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Abstract. In an-infinite injury construction, we construct a nonrecursive recursively enumer­
able (r.e.) set A such that \vhenever A is split into nonrecursive r.e. sets Ao and Ai then 

Ab, A~ <TA'. 

1. The theorem. A pair of recursively enumerable (r.e.) sets A 0 and Ai is said to split 
an r.e. set AifA = AoUAi (i.e., A= A 0 UAi and 0 = AonAi). Friedberg [5] was the first 
to prove that any nonrecursive r.e. set can be split into two nonrecursive r .e. sets. Sacks 
[15] improved this result by showing that the two halves can be made of low incomparable 
degrees. Other well-known splitting results were obtained by Owings [13], R. W. Robinson 
[14], Morley and Soare [12], and Lachlan [8]. 

Lerman and Remmel introduced the universal splitting property {USP) of an r.e. set A, 
namely, that any r.e. degree d '.'.'. deg(A) is realized as the degree of a splitting half of 
A. They showed [10, 11] that both the degrees containing USP sets and the degrees not 
containing any USP set are downward dense in the partial order R of the r.e. degrees. 
Downey [3] exhibited a non-USP set in every nonrecursive r .e. degree. The so-called strong 
universal splitting property (in which the degrees of both splitting halves can be prescribed) 
was introduced and studied by Ambos-Spies and Fejer [2]. 

In a different direction, call an r.e. set A mitotic if A can be split into r.e. sets of the 
same degree. Lachlan [7] proved the existence of nonmitotic r.e. sets, and Ingrassia [6] 
improved this result by showing that their degrees are dense in R. Ambos-Spies [1], and 
independently Downey and L. Welch [4], constructed antimitotic sets (r.e. sets such that 
the degrees of any splitting into nonrecursive r.e. sets form a minimal pair). 

Ambos-Spies [1] also initiated the study of jumps of splittings of r.e. sets by building an 
r.e. set A such that for any splitting into r.e. sets Ao and Ai, not both Ao and Ai have 
the same jump as A (a property he called strong nonmitoticity). We strengthen this result 
and answer a question of Remmel (see Downey and 1. Welch [4]) as follows: 

THEOREM. There is a nonrecursive r.e. set A such that whenever A is split into two 
nonrecursive r.e. sets Ao and Ai tl1en A~, A~ <r A'. 

The proof uses a new technique for handling jumps of r.e. sets, developed by Lem pp and 
Slaman [9] in their solution to the deep degree problem. 

Our notation follows Soare [16]. 

2. The requirements and the strategies. We will build an r.e. set A satisfying the 
following requirements (for all e, i,j): 

Re: A"/= {e}, 

S;,j : A = W; LJ W1 ==? A' °'Lr Wf or W1 :'.'.r 0. 
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For each S;,j we construct a partial recursive functional ri,j. Using the Limit Lemma, we 
will then ensure S;,j by satisfying for all k the requirements 

S;,j ,k : A = W; LJ Wi ==? Iii~, rfi ( - , s) f limv iJ> );"' ( - , v) or Wj '.5,r 0 

(There is also a hidden requirement that if A = W; u Wi and Wi >r 0 then rfi is total 

and Jim, rfj ( x, s) exists for all x.) 
Each R,-strategy acts at most once, so an S;,j,k-strategy need not be concerned about 

the (finite) injury by higher-priority R,-strategies. A typical S;,i ,k-strategy a will first 
try to show Wj recursive via some recursive functional ~. which requires (potentially) 
infinite A-restraint (to prevent Wj from changing). It will deal with the (necessary) infinite 
injury by lower-priority R,-strategies as follows: Whenever a lower-priority R,-strategy 
wants to put some number z into A, then a will first start setting rfj ( x, s) = 1 with use 
'Yi,j(x, s) = z for larger and larger s (where x is the argument at which a is trying to 
achieve Jim, rfj ( x, s) f limu iJ>;:'' ( x, v)) and search for a (new) v such that <P ;:'' ( x, v) = 1. 

If and when it finds that v, then z is allowed into A, enabling us to reset rtj(x, s) = 0. 
If only finitely many of these z enter W; then the injury to ~ is finite, and therefore W; 
is recursive. On the other hand, if infinitely many of these z enter Wj then these z will 
not enter W;, and if we can protect infinitely many of the corresponding computations 
<P);"'(x,v) = 1 from later injury to W; then the limits ofrtj(x,-) and <P;:''(x,-) will be 
different (if the latter exists at all). 

Protection of these <Pk-computations of one S;,j,k-strategy a from injury by infinitely 
many R,-strategies can be ensured by "rearranging the priorities" of the R,-strategies, 
using a noneffective function b and letting an Rb( n )-strategy j3 have higher priority than 
any /3' E C(n), the set of R,-strategies with b(n - 1) < e < b(n). Now when b(n - 1) 
has been determined permanently, then b( n) will be the index of the next R,-strategy 
whose z enters Wj, at stage t(n), say, and therefore no R,-strategy can injure the <Pk­
compntation of a = a(n) since they stopped acting for e :5, b(n - 1) by hypothesis, or 
have to respect the restraint for e > b( n - 1) by the rearrangement of priorities. (In the 
construction below, we will actually rearrange the R,-strategies in the tree priority ordering 
rather than the linear ordering outlined above. To ensure that every S;,j,k-strategy has 
infinitely many chances to rearrange the priorities of the R,-strategies, we will define a 
function P, rearranging the priorities of the S;,;,k-strategies for this purpose.) 

Notice finally that above we have suppressed the two finite outcomes of an S;,j,k-strategy, 
namely, A f W; LJ Wj, and that the search for a new v such that <P);"'(x,v) = 1 is 

unsuccessful in which case lim, rfj(x,s) = 1 but not limv iJ>);"'(x,v) = 1. 

3. The construction. The construction is organized on a tree T = z<w of strategies. 
Strategy r ET works on requirement S;,j,k if lrl = 2(i,j, k) is even, and on requirement 
R, if lrl = 2e + 1 is odd. 

Diagrams 1 and 2 show the flow charts for S;,;,k- and R,-strategies. A strategy, upon ini­
tialization, starts in state init, picking a witness x or z bigger than any number mentioned 
in the construction so far, and, whenever eligible to act, proceeds along the arrows to the 
next state (denoted by a circle). Along the way, it executes the instructions (in rectangular 
boxes) and makes decisions (in diamonds or hexagons). Through outside action, it may 

2 



---~-------~---~--------_j------ --­
pick new x, set v0 = O, set 6.a- = >.n[f], 
set s0 = the current substage 

~~-~=·~-~~T·~~---~----"-~-, =,~~~,C--~M~--~--,~~- -

request to start setting rf; ( x, - ) = 1 
re 

with use 'Yi,j ( x, - ) = z 

:Iv >Vo 

(il>;;i''(x,v) l= 1) 

y 

request to stop setting~--) =-~ 

Diagram 1: S;,;,k-strategy a 

3 



put a 1 into req, 

y 

Diagram 2: 'Re-strategy f3 

4 



be put into special states (in half-circles) from which it proceeds immediately to the next 
state. All parameters are taken at the current substage unless sub-indexed by a previous 
substage. (We will assume from now on that a substage also codes the corresponding 
stage.) 

For diagram 1, the parameters x, so, vo, and f>a are defined in the diagram and roughly 
denote the witness at which a tries to achieve lim, rf; ('", s) # limv iJ>::V' ('", v ), the last 

(A= Wi LJ W;)-expansionary stage, the last "opponent's stage" at which <I>::V'(x,vo) = 1, 
and the partial recursive function trying to witness the recursiveness of W;, respectively. 
The parameter f is the length of agreement f = max{y I Vu < y(A( u) = wi ( u) + W; ( u))}. 
The partial recursive functional ri,; is global to the construction and shared by all Si,;,k­
strategies for this pair (i, j). An S;,;,k-strategy can only issue requests for ri,j, which will 
be observed at the end of a stage as described below. 

For Diagram 2, the parameter z is defined in the diagram and denotes the witness at 
which f3 is trying to achieve Ao.fa { e }. The strategies a 1 , ... , °'n mentioned in the diagram 
are exactly the Si,j,k-strategies °'m with a;;, (0) <::: f3 in increasing order of length. 

We are now ready to describe the full construction. 
At stage 0 of the construction, all strategies are initialized in order of increasing length, 

the functions a, b,C, and tare completely undefined, and we set P('Y) = h•I for all 'YET. 
A stage s + 1 consists of three steps: 
First, pick the highest-priority R,-strategy f3 that is in some state waitam and that 

can proceed to state waitam-l or win. If f3 exists let it act. If /3 also reaches win and 
f3 E C(no) for some no, then initialize all 'Y > /3, make the functions a,b,C, and t undefined 
for arguments n >no, and set P('Y) = Pt(no)('Y) for all 'YET. 

Secondly, we proceed in substages t <; s. At a substage t <; s, a strategy 'Y of length tis 
eligible to act according to its flow chart. 

If 'Y is an S;,;rstrategy and has changed states from waitd to waitW at this substage 
while its z E W; then let no be the greatest n such that a(n) is defined and Pt(n)(a(n)) <:'. 
P('Y). (Allow no= -1 here.) Then (re)define 

a(no + 1) = 'Y> 

b( n 0 + 1) = the R,-strategy that put z into A, 

C(no + 1) = {/3 ET- LJ C(n) 11/31 <:'. s odd}, 

t( n 0 + 1) = the current substage. 

Make the functions a, b, C, and t undefined for arguments n > n 0 + 1. 
Increment P('Y) by +1 and set P(a) = Pt(no)(a) for all S;,;,k-strategies a# 'Y· Initialize 

all /3 E C(no + 1). 
The strategy eligible to act at the next substage is 'YA (0) if 'Y is an Si,j,k-strategy and 

has extended the definition off;.~ at the current substage, otherwise 'YA(l). 
At the end of the second step of stage s + 1, we initialize all 'Y' > 1 where 'Y is the 

strategy that acted at substage s. 
In the third and final step of stages+ 1, we (re)define rf;(x,u) for all i, j, '" and 

all u <; s if it is now undefined. If some S;,;,k-strategy a currently works with witness 

5 



x and requests to start setting rti(x, -) = 1, i.e. is currently in state wa.itif> or ready, 

then set rtj(x,u) = 1 with requested use 1'i,j(x,u) = z; otherwise set rtj(x,u) = 0 with 

1'i,i(x,u) = 0. 

4. The verification. We first need to show that the rearrangement of priorities works 
properly: 

LEMMA 1 (REARRANGEMENT OF PRIORITIES LEMMA). 

(i) Tlte limit fu1ictions a = lim, a,, b = lim, b,, C = lim, C,, and t = liin, t, are 
well-defined and total. 

(ii) If for an S;,j,k-strategy a tliere are infinitely many n ands such that a,(n) = a 
tlien tl1ere are infinitely manyn such that a(n) =a. (Thus P(a) = lim, P,(a) :':'. = 
exists for all a.) 

PROOF: i) Since W; = 0, Wi =A for somei,j, and since A is infinite, we will set a,(n) =a 
infinitely often (for some a). Observe that all strategies working on a fixed requirement 
Re combined put at most finitely many numbers into A. Since P,(a,(n)) is nondecreasing 
inn (at alls), and since P,_ 1(a,_ 1(n)) i or > P,(a,(n)) when we define a,(n), part (i) 
follows by induction on p = P,(a,(n)) and on n. 

(ii) We will first show that for any p we define a(n) with Pt(n)(a(n)) :':'. p only finitely 
often. We proceed by induction on p and assume the statement for Pt(n)(a(n)) < p. 
(Allow p = 0 here.) Suppose tl1e statement is false for Pt(n)(a(n)) :':'. p. Since P,(a) 2: [a[, 
it suffices to show that there are not ni < nz such that a(n1) = a(n2) =a and Pt(ni)(a) = 
Pt(n,)(a) = p. For the sake of a contradiction, assume there is such an a. It is impossible 
that some f3 E Un<ni C(n) decreased P(a) between t(n1) and t(n2) since this would have 
caused a redefinition of a(n1). So some S;,j,k-strategy a' must have decreased P(a) to 
p - 1 between t(ni) and t(n2), say, at some (least) substage s'. Then P,,(a) = Pt,.(no)(a) 
for some no with n1 < no < n2, and f,,(no) 2: t(n1), so Pt,.(no)(a) 2: Pt(ni)(a) = p, 
a contradiction. 

For part (ii), we now just observe that, by the above, each a will eventually either satisfy 
P,(a) 2: p for all p, or else eventually not want to set a(n) =a for any n. 

We now define the true path f of the construction as the leftmost path on T on which 
any strategy is eligible to act infinitely often. 

LEMMA 2 (INITIALIZATION LEMMA). Any 1' c f is initialized at most finitely often. 

PROOF: By induction on ['y[, let s' be the least substage > [1[ after which 1'- is no longer 
initialized. (Set s' = 0 for 1' = 0.) If/ is an Re-strategy, we define n,(1') to be the 
unique n such that 1' E C,(n) at s (> [1'[), observe that n,(1') is nonincreasing in s, 
and set n(1') = lim, n,(1')· Then we assume furthermore that C(n(1')) has been· defined 
permanently before s'. 

Now, by our assumptions on s', the construction can initialize '1' at a substage s after 
s' only if '1' = 1'-A(l) and 1'-A(O) is eligible to act at s, or if 1' puts its z into A. By the 
definition of the true path or by the construction, respectively, this will happen at most 
finitely often. 
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We are now in a position to prove the two main lemmas that establish the theorem: 

LEMMA 3 (CONVERGENCE LEMMA). For aJJ i and j: 

(i) rt, is total, and 

(ii) Jim, rt,(x, s) exists for all x. 

PROOF: Since 'Yi,j(x, s) increases at most once for fixed'" ands, (i) follows by the third 
step of each stage of the construction. 

Again by the third step, part (ii) is trivial if eventually no Si,j,k-strategy works on '"· 
Otherwise, some fixed Si,j,k-strategy will eventually always work on x. But then rt,(x, s) 
is set or reset to 0 eventually for all s unless a is eventually always in state wait<P or ready 
in which case rt, ('", s) = 1 for almost all s. 

LEMMA 4 (OUTCOME LEMMA). Eacli 'Y c f satisfies its requirement. 

PROOF: By Lemma 2, lets' be the least stage such that -y is not initialized after stages'. 
First assume that -y is an R,-strategy. Since -y C f, -y must eventually be in state waite 

or in state win. In either case, n, is satisfied. 
On the other hand, assume that -y is an S;,j,k-strategy and that A= Wi LJ w,. Suppose 

first that -yA (1) C f. Then, since -y C f and A = W; LJ Wj, a must eventually always be in 

state wait<P. But then limrt,(x,s) = 1 and not Jim, .PJ;v'(x,v) = 1. 
Finally, assume 'YA (0) C f. Then t;,.7 must be a total recursive function. Suppose 

Wj #* t;,.7. Then for infinitely many n and s, a,(n) = -y, so by Lemma 1 (i) there are 
infinitely many n such that a(n) = a. But then, for all these n, by the construction, 
no /3 E Um<n C(m) will put a number into A after t(n); every /3 E Ct(n)(n) is initialized 
at t(n), so its number z > t(n) if it enters after t(n); and any other n,-strategy /3 has 
I.Bl> t(n). Therefore we have an increasing sequence {vn}nEw such that <Pf(x,v,,) l= 
<P:.:(::_\(x,vn) l= 1 while rA(x,s) = 0 for alls as in the proof of Lemma 2 (ii). This 

establishes Wj recursive, or lim, rA( x, s) = 0 and not limv .PJ;v'( x, v) = O, in the case 
-yA(o)cf. 

The last two lemmas complete the proof of the theorem. 
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