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Abstract. We study, for a fixed first-order theory T , which countable models
of T can be presented effectively. We consider this question for the class of

strongly minimal disintegrated theories, where the countable models can be

characterized by their dimension. The spectrum of computable models of T is
the subset S of ω� 1 such that α P S if and only if the αth model of T can be

effectively presented.

We examine the class of strongly minimal disintegrated theories in com-
putable relational languages where each relation symbol defines a set of Mor-

ley rank at most 1. We characterize the spectra of computable models of such

theories (exactly, with the exception of three sets) under the assumption of
bounded arity on the language, and (with the exception of one specific set and

one specific class of sets) without that assumption. We also determine the ex-
actly seven possible spectra for strongly minimal theories in binary relational

languages and show that there are at least nine but no more than eighteen

spectra of disintegrated theories in ternary relational languages.

1. Introduction

Classifying the computable models of a given first-order theory (in a computable
language) has been a long-standing problem in computable model theory, going back
at least four decades. Here, a model is called computable if there is an isomorphic
copy of it with universe ω such that the quantifier-free diagram of the model forms a
computable set, and a language is called computable if the signature is computable
and for each symbol in the signature, we can effectively determine its arity and
whether it is a relation, function or constant symbol.

Our problem can be stated particularly succinctly for uncountably but not to-
tally categorical theories T , since in that case, the countable models of T form an
elementary chain M0   M1   � � �   Mω, where Mα is the model of dimension
p�α and where p is the dimension of the prime model. Classifying the computable
models of such T can now be phrased in terms of subsets of r0, ωs � ω�1 � ωYtωu;
namely, we call the set SRMpT q � tα ¤ ω | Mα is computableu the spectrum of
computable models of T . (Note that for historical reasons, there is a slight mismatch
in notation: The dimension of the prime model can be positive, but we still refer
to it as M0, etc. In the setting of our paper, we will always have p ¤ 1.)
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This spectrum problem has been a motivating question in the field since Gon-
charov [Go78] proved that there are nontrivial spectra. Since then, only incremental
progress has been made in classifying the spectra of uncountably but not totally
categorical theories. In fact, very few negative results are known; and no results are
known separating uncountably categorical theories from the more restrictive notion
of strongly minimal theories; so in this paper, we will restrict our attention to the
latter. (We will also tacitly assume from now on that all languages are computable.)

What was known before the current paper is contained in the following theorems:

Theorem 1. The following are spectra of computable models of strongly minimal
theories:


 H and r0, ωs,

 t0u (Goncharov [Go78]),

 r0, ns for any n P ω (Kudaibergenov [Ku80]),

 r0, ωq and r1, ωs (Khoussainov/Nies/Shore [KNS97]),

 t1u (Nies [Ni99]),

 r1, αq for any α P r2, ωs (Hirschfeldt/Nies, see [Ni99, p. 314]),

 tωu (Hirschfeldt/Khoussainov/Semukhin [HKS06]),

 t0, ωu (Andrews [An11]), and

 r0, ns Y tωu for any n P ω (Andrews/Mermelstein [AM21]).

Despite the relatively few sets known to be spectra, there were also very few
general upper bounds on the complexity of spectra.

Theorem 2. Let T be a strongly minimal theory.


 (Nies [Ni99]) The spectrum of computable models of an uncountably cate-
gorical theory T is Σ0

3pH
pωqq.


 (Nies [Ni99]) The spectrum of computable models of a model complete un-
countably categorical theory is Σ0

4.

 (Goncharov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03]) The spec-
trum of computable models of a strongly minimal disintegrated theory T
is Σ0

5.

Even in the geometrically simplest case of a strongly minimal theory, namely,
that of a binary relational language, the gap remained very large:

Theorem 3. The following are spectra of computable models of strongly minimal
theories in binary relational languages:


 H and r0, ωs,

 t0u (Goncharov [Go78]),

 r0, 1s Kudaibergenov [Ku80]),

 r1, ωs (Khoussainov/Nies/Shore [KNS97]),

 t1u (Nies [Ni99]), and

 tωu (Hirschfeldt/Khoussainov/Semukhin [HKS06]).

The only known upper bound is the above result that the spectrum must be Σ0
5

(since for binary relational languages, a strongly minimal theory must be disinte-
grated).

Further specializing from strongly minimal to strongly minimal disintegrated
theories, a much stronger result is possible in the case of finite languages:



COMPUTABLE MODELS OF DISINTEGRATED THEORIES 3

Theorem 4 (Andrews/Medvedev [AM14]). The only possible spectra of computable
models of a strongly minimal disintegrated theory in a finite language are H, r0, ωs
and t0u. (They also show the same result for modular groups in a finite language
and note that it follows from Poizat [Po88] that the only spectrum for field-like
strongly minimal theories in finite languages is r0, ωs.)

The positive direction, showing that t0u is a possible spectrum of a strongly
minimal theory in a finite binary relational language, was obtained by Herwig,
Lempp and Ziegler [HLZ99].

All known examples seemed to suggest that one needs to increase the arity more
and more to obtain more spectra. We explore this point of view in a number
of directions and obtain a number of fairly sharp results as well as a number of
previously unknown spectra of disintegrated strongly minimal theories.

In Section 2, we will first show that in the case of (infinite) binary relational
languages (in which case the theory must be disintegrated), the seven spectra in
Theorem 3 are the only possible spectra for strongly minimal (and thus disinte-
grated) theories.

In the subsequent sections, we will extend our techniques to a larger class of
strongly minimal disintegrated theories in infinite relational languages, but with
restrictions on either the Morley rank or the arity of each relation:

In Section 3, we will show that if the arity of the (relational) language is bounded
and the theory forces each relation to have Morley rank at most 1, then there are
at least seven and at most ten possible spectra.

In Section 4, we will expand the work from the previous section by showing that
removing the bound on the arity of the relations (but still assuming that the theory
forces each relation to have Morley rank at most 1), the only possible new spectra
are all the initial segments of ω, and possibly also the set t1, ωu and the sets of the
form S Y tωu where S is a finite initial segment of ω.

In Section 5, we will turn to strongly minimal disintegrated theories in ternary
relational languages (without assumptions on Morley rank) and show that there
are at least nine but no more than eighteen possible spectra.

These results also lead us to the following sweeping

Conjecture 5. For m ¥ 1, there are only finitely many spectra of computable mod-
els of strongly minimal disintegrated theories T in computable relational languages
of arity at most m.

1.1. Model-theoretic notions. In this subsection, we briefly review the model-
theoretic notions most pertinent to this paper.

Definition 6. A theory T is strongly minimal if for every formula ϕpx, ȳq, there
is an N P ω so that in any model M |ù T and for any tuple ā P Mn, either
tx |M |ù ϕpx, āqu or tx |M |ù  ϕpx, āqu has size   N .

Definition 7. For any structure M and elements A, b from M , we say b is alge-
braic over A (b P aclpAq) if there is a formula with parameters from A which defines
a finite set containing b.

If A, b are from M , we say b is generic over A if it is not algebraic. Note that if
ThpMq is strongly minimal then there is a single type of a generic element over A.

If a set has the property that no element is algebraic over the remainder of the
set, then the set is said to be independent.
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For any tuple ā in a strongly minimal theory, the dimension of the tuple is the
maximal size of an independent subset.

For a formula ϕpx̄q, possibly with parameters, we say the Morley rank of the
formula ϕ is the maximal dimension of a tuple ā in a model of T so that ϕpāq
holds.

Definition 8. A strongly minimal theory T is disintegrated if, for any A �M for
M |ù T , aclpAq �

�
aPA aclptauq.

The following theorem is folklore, though it does fall out of the analysis in [AM14,
Claim in the proof of Proposition 2.6].

Theorem 9. If T is a strongly minimal theory in a relational language and each
relation symbol defines a formula of Morley rank 1, then T is disintegrated.

These should be seen as the canonical disintegrated strongly minimal theories.
In fact, Andrews and Medvedev [AM14] show that every disintegrated strongly
minimal theory is ∆0

1-interdefinable with a relational strongly minimal theory where
each relation is Morley rank 1.

2. Binary Languages

The purpose of this section is to prove the following

Theorem 10. The following are exactly the seven possible spectra of computable
models of strongly minimal disintegrated theories in binary relational languages: H,
r0, ωs, t0u, t1u, t0, 1u, r1, ωs, and tωu.

Proof. First of all, Theorem 3 shows that the seven spectra above are indeed realized
in binary relational languages; recall that a binary relational language forces a
strongly minimal theory to be disintegrated.

We now first reduce the number of possible spectra to a small finite list and
then analyze cases. Throughout this section, we will assume an infinite computable
binary relational language L which (in any L-theory T considered) is effectively
closed under permutation of variables, i.e., such that from an index of Rpx, yq P L,
we can effectively find an index for Rpy, xq. This causes no loss of generality, as
we can always computably add to any relational language new relations which
are permutations of the variables of old relations, and computability of models is
preserved.

Lemma 11. For a strongly minimal L-theory T in a binary relational language, if
k P SRMpT q for some k P r2, ωs, then the set of relations in L which are of rank 2
is a computable set. Thus T is computably interdefinable with a theory all relation
symbols of which have rank at most 1.

Proof. Let N be a computable presentation of Mk for some k ¥ 2, and let a, b P N
be a generic pair in N . Then a relation R has rank 2 if and only if N |ù Rpa, bq.
So the rank-2 relations R form a computable set, and each such R can be replaced
by  R, which by strong minimality has rank at most 1. □

Thus, in the case where SRMpT q contains an element ¥ 2, we will assume from
now on that every relation has rank ¤ 1.

For the remainder of the proof, we need the following
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Definition 12. Fix a model M in a binary relational language L � tR0, R1, . . . u
such that the Morley rank of each relation is at most 1.

(1) The 0-neighborhood of an element a PM is Nbh0paq � tau.
(2) The pn � 1q-neighborhood Nbhn�1paq of a P M is the union of the n-

neighborhood Nbhnpaq and the set of all elements d PM such that there are
c P Nbhnpaq and a relation Ri (with i ¤ n� 1) with�

Ripc, dq ^  D
8y Ripc, yq ^  D

8xRipx, dq
�
_�

 Ripc, dq ^ pD
8y Ripc, yq _ D

8xRipx, dqq
�
.

(3) The neighborhood Nbhpaq of an element a P M is the union of all n-
neighborhoods of a.

(Recall that we assume the language L to be closed under permutation of variables.)

Before we embark on the rest of our proof, recall the structure of a strongly
minimal model M in our language L: Fixing a basis B of M, the model will
be the disjoint union of the algebraic closure aclpHq and the interalgebraic clo-
sures iaclpaq � Nbhpaq for each a P B (by Herwig/Lempp/Ziegler [HLZ99] and
Andrews/Medvedev [AM14]). Note that all sets iaclpaq for a R aclpHq will be
isomorphic, and 1-transitive in M; they may be finite or countably infinite. The
algebraic closure aclpHq may be finite or countably infinite; it may even be empty.
If aclpHq is finite, then the interalgebraic closures iaclpaq of all generic elements a
must be infinite since T is assumed to be not totally categorical, and Mk has a
basis of size 1� k; otherwise, Mk has a basis of size k.

Throughout this section, we will repeatedly use the following

Observation 13. If Mk is a computable model of T for k ¥ 2 and c is any element
of M, then Nbhpcq is a Σ0

1-set.

Proof. The definition of Nbhpcq is Σ0
1 over the set of pR, xq so that D8y Rpx, yq

(using the effective closure of L under permutation of variables). To see that this
set is computable, we fix a pair of mutually generic elements a, b and claim that
M |ù D8y Rpx, yq if and only if M |ù Rpx, aq ^Rpx, bq.

Suppose that M |ù D8y Rpx, yq. Then, x P aclpHq since R has rank 1. Thus
both a and b are generic over x, so M |ù Rpx, aq ^ Rpx, bq. Next, suppose that
M |ù Rpx, aq ^Rpx, bq. If it were true that M |ù  D8y Rpx, yq, then both a and b
would be algebraic over x, so the dimension of the pair ta, bu would be ¤ 1, but
this contradicts a and b being mutually generic. □

We now isolate a key step of Lemma 15 below, as it will reappear later on.

Lemma 14. Let N be a computable strongly minimal structure. Let M ¨ N be
such that M is a ∆0

2-subset of N , and let A �M be any infinite Σ0
1-set. Then there

is a computable copy of M.

Proof. We may assume that N ∖M is infinite, else the result is trivial. Let Ms

be the set of elements believed to be in M at stage s via ∆0
2-approximation. We

may assume that if z P As, the Σ
0
1-approximation to A, then z PMs. We construct

a copy of M by copying elements and relations from N . At stage s, we will
have copied a finite set X � N and the quantifier-free diagram of X in a finite
sublanguage L0. At this stage s, we then want to reassign which elements we are
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copying so as to only be copying elements in Ms. Let Y � X ∖ Ms. For each
y0 P Y , either the approximation to Ms changes, or else

ϕpzq :� DZ rpZ,X ∖ Y, zq �L0
pY,X ∖ Y, y0qs

is an existential first-order formula in the type of y0 over X ∖ Y . But if y0 is not
in M , then, by strong minimality, all but finitely many elements in N satisfy ϕpzq.
Thus we eventually see an element a P A which satisfies ϕ. We reassign y0 to be
copying a. Repeating this process, eventually Y is empty.

At every stage s, we have built a finite structure X in a finite language L0

and have an embedding fs : X Ñ Ms. If x P M , then from some point onward
x P ranpfsq. If x R M , then from some point onwards x R ranpfsq. We argue by
induction that for every x in our copy, lims fspxq is defined (and thus in M). We
may suppose that this is the case for every y   x, and we choose a stage large
enough so that fspyq has stabilized for all y   x. Finally, if we ever see ftpxq R M
for any t ¡ s, we either see the approximation change back to showing ftpxq P M ,
or we set ft�1pxq P A. Once ft�1pxq P A, we know that the approximation will
never say that it is out of M , and thus lims fspxq � ft�1pxq. Thus, in the limit, we
construct a copy of M. □

Our next lemma reduces the number of possible spectra to a small finite number
of possibilities:

Lemma 15. For a strongly minimal L-theory T in a binary relational language, if
k P SRMpT q for 2 ¤ k   ω, then r1, ωs � SRMpT q.

Proof. Fix a computable presentation N of the model Mk. We first show that
k�1 P SRMpT q. Fix a generic pair of elements a, b from N . Then iaclpaq � Nbhpaq
is a Σ0

1-set by Observation 13; so there is a computable structure C isomorphic to
Nbhpaq. We create a computable presentation M of Mk�1, which is the disjoint
union of a copy of C along with a copy of N . We declare a relation R to hold on
the pair pc, dq for c P C and d P N iff N |ù Rpa, dq ^ Rpb, dq (which extends to a
full definition of all relations by our convention that L is effectively closed under
permutation of variables). It is easy to see that M is isomorphic to Mk�1, thus
k � 1 P SRMpT q. As the procedure to take a presentation of Mk and produce a
presentation of Mk�1 is uniformly computable, we see that ω P SRMpT q as well.

It thus remains to verify that SRMpT q contains k � 1. The proof distinguishes
two cases:

Case 1: Nbhpaq is finite: In this case, there is a computable (even cofinite) subset
of N isomorphic to Mk�1.

Case 2: Nbhpaq is infinite: In this case, Mk�1 is a ∆0
2- (in fact, a Π0

1-)subset
of Mk. Furthermore, it contains an infinite Σ0

1-set Nbhpbq for some generic element
b PMk�1 (using k�1 ¡ 0). Thus, by Lemma 14, Mk�1 has a computable copy. □

We immediately conclude the following

Corollary 16. Every possible spectrum of a binary strongly minimal theory is
among the following ten: H, r0, ωs, r1, ωs, tωu, t0u, t1u, t0, 1u, t0, ωu, t1, ωu,
and t0, 1, ωu. □

The first seven are known to be spectra of binary strongly minimal theories by
Theorem 3. We will now show that the last three, t0, ωu, t1, ωu and t0, 1, ωu, are
not spectra of binary strongly minimal theories:
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Lemma 17. If ω P SRMpT q, and one of 0 P SRMpT q or 1 P SRMpT q, then
2 P SRMpT q, and so r1, ωs � SRMpT q by Lemma 15.

Proof. We fix a computable presentation N of the model Mω and a computable
presentation M of the model M0 or M1. We distinguish two cases.

Case 1: There is no element c P aclMpHq so that for each relation R, both
 D8xRpx, cq and @x pD8y Rpx, yq Ñ Rpx, cqq hold. (Recall again that we assume L
to be closed under permutation of variables.)

In this case, we fix generic elements a and b in N . We then have

aclN pHq � td | DR P L rpRpa, dq ^Rpb, dqq _ Dx pRpx, aq ^Rpx, bq ^  Rpx, dqqsu.
Thus aclN pHq is a Σ0

1-subset of N . We have already seen, in Observation 13, that
the inter-algebraic closure of a generic singleton in N is Σ0

1, thus a computable
presentation of M2 can be given as aclN pHq Y iaclN paq Y iaclN pbq, which is a
Σ0

1-subset of N and thus a computably presentable model.
Case 2: Otherwise, there is an element c P aclMpHq so that for each relation R,

both  D8xRpx, cq and @x pD8y Rpx, yq Ñ Rpx, cqq hold. We fix such an element c
and further distinguish two subcases.

Subcase 2.1: There is an element d PM so that for each relation R,

M |ù @x pD8y Rpx, yq Ø pRpx, cq ^Rpx, dqqq .

This will in particular be the case if M is a presentation of M1 since we can
choose a generic element d. If D8y Rpx, yq, then x P aclpHq since R has rank 1,
and so d is generic over x and Rpx, dqq must hold. If pRpx, cq ^Rpx, dqq, then since
c P aclpHq and  D8y Rpy, cq, we again have that x P aclpHq, so d is generic over x
and Rpx, dq implies D8y Rpx, yq.

We now expand M by defining new computable unary predicates Ai by letting
Aipxq hold for x P M iff M |ù Ripx, cq ^ Ripx, dq. Then by the assumptions of
Subcase 2.1, Aipxq holds iff M |ù D8y Ripx, yq. As in Case 1, we can fix computable
presentations of iaclpaq and iaclpbq. We now define a computable presentation ofM2

as the disjoint union of M and iaclpaq (as well as iaclpbq if M is a computable
presentation of M0), letting Ripx, yq hold for x PM and y P iaclpaq or y P iaclpaqY
iaclpbq, respectively, iff Aipxq holds, and letting Ripx, yq never hold for x P iaclpaq
and y P iaclpbq.

Subcase 2.2: Otherwise,

M � te P N | DR P L Dx pM |ù D8y Rpx, yq Ü pRpx, cq ^Rpx, eqqqu

(since, as noted in Subcase 2.1, we must have M �M0 in Subcase 2.2). Let c1 P N
be the image of c under an elementary embedding of M into N , and again fix a
pair of generic elements a and b in N . Then

aclN pHq � te | DR P LN |ù Dx ppRpx, aq ^Rpx, bqq Ü pRpx, c1q ^Rpx, eqqqu,

which is a Σ0
1-set. But then, as in Case 1, the disjoint union of aclN pHq, Nbhpaq

and Nbhpbq is a Σ0
1-subset of N isomorphic to M2. □

This concludes the proof of Theorem 10. □

3. Rank 1 Languages of bounded arity

For this section, we always assume T to be a strongly minimal disintegrated
theory of relations of Morley rank at most 1. (We will specify in each statement
whether it has bounded arity when we use that assumption.)
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3.1. The negative results. We will first show that there are at most ten possible
spectra in this setting. We begin with a definition generalizing Definition 12 to this
setting.

Definition 18. Fix a model M in a relational language L � tR0, R1, . . . u such
that the Morley rank of each relation in M is at most 1. For each relation symbol
R P L of arity m, say, define Rj,l (for 1 ¤ j   l ¤ m) as the projection of R onto
its jth and lth coordinates, i.e., Rj,lpxj , xlq holds iff

Dx1 . . . Dxj�1Dxj�1 . . . Dxl�1Dxl�1 . . . DxmRpx̄q.

We now define the neighborhood of a PM by recursion as follows:

(1) The 0-neighborhood of an element a PM is Nbh0paq � tau.
(2) The pn � 1q-neighborhood Nbhn�1paq of a P M is the union of the n-

neighborhood Nbhnpaq and the set of all elements d P M such that there
are c P Nbhnpaq, a relation Ri (with i ¤ n � 1) of arity m, say, and
1 ¤ j   l ¤ m with�

Rj,l
i pc, dq ^  D

8y Rj,l
i pc, yq ^  D

8xRj,l
i px, dq

�
_�

 Rj,l
i pc, dq ^ pD

8y Rj,l
i pc, yq _ D

8xRj,l
i px, dqq

�
.

(�)

(3) The neighborhood Nbhpaq of an element a P M is the union of all n-
neighborhoods of a.

(Recall that we assume the language L to be closed under permutation of variables.)

The main difficulty in working with rank 1 relations, over the binary case in the
previous section, is that these projections inherently define uniformly Σ0

1 subsets of
models rather than uniformly computable subsets of models.

We first state a useful technical

Lemma 19. Fix a model M of T of dimension at least 2 with a computable pre-
sentation in a relational language L � tR0, R1, . . . u such that the Morley rank of

each relation is at most 1. Then the set of elements d so that D8y Rj,l
i pd, yq is a

finite Σ0
1-set. In particular, 01 can compute the canonical index of the finite set of

all elements d PMk so that D8y Rj,l
i pd, yq, uniformly in i, j, l.

Proof. Note that, as in the proof of Observation 13, an element d satisfies the for-

mula D8y Rj,l
i pd, yq if and only if it satisfies Rj,l

i pd, aq and R
j,l
i pd, bq for two mutually

generic elements a and b. Thus the set of elements d so that D8y Rj,l
i pd, yq is a finite

Σ0
1-set. Thus 0

1 can compute the canonical index of the set (uniformly in i, j, l). □

We note for future reference that Lemma 19 is uniform in the indices of relations,
so in any model of dimension at least 2, the set B is a Σ0

1-subset of aclpHq.
We can now prove some analogs of lemmas from the binary case.

Lemma 20. Let M be a model of a disintegrated strongly minimal theory with a
computable presentation in a relational language L � tR0, R1, . . . u such that the
Morley rank of each relation is at most 1. Suppose that 01 can compute canonical

indices for the sets td P M | D8y Rj,l
i pd, yqu uniformly in i, j, l. Then for each

generic element a, Nbhpaq � iaclpaq is a Σ0
2-subset of M ; in fact, 01 can compute

the canonical index of the n-neighborhood of a, uniformly in any generic element a
and n P ω.



COMPUTABLE MODELS OF DISINTEGRATED THEORIES 9

Proof. Each one of the binary projections Rj,l
i is 01-computable. Andrews and Med-

vedev [AM14, Claim in the proof of Proposition 2.6] showed that if the language
only consists of relations of rank at most 1, then iaclpaq is exactly Nbhpaq.

Clearly, the second claim of our lemma implies the first, so fix n and a generic
element a. The claim is trivial for n � 0, so assume we are given a canonical
index for Nbhnpaq. Fix any element c P Nbhnpaq. Since a and thus also c is
generic, the second line of (�) cannot apply to c and any d. The first conjunct
of the first line of (�) is Σ0

1 and can apply to at most finitely many d, so 01 can
effectively find all possible d. But then for each of these finitely many d, we can 01-
effectively check the second and third conjunct by the assumption that 01 computes

td PM | D8y Rj,l
i pd, yqu. Thus 0

1 can compute a canonical index for Nbhn�1paq. □

Definition 21. In any model M of T , we let Bn � M be the set
�

i n,j,ltd |

D8y Rj,l
i pd, yqu and B �

�
n Bn �M .

Lemma 22. If B is finite in M and a PM is generic, then iaclpaq is Σ0
1.

Proof. We enumerate Nbhpaq as follows: If c P Nbhpaq and Rj,l
i pc, eq, then we

enumerate e into Nbhpaq unless e P B. □

The counterpart of Lemma 20 for Nbhpaq for a P aclpHq requires a more careful
proof since now the second line of (�) can hold. However, we still have:

Lemma 23. Fix a model M of a disintegrated strongly minimal theory with a
computable presentation in a relational language L � tR0, R1, . . . u such that the
Morley rank of each relation is at most 1. Suppose that 01 can compute canonical

indices for the sets td | D8y Rj,l
i pd, yqu uniformly in i, j, l. Then aclpHq is a Σ0

2-
subset of M.

Proof. We may assumeM contains a generic element, since otherwiseM � aclpHq,
and we are done. By Lemma 20, we can fix a generic element b and uniformly in 01

compute canonical indices of its n-neighborhoods. By Andrews and Medvedev
[AM14, Proof of Proposition 2.6], a P aclpHq iff for some n, the n-neighborhoods
of a and b are not isomorphic over Bn. So we need to verify that 01 can enumerate all
such a by enumerating enough of the neighborhood of a until we know that the n-
neighborhoods of a and b are not isomorphic over Bn for some n. By assumption, 01

can compute the sets Bn. Clearly, the 0-neighborhoods of a and b are isomorphic,
so fix n and assume we have c P Nbhnpaq. For any fixed Ri with i ¤ n�1 of aritym,

say, and any j, l with 1 ¤ j   l ¤ m, first check, whether D8y Rj,l
i pc, yq. If so, then

a P aclpHq. If not, then find the finite set of d so that Rj,l
i pc, dq and  D

8xRj,l
i px, dq,

or so that  Rj,l
i pc, dq and D

8xRj,l
i px, dq. Doing this for all c P Nbhnpaq and all i, j, l

with i ¤ n�1 and 1 ¤ j   l ¤ m, we either find out that a P aclpHq, or we compute
a canonical index for Nbhn�1paq. □

Corollary 24. If T is a relational strongly minimal disintegrated theory such that
each relation has rank at most 1, and if k P r2, ωq, then for each a P Mk, iaclpaq
is ∆0

2. In particular, aclpHq is a ∆0
2-set.

Proof. Let Mk have basis B. Then Mk is the finite disjoint union aclpHq Y�
bPB iaclpbq. Each piece is Σ0

2 by Lemmas 19, 20, and 23; thus, each piece is ∆0
2. □
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The following general theorem yields a strong upper bound for spectra of rela-
tional strongly minimal theories of rank 1, down from an upper bound of Σ0

5 to a
small collection of possible spectra.

Theorem 25. Let T be a strongly minimal disintegrated theory in a relational
language L consisting of relations tR0, R1, . . . u of Morley rank at most 1 (closed
under permutations of variables), and assume that k P SRMpT q for some k P r2, ωq.
Then r1, ks � SRMpT q. If, in addition, there is a bound on the arities of the
relations in L, then r1, ωs � SRMpT q.

Proof. We again proceed in two parts, the Up part and the Down part. We fix
mutually generic elements a, b PMk.

Down: Fix j P r1, kq.
Case 0: Nbhpaq is finite. Then Mj is a cofinite, thus computable, subset of Mk.
Case 1: B is finite. In this case, Nbhpgq is Σ0

1 for any generic element g by
Lemma 22. Then Mj is a ∆0

2-subset of Mk by Corollary 24, and it contains the
infinite Σ0

1-set Nbhpaq. Thus, by Lemma 14, Mj has a computable copy.

Case 2: B is infinite. In this case, Nbhpgq will generally only be ∆0
2 for a generic

element g by Corollary 24, but we can use the infinite Σ0
1-subset B of aclpHq (from

the remark following Lemma 22). Again, Mj is a ∆0
2-subset of Mk containing an

infinite Σ0
1-set B, so by Lemma 14, Mj has a computable copy.

Note that in Cases 0 and 2, in fact r0, ks � SRMpT q, as the argument works for
j � 0 as well.

Up: We again work in two cases. In the first case, we will be able to find an
infinite Σ0

1-set C of tuples x̄ so that in each tuple at least one element is generic
and such that C contains an infinite set of disjoint tuples. This will be useful in
ensuring that what we build, in attempting to build a new generic neighborhood,
is generic enough to handle further changes in our approximations to Nbhnpgq. We
will show that if the first case does not hold, then for every generic g, iaclpgq is
finite, and we prove the result directly in this case.

Case 1: There is a Σ0
1-set C of tuples ē (of varying sizes) so that at least one of

the elements in each tuple is a generic element and so that C contains an infinite
set of disjoint tuples.

This condition allows us to conclude that if we see every e in some ē P C satisfy
some fixed D-formula ϕpxq, then we know that ϕ is generic. We want to “copy”
iaclpgq for some generic g in Mk to build the model Mk�1. The main difficulty
is that iaclpgq is a ∆0

2-subset of Mk. The source of movement out of iaclpgq is
observing an element being enumerated into B; i.e., if the ∆0

2-approximation to the
isomorphism type of Nbhnpgq changes, it is because some element of the current
approximation to Nbhnpgq is enumerated into B.

We fix a basis b̄ ofMk. At each stage, we will have copied a finite subsetX ofMk

and built an additional finite subset Y containing a specified element d, where d
is a new element intended to be generic over Mk, and where Y is, in the limit, a
Π0

1-set, intended to be the interalgebraic closure of d. At any stage, elements in X
come in three flavors:

Bc: These elements have already been enumerated into B.
Xialg: These elements currently appear to be in

�
bPb̄ Nbhnpbq and we see some re-

lations apparently witnessing this. Note that they may stop being inXialg if
they appear currently in Xialg due to some apparent connection to some b P
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b̄ and some element on the path from b to the element later moves into B,
thus breaking the path.

Xfree: These are elements which currently appear to satisfy no relation with any
elements of Xialg, nor are they currently in B.

At any stage, we let n be least so that the above partition exists. The only
reason a choice of n might fail to give a partition as above at stage s is if there are
elements x, y P X so that

x P
¤
bPb̄

Nbhnpbq

and
y P
¤
bPb̄

Nbhn�1pbq∖
¤
bPb̄

Nbhnpbq.

Thus n can be found and will be ¤ |X|� 1. We also use a speed-up to ensure that
at each stage s, the apparent neighborhoods Nbhsnpbiq and Nbhsnpbjq for bi, bj P b̄
are isomorphic over Bc.

At various stages, we work with finite fragments L0 of L. If at stage s, we are
working with L0, then when we discuss neighborhoods of elements, we mean to
consider the L0-neighborhood.

We say that a quantifier-free L0-diagram χpX,Y q (for a finite fragment L0 of L)
is allowed at stage s if the following hold:

(1) For each bi P b̄, there is an L0-isomorphism ιi over Bc between Y and a
subset A of Nbhsnpbiq sending d to bi.

(2) For each tuple x̄ � X which is not contained in Bc, each tuple ȳ in Y , and
each R P L0,  Rpx̄, ȳq P χ.

(3) There is a tuple ē P C (where C is the set given by our assumption of being
in Case 1) such that for each e P ē ∖ Bc, there is an L0-isomorphism he
of Y with some A1 � Nbhsnpeq over all of X so that hepdq � e. Note in
particular that for each e P ē∖Bc, Nbhsnpeq is disjoint from X, no elements
in Nbhsnpeq realize any relations with X ∖ Bc, and χpX,A

1q holds.

In building the new generic element d and its interalgebraic closure, we will
ensure that at all stages, we have committed to an allowed diagram. The idea is
that if our approximations to Nbhsnpbq for b P b̄ change by elements entering B,
then there are elements in Nbhsnpeq for a generic element e P ē which can be used
as images of the corresponding elements in Y .

We now check that once our approximations to Nbhmpbq for each b P b̄ have
settled, every allowed configuration is correct on the m-neighborhood of d over all
of X. In particular, if we always commit to allowed diagrams, then for every m P ω,
there is a stage after which we will not make a mistake on the m-neighborhood of d.

Claim 26. Let χ be an allowed L0-diagram at stage s and m ¤ n. If Nbhsmpbiq �
Nbhmpbiq for each bi P b̄, then Nbhsmpdq � Y is L0-isomorphic over X to a subset
of Nbhmpgq for an element g generic over Mk.

Proof. Since bi is generic and Nbhsmpbiq � Nbhmpbiq, Nbhsmpbiq �L0 Nbhmpgq
over Bc. By (1), Nbhsmpdq is L0-isomorphic to a subset of Nbhsmpbiq over Bc,
thus Nbhsmpdq is L0-isomorphic to a subset of Nbhmpgq over Bc. Let f be such an
isomorphism.

It remains to see that this is an L0-isomorphism over X. Given a tuple c̄d̄,
where c̄ P X, d̄ P Nbhsmpdq, and R P L0, we need to show that Rpc̄, d̄q if and only
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if Rpc̄, fpd̄qq. We first consider the case where c̄ � Bc. This implies that  Rpc̄, āq
for every tuple ā P Nbhsmpbiq � Nbhmpbiq. Thus c̄ R Bm. It is assumed in (2) that
 Rpc̄, d̄q, and since c̄ R Bm, we also have  Rpc̄, fpd̄qq.

Now consider the case where c̄ � Bc, then since f is a L0-isomorphism over Bc,
we have Rpc̄, d̄q if and only if Rpc̄, fpd̄qq. □

Next we see that every correct n-neighborhood will be allowed from some stage
onwards.

Claim 27. Fix X � Mk, and let χpX,Y q describe the quantifier-free L0-type of
Nbhnpgq over X for a g generic over Mk. Then χ is allowed at any sufficiently
large stage.

Proof. Since g is generic, any sufficiently generic element will satisfy the exis-
tence of such an n-neighborhood satisfying χ. At every late enough stage, the
n-neighborhoods of each b P b̄ will be isomorphic to this Y over Bc, so condition (1)
holds. Further, at every late enough stage, we have BcXX � BXX, so condi-
tion (2) holds. Finally, using the assumption that we are in Case 1, and specifically
that C contains an infinite set of disjoint tuples, there are tuples ē P C, where each
e P ē satisfies the generic formula declaring that it has a neighborhood satisfying
χpX,�q. □

Next we see that we can recover from errors to move from one allowed configu-
ration to another even after elements leave Xialg.

Claim 28. Suppose χpX,Y q is an allowed configuration at stage s and some el-
ements are removed from

�
bPb̄ Nbhsnpbq (due to enumeration into B) and move

into Bc or into Xfree. Then there is a partition of Y into Z YW with d P W , and
there is a set Z 1 in Mk ∖ X so that χpX Y Z 1,W q is an allowed configuration at
some stage r ¡ s.

That is, if we identify the elements of Z as copying the elements of Z 1, we once
again have an allowed configuration.

Proof. We will consider stages larger than t, which is chosen to be a stage large
enough that Nbhtnpbq is correct for each b P b̄, as is Nbhtnpeq for a generic e P ē,
where ē witnessed condition (3) that χpX,Y q was allowed at stage s. Let Z 1 be the
set of elements in hepY q which are removed from Nbhsnpeq by stage t, and let W 1

be the set of elements in hepY q which have remained in Nbhtnpeq. We let Z be
h�1
e pZ 1q � Y and W be h�1

e pW 1q � Y .
We will verify that then χpX Y Z 1,W q is a fragment of the type of Nbhnpgq

over X Y Z 1. Then Claim 27 guarantees that this is an allowed configuration at
some stage r ¡ t. Note that after identifying Z with Z 1, we have that he is an
isomorphism of W with W 1 over X Y Z 1. In particular, the only relations holding
between W and X Y Z 1 are between W and Bt

c.
Since e R aclpHq, we have that W 1, and thus W , is isomorphic to a fragment of

Nbhnpgq for a generic g over Bt
c, say, via f . As in Claim 26, we argue that this

isomorphism extends to being over X Y Z 1. In particular, if a tuple c̄ R Bt
c, and

d̄ P W , we have  Rpc̄, d̄q. Similarly, since t is large enough that Bt
cXpX Y Z 1q �

BcXpX Y Z
1q, we also have  Rpc̄, fpd̄qq.

Thus the quantifier-free type of W over X Y Z 1 is a fragment of the type of
the neighborhood of a generic element, and thus we will eventually see an allowed
configuration extending it by Claim 27. □
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Using the claims above, we give the construction of Mk�1. At each step s of
our construction, we will have a finite L0 � L, a set X �Mk which we are copying
along with a set Y and a stage t ¡ s so that the diagram χpX,Y q which we have
built is allowed at stage t.

To ensure that we build a copy of Mk�1, we must infinitely often increase X
to copy an additional element from Mk, increase L0 to encompass a new relation
symbol, and we must ensure that for every n, from some stage onwards the n-
neighborhood of d has correctly settled down. That is, for sufficiently large t, we
must have Nbhtnpdq � Nbhtnpgq over all of X.

To add an element to X or to add a relation to L0, we use Claim 27. That is, we
let N be large enough that Y appears to be in the N -neighborhood of d. Claim 27
guarantees that we will either see our approximation to NbhN pgq change or we will
see the full N -neighborhood over X allowed. We apply this either to the larger
set X or the larger language L0. In either case, if we see an allowed configuration,
we can expand X or L0 as needed. If our approximation to NbhN pgq changes, then
we simply use Claim 28 and try again. We note that either the parameter N here
has not increased or Y has strictly decreased in size. Thus eventually we will have
a correct approximation to NbhN pgq and will be allowed to increase X or L0.

Finally, to ensure that the n-neighborhood of d is correct at stage s, we infinitely
often use Claim 27 as follows: Let N ¥ n be least so that Y currently appears to
be contained in the N -neighborhood of d. Then (as above, allowing for necessary
corrections) copy the full N -neighborhood of d into Y . By Claim 26, this ensures
that at cofinitely many stages, Y contains a correct copy of the n-neighborhood
of d. Finally, we must see that the n-neighborhood of d stabilizes as a set. Once
the finite set Bn has been enumerated into Bc, there is no way for an element to be
removed from Nbhnpdq. Thus, at any stage after the full correct n-neighborhoods
of the basis elements are discovered and all of Bn is enumerated into Bc when we
place the full n-neighborhood of d into Y , the n-neighborhood of d must stabilize as
a set. Further, by Claim 26, Nbhnpdq is then L0-isomorphic with Nbhnpgq over X
where g is generic over Mk. Since this is true at all larger stages, in particular
as X and L0 grow, we have that Nbhnpdq is L-isomorphic with Nbhnpgq over Mk.

Thus we have built a copy of Mk�1.
This suffices to show in Case 1 that r1, ωq � SRMpT q. To see that ω P SRMpT q,

we run the previous construction, building more and more generic neighborhoods.
For a configuration to be allowed when building l many new neighborhoods, we
need l many tuples ē P C whose n-neighborhoods are disjoint as protection. Every-
thing else remains the same.

Case 2: We suppose we are not in Case 1, and we assume a bound on the arities
of the relations in L. We note first that for a generic element g, there are only
finitely many pairwise disjoint tuples x̄ so that

Di rRipg, x̄q ^  D
8y Ripy, x̄qs.

Otherwise, the collection of tuples x̄ so that Di rRipg, x̄q ^  D
8y Ripy, x̄qs would

witness that we are in Case 1.
Fix h1, . . . , hn so that @x̄@i pRipg, x̄q Ñ x̄ X th1, . . . , hnu � Hq. Fix s so that

for each l ¤ n, there is an i ¤ s so that R12
i pg, hlq (again using the fact that our

relations are closed under permutations of variables). For i ¤ s, let Ni be the finite
number of tuples ȳ so that Ripg, ȳq (using that g is generic and Ri has rank at
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most 1). We consider the new language

L1 :� tR12
i | i ¤ su Y tRi

m | i ¤ s and m P ωu,

where

Ri
mpz, x̄q if and only if Dy pR12

i pz, yq ^Rmpz, y, x̄qq.

Note that, using the fixed numbers Ni, if we know that z is generic, we can
computably find all y so that R12

i pz, yq hold, and thus we can determine whether
Ri

mpz, x̄q holds. Further, we can determine for a tuple x̄ whether or not Ri
mpa, x̄q^

Ri
mpb, x̄q for fixed generics a and b; and thus we can computably determine whether
D8zRi

mpz, x̄q. This is not enough to get a computable interdefinability of the two
languages, but we have that the neighborhoods Nbhpgq in L and in L1 are the same,
and this will suffice for our needs.

Note that for a generic g, it cannot be that there are infinitely many pairwise
disjoint tuples x̄ so that

DR P L1 rRpg, x̄q ^  D8yRpy, x̄qs ,
as then we would again be in Case 1.

So, we can suppose that there are only finitely many disjoint tuples satisfying

DR P L1 rRpg, x̄q ^  D8yRipy, x̄qs .

We proceed to define another language L2, and we repeat this process, each time
reducing the arity of the language until we reach a binary language Lb. Note that
this is the use of the assumption that we have an upper bound on the arity of the
relations.

Note that we have maintained that the set of x so that Rpz, xq holds is uniformly
computable for every generic z and R P Lb and that the neighborhood Nbhpgq of
a generic g is the same in Lb as in L. Thus we see that the neighborhood Nbhpgq
for a generic g is Σ0

1 as in Observation 13. If this Σ0
1-set is infinite, then we are

in Case 1 again using C � iaclpaq, so we may suppose that iaclpgq is finite for any
generic g.

Now we build a copy of Mk�1 (in the original language L) by copying Mk along
with a copy A of iaclpgq for a generic element g. We need to determine, for x̄ PMk

and ȳ P A and relation R P L whether to define Rpx̄ȳq or  Rpx̄ȳq. We fix an
isomorphism f between A and iaclpaq. We define Rpx̄, ȳq if and only if x̄ is disjoint
from iaclpaq and Mk |ù Rpx̄, fpȳqq. This yields a copy of Mk�1.

We finally note that in this last case, we obtained Mk�1 from Mk uniformly
with Mk as a computable subset of Mk�1, and so we can also build a computable
copy of Mω.

This concludes the proof of Theorem 25. □

Corollary 29. Let T be a strongly minimal disintegrated theory in a relational
language L consisting of relations tR0, R1, . . . u of rank at most 1 (closed under
permutations of variables), and assume that k P SRMpT q for some k P r1, ωq.
Assume further that the set B (defined in Lemma 22 and at the beginning of the
proof of Theorem 25) is finite. Then r1, ωs � SRMpT q.

Proof. The down direction follows from the above. For the up direction, we use
the fact that the neighborhood of a generic element is a Σ0

1-set. Let A be a copy of
Nbhpgq for a generic element g. We consider the structure Mk YA where we make
relations Ripc̄0c̄1q hold for c̄0 � Mk and c̄1 � A if and only if Ripc̄0ḡ1q (where ḡ1
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is the isomorphic image of c̄1 in Nbhpgq) and c̄0 � B. This gives a presentation
of Mk�1, and using the uniformity in this construction, we get a presentation
of Mω as well. □

We can immediately conclude:

Corollary 30. Every spectrum of a strongly minimal disintegrated theory with
relations of rank at most 1 and of bounded arity is among the following:

(1) H, r0, ωs, r1, ωs, t0u, tωu,
(2) t0, 1u, t1u,
(3) t0, ωu, t0, 1, ωu, and
(4) t1, ωu. □

We will show below that every set in (1) and (2) is indeed such a spectrum, but
whether the sets in (3)-(4) are such spectra is still open.

The spectra in clause (1) of Corollary 30 were already known to be spectra of such
theories. The spectra in clause (2) of Corollary 30 were known to be spectra, but so
far only with relations of Morley rank 2. The spectra in clause (3) of Corollary 30
were again known to be spectra, constructed using a Hrushovski construction, thus
they are not known to be spectra of a theory satisfying the Zilber trichotomy.

3.2. The positive results. In the remainder of this section, we exhibit two new
spectra in our setting, namely, the two sets in clause (2) of Corollary 30.

The following Lemma is useful for verifying that a constructed theory is strongly
minimal.

Lemma 31 (Similar to Lemma of Herwig/Lempp/Ziegler [HLZ99] and the Claim in
Proposition 2.6 of Andrews/Medvedev [AM14]). Let M be an L-structure where L
is relational and every symbol has Morley rank ¤ 1 in M. For every finite L1 � L,
let BL1 be the set of elements in M contained in infinitely many tuples satisfying a
relation in L1.

Suppose that for every finite L1 and n P ω there is an isomorphism type CL1

n and

c P CL1

n so that pNbhL
1

n pxq, xq is isomorphic to pCL1

n , cq over BL1 for almost every
x PM . Then M is strongly minimal.

Further, a P aclpHq if and only if there are some n and L1 so that pNbhnpaq, aq �

pCL1

n , cq over BL1 .

Proof. Showing strong minimality for every finite sublanguage is equivalent to show-
ing strong minimality of M, so fix a finite L1 � L and work in L1. We want to
verify that over any set X in a model M1

© M, there is a unique non-algebraic
type over X.

If a P
�

xPX Nbhpxq Y aclpHq, then a P aclpXq. Suppose a, b R
�

xPX Nbhpxq Y
aclpHq. Then since they are non-algebraic elements, we must have pNbhnpaq, aq �
pC, cq � pNbhnpbq, bq for every n. By König’s Lemma, pNbhpaq, aq � pNbhpbq, bq
over BL1 . We verify that this is an isomorphism over

�
xPX Nbhpxq and thus over X.

For any R P L1, tuple c̄ P
�

xPX Nbhpxq, and d̄ P Nbhpaq, we have M 1 |ù  Rpc̄, d̄q
unless c̄ P BL1 . We have the same condition for d̄ P Nbhpbq. Thus the same
isomorphism extends to an isomorphism over X showing that the type of a and b
are the same over X.

For the final statement: If there are no n and L1 so that pNbhnpaq, aq � CL1

n

over BL1 , then the same argument as above with X � H shows that a R aclpHq.
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If there is, then there are assumed to be only finitely many such elements showing
a P aclpHq. □

Throughout the constructions in Theorems 33 and 34, we will use the following
notion:

Definition 32 (see Khoussainov/Nies/Shore [KNS97]). For every n P ω, we define
an n-cube to be a finite structure in the language comprising binary relations tRi |
i P ωu.

A 0-cube is a single point without any relation. An pn � 1q-cube is a pair of
disjoint n-cubes with each pair of corresponding points in the two n-cubes connected
by the relation Rn�1.

An ω-cube is an increasing union of n-cubes for all n P ω.

We begin with the spectrum t0, 1u. Note that Kudaibergenov’s construction [Ku80]
of this spectrum proceeds by coding the halting set into the set of i so that Ripx, yq
has Morley rank 2. No variant of this construction could work in our context.

Theorem 33. t0, 1u is the spectrum of computable models of a strongly minimal
disintegrated theory with relations of rank at most 1 and of bounded arity.

Proof. In a finite-injury construction, we will construct a Π0
1-set S. Our model M1

will be an expansion of the structure A containing one n-cube for every n P ω, one
additional n-cube for every n P S (called the n-S-cube), and one ω-cube.

Our structure M1 will, model-theoretically speaking, be a definitional expansion
of A; but in order to show that it is computable, we present here an effective con-
struction of M1 and then show how to modify it to obtain an effective construction
of M0. The models M1 and M0 have additional, symmetric binary relations V i

n

(for i, n P ω). In order to prevent the models of dimension ¥ 2 of the theory of M1

from being computable, we will have requirements Rm, associated with the mth
triple pNm, am, bmq consisting of a potential computable model Nm and two distin-
guished elements am, bm P Nm. The requirement is to ensure that either Nm �M1

or that am, bm are not mutually generic in Nm.
Each requirement will eventually be associated with a fixed number n which is

initially in S until we see a certain configuration of elements and relations in the
model Nm; when we do see this configuration, we remove n from S (and thus the
n-S-cube from M1) and have a permanent win against the model Nm.

At stage 0, we let S � ω and start by setting the threshold t00 � 1 and adding
to M1 one n-cube for each n ¤ t00, one additional t00-cube destined to become the
ω-cube, and one 0-S-cube. (The thresholds tis here have a subscript for the stage s
and, loosely speaking, a superscript i related to the requirement Rm, and help
us organize the construction to keep it finite injury.) We also connect the point
in the 0-S-cube to each point in both t00-cubes by the relation V 0

0 and call this
relation active. Finally, we associate requirement R0 with the number 0; and we
set the counter c0 � 0 for the highest requirement currently assigned to a number
potentially in S.

At stage s� 1, we have from stage s one n-cube for each n ¤ tss, one additional
tss-cube which is destined to become the ω-cube, and an n-S-cube for each n ¤ s
which is in Ss (with some active and inactive relations V i

n such that each point
in each n-S-cube is connected to points in (larger) cubes by an active relation V i

n

for some i, and some points inside cubes are connected by inactive relations V i
n for
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some n and i). We also have an association of all requirements Rm for m ¤ cs with
numbers ¤ s.

Stage s � 1 now proceeds in two phases, the correction phase and then the
expansion phase. For the correction phase, we check if there is a (least) n P SsXr0, ss
such that


 some requirement Rm for m ¤ cs is associated with n, and

 there are two n-cubes in Nm,s�1 (which are not currently part of pn � 1q-
cubes) such that each point of one of these n-cubes is connected by an
active relation V i

n to both am and bm.

If there is no such n, then we immediately move on to the expansion phase below
(setting n � s and the counter cs�1 � cs � 1). Otherwise, we extract n from
the set S, set the counter cs�1 � m, and perform the correction phase for this
requirement Rm in the following steps for l P SsXrn, ss in decreasing order: At the
beginning of Step l, we have a setup as described in the previous paragraph but
with possibly increased values of the thresholds tks . We now perform the following
actions:

(1) Declare the active relation V i
l to be inactive;

(2) enlarge each cube currently involved in the relation V i
l (which are exactly

the l-S-cube and all k-cubes for k ¥ tls) to a t
s
s-cube by adding new elements

to M ;
(3) add new points to merge all the points from the enlarged tss-cubes from

clause (2) (except for the enlarged tss-cube from the previous l-S-cube) into
a single cube, and redefine tls to be the size of this cube;

(4) increase the value of the thresholds tks for k P pl, ss to values greater than
three times the value of tls (preserving their ordering, and with a slight
abuse of notation by not introducing new names for these parameters in
order not to clutter the indexing of our parameters even more);

(5) enlarge the previous l-S-cube even further to a different new tls-cube;
(6) merge these two tls-cubes from clauses (3) and (5) into a single ptls � 1q-

cube, which is now the new cube destined to become the ω-cube (note that
this new cube contains the previous cube that was destined to become the
ω-cube); and

(7) declare the relation V i
l to hold between any point in one of these two tls-

cubes and any point in the other tls-cube; from now on, the relation V i
l will

be declared to hold between any new points in distinct tls-subcubes inside
the same ptls�1q-(sub)cube without our further mentioning this. For future
reference, we set vil � tls.

After the correction phase, or if the correction phase did not apply, we let tls�1

be the current values of the thresholds tls (either defined during the correction
phase, or from stage s if l   n or there was no correction phase), and we pick the
threshold ts�1

s�1 large.
We then proceed to the expansion stage:


 For each l P SXpn, s� 1s, create a new l-S-cube and connect each point in
it by a new relation V i

l (calling this relation active, for a new number i) to
each point in each current k-cube for all k ¥ tls�1 (including k-S-cubes);
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 create a new l-cube (which is not an l-S-cube) not destined to become an ω-
cube for each l ¤ ts�1

s�1 for which no such cube currently exists, and enlarge

the current cube destined to become the ω-cube to be a ts�1
s�1-cube;


 connect each point in each l-S-cube (for l P S X r0, nq) by its active re-
lation V i

l to each new point in each k-cube for all k ¥ tls�1 (including
k-S-cubes); and


 if no number is currently associated with requirement Rcs�1
, then associate

this requirement with the number s� 1.

We can now easily check the following properties of the construction of M1: It
is an expansion of the model M described at the beginning of the proof. Each
relation V i

l declared inactive at some time during the construction connects all
points between distinct vil -subcubes (for vil as defined in clause (7) above) within
pvil � 1q-(sub)cubes. Each relation V i

l declared active but never declared inactive
during the construction connects each point in the l-S-cube with all points in all
sufficiently large n-cubes (both n-cubes and n-S-cubes, including the ω-cube; note
that this is definable in M1 using a parameter from the l-S-cube). Thus M1 is a
definitional expansion of M, and therefore M1 is strongly minimal.

These properties make it easy to check that we could have built the model M0

effectively as well, without the ω-cube: In clause (6) above, we would simply make
the new large cube a new large finite cube. Since all new thresholds are chosen to
be larger than this cube, this cube cannot be infinitely often forced to grow. So
the theory of M1 has two computable models, M0 and M1, of dimension 0 and 1,
respectively.

Finally, note that no higher-dimensional model can have a computable presen-
tation Nm with mutual generics am and bm, say: Let n be such that the require-
ment Rm is eventually permanently associated with the number n. Then n P S
implies that Nm is not isomorphic to a model of ThpM1q since Nm is missing an
n-cube connected by the active relation V i

n to all but finitely many points in Nm,
and thus to both am and bm. And n R S implies that in Nm, am and bm are
mutually algebraic via an inactive relation V i

n. □

A fairly easy modification of the above construction will yield the next spec-
trum, t1u:

Theorem 34. t1u is the spectrum of computable models of a disintegrated theory
with relations of rank at most 1 and of bounded arity.

Proof. The construction from Theorem 33 needs to be modified as follows: We add
additional requirements Sp associated with a potential computable model Pp and
will show that Pp cannot be isomorphic to M0.

To satisfy one such requirement, we fix a large number n (specifically larger
than the thresholds of higher-priority requirements) and wait until the structure Pp

constructs an n-cube. Then, using the algorithm in the correction phase above, we
make M1 have no n-cube (including no n-S-cube). If, at some later stage, the n-
cube in Pp grows to become an n1-cube, we re-instate the n-cube (and an n-S-cube
if n P S). We then again, via the same algorithm as in the correction phase above,
declare that there is no n1-cube in M1.

In the long run, there are now two possibilities: Either Pp contains an n-cube
for some n where M1 contains no n-cube, and so Pp is not isomorphic (in fact, not
even elementarily equivalent) to M0; the effect of this outcome on the rest of the
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construction is finite. Or some cube in Pp keeps growing without bound and so Pp

contains an ω-cube C, while M0 does not; the effect of this outcome on the rest of
the construction is infinite, but for each fixed n, the cube C will be bigger than an
n-cube, so other requirements can eventually work with any number ¤ any fixed n.

It is now fairly standard to implement the modification of the construction from
Theorem 33, adding the requirements Pp to make M0 noncomputable. □

We are now able to summarize our results and nail down the at least seven and
at most ten possible spectra in the disintegrated rank 1 case of bounded arity in
the following

Theorem 35. The following are the spectra of computable models of a disintegrated
strongly minimal theory with relations of rank at most 1 and of bounded arity: H,
r0, ωs, r1, ωs, t0u, t1u, tωu, t0, 1u, and possibly t0, ωu, t0, 1, ωu and t1, ωu. Fur-
thermore, these seven can be achieved in binary relational languages.

Proof. By Theorem 25, if any k P r2, ωq is in SRMpT q, then r1, ωs � SRMpT q.
This leaves the possibilities of r0, ωs, r1, ωs, and subsets of t0, 1, ωu. The original
constructions show that H, r0, ωs, t0u, r1, ωs, and tωu are spectra of binary rank 1
theories. By Theorems 33 and 34, t0, 1u and t1u are spectra of binary (rank 1)
theories. □

4. Rank 1 relational languages in unbounded arities

Recall the definition of B in Definition 21 and the following from Corollary 29.

Theorem 36. If B is finite and k P r2, ωq is in SRMpT q, then r1, ωs � SRMpT q.

This allows us to limit the possible spectra to a small (but infinite) collection of
sets:

Theorem 37. If T is a strongly minimal theory in a relational language of rank at
most 1, then SRMpT q is among the following:H, r0, ωs, r1, ωs, r0, ns and r0, nsYtωu
for n P ω, r0, ωq, t1u, tωu, and t1, ωu.

Proof. By Theorem 25, SRMpT q X r1, ωq is an initial interval in r1, ωq. Thus, we
are limited to r0, ωs or r1, ωs, subsets of t0, 1, ωu, or sets of the form r0, αq or r1, αq
for α ¤ ω, or r0, ns Y tωu or r1, ns Y tωu for n P ω. The possibilities r1, αq (for
3 ¤ α ¤ ω) and r1, nsYtωu (for n P ω∖ t0, 1u) are ruled out by cases. If B is finite,
then they are ruled out by Theorem 36. If B is infinite, then, in the model M2, B is
an infinite Σ0

1-subset of the prime model of T (by the remark following Lemma 20),
so 0 P SRMpT q by Corollary 24 and Lemma 14. □

In the remainder of this section, we establish one new class of spectra and one
new spectrum. In the following theorem, we employ a finite injury argument, while
Theorem 41 will modify this basic construction using an infinite injury construction.

Theorem 38. For each n P ω, r0, ns is the spectrum of a disintegrated strongly
minimal theory in a relational language of rank at most 1.

Proof. We assume n ¥ 2, since the cases t0u and r0, 1s were already handled in
Theorems 3 and 33, respectively. We fix the language tRi | i P ωu Y tVk | k P ωu,
where each Ri is a 22i�2-ary relation symbol and each Vk is unary. At each stage
of the construction, we will have some relations Ri active. We begin with all
relations Ri being inactive. We will ensure that each relation is symmetric and



20 ANDREWS AND LEMPP

holds only on tuples of pairwise distinct elements, so we will write RipAq for a
set A of size 22i�2 to mean that Ripāq holds on some (or, equivalently, every) tuple
so that tak | k   |ā|u � A.

We fix an enumeration of all structures pNℓ, āℓq with a specified pn�1q-tuple āℓ.
Our goal is to build an n-dimensional computable model M of a strongly mini-
mal disintegrated theory in a rank 1 language while ensuring that any model of
dimension ¡ n of the same theory has no computable presentation. This ensures
that rn� 1, ωs X SRMpT q � H, and thus, by Theorem 37 and our assumption that
n ¡ 1, this implies that SRMpT q � r0, ns.

We begin the construction at stage 0 with the following intended interpretation
for each symbol: We have an infinite set of commuting involutions fk and gk,
generating a group isomorphic to

À
kPω Z{2Z. Each Rmpx̄q will be interpreted as

saying that x̄ is a 22m�2-tuple of distinct elements closed under tfj , gj | j   m� 1u
(and so is a connected component when viewed as a graph under these functions).

We keep a fixed set tb0, . . . , bn�1u throughout the construction intended to be a
basis for the model M which we construct.

The requirements are as follows: Ensure that either Nℓ � M or the pn � 1q-
tuple āℓ is not independent in Nℓ. We describe the action for a single strategy
for a single model pNℓ, āℓq; we will put these strategies together via a finite-injury
priority argument.

Step 0: Choose a new integer ℓ1 ¡ ℓ (so, in particular, we have made no commit-
ments about realizations of Rℓ1) and activate Rℓ1 . From before, we have a set F of
commuting involutions so that Rℓ1�1pw̄q is interpreted as w̄ being closed under F .
We introduce a pair of further commuting involutions fℓ1 , gℓ1 on our model. We
interpret Rℓ1px̄q to mean that x̄ is closed under all involutions in F Y tfℓ1 , gℓ1u.

Step 1: Wait until in Nℓ, we see disjoint tuples z̄i for i ¤ n so that, for each
ai P āℓ, we have Nℓ |ù Rℓ1pai, z̄iq (i.e., each a P āℓ has the full 22ℓ

1�2-dimensional
cube). When this is seen, go to Step 2.

Step 2: In M, for each i   n, let Si be the unique set containing bi satisfying
Rℓ1�1pSiq. Let Qi be the image of Si under the function fℓ1 . For each element d
currently in M ∖

�
i n pSi YQiq, we take a new unary relation Vk and determine

that VM
k � tdu.

We now give new interpretations for each of the active symbols Rp for p ¥ ℓ1.
Let Xp

i be the unique set satisfying RppSiYQiYX
p
i q. We define a new function hℓi

to be an involution on the set of tuples satisfying Rℓ1�1. In particular, for each
i   n, we define hℓipSiq to be Qi. For each set Xp

i , let ψ
p
i px̄q say that x̄ is named

by the same unary relations as Xp
i .

For p ¥ ℓ1, we give the new interpretation for Rp to be the symmetric closure
of the relation θppx̄ȳz̄q _

�
i npψ

p
i pz̄q ^ hℓipx̄q � ȳq where θp hold on a tuple x̄ȳz̄

if every element of the tuple is already named by a relation Vk and Rp holds on
x̄ȳz̄ (i.e., θp describes via the Vk-relations the finite atomic diagram of Rp on the
shaded elements in Figure 1). We de-activate all active relations Rp with p ¥ ℓ1.

In particular, we are making the following sentence true in the theory:

ρ :� Dx0, . . . , xn�1@z̄
�
Rℓ1pz̄q Ñ

�
θℓ1pz̄q _

ª
i n

xi P z̄
	�
.

This holds for a tuple x̄ chosen so that xi P Xi. Note that Nℓ has constructed
n� 1 disjoint tuples satisfying Rℓ1 with each containing one of the elements aj for
j ¤ n. If Nℓ satisfies ρ, then one of the elements aj for j ¤ n will have to satisfy
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Figure 1. S0 containing b0, Q0 being the fℓ-image of S0 and the
shaded elements get named by unary relations.

a relation Vk and so will be a definable element. Thus, we have permanently satis-
fied the requirement. When we go to Step 2, we also re-initialize all lower-priority
strategies, and de-activate all active Ri for i ¥ ℓ1. We note that higher-priority
strategies are concerned with sets closed under involutions which are entirely con-
tained in our sets Si. Thus they are not affected by the action taken by the strategy
to defeat the model pNℓ, āℓq.

At a given stage s, each active relation has an interpretation in terms of com-
muting involutions fi and gi. At each stage s, if we have an involution f and an
element x (or an appropriate tuple x̄ in the case when f is of the form hℓi) not
satisfying any unary predicate Vk and there is no y which we have designated to be
the image fpxq, then we create such y. The interpretation of the relation symbols
is then given by their descriptions.

We verify that the construction works in two lemmas:

Lemma 39. The model M which we construct is strongly minimal and of dimen-
sion n, and every symbol in the language is interpreted to hold on a subset of M of
rank at most 1.

Proof. By examining the construction, each relation Rℓ has the property that for
each x, either x is named by a unary relation symbol or there are only finitely
many tuples z̄ so that Rℓpxz̄q. Thus we only need to show that M is strongly
minimal, and we will have that each symbol defines a set of rank at most 1. As
adding constants to a strongly minimal theory preserves strong minimality, we can
consider the structure M without the unary predicates Vk. For each set Lk �
tRℓ | ℓ ¤ ku of relation symbols, fix Bk to be the set of elements y so that for
some R P Lk, there are infinitely many z̄ so that M |ù Rpy, z̄q. We need to
show that NbhLk

pxq �Bk
NbhLk

pb0q for all but finitely many elements x P M .
Let s ¡ k be a stage large enough that for each relation R in Lk, if R is ever
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activated, it is activated before stage s, and if R is ever de-activated, it is de-
activated before stage s. Then Bk is contained in the set of elements which are
named via a unary predicate before stage s. Also, any element a created after
stage s has NbhLk

paq �Bk
NbhLk

pb0q. Thus, as in Lemma 31, we see that ThpMq
is strongly minimal. Examining the construction, we can see that each bi has
NbhLk

pbiq �Bk
NbhLk

pb0q, thus each bi is generic. Similarly, the neighborhoods
NbhLk

pbiq are pairwise disjoint, thus the elements bi are mutually generic. Since
every element in M ∖

�
i n Nbhpbiq satisfies some unary relation Vk, we see that

no such element can be generic. Thus tb0, . . . , bn�1u is a basis for M, so M is
n-dimensional. (And clearly aclpHq is infinite.) □

Let T be the theory of M.

Lemma 40. There is no computable presentation of a model of T of dimension ¡ n.

Proof. Suppose pNℓ, āℓq is a computable presentation of a model of T where āℓ is an
independent pn�1q-tuple in Nℓ. Let s be a stage where the requirement for pNℓ, āℓq
is activated for the last time. Then we consider cases based on the outcome for
the strategy for the requirement. If the strategy waits in Step 1 with parameter ℓ1

indefinitely, then

D disjoint z̄0 . . . z̄n
©
i¤n

Rℓ1pxiz̄iq

is in the generic pn � 1q-type of T , but is not true of āℓ, which is a contradiction.
If the strategy goes to Step 2, then we have that

ρ :� Dx0, . . . , xn�1@z̄
�
Rℓ1pz̄q Ñ

�
θℓ1pz̄q _

ª
i n

xi P z̄
	�

is in our theory T . Thus either Nℓ * ρ, or one of the ai P āℓ satisfies a unary
relation Vk and thus ā is not a basis of Nℓ. □

This concludes the proof of Theorem 38. □

A modification of the above proof gives us the next

Theorem 41. r0, ωq is the spectrum of a disintegrated strongly minimal theory in
a relational language of rank at most 1.

Proof. We fix the same language as in the previous construction, and we have the
same system of determining active requirements.

We will also proceed similarly to the previous construction. We have the follow-
ing requirements for all n and all computable models Nℓ:
Pn: There is a computable presentation Mn of the n-dimensional model of our

theory T .
Nℓ: Nℓ is not a computable presentation of a model of T of dimension ¡ ℓ.
The requirements Pn clearly ensure that r0, ωq � SRMpT q. The cumulative

effect of the Nℓ-requirements ensures that no computable model can have infinite
dimension.

We order the requirements by Pn   Nn   Pn�1. For this argument, we will
need an infinite-injury priority argument, so we will have a tree of strategies for
these requirements, defined by the possible outcomes. For a Pn-strategy, we have
only one outcome. For an Nℓ-strategy, the possible outcomes are d   8   . . .  
3   2   1   0. The priority ordering and the possible outcomes specify our tree of
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strategies Λ, assigning each requirement to a full level of the tree. The outcome of an
Nℓ-strategy is determined by the number of times the Nℓ-strategy is incremented,
or it is d or 8.

The strategy for a Pn-requirement is straightforward: At every stage, we will
have (globally) an interpretation for each relation symbol. Each Pn-strategy simply
constructs its model accordingly, over a basis of size n, in the style of the global
strategy building the computable model in Theorem 38. Note that the interaction
between constructing the computable model in Theorem 38 and the requirements is
in defining the set of unary relations Vk and the interaction of their named elements
in formulas θp in Step 2. The strategy in Theorem 38 does this to accommodate
the construction of the computable model. In our construction, where we have
many constructions of computable models, an Nℓ-strategy must accommodate the
constructions of each Pn-strategy above it on the tree.

For an Nℓ-strategy σ, we act as follows. In the present theorem, instead of
stopping at the end of Step 2, as we did in Theorem 38, we increment the strategy,
which means that we return to Step 0 when σ is next visited. At any stage when σ
is visited, we perform the actions in one of the following “steps”. If we are still
waiting in Step 1, we take a finite outcome. If we complete the wait in Step 1, we
will do one of three things: We might decide to move on to Step 2 at the next stage
when σ is visited, in which case we take a finite outcome. We might increment the
strategy, in which case we take the outcome 8. The last possibility is that we see
a permanent diagonalization ensuring that Nℓ does not satisfy the correct theory,
in which case we will take the outcome d. Each time we take the action of Step 2,
we will take the outcome 8 once.

Step 0: Pick ā to be the least pℓ � 1q-tuple not previously considered by σ.
Choose a new integer ℓ1 ¡ ℓ, so, in particular, we have made no commitments
about realizations of Rℓ1 . We call Rℓ1 active. From before, we have a set F of
commuting involutions so that Rℓ1�1pw̄q is interpreted as w̄ being closed under F .
(Again, Rℓ1�1 may be empty, in which case we make the obvious adjustments to
skip over all the empty relation symbols.) We introduce a pair of further commuting
involutions fℓ1 and gℓ1 on our model. We interpret Rℓ1px̄q to mean that x̄ is closed
under all involutions in F Y tfℓ1 , gℓ1u. Go to Step 1 (at the same stage).

Step 1: Wait until in Nℓ, we see tuples z̄i for i ¤ l so that, for each ai P ā, we
have Nℓ |ù Rℓ1pz̄iq ^ ai P z̄i (i.e., each a P ā has the full 22ℓ

1�2-dimensional cube)
or until we see one of the a P ā satisfy a unary relation Vk. If we see Vkpaq for
any k and any a P ā or we see a single tuple w̄ containing two members of ā so that
Rℓ1pw̄q, then we increment the strategy and take outcome 8. If the found tuples z̄i
are non-disjoint (but not the above case), we take outcome d. If the tuples z̄i are
disjoint, then we will go to Step 2 when σ is next visited and we take a finite
outcome.

Note that we increment the strategy and take outcome 8 if we see a permanent
way to witness that ā is not independent in Nℓ. We take outcome d when we see
non-disjoint and non-equal tuples realizing Rℓ1 ; so we will have a permanent win
for σ by simply never changing the interpretation of Rℓ1 , as such tuples do not exist
in models of our theory.

Step 2: Let Mℓ be the model being built by the Pℓ-strategy τ � σ�, i.e., τ
is the immediate predecessor of σ on the tree of strategies. Let Si be the unique
set containing bi with Mℓ |ù Rℓ1�1pSiq. Let Qi be the image of Si under the
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function fℓ. For each element d currently in Mℓ ∖
�

i ℓ pSi YQiq, we take a new

unary relation Vk. The Pℓ-strategy τ will determine that VMℓ

k � tdu in its repair
module (described below). For the remainder of this description of Step 2, we will
say Vk is associated with d.

We now give new interpretations for each of the active symbols Rp for p ¥ ℓ1.
Let Xp

i be the unique set satisfying RppSiYQiYX
p
i q. We define a new function hℓi

for each i   ℓ to be an involution on the set of tuples satisfying Rℓ1�1. In particular,
for each i   ℓ, we define hℓipSiq to be Qi. For each set Xp

i , we let the formula ψp
i px̄q

say that x̄ is named by the same unary relations as are associated with Xp
i . For

p ¥ ℓ1, we give a new interpretation for active Rp to be the symmetric closure of
the relation

θppx̄ȳz̄q _
ª
i n

pψp
i pz̄q ^ h

ℓ
ipx̄q � ȳq,

where θp states that every element in the tuple x̄ȳz̄ satisfies one of the finitely many
relations Vk associated with a tuple of elements on which we have already made Rp

hold. We de-activate all active relations Rp with p ¥ ℓ1. We also now call the
repair module of every Pk-strategy ρ with ρ   σ (these are described below in the
description of the Pn-strategies).

In particular, we are making the following sentence true in the theory:

ρ :� Dx0, . . . , xℓ�1@z̄
�
Rℓ1pz̄q Ñ

�
θℓ1pz̄q _

ª
i ℓ

xi P z̄
	�
. (1)

This holds for a tuple x̄ chosen so that xi P Xi. Note that Nℓ has constructed
ℓ� 1 disjoint tuples satisfying Rℓ1 with each containing one of the elements aj for
j ¤ ℓ. If Nℓ satisfies ρ, then one of the elements aj for j ¤ ℓ will have to satisfy a
relation Vk and so will be a definable element. Thus, we have permanently ensured
that either Nℓ ��|ù T or ā cannot be an independent tuple. When we go to Step 2,
we also initialize all strategies τ ¡L σpx8y and de-activate all active Ri for i ¥ ℓ1.
We then increment the strategy σ, i.e., go back to finite outcome and step 0.

We note that N -strategies not re-initialized at this point, i.e., any strategy not
to the right of σpx8y, are concerned with sets closed under involutions which are
entirely contained in our sets Si. Thus they are not affected by the action taken
by the strategy to defeat the model pNℓ, āℓq.

For a Pn-strategy τ , we act as follows. At every stage, for every active rela-
tion R, we have an interpretation. We describe three modules that τ can run: The
initialization module, the update module, and the repair module. We will run the
initialization module when τ is first visited after the strategy is initialized. We will
run the update module when τ is later visited on the tree of strategies. We will run
the repair module when some Nℓ-strategy σ with τ   σ performs its Step 2 action.

The initialization module: Build n chosen elements b1, . . . , bn intended as the basis
of our model. Then run the update module.

The update module: We have n finite disjoint configurations Ai for i � 1, . . . , n
around the basis elements bi representing their current neighborhoods, i.e., exclud-
ing the elements named by Vk-relations. We consider the set of relations which
have become active (including those no longer active) since we have last run the
update module. For each of these relations R, say, considered in order of arity, we
expand the finite configurations Ai according to the current interpretation of R.
If R is still active, this means we close Ai under a set of involutions. If R is now
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inactive, this means we add new elements to satisfy the unary relations Vk used in
the interpretation of R as well as closing under the appropriate involutions.

The repair module: We now describe the repair modules which Pn-strategies τ per-
form when a successor Nℓ-strategy σ ¡ τ acts. The Pℓ-strategy σ

� plays a special
role, but we run this repair module for every Pn-strategy τ   σ simultaneously.
Each Pn-strategy has a finite structure Mn constructed so far. Further, there is a
natural embedding fn of Mn into Mℓ (the structure built so far by σ�). This just
sends the n basis elements to the first n basis elements inMℓ, and the corresponding
neighborhoods along with them, as well as the elements named by unary predicates
to those named by the same unary predicates (allowing n � 0). Nℓ associates some
unary relations Vk to elements d PMℓ. The Pn-strategy then interprets Vk to name
any element x so that Vk is associated with fnpxq. For each Vk not interpreted to
be an element in Mn by this process, the Pn-strategy then creates a new element
and interprets Vk to be this new element. We then run the update module for
each Pn-strategy τ   σ. In particular, this adds hℓi -images as given by the new
interpretation of Rℓ1 in the Nℓ-strategy.

The construction is now put together as a typical infinite-injury argument on
a tree of strategies, assigning the strategies to nodes on the tree in the priority
ordering specified above.

We verify that this construction works in the following four lemmas:

Lemma 42. The model M0, which is constructed by the unique P0-strategy, is
strongly minimal, and every symbol in the language is interpreted to hold on a
subset of M0 of rank ¤ 1.

Proof. In M0, every element is named by a unary predicate Vk which holds on
only that element. We consider a relation Rp and want to show that there are only
finitely many x so that M0 |ù D

8z̄Rppx, z̄q. If Rp permanently remains active, then
there is no such x. If Rp becomes inactive, then Rp is interpreted by the symmetric
closure of the relation θppx̄ȳz̄q_

�
i npψ

p
i pz̄q^h

ℓ
ipx̄q � ȳq. It is immediate that the

only elements contained in infinitely many tuples satisfying Rp are those contained
in a tuple satisfying some ψp

i pz̄q, which is a finite set. Thus, once we show that M0

is strongly minimal, it follows that each R-relation defines a set of rank 1, and each
V -relation defines a set of rank 0.

For each k, fix Lk � tRi | i ¤ ku and Bk to be the set of elements y satisfying
some Vi with i ¤ k. Since every element contained in infinitely many Ri-tuples
is contained in

�
k Bk, we need to show that cofinitely many elements x have the

same isomorphism type of NbhLk
pxq over Bk. Let s ¡ k be a stage large enough so

that for each relation R in Lk, if R is ever activated, it is activated before stage s,
and if R is ever de-activated, it is de-activated before stage s. Further, let s be
large enough so that M0 has constructed every element in Bk by stage s.

Then any element a created after stage s is created in a repair module be-
cause M0 is constructed with an empty basis, so the update modules do nothing.
Suppose this repair module was prompted by an Nℓ-strategy σ acting. The Pℓ-
strategy σ� has just performed its own update module, so each element in its
structure Mℓ aside from those already named by V -relations have isomorphic Lk-
neighborhoods over Bk before the repair module begins. Then the model M0

copies the elements associated with new relations Vi, which includes the full Lk-
neighborhoods for each of these elements. Thus, each a created after stage s has
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the same isomorphism type of NbhLk
paq over Bk. Thus, as in Lemma 31, we see

that ThpM0q is strongly minimal. □

Lemma 43. For any finite collection of unary relations Vi1 . . . Vik (i1   . . .   ik),
any relation Rn, any stage s, and any pair of P -strategies α, β, if Mα and Mβ

both have tuples x̄ satisfying
�

j¤k Vij pxjq at stage s, then Mα |ù Rpx̄q at stage s

if and only if Mβ |ù Rpx̄q at stage s.

Proof. Consider the strategy γ which defines Vik . This γ is an Nℓ-strategy which
creates the predicate Vik via its Step 2 action. At this stage, we consider the
structure Mℓ being built by the Pℓ-strategy τ � γ�. At this stage, in the repair
module, τ will determine whether or not Rnpx̄q will hold for its tuple x̄ satisfying�

j¤k Vij pxjq. Every other strategy which takes a repair module at this stage

will follow τ ’s lead in determining whether or not Rnpx̄q holds for its own tuple
satisfying

�
j¤k Vij pxjq. Any other P -strategy which eventually builds a tuple x̄

satisfying
�

j¤k Vij pxjq will do so in an update module, and it will choose whether
to satisfy Rn on this tuple so as to agree with τ ’s choice. □

Let T be the theory of M0.

Lemma 44. Fix n P ω. Let σ be the Pn-strategy along the true path. Then the
Pn-strategy at node σ builds a computable presentation of the model Mn of T of
dimension n.

Proof. We want to show that M0 elementarily embeds in Mn. For every element
x PM0, there is a unary relation Vk so that x is the unique element satisfying Vk.
We define a map from M0 to Mk by letting f send each element x to the element
satisfying the same relation Vk in Mn.

To show that f is an elementary embedding, it suffices to show that f is an
embedding and that every element in Mn which does not satisfy any relation Vi
satisfies the generic Lk-neighborhood over Bk for each k. Here, Lk � tRi | i ¤ ku
and Bk is the set of elements in Mn which satisfy a relation Vi for some i ¤ k.

This suffices since the fact about neighborhoods implies that Mn is strongly
minimal (as in Lemma 31), and the algebraic closure of the empty set is exactly
the set of elements which satisfy some relation Vi. Thus, since f is an embedding,
M0 � aclMn

pHq ¨Mn.
The fact that f is an embedding follows from Lemma 43 and the fact that σ is

visited infinitely often, so the update modules will ensure it has copies of all the
elements named by V -relations.

It remains to show that every element which does not satisfy any relation Vi has
the generic Lk-neighborhood over Bk. To see this, we will consider a relation Ri

and see that σ builds Mn handling Ri appropriately. The proper interpretation of
this relation is determined by a single Nℓ-strategy ρ. We will consider cases based
on how σ and ρ are located on the tree of strategies.

Let s be the stage at which σ is last initialized. If ρpx8y  L σ, then ρ does not
act and is not re-activated after stage s, so the interpretation of Ri does not change
after σ begins building Mn.

If σ  L ρ, then ρ is reinitialized at any stage when σ is visited. Thus whatever
interpretation Ri has at any stage when σ is visited is permanently correct (since
only ρ could change the interpretation and ρ is initialized).
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If ρpx8y ¨ σ, then at any stage at which σ is visited, ρ has just been incremented
and so will later pick a large ℓ1 beyond the indices of all relations with which σ is
now working. In particular, any relation that ρ had been working with has just had
its interpretation finalized, so σ sees the correct interpretation of Ri.

Finally, if σ   ρ, then any stage at which ρ changes the interpretation of Ri is a
stage at which σ runs the repair module, which ensures that each element has the
appropriate neighborhood. □

Lemma 45. Let τ be the Nℓ-strategy along the true path. Then the Nℓ-strategy τ
either ensures that Nℓ * T or that Nℓ has dimension ¤ ℓ. So, in particular, Nℓ is
not the ω-dimensional model of T .

Proof. We consider the possible outcomes of the strategy at node τ after its last
initialization.

If the true outcome of τ is d, then we have found two non-disjoint distinct
tuples z̄i and z̄j in Nℓ so that Rℓ1pz̄iq and Rℓ1pz̄jq. We note that in the theory T ,
if R P L is active and Rpx̄q ^ Rpȳq, then either x̄ � ȳ or x̄ X ȳ � H. So we need
to check that Rℓ1 remains active. No node left of τ is ever visited again since τ
is not initialized again. Since τ is only now taking outcome d, every previously
visited node below τ is being injured, as is every node to the right of τ . Since
these are then all initialized, they will at future stages only work with relations
that are of higher arity than Rℓ1 and will not de-activate Rℓ1 . We consider nodes
β   τ . If τ extends a finite outcome of β or the outcome d, then β never again
acts (otherwise, τ would be initialized again). If βpx8y ¨ τ , then at the moment
when τ takes outcome d, β has just performed its Step 2, so it has no relation R in
hand. When β is next visited, it will work with relations of arity larger than that
of Rℓ1 and cannot de-activate Rℓ1 .

If the true outcome of τ is 8, then every pℓ � 1q-tuple ā is considered by τ at
some stage. We either find some unary relation Vk and a P ā so that Nℓ |ù Vkpaq,
or we perform the action in Step 2. In the former case, if Nℓ |ù T , then a P aclpHq,
so ā is not an independent pℓ�1q-tuple. In the latter case, we have made T contain
the sentence ρ defined in (1). If Nℓ |ù T , then, since each of the z̄i are disjoint
(otherwise, we would have taken outcome d), it follows that θpz̄iq holds for some i.
But then ai satisfies a unary predicate Vk, so once again ā is not an independent
pℓ� 1q-tuple in Nℓ if Nℓ |ù T .

If the true outcome of τ is finite, then this is because the strategy gets stuck in
Step 1 since, for some ℓ1 and some element a, Nℓ |ù  Dx̄Rℓ1pax̄q and a does not
satisfy any unary relation Vk. But in M0, there is a finite set Y of elements, each
satisfying some unary relation Vk, so that M0 |ù @ypy P Y _ Dx̄Rℓ1pyx̄qq. Thus
Nℓ * T . □

This concludes the proof of Theorem 41. □

Combining Theorems 35, 37, 38 and 41, we obtain

Theorem 46. The following are the spectra of disintegrated strongly minimal the-
ories in a relational language of rank at most 1: H, r0, ωs, t1u, tωu, r1, ωs, r0, ns
for n P ω, r0, ωq, and possibly r0, ns Y tωu for n P ω as well as t1, ωu. □
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5. Ternary Languages and Languages of Higher Arity

The purpose of this last section is to show in Theorem 47 that, as for spectra of
computable models of strongly minimal disintegrated theories in binary relations,
we have only finitely many possible spectra of computable models in the case of
ternary relations as well. We emphasize that these results do not make assump-
tions about the ranks of the relations. On the other hand, Kudaibergenov [Ku80]
showed that t0, 1, 2u is the spectrum of a strongly minimal disintegrated theory in
a ternary relational language, and Nies/Hirschfeldt [Ni99, p.314] showed that t1, 2u
is the spectrum of a strongly minimal disintegrated theory in a ternary relational
language, neither of which, by our Theorem 10, is possible in the binary case. This
leads to our Corollary 48, giving the current best upper and lower bounds on the
number of spectra of computable models of strongly minimal disintegrated theories
in ternary relations.

Theorem 47. If T is a strongly minimal disintegrated theory in a relational lan-
guage of ternary relations and SRMpT q X r3, ωq � H, then r1, ωs � SRMpT q. Thus
there are at most eighteen spectra of computable models of disintegrated strongly
minimal theories in ternary relational languages.

Theorems 10 and 47 as well as the above-mentioned results of Kudaibergenov
and of Nies/Hirschfeldt allow us to immediately conclude the following

Corollary 48. There are at least nine but at most eighteen subsets of r0, ωs which
are spectra of computable models of a strongly minimal disintegrated theory T in a
language of ternary relations. □

Proof of Theorem 47. The proof proceeds in a number of lemmas. The first lemma
is the analog of Lemma 11, and the proof is the same.

Lemma 49. For a strongly minimal L-theory T , if k P SRMpT q and k P r3, ωs,
then the set of relations in L which are of rank 3 is a computable set. Thus T is
computably interdefinable with a theory all relation symbols of which have rank at
most 2. □

Using this lemma, whenever we have SRMpT qX r3, ωs � H, we will assume that
all relation symbols in L have Morley rank ¤ 2.

We now use a new trick, which does not seem to generalize to arity ¡ 3, to get
down to Morley rank at most 1. Note that a similar reduction to rank 1 for arbitrary
theories of bounded arity would, by Theorem 25, suffice to prove Conjecture 5.

Lemma 50. For each ternary relation R of Morley rank ¤ 2 in a strongly min-
imal disintegrated theory, the three relations D8wRpw, y, zq, D8wRpx,w, zq, and
D8wRpx, y, wq all have Morley rank ¤ 1, as does the symmetric difference between
Rpx, y, zq and D8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wq.

Proof. If y, z were mutually generic, where D8wRpw, y, zq, then for any x generic
over y and z, we would have Rpx, y, zq, but then R would have Morley rank 3.
Thus D8wRpw, y, zq has Morley rank ¤ 1. A symmetric argument works for
D8wRpx,w, zq and D8wRpx, y, wq.

Suppose

Rpx, y, zq ^  rD8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wqs
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has Morley rank 2. Then, by symmetry, there would be two mutually generic
elements x and y as well as an element z so that Rpx, y, zq and  D8wRpx, y, wq.
Thus z P aclpx, yq. Using the fact that our theory is disintegrated, we may assume
without loss of generality that z P aclpyq. Then x is generic over y, z, and so
D8wRpw, y, zq, contradicting our above hypothesis.

Next, suppose

rD8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wqs ^  Rpx, y, zq

has Morley rank 2. Then, without loss of generality, for some mutually generic x
and y and some element z,

rD8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wqs ^  Rpx, y, zq

holds. The third disjunct is impossible, as then R would be rank 3. So, without
loss of generality, D8wRpw, y, zq ^  Rpx, y, zq. Thus x P aclpy, zq. Since x and y
are mutually generic, x P aclpzq. Thus z is generic over y. But then D8wRpw, y, zq
implies that R has rank 3, again contradicting our above hypothesis. □

Given a language L comprised of ternary relations of rank ¤ 2 (which we may
assume if r3, ωs X SRMpT q � H), we define

L1 � tD8wRpw, y, zq | R P Lu Y
tRpx, y, zq ^  rD8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wqs | R P Lu Y
trD8wRpw, y, zq _ D8wRpx,w, zq _ D8wRpx, y, wqs ^  Rpx, y, zq | R P Lu.

Then L1 is a language inter-definable with L; in fact, every relation in L is even a
Boolean combination of relations in L1, and all relation symbols in L1 have Mor-
ley rank ¤ 1. (Recall again here that we assume, as usual, that our language is
effectively closed under permutation of variables.) Moreover, we have the following

Lemma 51. If Mk is a computable model for k ¥ 3 of a strongly minimal disin-
tegrated theory T , then each relation in L1 is uniformly computable in Mk.

Proof. Fix mutually generic elements a, b, c in Mk. Without loss of generality, we
only need to computably determine whether a pair a1, b1 satisfies D8wRpa1, b1, wq.
Note that at least one of a, b, c is generic over a1, b1.

Case 0: For each e P ta, b, cu,  Rpa1, b1, eq. Then  D8wRpa1, b1, wq, since an
element which is generic over a1, b1 satisfies  Rpa1, b1, eq.

Case 1: For exactly one e P ta, b, cu, Rpa1, b1, eq holds. If a1 and b1 are mutually
generic, then  D8wRpa1, b1, wq since R has rank ¤ 2. If a1 and b1 are not mutually
generic, then at least two elements in ta, b, cu are generic over a1, b1. Thus these two
elements either both realize Rpa1, b1, zq, or neither does. Since exactly one element
of ta, b, cu realizes Rpa1, b1, zq, neither of these two elements which is generic over
a1, b1 can realize Rpa1, b1, zq. Thus again  D8wRpa1, b1, wq. So  D8wRpa1, b1, wq
holds independently of whether a1 and b1 are mutually generic or not.

Case 2: For exactly two e P ta, b, cu, Rpa1, b1, eq holds; say,

Rpa1, b1, aq ^Rpa1, b1, bq ^  Rpa1, b1, cq.

In this case, we need to further distinguish subcases in order to determine whether
D8wRpa1, b1, wq holds or not.

Suppose that  D8wRpa1, b1, wq. Then both a and b are algebraic over a1, b1;
and so a1, b1 must be mutually generic as well. So, without loss of generality,
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by symmetry, a1 is interalgebraic with a and b1 is interalgebraic with b. Thus
Rpa1, b1, aq implies that Rpa1, b, aq, and Rpa1, b1, bq implies that Rpa, b1, bq. So, we
have Rpa1, b, aq ^ Rpa, b1, bq. (Symmetrically, if a1 is interalgebraic with b and b1 is
interalgebraic with a, then we have Rpa1, a, bq ^Rpb, b1, aq.)

Next, suppose that D8wRpa1, b1, wq. Then a1, b1 must have rank at most 1 since
the rank of R is at most 2; and c is algebraic over a1, b1, so by exchange, a1, b1 P
aclpcq, whereas a and b are both generic over a1, b1. Thus if Rpa1, b, aq holds, then
a1 P aclpa, bq X aclpcq � aclpHq. Similarly, if Rpa, b1, bq holds, then b1 P aclpHq.
These cannot both happen since then c P aclpa1, b1q � aclpHq. Symmetrically,
Rpa1, a, bq and Rpb, b1, aq cannot both happen.

In conclusion, we have that  D8wRpa1, b1, wq holds iff

pRpa1, b, aq ^Rpa, b1, bqq _ pRpa1, a, bq ^Rpb, b1, aqq.

Case 3: For each e P ta, b, cu, Rpa1, b1, eq holds. Then since one of them is generic
over a1, b1, D8wRpa1, b1, wq holds.

Thus, in each case, we can computably in the atomic diagram of Mk determine
whether or not D8wRpa1, b1, wq holds for any pair of elements a1, b1. □

We can now finish the proof of Theorem 47:
Fix a computable copy M of the model Ml of T for some l P r3, ωq. By

Lemma 51, we have a computable presentation of M1, the structure M seen as
an L1-structure, where L1 is given by Lemma 51. For each k P r1, ωs, Theorem 25
gives a computable copy N 1 of Mk in the language L1. Since each relation symbol
in L is uniformly a Boolean combination of relation symbols in L1, we obtain a
computable copy N of Mk. □
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