~ Jo and a~(flip) C f then

limv IJiA (i, v) does not exist for the eventual candidate i of a.

(ii} If a~ Jo and a~(flip) Cf then limv WA(f,v) does not exist for the eventual

candidate t of a.

PROOF: By the construction, the candidate i (i) settles down in case (i) (case (ii),

respectively), and by Lemma 2, n(a) (n(a)) tends to infinity. But n(a)-I (n(a)-1)

is the number of protected flips from 0 to 1 back to 0 of IJiA(i, ·) (WA(?:,·)), so the

limit of IJi (W) cannot exist. II

37

LEMMA 8 (RECURSIVE OUTCOME LEMMA). If a= Jo is of finite length, then

W is recursive.

PROOF: First of all, a~(flip) C J or a~(flip) C J is impossible by the way the

initialization is arranged, thus a~(fin) c J. So suppose that a~(fin) :::; 08 for all

s > s', say. Thus n(a) and n(a) eventually come to a finite limit, and by Lemma 3,

a is never injured after stage s'. Since a~ (fin) is initialized infinitely often, a keeps

changing states. Both sides settle down on candidates i and t after stage s 11
, and

lim. ')'(i, s) = Jim. "t(!, s) = oo and both parameters are nondecreasing in s. Also,

after stage s 11
, both sides always destroy their f- and f'-computations, and thus

W ~ 1'(i, s 1) does not change while the A-side is in hold, and W ~)'(t, .51) does not

change while the A-side is in hold. Thus W is recursive. Ill

Lemma 8 immediately yields Lemma 9:

LEMMA 9 (INFINITE TRUE PATH LEMMA). If W 1s not recursive then Jo 1s

infinite. Ill

Thus, if W is not recursive, then a C Jo of each level will satisfy its requirement

by Lemmas 6 and 7. This concludes the proof of the Main Theorem. Ill

5. A WEAK CONVERSE

The above construction is so difficult that there does not seem to be an obvious

way to make A low whenever W is nonrecursive. In fact, it seems quite conceivable

to the authors that for some nonrecursive low r.e. degree w, a U w is low for any

low r .e. degree a. In the following, we will prove a weaker version of this.

Jockusch (private communication) raised the question whether there is a non

recursive low r .e. degree that does not join with any other low r .e. degree to a

high degree. We answer this question positively (reversing the roles of a and w

conforming with our convention on names of objects built by us or built by the

opponent):

38

THEOREM (Lempp, Slaman). There is a low r.e. degree a ¥- 0 such that for all

low r. e. degrees w, a U w is not high.

PROOF: We will drop the restriction that a be low, since if a is not low, choose

a 0 < a low which satisfies the theorem. (However, a closer analysis shows that our

a is already low.)

We now have, for all r.e. sets V, the usual positive requirements for nonrecursive-

ness:

(7) Pv: A'/- V,

and, for all r .e. sets W, the requirements:

(8) Rw : W nonlow or W Ell A nonhigh.

6. THE STRATEGY FOR NONLOW /NONHIGH

We have to construct an r.e. set A satisfying all requirements.

The opponent will try to put up an r.e. set W and a functional cl> claiming that

W is low and q;W'9A is total and dominates all total recursive functions, and thus,

by a theorem of Martin [Ma66], W Ell A is high.

We will respond by building a functional r(w,<P) witnessing the nonlowness of W

via Jim, r(~,<P)(·,s) icT 0'.

If the opponent succeeds in refuting this by furnishing some total recursive func

tion W such that lim,rfw,<P)(·,s) = limvW(·,v) then we will defeat him by con

structing a total recursive function .6.(w,<P,>Ir) that is not dominated by q;W'9A. (We

will use .6.(w,<P,W) to try to force changes in W to redefine rfw,<P)')

The nonlow/nonhigh requirements are thus of the form

(9) Rw,<P,W : q;W'9A total -t [um, rfw,<P) (·, s) ¥- limv w(·, v) v

[.6.cw,<P,W) total/\ (300 j)[.6.(w,<P,>Ir)(J) > q;W'9A(j)JJ].

Now for fixed Wand cl>, either Rw,<P,W is satisfied for all W by the first disjunct and

thus W is nonlow·, or one R w q; w is satisfied by the second disjunct and therefore
' '

39

W EEi A is not high via iP. (We will suppress the subscripts on r and A if they are

clear from the context.) We assume that Ip, the use of iP, is computed separately

on Wand A, so q;WE!lA(x) ! implies q;W)(<p(x)+l)E!lA}(<p(x)+ 1)(x) !·

The basic module for Rw,<l>,W consists of a stack of w copies, each denoted by C,.,

of a simple submodule. Copy C0 acts first, each copy Cn+l is started by copy Cn,

and a copy C,. can be initialized by a copy Cm with m < n.

Copy Cn now proceeds as follows:

(i) pick a new candidate i (for Jim. rw (i, s) f limv w(i, v)),

(ii) pick the least j for which A is undefined,

(iii) start setting rw (i, s) = 0 (until (iv) holds) at each stage s,

(iv) wait for w(i, v0) != 0 for some v0 and if?WE!lA(j) ! (at some stage si, say),

(v) impose A-restraint on A ~ (1p(j) + 1),

(vi) start setting rw(i,s) = 1with')'(i,s)=1p(j) (until (vii) or (viii) holds) at each

stage s,

(vii) if W 8 ~ (1p(j) + 1) f W 8 , ~ (1p(j) + 1) then immediately reset rw (i, s') = 0 for

s 1 :<::: s1 :<::: s, cancel the A-restraint, and go to (iii),

(viii) wait for w(i,vi) = 1 for some vi> v0 (at some stage s2, say),

(ix) set A(j) > if?WEllA(j) and start copy Cn+l (with different i and j),

(Notice that we now have a squeeze on W. If W changes we can reset our r
while his \[! has a flip; if W does not change we have another witness j towards

showing that if?WEllA does not dominate A.)

(x) if W 8 ~ (1p(j) + 1) f W., ~ (1p(j) + 1) then initialize copies Cm (for m > n),

reset rw (i, s') = 0 for s 1 :<::: s' :<::: s, cancel the A-restraint, and go to (ii)

(looking for a new v0 greater than the current vi).

Here, all copies work on the same A, r, and A.

To ensure that r is total and that the limits exist, we use the same convention

as for the Main Theorem (as described just before the basic module of the Main

Theorem). We always pick the least j for which A is undefined in order to ensure

40

that /:;. is total if we pick infinitely many j.

Let n 0 = liminf,{ n I copy On waiting for (iv) or (viii) at stages} (possibly

n 0 = oo). Then the possible outcomes of the basic module are as follows:

(a) n0 = oo: Then each time a copy acts for the last time, it finds some j such

that 6.(J) > ii> WEllA(J), and therefore there are infinitely many such j witnessing

that W Ell A is not high via <I>.

(b) n 0 < oo: We distinguish the following cases:

(b1) copy Ono acts finitely often (and therefore so does the whole module): Then

Ono gets stuck at (iv) or (viii), and it is not the case that lim. rw (i, s) =

limv w(i,v).

(b2) copy Ono goes infinitely often through (x): Then limv w(i, v) does not exist

where i is the eventual candidate of Ono since we force infinitely many \[I-flips.

(b 3) copy Ono goes finitely often through (x), but infinitely often through (vii):

Then q,WEllA(j) is not defined for the eventual candidate j of On
0

, and therefore

ii> w EllA is not total.

There are two problems with putting this module on a tree. Firstly, the restraint

tends to infinity under outcome (a). But most of all, the natural ordering for the

outcomes would be of order type w+2 (namely, (b2) for n0 = 0 < (b 3) for n0 = 0 <

(b2) for no= 1 < (ba) for no= 1 < · · · < (a) < (b1)), which would be hard to

organize on a tree.

On the other hand, the positive strategies for Pv act at most once, and each copy

of the above module can live with finite injury. So we will spread out the copies as

separate strategies without giving up their coordination described above. It would

be possible to put these on a tree, but ensuring that /:;. be total would be rather

cumbersome. (The fact that is seems hard to let the positive strategies put more

elements into A seems to make strengthening this theorem hard.)

Instead, we will use a linear ordering of the strategies combined with the method

of W-true stages and the "hat trick". We observe that in the above module the

Wchangel

pick new i E 10 1

let j =min{ i' I Ll.U') i},
let r = ol let v l = -1,
set rw{i,s) = O, 'l'{i,s) = 0

reset rw{i,s') = o,
set 7(i, s') = 0
for s 1 ::; s' ::; s,

let r = 0

ii

let j =min{ j' I t.IU') 1),
scrap IW,4>, il',m] form> n

41

Jet r = \OU),
let vo = v,
}et S1 = S,

set rw(i,s) =I,
set 7(i,s) =\OU)

y

let v1 = v, let s2 = s,
set t.IU) = 4>W"'AU) +I,

start copy !W, 4>, ii', n +I]

Diagram 8. Copy C0

42

restraint of each copy has a finite limit on the set of W-true stages (i.e., the stages at

which some element is enumerated into W that is less than any element enumerated

later) where we assume that q,WeM(x)[s+l] t ifW8 ~ (cp.(x)+l) # W,+1 ~ (\Os(x)+

1) and q,W<BA(x) [s] t (the hat trick, so called because of its original notation).

The construction will thus "look like" a finite injury argument. However, to figure

how each requirement Rw,w,w became satisfied will require a 0 111-oracle; in fact, it

has to since the question whether W EB A is high via dominating functional \l> is

II4-complete and thus the way in which each Rw,w,w becomes satisfied constitutes

a :!:a-complete statement.

7. THE CONSTRUCTION FOR NONLOW /NONHIGH

Fix an effective 1-1 correspondence (·, ·,·,·)between wand all quadruples (W, \l>,

W, n) where Wis an r.e. set, qi and \[I are functionals, and n is an integer. (Assume

here that always (W, qi, W, n) < (W, qi, W, n + 1).) This correspondence will yield

our priority ranking between strategies. We will denote a strategy ex by [W, qi, W, n]

to specify that ex works as the nth copy in the basic module for Rw,w,w·

The r will be common to all strategies with the same W and qi, so fix effectively

for each ex an infinite recursive set of integers Ia such that

(10) LJ
o:=!W,11»,'llf,nj
for some W,n

Ia =w

for fixed Wand qi. ti. will be common to all strategies working on the same Rw,w,w·

The r and the ti. are never discarded even when individual strategies are scrapped.

The module for a strategy ex= [W, qi, W, n] now acts as described in Diagram 3.

Here, Vo and v1 are the "stages" at which the opponent establishes w(i,vj) = j

(for j = O, 1). The current stage is denoted bys. The A-restraint imposed by a is

denoted by r. To start ex means to let it go from init to start. To scrap it means to

put it into init. To initialize a = [W, qi, W, n] is to scrap all [W, qi, W, m] for m ::::: n

and, if n = 0 or [W, qi, W, n - 1] is in hold, to start ex.

43

At stage O, the strategy control starts all strategies [W, <P, W,O] and defines

rw(x,O) = 0 with 1(x,O) = 0 for all x and all Wand r.

At a stage s > O, the strategy control proceeds in three steps:

1) If there is some e such that

(11) As n w.,. = 0 /\ (:ix E wl•l)[x > max{ r(a) I #a :S e} /\ x E w.,.J,

(where r(a) is the restraint imposed by a and #a = (W, <P, W, n) is the code number

of a) then for the least such e, put the least such x into A and initialize all a with

#a> e.

2) For each triple (W, <P, w), do the following: First check whether there is a

strategy a= [W,<P,w,n] in waitl or hold such that w. ~ ip(j) f W81 ~ ip(j). If

so let the least such a go from Wchangel or Wchange2 to waitO (depending on

whether a was in waitl or hold, respectively). Otherwise let the unique [W, <P, W, n]

that is not in init or hold act according to the flow chart.

3) The strategy control (re)defines rw (x, s') = rw (x, s' -1) for all Wand r with

same use for all x and all s' :S s for which r is now undefined.

8. THE VERIFICATION FOR N ONLOW j N ONHIGH

-LEMMA 1 (CONVERGENCE LEMMA). For each pair (W, <l>), rfw,.I>) is total, and

for all x, lim. rfw,,z,)(x,s) exists.

PROOF: rw (x, s) is defined at the end of each stages';::: s by step 3 of the construc

tion. "f(x,s) increases at most once, so W-changes can make rw(x,s) undefined at

most finitely often. As for the limit, note that for all x, s, rw (x, s) :S rw (x, s + 1) :S

1. (So rw is actually ~r .) I

LEMMA 2 (FINITE INJURY LEMMA). Action is taken for each Pv at most once,

and thus each a is scrapped at most finitely often under step 1 of the construction.

I

44

Define a stages> 0 to be W-true if W ~ x = W. ~ x for some x E W. -W8 _ 1.

Let T be the (infinite) set of W-true stages. Note that, by the hat trick,

(12) q,W(f)A(x)[sj j.A s ET;\ A 8 ~ (\? 8 (x) + 1) =A~ (\? 8 (x) + 1)---> q,W(f)A(x) .J. •

LEMMA 3 (FINITE RESTRAINT/Pv-STRATEGY LEMMA). For any strategy a,

limsET r[s] < oo exists. {Thus each Pv is satisfied.)

PROOF: By Lemma 2, let a = [W, <I>, ili, n] not be scrapped under step 1 of the

construction after stages', say. Suppose for some s ET withs> s', r[s] > 0. Then

q,W(f)A(j(,6)) 1 for all ,6 = [W,<I>, ili,m] with m::; n via W-correct computations,

which are also A-correct by the assumption on s1
• Thus in this case lim, r[s] < oo

exists. Otherwise liminf8 r[s] = limsET r[s] = 0. I·

Now we fix W, <I>, and iJi and distinguish four cases for the outcome of the

strategies [W, <I>, iJi, n].

LEMMA 4 (FINITE OUTCOME LEMMA). Suppose there are only finitely many

stages at which any of the strategies [W,<I>, ili,n] (for fixed W, <I>, and ili} changes

states. Then it is not the case that lim,rw(·,s) = limv ili(·,v).

PROOF: Let no be the unique n such that a= [W, <I>, ili, n] is eventually not in init

or hold. Then a must be stuck in waitO or waitl. Therefore not Iim8 fw(i,s) =

limv iJi(i, v) for the eventual candidate i of a. I

LEMMA 5 (FLIP LEMMA). Suppose that for some n, a= [W, <I>, ili, n] is scrapped

finitely often and goes through Wchange2 infinitely often. Then limv ili(i, v) does

not exist for the eventual candidate i of a.

PROOF: Let a not be scrapped after stage s1
, say. Then the parameters vo and

v1 increase to infinity, and each time they increase, ili(i,v0) = 0 or ili(i,v1) = 1 is

established. Ill

45

LEMMA 6 (PARTIAL ii> LEMMA). Suppose that for some n, a= [W,i!>,lf!,nj

is scrapped finitely often and changes states infinitely often, but goes through

Wchange2 only finitely often. Then ij>WEBA is partial.

PROOF: Suppose that a is not scrapped or goes through Wchange2 after stage

s', say. Then a from now on always goes through Wchangel with the same j, so

ij>WEBA(j) f. Ill

LEMMA 7 (NONDOMINANCE LEMMA). Suppose that, for fixedW, ii>, and W, no

[W, ii>, W, n] changes states infinitely often, but that there are infinitely many stages

at which some [W, ii>, W, n] changes states. Then /:;. is total and not dominated by

ij>WEBA. {Thus WEB A is not high via ii>.)

PROOF: First of all, /:;. is total since we always pick the least j for which /:;. is

currently undefined and since each [W, ii>, If!, n] is eventually in hold. But each time

some [W,i!>, lf!,n] reaches hold for the last time, t;.(j) > ij>WEBA(j) is established for

its current j, and this is preserved by the A-restraint. II

This concludes the proof of the theorem. I

CHAPTER III

E.,- AND IT"'-COMPLETE INDEX SETS

We will first prove an easy warm-up theorem to demonstrate our technique for

index set classifications in a simple setting. Recall that Lachlan, Martin, Robinson,

and Yates classified the index set of maximal sets as IT4 -complete. The classification

of the index set of quasimaximal sets had been open since then. Our warm-up

theorem reproves the above and another previously known result and classifies for

the first time the index sets of quasimaximal sets and of coinfinite r .e. sets not

having atomless supersets (the so-called atomlessless sets) as E 5- and IT6 -complete,

respectively.

Next, we will generalize the definitions of maximal and quasimaximal sets by

alternation of generating filters and taking coatorns, using a correspondence with

the Cantor-Bendixson derivative of certain trees. The main theorem generalizes

the classification of the index sets of cofinite, maximal, and quasimaximal sets

in a transfinite recursion argument through Kleene's hyperarithmetical hierarchy.

We prove this by establishing a correspondence between r.e. sets and binary trees

through the Cantor-Bendixson derivative. Finally, we will classify the index set of

r.e. sets major in some fixed nonrecursive r.e. set, using a different technique.

First of all, however, we will explain the tree machinery needed to prove the main

results of this chapter. All trees using this machinery will from now on be binary.

1. THE MACHINERY

Lachlan [La68] showed that any E3 -Boolean algebra can be represented as the

lattice of r.e. supersets (modulo finite sets) of some hyperhypersimple set A. The

proof uses an argument that can be generalized substantially. From an arbitrary

46

47

E 2-tree TE 2<w (i.e., a ET iff R(cr), for some E 2-predicate R), Lachlan constructs

a (hyperhypersimple) r.e. set AT with a 1-1 correspondence between nodes er ET

and elements aer E A satisfying the following two properties:

(1) (Ver E T)[A U Ger is r.e.], and

(2) (VW :::2 A r.e.)(38 s;; T finite)[W =* AU UerES Ger],

where Ger = { ar I r ET/\ r :::2 er} is the "cone" of elements of A "above" a".

The idea is now to reduce index set proofs to proofs about trees by the above

correspondence between trees T and r.e. sets AT.

Using Lachlan's construction as a starting point, we can break up an index set

classification into easier parts. Suppose we are trying to show that (En, IIn) :<;; 1

(A, B) for certain disjoint index sets A and B which are closed modulo finite sets,

i.e., which satisfy

(1) e E A/\ W. =* W; --+ i E A,

and likewise for B. (The technique works just as well if we replace the integer n by

a recursive ordinal a.) Then it suffices to establish the following two lemmas:

(I) Correspondence Lemma: The mapping index of T H index of AT maps the

E 2-trees of S into A, and the Ertrees of T into B, for certain disjoint classes

of index sets of ~a-binary trees S, T.

(II) Reduction Lemma: A recursive function f maps G into the set of recursive

trees of S and G into the set of recursive trees of T.

Here G is a Em-complete set (where 2+m = n), and we require that membership

of Tin S and T only depends on [T], namely, for ~a-trees T and T,

(2) TE s /\ [T] = [T] --+TE s'

and likewise for T.

Once we have established (I) and (II), we can complete the proof of the index set

classification as follows:

48

LEMMA.

(i) We can relativize the construction of f to 0" to obtain a recursive function

J mapping a E~ -complete (i.e., E.,,-complete) set C to the Af-trees (i.e.,

A a-trees) of S, and the complement of G to the Ci.a-trees of T.

(ii) We can approximate the Ci. 3 -trees T obtained in {i) by E 2 -trees T with [f] = [T],

and denote this approximation of J by /.

PROOF: (i) Straightforward relativization of the construction of f first yields a

function g ::::r 0". Now it is easy to find the desired partial recursive function j
0" 0" such that wi(e) = wg(e) (where these sets code the trees) by "pushing the oracle

of the index function into the main oracle". Since g is total, so is J.
(ii) Notice that for a Ci.a-tree (i.e., Af-tree) f, there is a function h ::::r 0' such

that a ET iff lim,h(a,s) = 1, and a f/; Tiff lim.h(a,s) = 0. Now enumerate T
(relative to 0') by putting a into T at stage s if

Jal ::; s /\ (Vn::; Jal) [h(a ~ n, s) = 1].111

Now the composition of f with the mapping index of T 1-+ index of Ar yields

the desired reduction (En, IIn) ::::1 (A, B).

Three typical examples of a correspondence as in (I) are the following: A finite

tree T (i.e., [T] = 0) corresponds to a cofinite set Ar. A E 2-tree with exactly one

infinite path corresponds to a maximal set Ar. A perfect tree T is a tree such that

for all a E T, there are ri, r2 E T such that a C r1, r2 and r1 J r2. A perfect E 2-tree

corresponds to an atomless hyperhypersimple set Ar. (We will give a proof below

for the latter two correspondences.)

In the Reduction Lemmas below, since the construction is recursive we will ensure

that the tree T constructed is recursive by letting T, = T n 2:;;•, where T. is the

part of T constructed by the end of stage s.

2. A WARM-UP THEOREM

DEFINITION: Let A be a coinfinite r.e. set.

49

(i) A is maximal if for all r.e. sets W 2 A, either W =* A or W =* w.

(ii) A is quasimaximal if it is a finite intersection of maximal sets.

(iii) A is atomless if it has no maximal superset.

(iv) A is atomlessless if it has no atomless superset.

(v) A is hyperhypersimple if .C(A), the lattice of r.e. supersets of A, forms a Boolean

algebra. (By Lachlan [La68], this is equivalent to the original definition.)

Notice that a coinfinite r.e. set having no atom!essless superset is the same as an

atomless set, so the hierarchy collapses at that level. Atomlessless sets are usually

called atomic sets. However, this would conflict with our notation below.

PROPOSITION. The index sets of maximal, quasimaximal, atomless, and atomless

less sets are II4, E 5 , Ils, and Ila, respectively . .

PROOF: By the fact that Max is II4 and the usual Tarski-Kuratowski algorithm.

I

We denote these index sets by Max, QMax, Atomless, and Atomlessless, respec

tively. Our machinery now allows an easy classification of these four index sets:

THEOREM A. The following reductions hold:

(i) (Il4, E4) ::0 1 (Max, QMax - Max);

(ii) (Es, Ils) ::01 (QMax, Atomless); and

(iii) Ila ::01 Atomlessless.

COROLLARY.

(i) (Lachlan, D.A. Martin, R.W. Robinson, Yates (unpublished); later appearing

in Tulloss [Tu'il]) The index set of maximal sets is II4 -complete.

(ii) The index set of quasimaximal sets is Es-complete.

(iii) (Jockusch) The index set of atomless sets is IIs-complete.

(iv) The index set of atomlessless sets is Ila-complete. Ill

50

PROOF OF THEOREM A: We have to establish (I) and (II) above for our machinery

to apply. Call T essentially perfect if Ext(T) is a perfect tree, i.e., if there is a 1-1

map e from 2<w into the extendible part Ext(T) of T such that

(a) (Va,r E 2<w)[a Cr<-> e(a) C e(r)], and

(b) (Vp E Ext(T))(:Ja E 2<w)[p ~ e(a)].

We define four classes of trees:

T1 = {T ~ 2<w tree I l[TJI = 1 },

(3)
T2 = { T ~ 2<w tree I [T] f 0, finite},

Ta = { T ~ 2<w tree I T is essentially perfect},

T4 = { T ~ 2<w tree I [T] f 0 /\ (Va E T)[T(a) is not essentially perfect]},

CORRESPONDENCE LEMMA. Let T ~ 2<w be a E2 -tree. Then:

(i) If T E T1 then AT is maximal, and conversely.

(ii) If T E T2 then AT is quasimaximal.

(iii) If T E Ta then AT is atomless.

(iv) If T E T4 then AT is atomlessless.

PROOF: (i) Let W 2 AT be an r.e. superset. Then W =* AT U UcrES Gu for

some finite set S ~ T. If S n Ext(T) = 0 then W =* AT, and, since l[T]I = 1,

if S n Ext(T) f 0 then W =* w. So AT is maximal. The converse is shown

analogously.

(ii) Similar to (i).

(iii) Suppose W 2 AT is a maximal superset. Then W =* AT U UuES Gu for

some finite set S ~ T. Since W is coinfinite there is some a0 E Ext (T) such that

Gu0 nW = 0. Letro E 2<w be such thatao ~ e(ro). Then W Coo WUGe(ro~(O)) Coo

WU Ge(ro)• contradicting W's maximality.

(iv) Suppose W 2 AT is an atomless superset. Then W =* AT U UuES Gu for

some finite set S ~ T. Since W is coinfinite there is some a0 E Ext(T) such that

Gu0 n W = 0. Let

51

u
lo-l=luol

o-ET-{o-o}

Then W0 is coinfinite and W 0 ;2* W, so Wo is also atomless. We will show that

T(a0) is essentially perfect to reach a contradiction. Let T0 = Ext(T(a0)). It

suffices to show that, for all r E T0 , there exist r1, r2 E To such that r C r 1, r 2 and

r 1 J r2 • Suppose To E To does not admit such a splitting. Then

u
lrl=lrol

rETo-{ro}

is maximal by an argument similar to (i). 1111

c ~
uo r

REDUCTION LEMMA. We have the following reductions (where all images of the

reducing maps are recursive trees):

(i) (IT2, :E2) ::Oi (Ti, T2 - Ti),

(ii) (:Ea, ITa) ::Oi (T2, Ta), and

(iii) IT4 ::0 i T4.

PROOF: (i) We choose Inf and Fin, the index sets of infinite and finite r.e. sets,

respectively, as ITr and :E 2-complete index sets. We will build a reduction k >-> Tk

such that k E Inf implies Tk E Ti, and k E Fin implies Tk E T2 - Ti. Fix k. At

stage 0, let Tk,o = { 0 }; at stage 1, we put (0) and (1) into Tk,i· At a stages 2:: 2,

if Wk,s =f Wk,s-i. we put (o•) and (o•-i1) into Tk,si otherwise, we put r~(o) into

Tk,s for the two r E Tk,s-i with JrJ = s - 1. Then

k E Inf-> (3 00 s)[Wk,s =f Wk,s-i] -> [Tk] = { (ow)} -> Tk E Ti,

(4) k E Fin-> (3< 00 s)[Wk,s =f Wk,s-i]-> [Tk] = { (ow),(0'0 -i1ow) }->

where so =max{ s J Wk,s =f Wk,s-i }.

52

(ii) We choose Cof and Coinf, the index sets of cofinite and coinfinite r.e. sets,

respectively, as 2:3- and Ifs-complete index sets. We will again build a reduction

k >--+ Tk such that k E Cof implies Tk E T2, and k E Coinf implies Tk E Ta. Fix
~- 0 1 2 } k and let Wk,a = { wk,a < wk,s < wk,s < Let { µ,,. }uE2<w be a sequence of

markers. At stage O, let n 0 = 0, let µ0,o = 0, let all other markers be undefined, and

put 0 into To. At a stage s > O, let ns =min({ na-1 + 1} U { n I wk',a-l o/= wh,', 8 }).

For !al < n., let µcr,a = µcr,a-1· For lul = n., let µu,s be equal to some string r with

lrl =sand r::) µcr-,s where a-= a~ (ns -1), and put all these r into Tk,a· For

iai > n., let µu,s be undefined.

Now assume that Wk is cofinite. Then there is some (least) ii. such that lim8 w~,. =

oo, so lim. lµcr,sl = oo for all a with iai 2': ii.. But then liminf8 1Tk n 2•1 = 2n, so

[Tk] is finite. [Tk] is nonempty since for all s, Tk n 2• I= 0. Thus Tk E T2 •

On the other hand, if Wk is coinfinite, then Jim. wh,'
8

< oo exists for all n, so
'

lim8 n 8 = oo. We can thus define, for all n, a stage Sn = max{ s I n 8 = n }.

Therefore, Jim. µ", 8 = µu exists for all a E 2<w. The mapping a >--+ µu now shows

that Tk is essentially perfect.

(iii) The final part of the proof allows us a first glimpse at how the uniformity of

the construction can be used to yield more and more complicated index set results.

There is a recursive function g such that

(5)
k E 0<4

) <-> (3i)[Wg(k,i) coinfinite], and

k ¢= 0<4
) <-> (V'i)[Wg(k,i) cofinite].

Fix k. At stage O, we let Tk,o = { 0 }. At a stage s > 0, put (o•) and (o•-1 1) into

Tk,• and start the construction described in part (ii) but above (o•-11) in place of

0 and using Wg(k,s-l) in place of Wk.

Now, if k ¢= 0C4 l, then for all i, Wg(k,i) is cofinite, so [Tk((Oil))] is finite for all i

by (ii), and therefore Tk(a) is not essentially perfect for any a E Tk. Thus Tk E 74.

On the other hand, if k E 0(4), then Wg(k,i) is coinfinite for some i, so, again by

(ii), [Tk((O'l))] is essentially perfect. Thus Tk ¢= T4. II

53

This establishes Theorem A by our machinery. I

3. THE MAIN THEOREM

Call a set A i:;;; w 0-atomic iff IAI ~ 1. Then a set B is cofinite iff B is in the

filter generated by the 0-atomic sets. A set C is maximal iff its equivalence class is

a coatom of the lattice of r.e. sets modulo the cofinite filter. A coinfinite set D is

quasimaximal iff D is in the filter in e generated by the maximal sets, etc. This

alternation of generating a filter and considering the coatoms leads to the following

definition:

DEFINITION: Let A be a hyperhypersimple or cofinite set, a a recursive ordinal,

and >. a recursive limit ordinal. Then:

(i) A is 0-atomic if IAI ~ 1;

(ii) A is a-quasiatomic if A is a finite intersection of a-atomic sets, i.e., if A is in

the filter generated by the a-atomic sets;

(iii) A is (a+ 1)-atomic if for all r.e. sets W ;:;>A, W or AU W is a-quasiatomic,

i.e., if A is a-quasiatomic or its equivalence class is a coatom of the lattice of

r.e. sets modulo the a-quasiatomic filter (notice here and in (v) that AU W is

r.e. if A is hyperhypersimple);

(iv) A is <>.-atomic if A is a-atomic for some a < >., i.e., if A is in the filter

generated by the a-atomic sets for a < >.;

(v) A is >.-atomic if for all r.e. sets W ;:;> A, W or AU W is <>.-quasiatomic, i.e.,

if A is <>.-quasiatomic or its equivalence class is a coatom of the lattice of r.e.

sets modulo the <>.-quasiatomic filter.

The notions of a-atomic, a-quasiatomic, and <>.-atomic are natural generaliza

tions of the notions of cofinite sets, maximal sets, and quasimaximal sets. Namely,

A is cofinite iff A is 0-quasiatomic; A is maximal (or cofinite) iff A is 1-atomic; and

A is quasimaximal (or cofinite) iff A is 1-quasiatomic.

Let At,,, QAt"', and At<!I denote the index sets of a-atomic, a-quasiatomic, and

<>.-atomic sets, respectively.

54

(We chose not to call these sets coatoms (as common in the literature) since,

e.g., a 0-atomic set is 1-atomic but its equivalence class is not a coatom modulo the

0-atomic filter, etc.)

The importance of the above definition lies in the correspondence of these prop

erties with the Cantor-Bendixson rank of binary trees, as explained below. This

correspondence allows the classification of their index sets, yielding a family of in

dex sets of properties .Cw. ,w-definable over e' which goes all the way through the

hyperarithmetical hierarchy.

In the following, we will use ordinal arithmetic to compute expressions like 2a + 2,

etc. A set of integers is EJ.+n (IIJ.+n) (for >. a recursive limit ordinal, n E w - { 0})

iff it is E~<» (IT~<»). We use Rogers's book [Ro6'1] for the background on recursive

ordinals. He defines a system of ordinal notations I · I : 0 ---+ wf K from Kleene's

0 ~ w into the set of recursive ordinals as well as a partial order <o on 0 by

111=0
lxl = a ---+ 12" I = a+ 1, and z :S:o x ---+ z <o 2"

(6)
{ 'Py(n) }nEw a <o-increasing sequence and sup l'Pv(n) I =a---+

n

13 · 5YI =a, and (:Jn)[z <o 'Py(n)]---+ z <o 3 · 5Y]

The hyperarithmetical hierarchy H : 0 ---+ 2w is then defined by

H(l) = 0

(7) H(2") = (H(x))'

H(3 · 5Y) = { (u, v} I u E H(v) /\ v <o 3 · 5Y}

Now lxl :S: lvl implies H(x) '.S'.T H(y). In particular, the Turing degree of H(3 · 5Y)

does not depend upon the specific notation for a limit ordinal >. = 3 · 5Y. Thus the

definition of E!l+n and II!l+n does not depend upon which H(3 · 5Y) with 13 · 5YI = >.

we use for 0(!1). (Recall also that for any y E 0, { x I x <o y} is r.e. uniformly in

y.)

55

The following theorem generalizes Theorem A (i) and (ii) to the hyperarithmetical

hierarchy. We can do so by bounding the Cantor-Bendixson rank of the associated

trees more carefully.

THEOREM B. Let a be a recursive ordinal and>. a recursive limit ordinal. Then:

(i) (112"'+2, E2<>+2) :S:1 (At°', QAt"' - At");

(ii) (E2"'+3, 112<>+3) :S:1 (QAt"', Ata+1 - QAt"'); and

(iii) (E.x+1,l1.x+1) :S:1 (At<.x,At.x -At<.x).

COROLLARY 1.

(a) At"' is 112"'+2-complete;

(b) QAt"' is E2<>+3-complete; and

(c) At<-" is E.x+ 1-complete.

PROOF: By Theorem Band the fact that At"', QAt"', and At<-" are 112,.+2 , E 2"'+3,

and E.x+i. respectively, by the Tarski-Kuratowski algorithm. II

COROLLARY 2.

(a) (Lachlan, D.A. Martin, R.W. Robinson, Yates (unpublished); later appearing

in Tulloss [Tu'Tl]) The index set of maximal sets is 114 -complete.

(b) The index set of quasimaximal sets is E 5 -complete.

PROOF: Set a= 1 in Corollary 1. I

PROOF OF THEOREM B: The proof for the 0-atomic case is trivial and will be

omitted here since it does not fit into our machinery. Using this machinery, we

again have to prove a Correspondence Lemma and a Reduction Lemma.

Recall the definitions of Cantor-Bendixson derivative and Cantor-Bendixson rank.

The Cantor-Bendixson derivative of a tree T <;;; 2<w is T minus its isolated paths,

i.e.,

(8) D(T) = {a E Ext(T) I (:lr1, r2 E Ext(T))[a c ri, r2 /\ r1 I r2] }.

We also define its iterates:

(9)

56

D0 (T) = T,

D"'+1(T) = D(D"(T)),

D>.(T) = n D"(T),
"<>.

where a is an ordinal, .>. is a limit ordinal. Then the Gantor-Bendixson rank of T is

(10) p(T) =

-1

min{ a I D"+1(T) finite}

=min{ a [i[D"(T)][finite}

if T is finite,

if T is infinite

and this ordinal exists,

oo otherwise.

It is a well-known fact that D"'(T) = Df3(T) for any uncountable ordinals a and {J;

and that D>.(T) finite for some limit ordinal A implies D"'(T) finite for some a<.>.

by compactness.

These definitions lead to the

CORRESPONDENCE LEMMA. Let a be a recursive ordinal, T <:;; z<w a Ertree.

Then:

(i) p(T) = -1 ijf AT is 0-quasiatomic;

(ii) [[D"(T)][~ 1 iff AT is (1 + a)-atomic; and

(iii) p(T) ~ a iff AT is (1 + a)-quasiatomic.

PROOF: By induction on a::

(i). p(T) = -1 iff Tis finite iff AT is cofinite iff AT is 0-quasiatomic.

(ii)"=O· By (i) and the Correspondence Lemma for Theorem A.

(ii)a->(iii)a· Assume (ii) for an ordinal a:.

Suppose first that p(T) ~ a. Then [D"'(T)] is finite, say, [D"'(T)] <:;;

{ P1, P2, . .. , Pn } . Let k be large enough such that i # J implies Pi ~ k # Pi ~ k.

Then J[D"'(O"~T(O"))][~ 1 for all O" E Tn zk. By induction,

u

57

is (1 + a)-atomic, thus Ar =* n"Ern2• A" is (1 + a)-quasiatomic.

On the other hand, if Ar is (l+a)-quasiatomic then Ar= n7=t A; for a finite set

of (l+a)-atomic sets Ai, A2, ... , A,,. For each i, let A;=* ArULJ"ES; C" for some

finite set S; <:;;; T, and let T; = T - { a~T(a) I a E S; }. Then U7= 1 T; =* T, and,

by induction, [D"'(T;)] <:;;; {pi} for some p; E zw. Thus [D"'(T)] <:;;; { p1, p2, ... ,p,,}

is finite, and p(T) :'O a.

(iii)<"'->(ii)"'. Assume a > O, and that (iii) holds for all ordinals less than a.

Without loss of generality, let a be a successor ordinal and put f3 + 1 = a (if a is a

limit ordinal, replace f3 by <a throughout this part of the proof).

Suppose first that l[D"'(T)]I :'O 1, say, [D"'(T)] <:;;; {p}. IfW 2 Ar is r.e. then

W =* Ar U Uo-ES C" for some finite set S <:;;; T (assume that all a E S are of the

same length, say, k). Let So= (zk - S) n T, and put Wo =Ar U UuESo Cu. Then

Wo is the relative complement (w.r.t. Ar) of W (modulo a finite set). Without

loss of generality, suppose that p ~ k E S0 (the other case is symmetric). Then

To = T - UuESo Cu, the tree associated with W0 , satisfies [D"'(To)] =* 0, and so

W0 is (1 + fJ)-quasiatomic. Thus Ar is (1 + a)-atomic.

On the other hand, let Ar be (l+a)-atomic. Suppose for the sake of contradiction

that [D"'(T)] contains two distinct infinite paths, say, Pl and p2 • Let k be large

enough that P1 ~ k of P2 ~ k; let S1 and S2 be such that S1US2 = zknT, p1 ~ k E S1,

and P2 ~ k E S2; and let W1 = Ar U UuESi Cu and W2 = Ar U Uo-Es
2

Cu. Thus

W1 and W2 are relative complements (w.r.t. A) to each other (modulo a finite

set). Then for both T1 = T - UuES, Cu and T2 = T - UuES
2

Cu, [D"'(T1)] and

[D"'(T2)] are nonempty (namely, Pl E [D"'(T2)] and P2 E [D"'(T1)]), and thus, by

induction, neither of their associated r.e. sets W1 and W 2 is (1 + fJ)-quasiatomic, a

contradiction. I

58

4. THE REDUCTION LEMMA FOR THE MAIN THEOREM

Let a be a recursive ordinal. We define

Sa= {TE 2<w tree J J[Da(T)]J:::; 1 },

T., ={TE 2<w tree J p(T):::; a} (allow a= -1),

T<a = LJ Tp.
P<°'

It remains to prove the

REDUCTION LEMMA. Let a be a recursive ordinal and,\ a recursive limit ordinal.

Then:

(i) (IT2a+2, I;2a+2) :::0:1 (Sa, Ta - Sa);

(ii) (I;2a+3,Il2a+3) :::0:1 (Tm Sa+l - Ta) (also allow a= -1}; and

(iii) (E,\+1,Il,\+i) :::0:1 (T<A• S,\ - T<A)·

Notice that this lemma is an extension of the Reduction Lemma for Theorem A.

Let LOR be the class of limit ordinals.

PROOF: All constructions will be uniform in an ordinal notation for a (or.-\), so

we can use transfinite induction and the following four statements for a,,\ :::: 0:

(A) (E1,Il1) ::;1 (T-i. So - T_i);

(B) (E2a+i.Il2a+1) ::;l (T<a• Sa - T<a)-> (E2a+3,IT2a+3) :::0:1 (Ta, Sa+l - Ta)i

(C) (I;2a+1,Il2a+1) :::0:1 (T<a,Sa-T<a)-> (II2a+2,E2a+2) :::0:1 (Sa, Ta- Sa); and

(D) (I;1,Il1) ::;1 (T-r. So - T-1) II (V1 E LOR n .A)[(E7+1,l17+i) ::;1 (T<7 , S7 -

T<7)J-> (I;,\+1.rr,\+1) ::;1 (T<,\,s,\ -T<Al·

Then (ii) for a= -1 follows from (A); (ii) for a:::: 0 and (i) follow from (ii) for

a-1 (if a rf:_ LOR) or from (iii) (if a E LOR) by (B) and (C), respectively; and (iii)

for ,\ follows from (ii) for a = -1 and (iii) for/ E LOR n ,\ by (D). (Notice that the

proof of (D) will require an induction argument separate from the successor ordinal (

case (B)-(C), as explained later.)

We will now prove (A)-(D):

59

(A) Given k, we will construct a recursive tree Tk such that

k E 0' ---> Tk finite,
(11)

At any stages, put (o•) into Tk,• iff {k }.(k) j. This construction obviously satisfies

the claim.

(B) By (A) (for a= 0), (B) (for a rf. LORU{O}), or (D) (for a E LOR), we have

a uniformly recursive sequence of trees { T1 } IEw satisfying

(12)
l E 0(2"'+ 1

) ---> [D"'(T1)] = 0,

l rf. 0(2"'+ 1)---> l[D"'(T1)]i = 1.

Now 0(2"'+3) =1 Cof0<
2
•l, so, given k, it suIBces to uniformly build a recursive tree

Tk such that

(13)

0(2a)
k E Cof ---> i[D°'(Tk)]i < ~o.

k rf. Cof0(Za) ---; l[D°'+1 (Tk)]I = 1.

Define a recursive function f such that f(k, l) E 0(2<>+!) iff l E wt2
•l. Fix k. At

stage O, put 0 into Tk,O· At any stage s > O, put (o•) and (o•- 1 1) into Tk,• and

start the construction of Tf(k,s-t) on top of (o•-11).

If k E Cof0
<

2

•l then f(k, l) rf. 0(2 <>+!) for only finitely many 1, say, lo is greater

than all such l. Then [D°'(Tk((011)))] = 0 for all! :2: 10 , so [D°'(Tk((010)))] ~

{(ow)}. Also [D°'(Tk((011)))] is finite for all I< lo, so [D°'(Tk)] is finite.

On the other hand, if k rf. Cof0<
2
•) then f(k,l) rf. 0< 2a+l) for infinitely many 1, so

l[D°'(Tk((011)))]1=1 for infinitely many l. Thus [D°'+ 1 (Tk)] = {(ow)}.

() (
0(2a} 0(2a))

(C) The proof is similar to the proof for B . We use that Tot , Cotwo

is (11 2a+ 2 , ~2a+2)-complete, where Totx and Cotwox are the index sets of total

functions recursive in X and functions recursive in X undefined for exactly two

integers, respectively.

60

Given k and { T1 hew as in the proof of (B), we have to uniformly build a recursive

tree Tk such that

(14)
0(2a)

k E Cotwo -> 1 < l[D"'(Tk)]I < ~o.

The construction is the same as in (B).

If k E Tot0(
2

•> then f(k,l) E 0<2"'+ 1) for all I, so [D"'(Tk((011)))] = 0 for all I.

Thus [D"'(Tk)] c;;; { (ow)}.

On the other hand, if k E Cotwo0(
2
•> then f(k, l) ¢ 0< 2"'+1) for ex~tly two

distinct l, say, li and l2, and so D"'(Tk((011))) has exactly one infinite path for

l = 11 or 12 , and none for all other l. Thus 2 ::; l[D"(Tk)]I S 3 (since possibly

(ow) E [D"(Tk)]).

Part (D) is much harder to prove and requires some preparation.

5. THE REDUCTION LEMMA: THE LIMIT ORDINAL CASE

The first lemma generalizes a lemma by Solovay for ,\ = w [JLSSta] to arbitrary

recursive limit ordinals:

LEMMA 1 (APPROXIMATION LEMMA). Let ,\ be a recursive limit ordinal and

{an }new the increasing sequence with supn an = ,\ given by our ordinal notation

for >.. (i.e., >.. = 13 · 5xj, l\Ox(n)J = an)· Then there is a recursive function d

(uniformly in a notation for >..) such that

(15)

Here 0(.\+l) = (H(3 · 5x)) 1, and 0("n+l) = (H(\Ox(n)))'.

PROOF: Recall that there are recursive functions ha,b (uniformly in a, b) and r.e.

sets Pa (uniformly in a) such that

(16)
H(a) :S'.1 H(b) via ha,b (for a Sob), and,

Pa = { b I b <o a} for a E 0.

61

(See Rogers [Ro67] for details.)

Now

(17)
y E 0(>.+i)

+--+ {y}H(3·5"l(y) L

<--> (:Ju, V, s) [{y }iDu ,D,) (y) L /\ Du <;;; H(3 · 5x) /\

Dv n H(3 · 5x) = 0]

+--+ (:Ju,v,s)[{y}iDu,D,)(y) LA (V(z1,z2) E Du)[z1 E H(z2) /\ Z2 <o 3.5x] /\

(V(z1,z2) E Dv)[z1 r/: H(z2) V z2 -f.o 3 .5xl]

+--+ (:Ju,v,s,n)[{y}iD.,D,)(y) LI\

(V(z1,z2) E D.,)[hz2 ,<p.(n)(z1) E H('!'.'x(n)) /\ z2 E P<p.(n),s /\ z2 E P3.5•] /\

(V(zi,z2) E Dv)[(hz2 ,<p,(n)(zi) r/: H('l'.'x(n)) /\ Z2 E P<p.(n),s) V Z2 r/: P3.5•Jl

+--+ (:Ju,v,s,n)[A1 /\ (Q)[A~(<p.(n)) /\At/\ Et]/\ (Q)[(A~(<p.(n)) /\Ai) V ITt])

where (Q) denotes a bounded quantifier, and {y}(Du,D.) that the computation uses

from the oracle set X at most that z EX for z ED., and that z r/: X for z E Dv.

Now the matrix of the last expression is recursive in H('!'.'x(n)) Ell 0', and thus

certainly in (H('!'.'x (n + 1)))' = 0("•+ 1 +l). This establishes the claim of the lemma.

I

The first try at the construction of Tk at a limit ordinal level A satisfying (D)

would be to build TJ(k,n) on top of (onl). However, we only know p(T,r(k,n)) = °'n

or < an, so supn p(TJ{k,n)) = A is possible independent of whether k E 0(>.+t).

Our second try is to let level °'n' say, at which we "discover" that k E 0(>.+i)

by Lemma 1, stop the higher levels by some kind of "permission" for extending

branches above (om1) for m > n. However, this is hard since TJ(k,n) looks very

different from TJ('k,n), so we have to introduce a very strong kind of permission at

all branchings of the much bigger tree TJ(k,m)· Keeping this in mind should make

the following construction seem less mysterious. This requires also a new induction

62

argument at the successor ordinal level.

For the sake of convenience, let a(k1, k2, ... , kn) = (ok11 ok21 ... ok• 1) E 2<w.

For a a recursive ordinal, the field of the a-strategy F°' (i.e., the largest possible

tree that Tf: could be) is defined by

(18)

Fa = { (on) I n E w },

F"'+1 = { a(n)~(a) I a E F°', n E w} U Fa,

F>. = {a(n)~(a) I a E F°'•'n E w} UFa

for,\ E LOR,,\= 13 · 5YI, an= l\Ov(n)I.

(Notice that the F°''s are all recursive sets, and that they do depend upon the

particular ordinal notation chosen. However, since we will always fix an ordinal

notation in advance this will not matter in the following.)

The ordinal (3';; associated with a branching node a on F°' is defined by

(19)

f30 =a,

{

(3';; - 1

(3:~(cr(k)) = "lk

undefined

for (3';; rf. LOR U { 0 },

for (3';; = "f E LOR,"!= 13 · 5zl, "In= l\Oz(n)I,

for (3';; = 0.

(Thus (3';; is defined exactly for all nodes a E Fa of the form a= a(ki, k2 , ••• , kn)·

The ordinals (3';; will determine the strategy above the node a.)

The following lemma will be essential later:

LEMMA 2 (FINITE EXCEPTIONS LEMMA). For any subtree S ~ F°' and any

infinite path p E [S], { i I p(i) = 1} is finite.

PROOF: Otherwise there are n 1,n2 ,n3 , .. • E w such that 0 C a(n1) C a(n1,n2) C

(n1,n 2 ,na) C · · · C p, so that all these nodes are in Sand thus in F°'' but then f3';,
(3°'() , (3"'() , (3a() , ... is an infinite descending sequence of ordinals. Ill u n1 a n1 ,n2 u n1 1n2 ,n3

We call a tree T ~ Fa a-dense (for a a recursive ordinal) iff

(20) (Vn E w n (a+ l))(a.e.k1)(a.e.k2) ... (a.e.kn)

[p(T(a(k1, k2, .. · , kn))) = f3';;(k 1 ,k,, ... ,k.)).

63

I.e., in an a-dense tree, all appropriate subtrees of T have maximal rank possible.

For example, the only 0-dense tree is F0 itself; a tree T <:;:Fi is 1-dense iffT(o-(n)) =

Fa for almost all n, etc.

LEMMA 3 (DENSITY LEMMA). Let a> 0 be a recursive ordinal, T <:;:Fa a tree.

Then T is a-dense iff (a.e. m)[T(u(m)) is /3~(m)-dense].

PROOF: (--+) Trivial by definition.

(<-) We only need to show (20) for n = 0. Suppose that for all m > mo,

p(T(u(m))) = /3~(m)" Since f3:(m) =a - 1 (for a'/:- LOR) or a= supm /3~(m) (for

a E LOR), we obtain p(T) =a. Ill

LEMMA 4 (INTERSECTION LEMMA). Let a be a recursive ordinal. If T and T
are a-dense, then so is T n T.

PROOF: By induction on a: For a= O, note that T = T = { (om) I m E w }. For

a > O, use Lemma 3 and the fact that /3~(m) < a. Ill

Notice that this would be false, for example, if we had defined a-dense just as

having rank a. For example, then the intersection of T, T <:;: Fi, both of rank 1,

could have rank 0.

The following- lemma will be essential later for showing that the nesting of trees

works properly. (It is the first example of the property of trees that the subtree

above a certain node u(ki, k2 , ••• , kn) looks exactly as if it were constructed by

itself.)

LEMMA 5 (NESTING LEMMA). Let f3 < a be two recursive ordinals, and let

T <:;: F(J be a {3-dense tree. Then T = { u E Fo: I (\fr <:;: o-)[r E F(J -> r E T]} is

a-dense.

PROOF: By induction on {J: If f3 = 0 then T = { (om) I m E w }, and T = Fo:. If

/3 > 0 then for almost every m, /3:(m) < fJ:(m), and, by Lemma 3, for almost every

m, T(u(m)) is {J:(mfdense. Therefore, by induction, for almost every m, T(a(m))

is fJ:(m)-dense. Thus, again by Lemma 3, T is a-dense. Ill

64

The following lemma is the key to the construction. We build trees, again by

induction, but with much stronger properties. (However, in the successor ordinal

case, we lose a finite number of levels, so we can use this construction only for the

proof in the limit ordinal case.)

For the sake of convenience, for an arbitrary f3 < wf K with fixed ordinal notation,

define a sequence of predicates { P ,,,_ } "'-'.01'

(21)
if a is an even ordinal,

otherwise,

where a is an even ordinal if a=),,+ 2n for),, E LOR U { 0} and n E w.

LEMMA 6 (STRONG REDUCTION LEMMA). For any recursive ordinal a, there

exists (uniformly in an ordinal notation for a} a uniformly recursive sequence

{ Tf hEw of trees Tf ~ F,,,_ such that

(22)
-.P,,,_(k) ---> Tf: is a-dense,

where a=)..+m,),, E LORU {O}, m E w.

PROOF: For a= 0, use the construction from (A) above.

For a a successor ordinal, say, a = f3+1, assume without loss of generality that a

is even (the odd case is similar). Using (0(1'+2l, 0(1'+2)) ::; 1 (Fin°<Pl , Cof0<P>), there

are recursive functions h and ho such that

P,,,_(k) ---> k E 0<P+2l --->Wt~~~) finite---> { l I l E Wt~~~)} finite

---> {11h(k,l)E0(/3+l)} finite---> (a.e.l)[P,e(h(k,1))],

-.P,,,_(k) ---> k ¢'. 0(,e+z) --->wt~~~) cofinite---> { l I 1 E wt~~~)} cofinite

---> {11h(k,1)E0(/3+l)} cofinite---> (a.e.l)[-.P,e(h(k,l))].

Fix k. At stage 0, put 0 into Tf0 . At a stages> 0, put (o•) and (o•- 11) into
'

Tk,. and start the construction of Tf(k,s-l) on top of (o•- 11). The claim that this

works is immediate by (23) and Lemma 3.

65

For a a limit ordinal, let a= 13 · 5xl, Cin = l\Ox(n)I, so { Cin }nEw is an increasing

sequence of ordinals with a= supn Cin. Slightly modify the function d from Lemma

1 so that

(\ly) [y E 0(<>+!) <--> (3n)[P,," (d(y, n))l],

and, for simplicity,

(\ln)[P.,n(d(y,n))--+ P"n+i(d(y,n+ 1))].

Given o E 2<w, we define the branch number b(o) = min{ n I (on) ~ o }, and

the decision set D(o) = { r ~ o I (:Ji')[i'~(l) = r] }. (b(o) will determine the main

strategy at o, the nodes of D(o) the secondary strategies from lower levels.)

The construction for a a recursive limit ordinal now proceeds as follows: Fix k.

At stage O, put 0 into Tk,0 • At a stage s > O, put (o•) and (o•- 11) into Tf,,; also

put any o E 2<w into TJ:
8

for which the following conditions are satisfied:
'

(i) lul = s, a~ (s-1) E Tf:s-1>
'

(ii) a E Fcx, and

(iii) (\Ir E D(a))(\lm :S b(a))[am :S fJ': /\a E r~F"'~--+ a E r~Tc:(k,m)J.

(Notice here that the construction is arranged in such a way that to any

a(k1,k2 , ... ,km), the construction above it looks the same as to a a(n) above it.

This will be an essential feature for the verification.)

Now suppose first that k E 0(cx+I), i.e., by the modification of Lemma 1,

P"'" (d(k, n)) holds for all n 2': some fixed no. We then claim that p(TJ:(a(n))) :S Cin 0

for all n, thus p(TJ:) :S Cin0 + 1 < a as desired. The proof requires induction on

Cin
0

• (Of course, there is nothing to prove for Cin :S Cin 0 .)

Cino = 0: Let r = a(n). Then r~F"no = { a(n)~(am) I m E w }, so

(omo) rf:_ T:C!::no) for some mo, and thus Tf: (r~ (omo)) is finite. As for TJ: (a(n, m))

form< m0 , apply the same proof to i' = a(n,m), etc. By Lemma 2, there is no

infinite sequence a(n), a(n,m), a(n,m,l), ... of such i''s, so TJ:(a(n)) is finite and

p(TJ:(a(n))) :S °'no•

66

°'no = (3 + 1: There is mo such that P13(h(d(k,no),m)) holds for all m 2: m0

where his the function for °'no and (3 mentioned above in the proof for the successor

ordinal case. Now the an0 -construction works at a(n), and thus the (3-construction

at a(n, m) for all m, through condition (iii) of the construction (putting r = a(n0)).

Thus by induction (replacing °'no and an by (3 and f3;(m)), there is some m0 such

that p(Tk'(a(n,m))) :'::'. (3 for all m 2: m0 , so p(Tk'(a(n)~(om0))) :'::'.°'no· As for

Tk'(a(n,m)) form< m 0 , apply the same proof with r = a(n,m), etc. By Lemma

2, there is no infinite sequence a(n), a(n,m), a(n,m,l), ... of such r's, so Tk'(a(n))

consists of finitely many subtrees, each of rank :'::'. an0 , and thus p(Tk'(a(n))) :'::'. °'no.

The above establishes p(Tk'(a(n))) :'::'.°'no <.\for all n, so p(Tk') :'::'.°'no+ 1 < .\

in the successor ordinal case of °'no.

°'no E LOR: Then { f3;(:;.) }mEw is an increasing sequence with limit °'no. There is

mo such that P13•no (d(d(k, no), m)) holds for all m 2: mo where dis the counterpart
a(m)

off for an0 as a limit ordinal. Now the an0 -construction works at a(n), and thus the

f3;(:;,rconstruction at a(n, m) for all m, through condition (iii) of the construction

(putting r = a(no)). Thus by induction (replacing °'no and an by f3;(:;.) and f3;(m)),

we have that p(Tk'(a(n,m))) :'::'. f3;(:;,
0

) for all m 2: mo (this part does not follow by

induction form with f3;(m) :'::'. f3;(:;.) but in that case it is trivial anyway). Therefore,

p(Tk'(a(n)~(om0))) :'::'.°'no• As for Tf(a(n,m)) form< mo, apply the same proof

with r = a(n, m), etc. By Lemma 2, there is no infinite sequence a(n), a(n, m),

a(n,m,l), ... of such r's, so Tf(a(n)) consists of finitely many subtrees, each of

rank:'::'. ll<n 0 , so p(Tf(a(n))) :'::'.°'no·

The above establishes p(Tf(a(n))) :'::'.°'no <.\for all n, so p(Tk') :'::'.°'no+ 1 < .\

in the limit ordinal case of °'no .

On the other hand, assume that k rj: 0(<>+ 1l. Then P".(d(k,n)) does not hold for

any n. We claim that Tf is a-dense (and thus [D"(Tk')] = {(ow)}). We proceed

by induction on (3 = an, using Lemma 3:

°'n = 0: We have Tk'(a(n)) = TJ(k,n) = { (om) Im E w }, so p(T(a(n))) = °'n·

67

an > 0: We have

(23) Tf(a(n)) = {a E Fa" I (Va~ a)(Vr E D(a) U { 0 })(Vm.:::; n)

[am :S /3':" /\a Er~ F°'m -->a E r~T.:Ck,m)J }.

Among these restrictions, we can distinguish three types:

(a) r f. 0 (and thus m < n);

(b) r = 0 and m = n; and

(c) r = 0 and m < n.

Thus T(a(n)) is the intersection of the following three trees:

(a) T1 ={a E Fan I (Va~ a)(Vr E D(a))(Vm < n)[am.:::; /3':" /\a E r~Fam --4

- ~Tam J} a Er d(k,m) ;

(b) T2 = {a E Fa. I (Va~ a)[a E T.:{'k,n)J} = T.:('k,n)i and

(c) Ta = {a E Fa. I (Va ~ a)(Vm < n) [a E Fam -; a E T.:{k,m)]} = nm<n {a E

Fa. I (Vr ~ a)[r E Fam -> r E T.:{k,m)J }. (Call these trees Ta,m form< n.)

By Lemma 4, it suffices to show that each of T1 , T2 , and the T3 ,m is an-dense.

(a) Recall again the remark that the construction above a(n) looks to an just as

it does to a above 0. For all I,

T1(a(l)) ={a E F.13;cli I (Va~ a)(Vr E D(a) u{0})(Vm < n)

[am :S /3:U)~T /\a Er~ Fam ->a E r~T.:{k,m)J }.

Therefore, by induction on /3 = an in (23) (with /3;f!J in place of an, and

/3:fo~T in place of /3':"), T1(a(l)) is /3;~rdense for almost every l. Thus, by

Lemma 3, T1 is an-dense.);

(b) T2 is an-dense by induction on the overall construction; and

(c) each Ta,m is an-dense by induction and Lemma 5.

This concludes the proof of Lemma 6. I

Lemma 6 now implies part (D) of the proof of the Reduction Lemma, and thus

Theorem B has been established. Ill

68

6. AN INDEX SET IN MAJOR SUBSETS

Lachlan [La68] defined the following notion of two r.e. sets A C00 B being "close"

to each other:

DEFINITION: Let A c 00 B be r.e. sets. Then A is major in B (A Cm B) iff

(24) ('v'W r.e.) [B <;;* W ->A<;;* W].

(24) is equivalent to either of the following two conditions:

(24')

(24")

('v'W r.e.)[B <;; W-> A<;;* W],

.C*(A) = .C*(B),

where .C*(X) is the lattice of r.e. supersets of X (modulo finite sets).

The classification of the index set { (e, i) I W. Cm W;} has been one of the open

questions in index sets for a while. The major obstacle here is that A Cm B implies

that B is nonrecursive. This makes the uniformity required for the classification

hard. We present below a partial result towards the classification of this index set:

THEOREM C. Let V be a nonrecursive r. e. set. Then the index set Majy = { k I
Wk Cm V} is Il4-comp/ete.

PROOF: It is easy to see that Majy is II4 :

{25)

wk Cm v H wk Coo v /I (Ve)[V u w. -f w v wk u w. =* w]

+-+Ila /I (Ve)[E2 V Ea]

We will build (uniformly in k) an r.e. set Ak C 00 V such that Ak Cm V iff

k tf- 0(4). (We will usually suppress the index k on A from now on.)

We use the fact that there is a recursive function h such that

{26)
k tf- 0C4

) -> ('v'i)[Wh(k,i) cofinite],

k E 0<4l -> (3i)[Wh(k,i) coinfinite].

69

Fix k from now on, and let Wh(k,i), 8 = { hf,o < hf, 1 < h'f,2 < ... }.

The idea of the proof is now to have for each i two conflicting strategies, a positive

strategy trying to establish (24 1
) for W;, and a negative strategy trying to build a

counterexample B to A Cm V. Which strategy succeeds will depend on whether

wh(k,i) is cofinite or not. (If wh(k,i) is coinfinite then the strategies working on

i' > i will not matter.)

For the basic module of the positive P.-strategy, we use a variant of Lachlan's

strategy [La68] to construct a major subset. Let We, 8 = { x E We,a / (Vy < x)[y E

· We,s u V8] }, and let We = LJ. We,s· Then w. = We if W. ::2 V, and w. is finite

if We ~ V. In the former case, we have to take action for the sake of We; in the

latter case, the strategy will only have a finite effect on the rest of the construction.

Furthermore, let f be a 1-1 enumeration of V (recall that V has to be infinite).

Finally, let V, - A 8 = { d0, df, d~, ... , d~. } where the markers d~ need not be in

order. (The markers d~ will be undefined for n > n,.)

At stage 0, let Ao = 0, let dg = f(O), and let d~ be undefined for n > 0. At a

stage s + 1, first determine if f(s + 1) E We,a and dfi ¢= We,s for some ii :<::: n,. If

so, for the least such ii, put dfi into A 8 +1 , let d~+I = f (s + 1), and let d~+I = d~
for all n of ii (for the sake of A~· W.). Otherwise, let d~;i 1 = f(s + 1), and let

d~+I = d~ for n of n 8 + 1 (for the sake of A Coo V).

Since V is nonrecursive, V is not r.e. Suppose V ~ We (and thus We = W.).

Then we have that

(27) (300 s)(3x)[x E Vs+I - V, /\ x E W.,.J.

Therefore, f(s + 1) E We,s for infinitely many s, so any marker d~ will be moved

until it is in W., and so A ~ W •. (These strategies will later be combined using

e-states as first introduced by Friedberg in his maximal set construction [Fr58].)

The basic module for the negative)/-strategy tries to build a set B refuting

A Cm V, i.e., such that V ~ B and that V - (AU B) is infinite. At the nth time

70

the strategy acts, it will wait for IV - (AU B)[> n, then put min(V) into B (for

the sake of V <:;; B) and restrain another element of V - (AU B) from entering A

(to make V - (AU B) infinite).

Suppose that A c 00 V. Then the strategy will act infinitely often (else B and

thus V - A would be finite). So V <:;; B and V - (AU B) is infinite. (Notice that

we really only have to restrain forever from A an infinite subset of the restrained

elements of V - (AU B).

We have to let the success (or failure) of the N-strategy depend on whether Wh(k,i)

is coinfinite (or cofinite). Recall that Wh(k,i),s = { hi,o < h(, 1 < h(, 2 < ... }. Let

the N-strategy only restrain at stage s + 1 at most m 8 = min { n [hf•+ 1 of- hf
8

}

' '
many elements. If Wh(k,i) is coinfinite then lim8 m. = oo, so the N-strategy can

eventually restrain more and more elements from A permanently. If Wh(k,i) is

cofinite then m = lim inf 8 m 8 < oo, so the },/-strategy can restrain at most m

elements permanently from A. (Notice that if one N-strategy is allowed to succeed

the lower-priority P-strategies will not matter since this N "Strategy will satisfy the

overall requirement A)l':m V.)

Combining all strategies requires two minor changes:

First of all, a stronger P-strategy may injure a weaker },/-strategy by putting

infinitely many elements into A that are restrained by the },/-strategy. So the latter

has to be able to predict which elements the P-strategy will put into A. This is

done in a straightforward tree argument fashion.

Secondly, if a P-strategy is forced to always observe the current restraint of the

stronger },/-strategies then a synchronization problem may arise. Good elements

(i.e., numbers f(s + 1) E We,s) may come up only when the restraint is high, so

the P-strategy may not achieve its objective even if the lim inf of the restraint is

finite. To resolve this conflict, we will, roughly speaking, make the P-strategy only

observe (for d~) the lowest restraint since some d':r, with m ::; n moved. (This will

be done through the control function Q. An alternative way to resolve this conflict

71

would be to delay putting the elements into A.)

Before describing the full construction, we will define all the parameters. Let

Ai = w and A2 = 2 be the sets of outcomes of the }./- and P-strategies, respectively.

Let Ti= (A1 X Az)<w, Tz = (A1 X Az)<w X A1, and let T = T1 U Tz be the tree of

strategies. (T1 and T2 are the sets of even nodes (}./-strategies) and odd nodes (P

strategies) of the tree T, respectively.) For each k, let { Wh(k,i) };Ew be a uniformly

r.e. sequence of sets such that k E 0(4) iff (:Ji)[Wh(k,i) coinfinite]. Without loss of

generality, assume that wh(k,i),s i= wh(k,i),s+I for all k, i, s. The construction of

A= Ak will be controlled by markers hf, 8 where Wh(k,i),s = { h~,s < hf,s < hl,_ <
... }.

Fix a recursive 1-1 enumeration f of V, and let Va = { f (0), f (1), f (2), ... , f(s) }.

Let We,s = { x E We,s I (Vy < x)[y E We,s u v.] }, and let w. = u. w., •. Define

thee-states O'(e,x,s) = {e' :'.::'. e Ix E w •. ,.}, and O'(e,x) = lim,O'(e,x,s). De

note the elements of the difference set V - A by markers d~ so that V8 - As =

{ dg, df, d2, d .. . , d~. }. The order of these markers will be determined by the con

struction, and markers d~ will be undefined for n > n 8 •

Each J./-strategy a E T1 builds its own set Ba, trying to disprove A Cm V by

B,,,_. It has to take into account the action of stronger P-strategies in building Ba

and imposing restraint of A. So it will use

(28) n
2e'<lal

a(2e' +1)=0

W0 ,,) n V,) - (A, U Ba,s)

(instead ofV8 -(AaUBa,s) as in the basic module). Notice that U,,,_ =* V -(AUBa)

if the P-strategies above a succeed.

We define 8, (with J8, J = 2s), the recursive approximation to the true path, by

72

induction:

(29)
8,(2e) = min{n I h~,s # h~.•'} wheres'= max({O} U {t < s I 8, ~ 2e <;;; 81 }),

{

0 if We,s # We,s' where

8.(2e+l)= l s'=max({O}U{t<sl8.~(2e+1)<;;;8t}),

otherwise.

For P-strategies a= f3~(m) E T2, define the restraint function by:

if f3 <;;; 08 or s = O,

{

min{ r I IU°'•' n [O, r) I = m

r,(f3~(m)) = V r = 1 + max(U0<,s)}

r s-1 (f3\m)) · otherwise.

(Recall that restraint is imposed by }/-strategies f3 E T1 , but the restraint that f3

imposes depends on W h(k,i) and thus differs below distinct outcomes m (the current

guess for IWh(k,i) I) of f3.)

For P-strategies a E T2, define the control function by:

(30)

Q,(a) = {:

Q.~1(a)

if a <;;; 08 or a > L 08 or s = O,

if a <L 8, and a moved r n at stages (as defined below),

otherwise.

The construction of the r.e. set A and the r.e. sets B"' (for all a E Ti) now

proceeds as follows:

At stage O, let Ao = B0<,0 = 0 (for a E Ti), let dg = f (0), and let d~ be undefined

for all n > 0.

At a stage s + 1, perform the following two steps:

For all }/-strategies a E T1 with a <;;; 8., put min(V, U B0<,s) into B0<,s+I if

IU0<,sl > IB0<,sl·

Secondly, for the sake of the ?-strategies, choose no to be the least n '.::'. n, such

73

that

(31) (3e :<::; n)[a(e- l,f(s + l),s) = a(e- l,d~,s) /\

f(s + 1) E We,s /\ d~ 1:- We,s /\

d~ >max{ r 8 (a) I a:<::;"//\ a E T2}

(where"/:<::; 08 is leftmost with hi= 2e + 1 and Q.('Y) > n)J.

If no exists then put d~0 into A.+1 , let d~t 1 = f(s + 1), and let d~+I = d~ for

n # n0 • (We say "f moved r no at stages+ 1.) Otherwise, let d~;; 1 = f(s + 1), and

let d~+I = d~ for n # n 8 + 1.

This concludes the construction.

LEMMA 1 (MARKER CONVERGENCE LEMMA). For all n, dn = lim8 d~ is de

fined. {Thus A C 00 V.)

PROOF: By induction on n: Suppose dm is defined for all m < n, and d:r, = dm

for all s 2': s0 , say. Then d~ is defined for all s > so and changes only finitely often

since it increases its n-state each time (and the n-state is nondecreasing between

these changes). Ill

LEMMA 2 (TRUE PATH EXISTENCE LEMMA). If Wh(k,i) is cofinite for all

i < i0 , then a0 = Jim inf• 08 ~ 2i0 exists.

PROOF: By the definition of 8., we have for i < i 0 :

ao(2i) = IWh(k,i) I,
(32)

{
0 if W; is infinite,

ao(2i + 1) =
1 otherwise . lfl

LEMMA 3 (0 UTCOME LEMMA). Fix i 0 .

(1) If ao = liminf8 08 ~ 2io exists, then V ~ Ba0 , and

(33) /30 = ao ~(m) /\ (:J<00 s)[o. <L /30] -+

(V/3 E T2)[/3 :<::; /30-+ r(/3) = liminf r.(/3) < oo exists]/\ IUa0 n [O, r(/3o))I = m.

74

(ii) If 'Yo = Iiminf. 08 ~ (2i0 + 1) exists, then either W;
0

is finite (if 'Yo~(l) -

liminf8 08 ~(2io+1)) or A<;;;* W;0 (if 'Yo~(O) = liminf. o, ~ (2i
0

+1)).

PROOF: By simultaneous induction on i0 :

(i) We first establish V <;;; B°'0 • By the construction, it suffices to show that B°'
0

is infinite (since we always put min(V. U Ba
0

, 8) into Ba
0

). Suppose for the sake of

a contradiction that Ba0 is finite. Then for alls with °'O <;;; o., IUao,sl '.'::'. IBa
0

,
8

I.

But Ua0 is a difference of r.e. sets, so IUa0 I '.'::'. IBaol· By (ii), A<;;;* W; for i < io

with ao(2i) = O, and therefore Ua0 =* V - (AU Ba
0

). But then Ua
0

=* V - A is

finite, contradicting Lemma 1.

Let us now show (33). By induction on (i), choose s
0

such that

(Vs 2:: so)(Va E T2)[a '.'::'. ao ~ (2io -1)--+ r,(a) = r(a)].

(This assumption is vacuous for io = 0.) Next, by our assumption on flo and the

definition of r 8 (fl), pick s1 2:: s0 such that

(Vs 2:: s1)(Vfl E T2)[fl < flo /\fl~ (lfll - 1) f- °'O--+ r,(fl) = r(fl)].

Furthermore, since by the construction Q 8 (fl) cannot increase while fl <L o., pick

s2 2:: s 1 such that

Finally, let a= { i < i 0 I W; infinite}. Then by (ii),

(3no)(Vn 2:: no)[u(io -1,dn) =a].

Pick s3 2:: s2 such that

(Vs 2:: s3)(Vn < no)[d~ = dn]·

75

We will now show (33) by induction on m (for fixed a 0). For m = O, trivially

r(,80) = 0. Let m > 0. Let r = 1 + max({r(ao~(m -1))} U {dn In< n0 }). Pick

84 2': sa such that

(Ifs 2': s4)[r,(ao~(m -1)) = r(ao~(m -1)) /\

x •• ~ (r + 1) = X ~ (r + 1) for all X = Wi (for i < io), V, A, and Ba0].

By the first part of (i), we have limsup{ IUa0 ,sl I ao ~ 08 } = oo, so pick S5 2': s4

such that ao <;;; 085 and IUa0 ,, 5 1 2': m.

We claim that

(34) (Vs 2': s5)[r.(,80) ~ rs+i(.Bo) /\ IUa0 ,. n [o,r.(.Bo))I 2': m].

Suppose for the sake of a contradiction that for some s 2': ss, Ua0 , 8 n [O,r8 (,Bo)) Si'.

Ua
0

, 8 +1 n [O,r,(,Bo)). Then some x E Ua0 , 8 entered Ba0 or A. The former is

impossible by the construction of Bao (since x E V8). But x cannot enter A since:

(a) no"(2': ,Bo can move x by the restraint imposed;

(b) no"(<L ,80 can move x, or else Q.("I) > Q8 +1 ("1), contradicting the assumption

on s2; and

(c) no "IC ,80 will move x since either x ~ W;, 8 (if bl= 2i+ 1 and .Bo(2i+l) = 0),

or "I no longer moves any element (if hi= 2i + 1 and ,8o(2i + 1) = 1).

(Notice that r,(,80) may still drop a finite number of times as Ua0 gets new small

elements.)

Now (34) establishes (33).

(ii) By (i), pick so such that

Let R("lo) =max{ r("I) I "I~ "lo/\"(E T2 }. Since"(<;;; 080 for infinitely many s, we

also have lim8 Q 8 ("10) = oo. Let u = { i ~ i0 I W; infinite}, and assume that W;0 is

infinite. Then w,,. = niEO" W; 2 v. By induction on (ii), pick no > io such that

(lfn 2': no)[cr(io - 1, dn) = u - { io }].

76

Since V is not recursive,

(35) (3 00 s)[f(s + 1) E W,,.,,J.

Suppose that a(io, dn) =a - { io} for some n 2': no with dn > R("!o). Pick s1 2': s0
such that

('is 2': si)[Q,("!o) > n /\('in' :S n)[d~, = dn'Jl·

Then dn will be moved by (35), contradicting our assumption. Thus W;
0

= W;
0

;2*

A. I

It is now easy to see that the lemmas imply Theorem C.

First suppose that k E 0(4
). Then Wh(k,io) is coinfinite for some (least) io. By

Lemma 2, a 0 = liminf, 8, ~ 2io exists, and

Therefore, by Lemma 3 (i), V <;;; Ba0 , and Ua
0

is infinite. But then V - (AU Ba
0

)

is infinite, so Ba0 witnesses that A \tm V.

On the other hand, assume that k ¢: 0(4). Then Wh(k,i) is cofinite for all i. By

Lemma 2, Jim inf• s. ~ 2i exists for all i. Therefore, by Lemma 3 (ii), either W;
is finite or A <;;;* W; = W; for all i. Furthermore, by Lemma 1, A C

00
V. Thus

A Cm V.

This concludes the proof of Theorem C. I

CHAPTER IV

w-DEGREES

Jockusch, Lerman, Soare, and Solovay [JLSSta] defined a new partial order :Sw

on the r.e. degrees. This partial order can easily be extended to all Turing degrees

and induces equivalence classes of r.e. (or Turing) degrees, called w-degrees.

DEFINITION (Jockusch, Lerman, Soare, Solovay [JLSSta]): Let a and b be r.e.

(or Turing) degrees.

(i) The partial order :Sw is defined by

(where :S is the usual Turing reducibility of degrees).

(ii) The induced equivalence relation ~w is defined by

The equivalence classes of ~w are called w-degrees and are denoted by [a], [b], ...

(or [A], [BJ, ... where A Ea, BE b, ...).

The study of the structure of the w-degrees is interesting both in its own right

and because it leads to the study of the decidability of fragments of the theory of

the r.e. (or Turing) degrees with jump.

Jockusch, Lerman, Soare, and Solovay showed in their paper, among other things,

that the r.e. w-degrees are dense and indeed allow an independent set in any inter

val. We will show below the existence of a splitting of [0'] and of a minimal pair.

Furthermore, we will show the surprising fact that the Turing w-degrees do not form

an upper semilattice. It is still open whether this is true also for the r.e. w-degrees.

77

78

1. SPLI'l'TING AND MINIMAL PAIR IN THE R.E. w-DEGREES

We begin by recalling three important theorems.

SACKS SPLITTING THEOREM (Sacks [Sa63a]). Let A >T 0 be an r.e. set. Then

there are low r.e. sets Ai and A2 such that AiUA2 =A and Ai IT A2. In particular,

deg(Ar) U deg(A2) = deg(A) and A~ =T A~ =T 0'. Furthermore, indices for A1

and A2 can be found uniformly in the index for A.

We will use this theorem only for A= 0'.

THEOREM (Lachlan [La66]). There is a minimal pair of high r. e. sets A and B,

i.e., such that deg(A) n deg(B) = 0 and A' =TB' =T 0".

(Notice here that A and B are constructed by thickness strategies. Therefore the

reductions from A' or B' to 0" are the same in all relativizations of this theorem.)

ROBINSON JUMP INTERPOLATION THEOREM (R.W. Robinson [Ro'11]). Let

C <T D be r.e. sets, let n > 0, and let S be such that c(n) :"::T S ::; 1 D(n).

Then there is an r.e. set A such that C <TA <TD and A(n) =TS. Furthermore,

the index for A can be found uniformly in n and indices for C, D, and the reduction

S :"::1 D(n).

All three theorems relativize uniformly to an arbitrary oracle X ~ w.

Given two r.e. sets A and B, the supremum and infimum of their w-degrees (if

they exist) can be characterized as follows:

LEMMA. Let A,B ~ w. Then:

(i) [CJ (for some C ~ w) is the supremum of [AJ and [BJ, written [AJ U [BJ, ijf

(ii) [DJ (for some D ~ w) is the infimum of [AJ and [BJ, written [AJ n [BJ, if

(\fn)(:lno ?: n)(:Jm)[deg(A (no)) n deg(B(no)) exists and

(deg(A(no)) n deg(B(no)))(m) =T D(no+mlJ.

79

{Notice that, in (ii), we only claim one direction of the implication.)

PROOF: (i)

[AJ u [BJ = [CJ

<-->A, B :::::w C /\ (\IX)[A, B :::::w X-> C :::::w XJ

<--> (3n)[A(n),B(n) ::;T c(n)J /\

(\IX)[(3n)[A(n),B(n) ::;T X(n)J-> (3m)[c(m) ::;T X(m)l)

H (3n)[A(n) 63 B(n) ::;T c(n)J /\

(\IX)(lfn)(3m)[A (n) EfJ B(n) ::;T X(n) -> c(m) ::;T X(m)J

H (lfn)(3m)[(A(n) EfJ B(n))(m) ==T c(n+m)J.

(ii) Similar to (i). II

We can now prove the first two theorems.

THEOREM A. [0'J splits in the r.e. w-degrees, i.e., there are r.e. sets A, B <w 0'

such that [A] U [BJ = [0'J.

PROOF: Using the Sacks Splitting Theorem, find indices j 0 and k0 such that, for

all X <;;; w,

(IA)

(IB)

wt 2".T X and W~ 2".T X,

(Wt)' ==T (W~)' ==TX' ==T wJ: EfJ w~.

Using the Robinson Jump Interpolation Theorem, find recursive functions f and g

such, that, for all X <;;; w and all indices e and i,

(2A)

(2B)

(W X)' _ X' d (X)' _ X' f(e,i) =T w. an wg(e,i) =T W; '

wj-; <T wfce,i) <TX' and w£ <T W;'fe,i) <TX'.

By the Double Recursion Theorem, find indices e0 and i 0 such that, for all X <;;; w,

(3) W x - wx d wx - wx f(eo,io) - eo an g(eo,io) - io.

80

Now let A = W!
0

and B = Wfo. Then, for all n,

(4A)

(4B)

(40)

A (n) = (W0) (n) = w0<•> < 0Cn+1) e0 T e0 T ,

This establishes the claim by the lemma. II

THEOREM B. There is a minimal pair in the r.e. w-degrees, i.e., there are r.e. sets

A,B >w 0 such that [A] n [BJ= [0].

PROOF: Using Lachlan's Theorem stated above, find indices j0 and k0 such that,

for all X <;;; w,

(5A)

(5B)

(50)

WJ~ 2'.T X and W' 2'.T X,

(W,~)' =T (W,) 1 =TX",

deg(W;;J n deg(W') = deg(X).

Notice that (5B) is equivalent to

(6) (W,~) 11
=1 (W,)" =1 X"'.

Using the uniformity of the reduction in (6) and the Robinson Jump Interpolation

Theorem, find recursive functions f and g such that, for all X <;;; w and all indices

e and i,

(7 A)

(7B)

(wx)" - X
11 d (Wx)" - X" f(e,i) =T We an g(e,i) =T W; ,

X <T Wfce,i) <T w;; and X <T Wg(e,i) <T W,.

By the Double Recursion Theorem, find indices e0 and i 0 such that, for all X <;;; w,

(8)

81

Now let A = W!
0

and B = Wfo. Then, for all n,

(9A) A (Zn) = (W!o) (2n) =T W!o(2nJ >T 0(2n)'

(9B) B(zn) = (W~)(zn) = W~(2nJ > 0<2n)
i.0 T i.0 T ,

(90) deg(A (2nl) n deg(B(zn)) = deg(W!
0
<

2
•J) n deg(Wfo<

2
•J) ::S:T

deg(W3~<
2 •J) n deg(W~~ 2 ">) =T 0(Zn).

This establishes the claim by the lemma. Ill

2. No JOIN IN THE w-DEGREES BELOW 0(w)

The following theorem shows that thew-degrees below 0(w) do not form an upper

semilattice:

THEOREM C. There are sets A, B ::S:T 0(w) such that, for all n and m,

COROLLARY. There are sets A, B ::S:T 0(w) such that [A] U [BJ does not exist.

PROOF: For X :'.:'.T 0(m), let

[X]m = { y i:;:: w I (:Jn)[Y(n+m) -T x<nl]}.

Then for A and B as in the theorem,

[A EEl BJ > [A' EEl B']i > [A" EEi B"]2 > ...

This establishes the claim by the lemma. II

PROOF OF THEOREM C: We use Cohen forcing and refer to Lerman [Le83] for

the background.

The idea of the proof is to put more information into the join of A and B than

A and B can compute individually. We define the symmetric difference of A and B

as A 6 B =(A - B) U (B - A). The coded difference of A and Bis defined by:

(10) (A"VB)(i)={~ if the ith element of A 6 B is in A - B,

if the ith element of A 6 B is in B - A.

82

It is now easy to force, for example, that A or B cannot alone compute A \J B. The

jump is handled using the limit theorem.

We will build sets A, B :S:T 0(w) and a sequence of sets { S; }iEw-{o} uniformly

below 0(w) which will satisfy the following requirements:

(i) for all n, A(n) =TA Ef;) 0(n) and B(n) =TB Ef;) 0(");

(ii) for all n and m, (A(n) Ef;) B(n))(m) =TA Ef;) B Ef;) S1 Ef;) S2 Ef;) • • • Ef;) Sm Ef;) 0(n+ml;

(iii) for all n and m, Sm iT A Ef;) B Ef;) S1 Ef;) S2 Ef;) • • • Ef;) Sm-1 Ef;) 0(n).

Then A and B will satisfy the claim of the theorem:

(11)
(A (n+l) ED B(n-H)) (m) =T A Efl B Efl S1 Efl S2 Efl · • • Efl Sm Efl 0(n+m+l) <T

A Ef;) B Ef;) S1 Ef;) S2 Ef;) ••• Ef;) Sm+! Ef;) 0(n+m+l) =T (A (n) Ef;) B(n))(m+l).

We will thus construct through forcing a generic G of the form Ax Bx (TI;>o S;)

where

S; = T; x M; for i > O,

To= A \l B,
(12)

T;(x) = lim8 T;_ 1((x,s)) for i > 0, and

M;(x) = µs[(Vt :;:>: s)[T;-1((x,t)) = T;(x)l] for i > 0.

I.e., M; is a modulus function for T; relative to T;_ 1. Our set of forcing conditions

can only contain finite initial segments of possible generics that observe the modulus

function to be correct.

We can thus formally define our set of forcing conditions P to consist of all ordered

tuples (p,a,r1,r2, ... ,rn) satisfying the following conditions:

(13A)

(13B)

(130)

p,a E 2<w; IPI = lal;

n E w; (Vi< n)[r;+1 E (2 X w)<w];

(Vi< n)(Vx)(Vs :;:>: (r;+1 (x))2)

[{
(Ti ((X, S)))i

(r;+1(x))i= (p\Ja)((x,s))

83

(where (13C) is only required to hold for strings for which both sides of the equation

are defined).

Now let G be a generic filter through P in the sense of set forcing (i.e., G is a

generic filter meeting all dense En-sets for all n E w). Define A, B, and the S; by

G =Ax Bx (II S;).
i>O

G is a total characteristic function for all these sets by the usual forcing argument.

Furthermore, G can be built recursively in 0(w).

By the usual forcing machinery, it suffices to verify that the requirements (i)-(iii)

correspond to dense subsets of P.

(i) By induction on n: Given (p,a,ri,r2 , ... ,rn) E P, we want to force {e}A(n)(e),

i.e., {e}AE90(nl (e). This can be done by extending p to p1 if {e}P'E90<nl (e) L; otherwise,

let p1 = p; extend a to a' by letting a'(x) = p1(x) for x 2 lal. This will not affect

the S;'s. Thus A EB 0(n+l) can compute A(n+l). (Bis handled analogously.)

(ii) By induction on m: For m = O, this follows from (i). Fix m and estab

lish (ii) form+ 1 as follows: Given (p,a,r1 ,r2 , ... ,rn) E P, we want to force

{e}(A(nl$B(n))(m) (e), i.e., {e}A$BSiS2 E9 .. ·E9Sm$0(n+ml (e). Assume n > m for con-

venience. This can be done by extending p to p1
, a to a', and each r; to rf such that

(p',a',r{,r~, ... ,r~) E P if this achieves {e}PE!lo-E!lr;E!)r~E!l .. ·E!lr:,.$0<n+ml (e) t; other

wise, we let the strings be as before. Thus AEBBEBS1 EBS2 EB ···EBSm+iEB0(n+m+l)

can compute (A(n) EB B(n))(m+l). (Notice that Sm+l is needed here because Tm

cannot be extended arbitrarily by the definition of P.)

(iii) Suppose we are given (p, a, r1, r2, ... , r1) E P, and we want to force Sm of=

{e}AE9BE9S1E982E9 .. ·E9 8m- 1Ell0<nl. (Assume l 2 m for convenience.) This can be done

by extending p to p1
, a to a', and each r; to rf (for i S m) if this achieves

Otherwise, we do not extend any string. In that case, we argue that

84

· {e}Af!lBf!JS1f!JS2fll···fllSm-1fll0<"l, if total, is recursive in 0(n) and thus unequal Sm

(since again we force Sm of {e}0<"> for all n).

This concludes the proof of properties (i)-(iii) and thus the proof of the theorem.

I

BIBLIOGRAPHY

[AS84] K. Ambos-Spies, On Pairs of Recursively Enumerable Degrees, Trans.

Amer. Math. Soc. 283 (1984), 507-531.

[Cota] S.B. Cooper, A Jump Class of Non-Cappable Degrees, J. Symbolic Logic

(to appear).

[Fr58] R.M. Friedberg, Three Theorems on Recursive Enumeration: I. Decom

position, II. Maximal Set, III. Enumeration without Duplication, J. Symbolic

Logic 23 (1958), 309-316.

[JLSSta] C.G. Jockusch, Jr., M. Lerman, R.I. Soare and R.M. Solovay, Recur

sively Enumerable Sets Modulo Iterated Jumps and Extensions of Arslanov's

Completeness Criterion, in preparation.

[La66] A.H. Lachlan, Lower Bounds for Pairs of Recursively Enumerable Degrees,

Proc. London Math. Soc. 16 (1966), 537-569.

[La68] , On the Lattice of Recursively Enumerable Sets, Trans.

Amer. Math. Soc. 130 (1968), 1-37.

[Le83] M. Lerman, "Degrees of unsolvability", Springer-Verlag, Heidelberg, 1983.

[Ma66] D.A. Martin, Classes of Recursively Enumerable Sets and Degrees of

Unsolvability, Zeitschrift f. math. Logik und Grundlagen d. Math. 12 (1966),

295-310.

[Ro71] R.W. Robinson, Jump Restricted Interpolation in the R.E. Degrees, An

nals of Mathematics 93 (1971), 586-596.

[Ro67] H. Rogers, Jr., "Theory of Recursive Functions and Effective Computabil

ity", McGraw-Hill, New York, 1967.

[Sa63a] G.E. Sacks, On the Degrees Less than O', Annals of Mathematics 77

(1963), 211-231.

[Sa63b] , Recursive Enumerability and the Jump Operator, Trans.

Amer. Math. Soc. 108 (1963), 223-239.

85

86

[Sa64] _____ , The Recursively Enumerable Degrees Are Dense, Annals of

Mathematics 80 (1964), 300-312.

[Schta] S. Schwarz, Index Sets Related to the High-Low Hierarchy, Israel Journal

of Mathematics (to appear).

[Sh65) J.R. Shoenfield, Application of Model Theory to Degrees of Unsolvability,

in "Symposium on the Theory of Models", Ed. J.W. Addison, L. Henkin, and

A. Tarski, North Holland, Amsterdam, pp. 359-363.

[Shta) R.A. Shore, A Non-Inversion Theorem for the Jump Operator, Annals of

Pure and Applied Logic (to appear).

[So80) R.I. Soare, Fundamental Methods for Constructing Recursively Enumer

able Degrees, in "Recursion Theory: Its Generalizations and Applications",

Proceedings of Logic Colloquium '79, Leeds, August 1979, Ed. F.R. Drake and

S.S. Wainer, Cambridge University Press, Cambridge, 1980.

[So85) ____ , Tree Arguments in Recursion Theory and the 0 111 -Priority

Method in Recursion Theory, in "Proceedings of Symposia in Pure Mathe

matics No. 42", Amer. Math. Soc., Providence, pp. 53-106.

[Sota) ____ , "Recursively Enumerable Sets and Degrees", Springer-Verlag,

Heidelberg (to appear).

[SS82] R.I. Soare and M. Stob, Relative Recursive Enumerability, in "Proceed

ings of the Herbrand Symposium Logic Colloquium '81", Ed. J. Stern, North

Holland, Amsterdam, pp. 299-324.

[Tu'Tl) R.E. Tulloss, Some Complexities of Simplicity Concerning Grades of Sim

plicity of Recursively Enumerable Sets, Ph.D. Dissertation, Univ. of California,

Berkeley (1971).

[Ya66) C.E.M. Yates, A Minimal Pair of Recursively Enumerable Degrees, J.

Symbolic Logic 31 (1966), 159-168.

