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Abstract. We show that there is a strong minimal pair in the computably enumerable Turing degrees, i.e., a pair of
nonzero c.e. degrees a and b such that a ∩ b = 0 and for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a.

1. Introduction

Much of the work on the degree structure of the computably enumerable (c.e.) Turing degrees has focused
on studying its finite substructures and how they can be extended to larger substructures. There are several
reasons for this: The partial order of the c.e. degrees is a very complicated algebraic structure, with an un-
decidable first-order theory, by Harrington and Shelah [HS82]. So, on the one hand, as in classical algebra,
a complicated structure is often best understood by studying its finite substructures. On the other hand, the
existential fragment of the first-order theory of this degree structure (in the language of partial ordering <, least
element 0 and greatest element 1) is known to be decidable by Sacks [Sa63], whereas by Lempp, Nies and
Slaman [LNS98], the ∃∀∃-theory of this structure (in the language of partial ordering only) is undecidable.
However, the decidability of the ∀∃-theory of this structure has been an open question for a long time; and it is
this question which can be rephrased in purely algebraic terms as a question about finite substructures:

Question 1.1 (Extendibility Question). Let P and Qi (with i < n) be finite posets such that for all i < n, P ⊆ Qi.
Under what conditions on P and the Qi can any embedding of P into the c.e. Turing degrees be extended to an
embedding of Qi into the c.e. Turing degrees for some i (which may depend on the embedding of P)?

Call a partially ordered set P bounded if it contains distinguished least and great elements 0 and 1, respec-
tively. We can now formulate the following modified

Question 1.2 (Extendibility Question with 0 and 1). Let P and Qi (with i < n) be finite bounded posets such
that for all i < n, P ⊆ Qi. Under what conditions on P and the Qi can any embedding of P into the c.e. Turing
degrees (preserving 0 and 1) be extended to an embedding of Qi into the c.e. Turing degrees (preserving 0
and 1) for some i?

The answer for n = 1 to Question 1.2 was given by the following

Theorem 1.3 (Slaman, Soare [SS99]). Uniformly in finite bounded posets P and Q, there is an effective pro-
cedure to decide whether any embedding of P into the c.e. Turing degrees (preserving 0 and 1) be extended to
an embedding of Q into the c.e. Turing degrees (preserving 0 and 1).

This result of Slaman and Soare built on a long line of research into the algebraic structure of the c.e.
degrees, starting with the Sacks Splitting and Density Theorems [Sa63b, Sa64] and the proof of the existence
of a minimal pair of c.e. degrees by Lachlan [La66] and Yates [Ya66].
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In their proof in [SS99], Slaman and Soare identify two basic obstacles to extending an embedding. The
first of these is lattice-theoretic: The c.e. degrees form an upper semilattice in which the meet of some but not
all pairs of degrees exists. In fact, the major hurdle toward deciding the ∀∃-theory of this structure has been
the long-standing lattice embeddings problem, asking for an (effective) characterization of those finite lattices
which can be embedded into the c.e. Turing degrees. (Note that the lattice embeddings problem can be phrased
as a subproblem of the Extendibility Question by making all the Qi one-point extensions of P, each testing the
preservation of a particular meet or join in the lattice embedding. Lerman [Le00] gave a noneffective (indeed a
Π0

2-)condition for lattice embeddability; a more recent survey is Lempp, Lerman and Solomon [LLS06].)
The other basic obstacle to extending an embedding identified by Slaman and Soare is a phenomenon some-

times called “saturation”; a minimal example of it is given by setting P = {0, a, b, 1} (with incomparable a, b)
and Q = P ∪ {x, z} (with 0 < x < a, z and b < z < 1 but x � b and a � z). In the general case, there may be a
number of such elements x ∈ Q − P, and for each x there will be a non-empty set Z(x) ⊆ Q − P of such z.

An early example of a specific instance of an answer to the Extendibility Question 1.2 for n > 1 was given
by Lachlan’s Nondiamond Theorem [La66]: No minimal pair of c.e. degrees can cup to 0′. (For this, we set
P = {0, a, b, 1} (with incomparable a, b), Q0 = P∪{x} (with 0 < x < a, b), and Q1 = P∪{y} (with a, b < y < 1).)
So this is an instance of two lattice-theoretic obstructions which cannot be overcome individually, but can be
overcome in combination.

The main theorem of this paper provides an example where a lattice-theoretic obstruction and a “saturation”
obstruction cannot each be overcome either individually or in combination:

Main Theorem. There is a strong minimal pair in the c.e. Turing degrees, i.e., there are nonzero c.e. degrees a
and b such that a ∩ b = 0 and for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a.

Note that this is an instance of the Extendibility Question 1.2 by setting P = {0, a, b, 1} (with incomparable
a, b), Q0 = P ∪ {x} (with 0 < x < a, b) and Q1 = P ∪ {x, z} (with 0 < x < a, z and b < z < 1 but x � b and
a � z).

We should mention here that our Main Theorem has a long and twisted history. It was discussed and claimed,
in both directions, by a number of researchers over the past 25 years. The only published proof is in Lerman’s
monograph [Le10], where he attributes the theorem to Slaman (also see the review by Barmpalias [Ba11]).
However (per personal communication with Lerman), the proof published by Lerman [Le10] has a gap, which
is filled by a feature which we introduce in our proof here.

We would like to state here the following related question, which we leave open:

Question 1.4. Is there a “two-sided” strong minimal pair; i.e., are there nonzero c.e. degrees a and b such
that a ∩ b = 0, for any nonzero c.e. degree x ≤ a, b ∪ x ≥ a, and for any nonzero c.e. degree y ≤ b, a ∪ y ≥ b?

This is, of course, an instance of the Extendibility Question 1.2 (with n = 3, combining one lattice-theoretic
and two “saturation” obstructions, namely, setting P = {0, a, b, 1} (with incomparable a, b), Q0 = P∪ {w} (with
0 < w < a, b), Q1 = P ∪ {x, z} (with 0 < x < a, z and b < z < 1 but x � b and a � z), and Q2 = P ∪ {x′, z′}
(with 0 < x′ < b, z′ and a < z′ < 1 but x′ � a and b � z′). We remark here that our Question 1.4 has a negative
answer if we also require the join of (the images of) a and b to be “branching” (i.e., meet-reducible); i.e., any
embedding of P = {0, a, b, c, d, e, 1} (with incomparable a, b, incomparable d, e, and a, b < c < d, e) extends to
an embedding of Q0 = P ∪ {w} (with 0 < w < a, b), Q1 = P ∪ {x, z} (with 0 < x < a, z and b < z < 1 but x � b
and a � z), Q2 = P ∪ {x′, z′} (with 0 < x′ < b, z′ and a < z′ < 1 but x′ � a and b � z′), Q3 = P ∪ {y} (with
a, b < y < c), or Q4 = P ∪ {y′} (with c < y′ < d, e). This last result was observed by Slaman by combining
Theorem 1.3 with the Non-Embeddability Condition (NEC) of Ambos-Spies and Lerman [AL86]. This last
result also suggests that the full answer to our Extendibility Questions 1.1 and 1.2 is likely to be very hard.

2. Requirements and Priority Tree

In this section we describe a set of requirements that guarantee our main theorem, and the way these require-
ments can be assigned to strategies on a priority tree. This methodology is rather standard for priority arguments
of this type, and the reader is referred to the arguments in [FeSo81, SS93] (Harrington’s plus-cupping theorem
and Slaman’s triple) which exhibit certain similarities. Moreover, these ideas are refinements of certain devices
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that were used in Lachlan’s original 0′′′-priority argument in [La75]. We will also refer to these constructions
in Section 3, in order to explain the origins of the basic strategies for meeting our requirements.

2.1. List of requirements. As usual, we construct two c.e. sets A and B such that in the end a = deg(A) and
b = deg(B). We first have the requirements which satisfy that a and b form a strong minimal pair:

Ri : Φi(A) = Wi ⇒ [∃Γ(Γ(B ⊕Wi) = A) ∨ ∃∆(∆ = Wi)] .

Then we have the diagonalization requirements which guarantee that A is not below B [B not being below A
will be guaranteed automatically]:

Si : Ψi(B) , A.

Note that each Si states that there exists an x such that Ψi(B; x) , A(x). In the construction, each Si-node
has subsidiary Si, j-nodes, each using a possibly different killing point (to be defined and clarified later) for
forcing Ψi(B; x) to diverge. We call a node associated with such Si a parent node and a node associated
with Si, j a child node. At each stage, the collection of an Si-parent node and its previously visited, uncanceled
child nodes is called an Si-family (of that stage).

2.2. Discussion of the requirements in a historical context. It is worth noting the similarity of the require-
ments with those of the arguments in [La75, FeSo81, SS93]. Such a discussion may be beneficial to the reader
who is familiar with these older and simpler arguments; but it may also be helpful to the reader who is not an
expert in 0′′′-priority arguments and might like to first consult these simpler proofs. In its simple form, Har-
rington’s plus-cupping theorem (presented in [FeSo81] but also in [Sho90]) asserts the existence of a nonzero
degree a such that every noncomputable w ≤ a cups to 0′ (i.e., there exists some b < 0′ such that 0′ ≤ a ∪ b).
The main requirements for this theorem (excluding the noncomputability of A) can be written as

R∗i : Φi(A) = Wi ⇒
[
∃Γ, Bi (Γ(Bi ⊕Wi) = A ∧ ∅′ �T Bi) ∨ ∃∆(∆ = Wi)

]
.

The similarity of the plus-cupping requirements with our requirements of Section 2.1 is clear. The main differ-
ence is that in the plus-cupping requirements, for each Wi we can build a different Bi while in our requirements
there is a unique B that must accommodate all conditions. Another relevant example is the construction of a
so-called ‘Slaman triple’, i.e., three degrees a,b, c such that a > 0, c � b and for all noncomputable w ≤ a we
have c ≤ w ∪ b. This was published in [SS93] (based on some unpublished notes of Slaman from 1983) and it
is clear that if we also require a = c then a Slaman triple becomes the strong minimal pair of our main theorem.
The requirements for a Slaman triple (excluding the noncomputability of a and c � b, which is similar to our
positive Si-requirements in Section 2.1) are

R∗∗i : Φi(A) = Wi ⇒ [∃Γ (Γ(B ⊕Wi) = C) ∨ ∃∆(∆ = Wi)] .

The similarities of R∗∗i with our Ri are also clear. Instead of using the same set for the roles of A and C we use
two, therefore relaxing the conflict that is generated between the positive and the negative requirements. On
the other hand, we use a single B here, in contrast with R∗i , where we had a different Bi for each condition R∗i .

The strategies used in the arguments in [FeSo81, SS93] involve a gap-cogap technique for the construction of
the Turing reductions Γ, which originated in [La75] and which will also be used in our argument. In Section 3,
we will discuss this technique in detail, as well as the additional difficulties that conditions Ri present, which
are the reason for the more complicated approach we eventually take.

2.3. Priority tree. Our priority tree is defined top down, i.e., the top node has the highest priority. Each node
has several possible outcomes, prioritized left to right.

Each Ri-node α has two outcomes: i (infinite) and f (finite). Along the i-outcome, we are defining a func-
tional Γα for computing A from B⊕Wi. Such a node α is active at some β below if there is no gα-outcome (see
below) between β and α and there are no α′ and β′ with α′ ⊂ α ⊂ β′ ⊂ β such that α′ and β′ form a pair (see
definition below).

Each Si-parent node β has three outcomes: d (diagonalization), g (gap, defined below), and w (wait). The
g-outcome stands for an apparent computation Ψi(B; x) = 0 against which we cannot diagonalize (i.e., put x
into A without risking to lose the computation Ψi(B; x) = 0). We arrange the priority tree in such a way that
immediately following the g-outcome of each Si-parent node, we have its first Si,0-child node.
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EachSi, j-child node β is below the g-outcome of itsSi-parent node and has outcomes gα0 , . . . , gαk , c (ordered
from left to right). Each gα (which, following convention, again stands for “gap”) corresponds to one active
R-node α above the Si-parent node (not the Si, j-child node), ordered in such a way that if α ⊂ α′, then gα is
to the left of gα′ . For the nodes extending the gα-outcome, we say that α and this child node β form a pair. In
addition, we also define a computable function ∆ along the gα-outcome for computing the set W corresponding
to the requirement at α. Extending a gα-outcome, we stop adding new Si,k-child nodes (and believe that this
requirement has been satisfied forever). There is only one c-outcome (c stands for “claim”) to the right of all
the gα-outcomes. Extending such an outcome, we continue to add new Si,k-child nodes. Of course, we arrange
the priority tree in a reasonable way such that along every infinite path, each requirement is represented at most
once by a strategy (or pair of strategies, in the case of the R-requirements) which is not enclosed by any other
pair.

3. Overview of the Strategies and Their Conflicts

In this section we discuss the basic strategies that are a starting point for the more complex strategies that
are needed for the satisfaction of the requirements. We start with the standard gap-cogap strategy for the
satisfaction for simple combinations of prioritized conditions, and slowly build the ideas needed for the general
case. Recall that the tree of strategies grows from the root downwards, so that a strategy node above another is
of higher priority with respect to the latter one. The main conflict occurs between the ‘positive’ requirements
(or strategies) S j (which typically put numbers into A and try to preserve a B-computation by restraining
the enumeration of small numbers into B) and the ‘negative’ requirements Ri which typically facilitate the
enumeration of numbers into B, which are often needed for the rectification of the functional Γi that they build.
The latter rectification is needed due to the enumeration of numbers into A by some positive strategies. In the
preliminary Sections 3.1 and 3.2, we assume that strategy S j operates from a single node, instead of being split
into a parent node and child nodes as we described in Section 2.3. We do this for simplicity, as these sections
only serve as an illustration of the typical gap-cogap strategy, which is sufficient for simple configurations of
requirements but not for the full construction.

3.1. Typical gap-cogap strategy: one S below one R. The strategy of an Ri-node is to simply enumerate
Γi-computations for the reduction Γi(B⊕Wi) = A, and enumerate a number into B when there is a number k such
that Γi(B ⊕Wi; k) = A(k). In the latter case, this number would typically be the current use of the computation
Γi(B ⊕Wi; k), and its enumeration facilitates the rectification of the reduction. When k is the witness of some
positive requirement (or some related parameter, see below) then the use of the rectified computation may need
to be increased to a large number (for reasons that will become clear when we discuss the S j-strategy).

The S j typically picks a witness x and waits for the computation Ψ j(B; x) to converge with output value 0.
If and when this happens, a typical diagonalization strategy would prompt for the enumeration of x into A and
the preservation of the B-use of the computation Ψ j(B; x). However, this naive strategy is not successful in
the present context, since the higher-priority Ri-strategy may enumerate into B a number that can destroy the
computation Ψ j(B; x). Such an enumeration may be caused due to the enumeration of x into A by S j, and the
instructions of Ri to maintain the correctness of Γi. This is the primary conflict between the requirements, and
at this elementary level it can be resolved by a standard gap-cogap strategy on the behalf of S j (much like in
the arguments in [FeSo81, SS93] which we discussed in Section 2.2).

The gap-cogap strategy for S j typically operates in cycles, periodically restraining A or B, thus building a
potential computation ∆ for the set Wi. Prior to the start of the alternating cycles, it chooses a witness x. The
first step in each cycle is:

(w) Wait for the computation Ψ j(B; x) to converge with output value 0.
If and when this happens, it checks if the B-use of the computation Γi(B ⊕ Wi) is less than the B-use of the
computation Ψ j(B; x). If this is not true, then it can safely enumerate x into A and restrain the B-use of
the computation Ψ j(B; x), thereby securing the disagreement Ψ j(B; x) , A(x). Note that in this case, the
Γi-rectification that may be prompted by Ri will not affect this diagonalization. Otherwise, it will consider the
Wi-use of Γi(B ⊕Wi; x), say uw, and

(a1) drop any restraint on A (thus allowing Wi to change, under the assumption that Φi(A) = Wi);
(a2) define ∆ = Wi up to uw and restrain enumerations into B up to the B-use of Ψ j(B; x).
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This action initiates an interval of stages that may be called an ‘A-gap’, which is characterized by a lack of
restraint on A and the enforcement of a restraint on B. During this interval of stages, Ri receives the instruction
to increase the use of Γi(B ⊕ Wi; x) to a large number (larger than the use of Ψ j(B; x)) in the event that Wi

changes below uw. When the strategy is revisited (as in a standard tree of strategies argument),

(b1) if Wi has changed below uw since the stage the A-gap was opened, it enumerates x into A, while
enforcing a permanent restraint on B for the preservation of Ψ j(B; x) , A(x);

(b2) otherwise, it closes the A-gap (thereby reinforcing a restraint on A, equal to the use of the current,
possibly new computation Φi(A) = Wi up to uw), and opens a B-gap by dropping the restraint on B and
enumerating the B-use of Γi(B ⊕Wi; x) into B.

Note that step (b2) is possible since S j works under the assumption that the reduction Φi(A) = Wi has infinitely
many expansionary stages. Moreover, note that the B-enumeration in step (b2) will destroy the computation
Ψ j(B; x). Now let us review the long-term behavior of the S j. The routine comes to halt if one of the following
cases occurs at some stage s0:

(1) Ψ j(B; x) remains undefined or not equal to 0 at all stages larger than s0; or
(2) x is enumerated into A by S j.

In the first case, S j is clearly satisfied (this can be viewed as a Σ0
2-outcome). In the second case, according to

the strategy, the disagreement Ψ j(B; x) , A(x) will be preserved (since the B-use of Γi(B ⊕ Wi; x) would be
larger than the B-use of Ψ j(B; x)). Hence in this case also (assuming that basic priority is respected amongst
the requirements) S j is met in a Σ0

2-way. The interesting case is when these events do not occur, in which case
the following cycle of ‘states’ of the S j-strategy repeats indefinitely:

(3.1) (w)→ (a1)→ (a2)→ (b2)→ (w)→ · · ·

Under this infinitary Π0
2-scenario, the witness x remains fixed, while the S j-strategy alternates between A-gap

states (when B-restraint is imposed but not A-restraint) and B-gap states (when A-restraint is imposed but not
B-restraint). The A-gap interval consists of the steps (w), (a1), (a2) (where the latter two typically occur at the
same stage) while the B-gap interval consists of step (b2). In this case, observe that the S j-strategy builds a
total computable function ∆ which correctly computes Wi: new computations are produced at the (a2) steps,
and throughout the stages none of these computations are falsified. Indeed, if such a computation were falsified
(through a Wi-change below the maximum initial segment of numbers on which ∆ is defined) then the strategy
would execute step (b1), thus ending the perpetual cycle (3.1) and producing a successful Σ0

2-outcome for S j.
On the other hand, under this outcome, the use of Γi(B ⊕Wi; x) is driven to infinity, thereby making Γi partial
at the chosen number x. This aspect of the strategy is sometimes known as ‘capricious destruction’ of Γi, since
our strategy intentionally ‘kills’ the very reduction that we build at a higher-priority node (but for good reasons,
see the next paragraph).

Hence, under this infinitary Π0
2-outcome of S j (often called a ‘gap outcome’), the actions of this strategy

satisfy the higher-priority Ri, as well as itself since the use of Ψ j(B; x) is driven to infinity. On the other
hand, S j can pass the information that Γi is partial at x to the lower-priority requirements, so a lower S j′ can
successfully implement a standard diagonalization strategy by only considering computations Ψ j′ (B; y) which
have use B-use below the B-use of Γi(B; x) (which goes monotonically to infinity). In the next section, we see
that this gap-cogap strategy also works in a nested environment, thus satisfying S j below any finite number of
Ri-strategies.

3.2. Typical gap-cogap strategy: one S below many R. When an S j-strategy works below a finite number of
Ri-strategies, it needs to resolve the same issues as the ones discussed in Section 3.1, but this time with respect
to each of the higher-priority strategies. More specifically, it may have trouble preserving a diagonalization
Ψ j(B; x) , A(x) due to a number of Γ-reductions that are being built with higher priority. In this section, we
show that a nested version of the strategy we discussed in Section 3.1 suffices to deal with these conflicts. This
nesting approach is also typical in arguments like those in [FeSo81, SS93]. For simplicity, suppose that a node
working for S0 is below a node for R1, which in turn is below a node working for R0. The methodology we
give below generalizes trivially to the case where we have a node for S0 below nodes for Rk, . . . ,R0. The idea
is to implement the gap-cogap strategy for S0 sequentially, first with respect to R1 and then with respect to R0.
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Consider the gap-cogap strategy of S0 with respect to R1. Under the Π0
2-outcome of this strategy, W1 is

proven computable while Γ1 is partial at a specified level (namely the witness x of S0). In this case, another
requirement S1 can work below S0, with the additional information that Γ1 is partial at x. Then a standard gap-
cogap strategy for the copy of S1 against R0 alone can successfully work for satisfaction of both requirements
(as in Section 3.1).

On the other hand, there is a possibility that this gap-cogap routine of S0 against R1 ends up having a
Σ0

2-outcome. In this case, the strategy would typically go to step (b1). However, at such a stage, S0 can
no longer proceed directly with the diagonalization Ψ j(B; x) , A(x). Indeed, the higher-priority R0 could
potentially destroy such a disagreement (in a way that we have already discussed: through a rectification of
its Γ0 reduction). In this case, S0 needs to start a new gap-cogap cycle with respect to R0. If this nested cycle
repeats indefinitely, it provides a computation ∆0 for W0 while making both Γ0 and Γ1 partial at x. In this case,
the highest priority R0 is met, at the expense of R1 and S0 which are ‘injured’ and need to be satisfied by means
of additional copies of their strategies under the information that Γ0 is partial at x. This is certainly possible, as it
reduces to the cases we have already discussed. If, on the other hand, the second (nested) gap-cogap cycle of S0
reaches step (b1), then it can diagonalize, thereby producing the disagreement Ψ j(B; x) , A(x) and preserving
it indefinitely (since the relevant Γ0- and Γ1-uses are sufficiently large, due to the W0- and W1-changes that
occurred, respectively).

We may sum up the nesting of the gap-cogap strategies as follows. Strategy S0 first attempts to ‘clear’ the
computation Ψ j(B; x) from the Γ1-use on x. If and when it achieves this (through a W1-change) it proceeds
to clear this computation from the Γ0-use on x. If and when this is achieved, it can successfully diagonalize.
In any other case (except the trivial case when Ψ j(B; x) remains undefined or not equal to 0), it produces a
Π0

2-outcome that enables copies of the existing strategies to satisfy their corresponding requirements at nodes
of lower priority. It is important to note that in the above scenario, after the computation Ψ j(B; x) is cleared
from the Γ1-use on x, the strategy has one chance to clear it from the Γ0-use on x (namely, in the next cycle
when the A-restraints drop). If this fails, the strategy starts the module anew, waiting again for the convergence
of Ψ j(B; x).

Note that here we have two different Π0
2-outcomes corresponding to the following cases:

(1) we never clear the Γ1-use;
(2) we clear the Γ1-use infinitely often but we never clear the Γ0-use.

Also note that we only attempt to clear the Γ0-use when we have already cleared the Γ1-use. In this sense, we
say that S0 first opens a gap for R1 and then for R0.

These nested gap-cogap strategies are sufficient for dealing with one S-strategy below any finite number
of R-strategies. When we consider multiple S-strategies below a number of R-strategies, new conflicts occur,
which we discuss in the following sections.

Now in our formal construction (see Section 4.1), we instead handle the gap-cogap requirements from
different notes by alternating global A-stages and B-stages in the background. During A-stages, we are allowed
to change A but not B; during B-stages, we are allowed to change B but not A. Later in the discussion, we will
use A-stages and B-stages instead of the gap-cogap terminology.

In particular, in the above construction, we do not need to make enumerations immediately but can wait
for an appropriate stage to perform the action. For example, after we enumerated a diagonalization witness x
into A during an A-stage, we cannot simultaneously enumerate the Γ-use (for the correction of the Γ functional
computing A) into B, but we can do this later when we next time visited the corresponding R node.

3.3. A minimal new example: two S below two R. Here, we illustrate the idea by a minimal example where
we see a conflict which needs some new strategy, and we will briefly explain how to handle the conflict. (See
Figure 1.)

First of all, for later purposes, we want to separate a parent node S0 and its child nodes S0, j. Roughly each
child node is taking care of the old strategies which selects the R-requirement above to pair with and defines
the corresponding function ∆. The first child node S0,0 is always immediately following its parent node’s
g-outcome.



ON THE EXISTENCE OF A STRONG MINIMAL PAIR 7

R0

i

R0

i

R1

i

R1

i

S0(x0)

g

S0(x0)

g

S0,0

∆1
c(x1)

FF
FF

FF
FF

S0,0

c(x′)

S1(x1) S0,1 R2

i

S1(x1)

g

S1,0

∆2
c(x2)

FF
FF

FF
FF

S0,1

∆1

uu
uu
uu
uu
u

c(x2)

S0,1

S2(x2) S3(x3)

Figure 1. A minimal example (left) and a complete example (right)

Let R0 and R1 be two consecutive R-requirements, and let the R1-node be extending the R0-node’s i-out-
come. Consider an S0-node extending the R1-node’s i-outcome. Now, at the S0-node, as in a usual construc-
tion of this type, we may have a diagonalization witness x0, but the use ψ0(x0) may always be too large (say,
≥ γ1(x0)), and so we go to the g-outcome. At the first S0,0-child node, we use γ1(x0) to kill the computa-
tion Ψ0(B; x0) infinitely often, say. At the same time, the S0,0-child node will build a function ∆1 to correctly
compute W1 (for the R1-node).

Now, to make sure that ∆1 is always correct, the S0,0-child node has to set up some mechanism to prevent
injury. In the construction, we implement an alternating A-stage/B-stage approach, so that at each stage, at
most one A or B can change. There are now two cases here. During a B-stage, A does not change, and so
W1 = Φ1(A) (up to the length of agreement) will not change, either, since otherwise, we will not visit the
S0-node again. During an A-stage, A can change but B does not. If now W1 changes, then we can increase
the Γ1-use while preserving the Ψ0(B; x0)-computation. Then we observe that γ1(x0) > ψ0(x0), and so we will
switch to the left of the outcome associated with ∆1. In this process, unless we move to the left of the outcome
associated with ∆1, we see that the Ψ0(B; x0)-computation is used to protect ∆1 during A-stages, since only a
W1-change without a B-change guarantees that we can move to the left of the outcome associated with ∆1; so,
in the argument, it is crucial that we can preserve the use of Ψ0(B; x0).

Now, say, extending the ∆1-outcome, we have another S1-node with a witness x1. During an A-stage s0, it
might want to enumerate x1 into A for its own diagonalization (and so A would be changed). By the observation
above, we have to protect the use of Ψ0(B; x0) at the same time. However, if we implement the diagonalization
procedure for S1 here, then later at s1 > s0 the R0-node’s Γ0-functional, after observing a change at x1 in A,
will inevitably add γ0(x1) into B for Γ0-correction (unless W0 has changed from s0 to s1, but this is not in our
control). At s1, however, there is no guarantee that γ0(x1) > ψ0(x0).
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The solution is thus briefly as follows: In such a situation at stage s0, we instead go to a different outcome to
the right of the ∆1-outcome, which we call the c-outcome. We stay at this c outcome as long as γ0(x1) ≤ ψ0(x0)
(since otherwise, there is no problem). So at a following stage s1 > s0, as long as γ0(x1) ≤ ψ0(x0) is still true,
instead of using γ0(x0) to kill the Ψ0(B; x0)-computation, we can use γ0(x1). We say that x1 is the claim point
for this c-outcome at this stage s0. We count this as a small step toward success. Later at the next S0,1-child
node, we have a similar scenario for which we may go to the c-outcome with a larger claim point, etc. If this
happens infinitely often along the true path (i.e., there are infinitely many S0, j-nodes with a c-outcome along
the true path), then we are using larger and larger numbers to push ψ0(x0) to infinity, and so the S0-requirement
will be satisfied in a Π3-way; on the other hand, Γ1 is still active (since it is only injured finitely often at each
argument), so we do not have to build ∆1 for it.

From a local viewpoint, the conflict happens when we see a computation at S1 which we want to use
to diagonalize, and some higher requirements (R1 − S0) put some restraint on the diagonalization. So the
c-outcome with a larger claim point x1 essentially allows us to freeze the computation at S1 and at the same
time allow R1 and S0 to continue working towards success by switching the killing point from x0 to x1.

From a global viewpoint, while other outcomes are standard in this type of gap-cogap construction, each
such c-outcome is a Σ2-type of outcome, which states that in the construction, there is a stage with a claim point
such that we will keep this claim point (stay in the c-outcome) forever in the following construction.

Node Symbol Access Action Sub-action Outcomes Type

R α normal defines Γ B-enumerations i, f Π0
2 / Σ0

2

S-parent β normal or child-link clearing/claim A-enumeration d, g,w Σ0
1 / Π0

2 / Σ0
2

S-child β j n. or own-parent-link defines ∆ B-enumerations gαt , c Π0
2 / Σ0

2

Table 1. Nodes on the priority tree, their main actions and their outcomes

3.4. The new idea: c-outcomes. The use of the c-outcomes is new and in fact crucial to our construction, so
it is important to explain its use and address the differences between a c-outcome and a standard g-outcome
(gap outcome) for example as in Section 3.1.

As we have mentioned above, the c-outcome in our minimal example essentially allows us to freeze the
computation at the S1 node (see Figure 1) as well as ∆1 to the left of the c-outcome, while waiting for a later
stage when diagonalization is safe to perform (i.e., the Γ1-use is large enough). It is important that here we
do not perform any enumeration at this c-outcome. A natural attempt, which actually fails to work, would be
to perform the same gap-cogap operation with the new witness x1 at the c-outcome. The reason is that, it is
possible that such a witness x0 or x1 at which the Γ1-use is used to push Ψ0(x0)-use may change and possibly go
to infinity. All the lower priority nodes, for a successful construction, need to guess at the outcome correctly.
However, with only one (or even infinitely many) c-outcome where the gap-cogap strategy is performed, it is
not possible for the lower priority nodes to know whether the witness will stop increase or go to infinity.

In general, a c-outcome is an outcome of a S-child node, but unlike a g-outcome (of the same child node)
it does not enumerate any elements (into B). Instead such enumeration is delayed to g-outcomes of other
S-children nodes below this c-outcome.

Along the c-outcome, the S requirement at the parent node is satisfied as we push its use Ψ(x) to infinity for
a fixed x (the diagonalization witness at the parent node). This is the same as along the g-outcomes to the left
of the c-outcome. What makes a c-outcome different is that the delay of B-enumerations allows us to satisfy
the requirement R by keeping the corresponding Γ total. Note that g-outcomes always kill such Γ functional
and so they need to build ∆’s in order to satisfy R.

In addition, such delay also allows us to work on other (lower priority) requirements between the S-children
nodes. That is, if a lower priority node is only below a c-outcome of the “S-family” but not any of the g-
outcomes of the children nodes, then it believes that Γ is still total and so active. As a result, this also requires
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some minor adjustments to the different numbers used in our standard gap-cogap construction, which we will
describe in the complete example below.

3.5. A complete example: clearing point, killing point and claim point. Now we complete the minimal
example above to add in all the features of the construction. In particular, we will explain various numbers
used during the construction. (See again Figure 1.) Table 1 can be helpful as a guide on the general structure
of the argument and the complexity of the outcomes of the strategies.

Suppose we have two consecutive R-requirements R0 and R1, and the R1-node is extending the R0-node’s
i-outcome. Extending the R1-node’s i-outcome, we again have an S0-node followed by its first S0,0-child node.
Now, extending the c-outcome of the S0,0-node (with a claim point x′), we have an R2-node followed (along
its i-outcome) by an S1-node.

Let x1 be the diagonalization witness for S1. When we try to diagonalize against Ψ1 at stage s0 when
we see a convergent computation Ψ1(x1), we first need to make sure that ψ1(x1) < γi(x1) for i = 0, 1, 2; in
addition, notice that the S0-family currently has a c-outcome, which means that extending any outcome of the
S1-node (e.g., the d-outcome), there will be more S0, j-child nodes, and later at any stage s > s0 they will
possibly enumerate γ0(x′) or γ1(x′) into B in order to push ψ0(B; x0) to infinity. This means that, for successful
diagonalization against Ψ1, we also need to care about possible Γ-use enumerations at x′ (which is < x1). So
here at stage s0 we call such a number x′ the clearing point at S1 and use it to clear the computation: For
clearance, we require ψ1(x1) < γi(x′) for i = 0, 1, 2. If this is not true, then we use x′ (instead of x1) to push
ψ1(B; x1) at the first S1,0-child node.

Say, at the S1,0-node, we choose to go along the gα2 -outcome building ∆2 (since ψ1(x1) ≥ γ2(x′)). Now
extending this gα2 -outcome, say, we first have an S0,1-child node. As required by the S0,0-node, the S0,1-node
uses x′ to push ψ0(B; x0) to infinity. We call such a number x′ the killing point at S0,1. Say after stage s1 > s0,
such a child node also has a c-outcome (whose claim point x2 comes from some S2-node extending one of
its g-outcomes, as in the minimal example). Extending such a c-outcome, we have an S3-parent node, say with
diagonalization witness x3.

From the S3-node’s point of view, R2 has been satisfied (by the S1,0-node), and R0 and R1 are still active.
The clearing point at the S3-node is x2, because it believes that the new S0-family members will use x2 instead
of x′ as the killing point. So the S3-node checks whether ψ3(x3) < γi(x2) for i = 0, 1.

Now suppose this is true, i.e., we have a cleared computation, say at stage s2 > s1. Then, according to the
minimal example above, we next want to make sure that ∆2 is preserved, and we try to clear the Ψ1(B; x1)-com-
putation by going to the c-outcome of the S1,0-node.

The tricky part is that, this time at stage s1, for successful clearance, we actually want ψ1(x1) < γi(x2) (for
i = 0, 1) (instead of ψ1(x1) < γi(x3)): The reason here is that, to the right of this ∆2, later at any stage s > s2 it
is possible that a new S0, j-child node will use x2 as the killing point and enumerate γ0(x2) or γ1(x2) into B, and
we do not want these numbers to injure Ψ1(B; x1), which we use to protect ∆2. We say that x2 is the claim point
of this c-outcome at stage s2 (later this claim point is used as the killing point for new S1,k-child nodes). When
we go to the c-outcome, i.e., the Ψ1(B; x1)-computation is not cleared, then the associated claim here is that
after this stage, it is always the case that we do not get a clearance, i.e., it is always the case that ψ1(x1) ≥ γi(x2)
for i = 0 or 1.

Point S-node Outcome Complexity

Witness Parent All Σ0
1

Clearing Parent All Σ0
1

Claim Child c Π0
2

Killing Child c Π0
2

Table 2. Parameters of the S-nodes (parents and children), associated outcomes and their complexity modulo initialization.



10 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEODORE A. SLAMAN

3.6. Overview of the S-strategies. Table 2 summarizes the parameters we have introduced for the S-nodes
(parents and children). In this section, we summarize their dynamics and basic features, in a top-down descrip-
tion (as opposed to the bottom-up motivational discussion of Section 3.5). The diagonalization is done at the
parent node, with a witness which is fixed, as long as the parent node is not injured. The same is true of the
clearing point, which is another parameter of the parent node. The clearing point is always less than or equal
to the witness. In the simple case that we described in Section 3.3, we use the witness as a clearing point, but in
the presence of more requirements, we need to differentiate between the two. The clearing point is the number
on which we may force the associated Γ-functional to be partial.

Associated with the c-outcome of each Si j-child node is the claim point of the node. Each time that the
c-outcome is activated, it may have a different claim point. Each Si j-child node also has a killing point,
which is calculated from the claim points of the higher-priority child nodes. In this way, the killing points of
child nodes are raised according to the claim points of the higher-priority child nodes with c-outcomes. The
c-outcome of a child node β j is initiated by a parent node below β j (not its own parent).

Satisfaction of S Main outcome Outcome Complexity

Ψ(B; x) ↑ co-finitely wait outcome (parent) Γ total Σ0
2

Ψ(B; x) ↓, A(x) co-finitely diagonalization (parent) Γ total Σ0
2

Ψ(B; x) ↑ infinitely often gap outcome (child) Γ partial Σ0
3

Ψ(B; x) ↑ infinitely often all children true c-outcomes Γ total Π0
3

Table 3. Four different ways that requirement S with witness x may be satisfied, and their complexity relative to the corresponding parent node.

Along with the c-outcome, an Si j-child node implements a gap-cogap strategy, sequentially with respect
to the ∆-functionals of higher-priority child nodes. This gap module looks for appropriate changes in the
approximation to the corresponding sets W, starting from the closest and moving monotonically toward the
root of the tree. The usual gap-cogap operation of a child node may be interrupted by its c-outcome infinitely
often. Infinitely many c-outcomes along the child nodes of a parent node (in the ‘true path’) means that the
functional we try to diagonalize against is partial. Table 3 displays all the different ways that requirement S
can be satisfied. The first three ways displayed are typical to a gap-cogap argument. However, the last case
is special and corresponds to the case when all children fail to succeed with their gap-cogap strategy. In that
case, Ψ(B; x) becomes partial due to the enumeration of Γ-uses on larger and larger arguments. Table 3 also
displays the effect that the outcomes have on the functional Γ that we build for S. Note that in the context of
the global construction, where many requirements are present, the global outcomes are slightly more complex
(e.g. a Γ-functional that is left intact by some child node may end up partial due to a child of another parent).

4. Construction

4.1. Accessible path, stage dichotomy, accessible nodes and visited nodes. In the construction, each stage is
either an A-stage or a B-stage. We can arrange that all even stages are A-stages and all odd stages are B-stages.
During A-stages, we are allowed to change A but not B; during B-stages, we are allowed to change B but not A.
Each node first ignores the stage setting and follows the construction. When the node wants to change A or B,
it checks whether the current stage setting allows this action. If so, it changes A or B as planned; if not, it
terminates the stage and waits.

In addition, each node must try to pass down alternating A-stages and B-stages along its (believed) true
outcome. If the stage setting is not the one expected, the node needs to wait for another stage to go to the
outcome we want. For instance, if a node needs to go to an outcome, and at the last stage that outcome was
accessible was an A-stage, then we are expecting a B-stage this time. If this is a B-stage, then there is no
problem; if this is an A-stage, then we terminate the stage.

Now, in these two cases when we terminate the stage (since the stage is not the one we wanted), at the
very next stage (notice that the stage has changed from A to B or from B to A), we first check whether any W
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has changed (from the previous stage) for those W’s along the accessible path, up to the previous length of
agreement. If so, then for the highest one, we switch to the f -outcome if the length of agreement has decreased
(and it is easy to see that then we have a permanent win unless the node is initialized), or to the i-outcome if the
length of agreement increased (and so we switch to the left if we went to the f -outcome at the previous stage).
Otherwise (if there is no W-change, or the length of agreement does not change, or the length of agreement has
increased and we went to the i-outcome at the previous stage), then we directly go through the same accessible
path and continue the construction at the node where we terminated the stage.1 So either we can change A
or B as planned, or we can go to the outcome we wanted. In other words, at each node, if the last stage was a
terminated stage and there is no W-change, then we continue to the same outcome without any extra action.

As in a usual priority tree construction, at each stage s, we inductively construct an accessible path (up to
length s) on the priority tree. At each node along the accessible path, we try to decide the outcome at stage s
and whether we want to change A or B. Whenever A or B is changed, we terminate the current stage and go to
the next stage. We keep the nodes that are to the left of, or compatible with, the accessible path and initialize
the nodes that are to the right. Note that we may build a link in the construction and skip some nodes along
the accessible path (without going through the construction for them at that stage). So we shall distinguish
between notions of a node being visited and being accessible. Being visited means that we allow this node to
act according to the construction below; and being accessible only means that the node is on the accessible
path, which does not necessarily mean that the node itself is visited but possibly only some extension of it is.

In the following subsections, we always assume that we are at a visited node at stage s.

4.2. R-node. Consider an R-node α and note that if the last stage was a terminated stage and W has not
changed, then we continue to the same outcome without any action. Otherwise, we check whether the length
of agreement has increased since the last stage t when we visited this node and the i-outcome was accessible
(or if such a stage t does not exist, then we check whether the length of agreement is positive). If not, then we
go to the f -outcome. If so, then we go to the i-outcome.

The R-node α also defines a functional Γ along the i-outcome. We make sure that Γ is well-defined, i.e., we
will not enumerate axioms that use the same oracle but give different outputs. In particular, we may have some
requests to add some numbers into B here which were assigned by nodes below. What we do is simply put
these numbers into B as planned if the corresponding W has not yet changed (see Section 4.3.1).

For convenience, we allow the W-use and B-use for the same x to be different (so we formally write γ(W; x)
and γ(B; x) to denote these uses, but later, when it is clear from the context that we are talking about the B-use,
we will simply write γ(x)). Since all the sets we consider are c.e., at each stage we only need to keep one axiom
Γ(B ⊕ W; x) for a fixed x. We have two cases in which we increase the use. The first case is that some node
below puts γ(B; x) into B but A(x) = 0; in this case, we increase the B-use to be large and fresh, and increase
the W-use to be the length of agreement between Φ(A) and W at this stage. The second case is when the W-use
changes; then we increase the B-use to be large and fresh and keep the W-use the same. In all other cases, we
do not increase the uses but simply update the axiom with the current oracle.

Of course, we obey the usual monotonicity rules of axioms, that is, whenever we change the uses for some x,
we automatically make Γ(B⊕W; y) undefined for all y > x. In any case, we will ensure that Γ(B⊕W; x) = A(x)
for all x ≤ the current length of agreement between Φ(A) and W at this stage; if a use for Γ(B⊕W; x) had never
been picked before, then we pick the B-use large and fresh, and the W-use to be the current length of agreement
between W and Φ(A); otherwise, the use is specified as above.

4.3. S-parent node. At an Si-node β, if this is the first time at which we visit this node, then we pick a fresh
diagonalization witness x for it. Now if we already have a diagonalization witness x, then we check whether
Ψi(B; x) converges to 0 with a believable computation. Here, and in the following, a computation Ψi(B; x)[s] ↓
is believable when there are no numbers below the use of this computation that may enter B at a later stage, by
the nodes above β (such are uses of Γ-functionals above β that are partial from the point of view of β). If not,
then we go to the w-outcome and continue to the next node. If we find out that earlier we have already visited
the d-outcome (i.e., we have already performed diagonalization at this node and A(x) = 1). and β has not been
initialized since, then we continue to go to the d-outcome.

1The intuition is that, since no one has changed A or B from the last stage, and the W’s have not changed, either, unless we can diagonalize,
all the uses of computations remain the same. (See Lemma 5.1 for the full proof later on.)
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If there is such a believable computation Ψi(B; x) ↓= 0 (where, when we see a believable such computation,
we immediately initialize every node extending the w-outcome) but we have not yet performed diagonalization
(i.e., enumerated x into A), then we perform the following construction. We first check whether we can per-
form diagonalization (see below in Section 4.3.1) and if so, follow the instructions; if not, then we go to the
g-outcome (or some other outcomes according to Section 4.3.2 below) and continue to the next node.

4.3.1. Diagonalization, setting clearing and claim points. At β, we consider those Si′ -requirements which
have g-outcome along β and none of whose child nodes has a g-outcome along β. We think of the Si′ -family as
a whole as announcing the current killing point for the requirement Si′ , which is defined as the greatest number
among all claim points of all Si′ -child nodes above or to the left of β as well as the clearing point at Si′ . Then
we let the clearing point y at β be the least of these killing points announced by the Si′ -families from above as
well as x (if there is no such higher-priority Si′ ).2

We check whether γk(y) > ψi(x) (for the clearing point y defined above) for each active Rk above. If not,
then we go down to the g-outcome here (see Section 4.3.2) and, at the first Si-child node Si,0, we will go to the
corresponding gαk -outcome defining a function ∆ and add γk(y) into B there (for the greatest such k, see details
below in Section 4.4). If γk(y) > ψi(x), then we proceed to the following check.3

Here, it is possible that for some other ∆′ defined at an Si′ -child node β′ above β (along the same path), we
use the corresponding Ψi′ (B; x′)-computation to protect ∆′, yet some γk(x) entering B for Γk above this Si′ -node
may cause injury, i.e., γk(x) ≤ ψi′ (x′).

If there is no such β′, i.e., for every β′ along β, we have γk(x) > ψi′ (x′) as above, then we can put x into A and
go to the d-outcome of β. While doing that, we issue requests at each active R-node above β to add γ(x) into B
as follows: Later when we visit R’s i-outcome, if the corresponding W-use (for Γ(B⊕W; x)) has changed, then
we do not add γ(x) into B, but otherwise, we add γ(x) into B.

If we see such β′, then fix the lowest (i.e., we process these nodes from the bottom up) such β′ for which
γk(x) ≤ ψi′ (x′), we consider all Si′′ -nodes above β′ which have a g-outcome along β′ but such that no child node
has a g-type outcome along β′ (i.e., the Si′′ -requirements that are still active at β′). For each such Si′′ -node,
we only look at its child nodes below β′ (the Si′′ -family below β′). These child nodes define a current killing
point, i.e., the maximum claim point (if such Si′′ -family below β′ is empty, then let this current killing point
be infinity). Then we let the claim point z of β be the minimum number among all these killing points of
Si′′ -families below β′ (for all such β′), as well as x, the diagonalization witness at β. So automatically z is less
than or equal to x. 4

This c-outcome at β′ is now associated with the claim that “after this stage s, it is always the case that ψ′(x′)
is greater than or equal to γk(z) for some active Γk above the Si′ -parent node”. (For convenience we denote
this claim by C(β′, z, s).) In addition, this c-outcome announces that z is the new killing point for lower-priority
Si′ -child nodes, overwriting the old announcements made by higher-priority child nodes for the same Si′ . That
is, Si′ , as a whole requirement, now switches the killing point to z. In this case, we say that β initiates the
c-outcome at β′.5 We go to the c-outcome of β′ and continue to the next node along that path.

4.3.2. Possible link to child. Now, at this time, if we do not have a chance to diagonalize, there might be
some Si′ -child nodes below, whose c-outcome has been initiated with a claim about the size of ψi′ (x′) and
some Γ-uses of possibly larger x′′ (see above). We check if any of these claims turn out to be false. For those
corresponding c-outcomes whose claims turn out to be false, we initialize everything below the c-outcome of
these child nodes and everything to the right of them.

2Since x is a fresh number when it is picked, this y is always less than or equal to x (Lemma 5.8). Roughly speaking, this y is going to be
the least killing point when we go to the right of β, and so for successful diagonalization, we want to make sure that β’s computation is
protected when we switch to the right of it. In the complete example in Section 3.5, our x here is x3 there, and our y here is x2 there.
3If so, note that y ≤ x, so it is automatic that γk(x) ≥ γk(y) > ψi(x) and it seems that we are safe to put x into A.
4Later we will see that it is automatically greater than the killing point at β′ (Lemma 5.9). In the complete example in Section 3.5, our z
here happens to be x2 there as well, just like our y here is x2 there, but this need not be true in general.
5Later, when we reach the parent node for β′, we can check whether the condition γk(z) ≤ ψ′(x′) is still true, i.e., whether this claim is
still true; if not, then we will initialize everything extending the c-outcome at β′ and declare that this node β′ now gives permission for
diagonalization at β.
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In addition, we check whether there is an Si, j-child node such that the last time it was visited we went to one
of its g-outcomes, and now with the current conditions we see that we can switch to the left to that g-outcome.
If there is such a child node, then we build a link directly from the Si-parent node β to that child node, skipping
every node between them. Otherwise, we stay at the Si-parent node β and proceed to the next node along the
g-outcome.

4.4. S-child node. When we reach an Si, j-child node β j of an Si-node β, the construction proceeds as follows.
First, as we have mentioned above, β j checks whether the c-outcome was accessible at the last stage t when we
visited β j. If so, we check if the associated claim C(β j, z, t) is still true. In that case, we go down to that outcome
without doing anything here. If the claim is false, then we have already initialized everything extending the
c-outcome of β j when we reach β. In that case, there must be some S-parent note β′′ below some gα-outcome
of β j which initiated the c-outcome of β j here. If this node β′′ has not been initialized since, then we directly
link to this β′′, allowing it to finish trying its diagonalization (without visiting the nodes between β j and β′′). If
this β′′ has already been initialized, then we proceed as in the following paragraph.

Otherwise, i.e., if we didn’t visit the c-outcome the last time we visited β j, then we have a killing point y
here decided by higher-priority Si, j′ -child nodes β j′ above or to the left of β j (or by β itself if there is no
such β j′ ): y is the largest of all the claim points of these β j′ as well as the clearing point at β. We also know that
γ(y) ≤ ψi(x) for some functional Γ by some active R-node above β; let α be the lowest-priority such R-node.
Now we go to the gα-outcome. If this is a B-stage, we also add γ(y) into B. For the functional ∆ associated
with the gα-outcome, we extend ∆ up to the W-use γ(W; y). Then we continue to the next node, this finishes
the inductive step of the accessible path construction.

5. Verification

We start with a few technical lemmas, then we can show that there is a leftmost path accessible infinitely
often (the true path) and every node on the true path has a true outcome. We then show that all the functionals Γ

(unless killed) and all functions ∆ built along the true path are well-defined. This allows us to show that all
requirements are satisfied.

5.1. Technical lemmas. First of all, in our construction, we separated the stages into A-stages and B-stages,
and only allowed changes in A or B at A-stages or B-stages, respectively. Sometimes, we may encounter the
situation that the algorithm wants to change A but the current stage is a B-stage, or vice versa, and so in the
construction, we simply terminate the stage and immediately try the next stage. (See Section 4.1 for details.)
We start with a lemma proving that in this case, either we will change the accessible path due to a W-change
(which will cause either initialization of the node that wanted to enumerate, or the permanent satisfaction of the
requirement of a higher-priority node), or we can perform the desired B- or A-enumeration at the next stage.

Lemma 5.1 (Accessibility of A/B-stages). Suppose at stage s, we terminated the stage because the stage was
not of the type we wanted. Then at the next stage s + 1, either some W changes and we switch to the left or
right of the accessible path at stage s, or we can perform the enumeration we wanted to perform at stage s.

Proof. According to the construction, assume that some W along the accessible path (of stage s) changes at
stage s+1 by x entering W: If this change decreases the length of agreement between W and Φ(A) and switches
the outcome of a strategy along the accessible path at stage s from an i-outcome to an f -outcome, then we have
permanent satisfaction of an R-requirement (unless some higher-priority node acts), since W(x) = 1 and we
have a computation Φ(A; x) = 0. If this change increases the length of agreement or does not change it, then
actually it will not affect any of the ∆’s previously defined below the i-outcome (since we only define ∆ up to the
length of agreement). Now, if we do not switch the accessible path between stages s and s + 1, then obviously,
since we have not changed A or B from stage s to stage s + 1, all criteria required for action remain the same,
and we can perform the action (go to a certain outcome or change A or B) as at the previous stage s. �

Usually, in a priority tree argument, one can simply see by inspection that, for any computation (e.g., of Ψ,
Φ) witnessed at a node, the use cannot be changed by any node to the right of it (by the choice of sufficiently
large witnesses). However, in our construction, this is not true. The problem is that, along a c-outcome of
an S-child node, the killing point z is determined by some node extending a gα-outcome of the S-child node,
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i.e., to the left of its c-outcome. Therefore, potentially any B-change up to γ(z) via at a node extending the
c-outcome might injure some Ψ-computations to the left of it. So we need a lemma stating that, in certain
cases, such injury cannot happen.

Lemma 5.2 (Link to a parent node). In the construction, if we see that a claim for a c-outcome at some
Si, j-node β becomes false and build a link to anSi′ -node β′ along a gα-outcome (which initiated the c-outcome),
then at that time, the computation at β′ is still the same as when β′ initiated the c-outcome.

Proof. Say, at stage s0, β′ initiated the c-outcome and by the criterion in the construction, we know that the
use ψ(x) at β′ (for the diagonalization witness x at β′) is ≤ γ(y) for the least possible killing point y that can be
used to the right of β′. If such y in the definition decreases (i.e., some node to the right uses a smaller number
as the killing point), then we would have initialized β′ and would not build a link from β. This means that when
we build a link back to β′, its computation is preserved. �

Lemma 5.3 (Diagonalization of parent preserved). If an S-node has performed diagonalization, then unless it
is initialized, its computation Ψ(B; x) is always preserved.

Proof. The argument is almost the same as the previous lemma. If a killing point y had decreased, then it
would mean that the node had been initialized. If the killing point has not decreased, then by our criterion, the
computation is preserved. �

5.2. True path lemmas. Since our tree is finitely branching, there clearly is a leftmost path accessible infin-
itely often (which we call the true path). The slightly tricky problem is that in the construction, there are two
cases when we build a link between two nodes and skip nodes in between: The first case is when an Si-node
sees that an Si, j-child node can now switch to the left; the second is from a c-outcome of an Si, j-node to an
Si′ -node below one of its gα-outcomes. It is conceivable that some node on the true path is skipped infinitely
often but not visited infinitely often, or its outcome is along the true path but is actually not the true outcome
(the leftmost outcome we choose infinitely often when visiting the node). The following few lemmas show
that this case cannot happen. The idea to prove this is as follows: Each time we skip over a node β, we always
“blame” a node below it and make sure that such a node can only do this finitely often before β is visited again.

Lemma 5.4 (First case skip). If a node β is skipped via the first case, then some node below it switches left. In
addition, if β is never visited again and never skipped by the second case, then the skip for the first case can
only happen finitely often, and each time we will go strictly to the left of the previous visit.

Proof. The first claim follows by inspection of the construction. For the second claim, note that for every such
link which skips β, β must be between an S-node and one of its child nodes. A somewhat tricky situation may
arise that during such a stage when β is skipped, we may add new nodes below it which may cause extra links.
But observe that such a new link must be associated with an S′-parent node of higher priority than the S-node
which causes the skip at the current stage, so by induction on the number ofS-parent nodes above β, one can see
that, if β is never visited again, such a skip (for the first case) can only happen finitely often. More precisely, we
associate each skip to a combination of S- and R-nodes of higher priority than β, and assign a natural priority
on these combinations. It is then easy to check that each time we go to the left, such a combination increases
in priority, and so this cannot happen forever. �

Lemma 5.5 (Second case skip). At any stage, for any given β, there can be at most one node β′ below β which
has initiated a c-outcome at a node above β such that the associated claim is still true. That is, during any fixed
stage, there can be at most one node which makes us skip β for the second case.

Proof. Suppose s0 is the first stage such that the c-outcome of β′ is initiated. Then, of course, at stage s0, there
is only one such node (we jump to the c-outcome at s0). After that, either β′ is initialized; or the associated
claim never becomes false, and so the claim of the lemma remains true; or later the claim becomes false at
stage s1 and we build a link directly to β′ skipping β. At that stage, we note that the computation at β′ is still
the same as that at stage s0 (by Lemma 5.2). So at stage s1, either β′ again initiates another c-outcome even
higher, or it follows diagonalization and now there are no nodes which make us skip β (for the second case).
The same situation happens at every stage afterwards, and so the lemma follows. �
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Lemma 5.6 (True path). Along the true path, every node is visited infinitely often, therefore all outcomes along
the true path are true outcomes.

Proof. This follows essentially by combining Lemmas 5.4 and 5.5. Suppose some β on the true path is never
visited again. Whenever we skip β via the second case, then some node below performs diagonalization, which
means that any nodes extending the d-outcome will be fresh at that stage. At that moment, the only reason we
can skip β is the first case, and so the next time we skip over β, we must travel to the left of the current visit.
It then follows that below any of these diagonalization outcomes d, we will not have new nodes added which
request diagonalization, since each such new S-node is visited only once.

Therefore we eventually switch to the left of this diagonalization outcome, and by the same argument as in
Lemma 5.4 above, such skips cannot happen infinitely often. So one can only skip over β finitely often, and the
lemma follows. �

In addition, we need to show that every node along the true path “passes down” infinitely many A-stages and
B-stages (in fact, in alternating order), so every node has the chance to perform the action it wants to eventually.

Lemma 5.7 (Alternating stages on true path). In the construction, every node on the true path is visited infin-
itely often at A-stages and at B-stages, respectively.

Proof. This is because in the construction, we require that when we pass to an outcome, we require a different
type of stage (A-stage or B-stage) than the one when we last time went to that outcome (otherwise, we wait and
do nothing). Along the true path, as we proved above, every node is actually visited infinitely often, and so by
this criterion, every node is visited at alternating A-stages and B-stages. �

Now in the following arguments, we always assume that we have a node ξ on the true path and we have
passed the stage when all nodes to the left stop acting. Here, action include being visited or accessible, or
c-outcome initiation. Since there is finite injury along the true path, we also assume that ξ is the last node along
the true path for its requirement, and we only consider stages when it is visited.

5.3. Witnesses and functionals. First, we prove two lemmas about the witnesses and various other points we
use in the construction.

Lemma 5.8 (Clearing point and witness of parent node). Given an S-node with diagonalization witness x, the
clearing point y (as in the construction) is always less than or equal to x, and such y is stable if no node to the
left acts again.

Proof. This is by inspection of our construction. �

Lemma 5.9 (Claim and killing point of child node under c-outcome). Given an Si, j-child node, when its
c-outcome is initiated (by β, say), the corresponding claim point z (as in the construction) is always strictly
larger than its killing point, and is always less than or equal to the diagonalization witness at β.

Proof. The second claim is by inspection of the definition of such z. The first claim follows from the fact
(proved by induction) that such z is always a diagonalization witness below an Si, j-child node’s gα-outcome
(for some α), and so larger than the killing point (whenever it changes, every node below is initialized automat-
ically). �

Next, we show that along the true path, every functional is correct on its domain (modulo finite incorrectness
for the ∆’s). It follows that the functional computes the set we want if it has total domain.

Lemma 5.10 (Γ-functionals). Every functional Γ is correct on its domain.

Proof. This is basically by inspection of the construction that when we add any number x into A, we always
make sure to issue requests to add the corresponding γ(x)-uses into B at Γ. It may be the case that later when
we visit Γ, the corresponding W has changed up to the use, and since W is c.e., such a change automatically
makes the functional undefined and so there is no problem in not adding γ(x) into B in this case. If W has not
changed, then, of course, by the construction, we will add γ(x) into B so that we can correct the axiom. �



16 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEODORE A. SLAMAN

The next lemma is going to be the most crucial and most complicated lemma in the proof. Let us first sketch
the argument: To show that ∆ = W, it suffices to show that whenever we define some ∆ as an initial segment
of W, then this initial segment of W is not going to change in the construction later. Now at B-stages, this is
obvious since W = Φ(A) where A does not change. At A-stages, the argument is much trickier, but is very
similar to the standard argument used in the style of Lachlan’s gap-cogap construction. Basically, we have a
computation Ψ(B; x) to protect an initial segment of W in such a way that if it changed (after we changed A)
then we would switch to the left of the ∆-outcome. The difficult part is to show that after A changes, the B-use
of Ψ(x) is always protected. This is usually true since we have only been to the right of such ∆, but remember
that in our construction, actions to the right may injure computations to the left.

Lemma 5.11 (∆-functionals). Every function ∆ is correct on its domain (modulo a fixed finite amount of injury).
More precisely, for every such ∆, there is a stage after which ∆ is not going to be injured again.

Proof. Say, such ∆ is defined along a gα-outcome (with killing point x′) of βi, which is a child node for β
(where β has diagonalization witness x).

In addition, we know that, for each parent node β′ above β and active at β, every child node of this β′ along
the true path has true c-outcome. Now we have to wait for a stage s0 such that every such β′ has a child node
below β (on the true path) with a true c-outcome initiated (i.e., a c-outcome that will not be initialized later).

We claim that after stage s0, the ∆-axioms are always correct, i.e., compute W = Φ(A). If A does not
change, then, of course, W cannot change. So we only need to consider the case when A changes, in particular,
below βi’s gα′ -outcomes, since otherwise, such an A-change must be to the right and cannot change the initial
segment of W witnessed at β′.

Suppose that at some later stage s1, some node β̄ below βi’s gα-outcome performs diagonalization (most
likely via a link under the second case). According to the construction, such a node β̄ must receive permission
from every child node with gα′ -outcome above it. In particular, βi needs to give permission that γ(z) > ψ(x),
where z is the associated claim point at βi, and the Γ-uses range over all Γ’s active above β.

By the definition of stage s0, such γ(z)’s are going to be the least possible numbers entering B when we
switch to the left of β; and by Lemma 5.9, z is less than or equal to the diagonalization witness added into A.
In addition, by inspection of the construction, we know that at stage s1, the computation Ψ(B; x) converges.
(Otherwise, the permission criterion γ(z) > ψ(x) is always false.)

So we know that, after we add the diagonalization witness into A at stage s1, and before we come back
to β, the computation Ψ(B; x) at β is always preserved. Now it suffices to show that W = Φ(A) up to γ(x′) is
preserved (recall that x′ is the killing point at ∆ and we always define W up to γ(x′)).

Otherwise, when we reach the R-node and go to its i-outcome, we would see that the use γ(W; x′) has
changed, and so according to the construction, we will increase its B-use without changing B here. In particular,
we know that when we reach β for the first time after s1, γ(x′) > ψ(x), and according to the construction at
S-nodes, we would immediately build a link to this βi and switch to the left of the outcome where ∆ is defined,
and this, of course, contradicts the assumption. �

5.4. Final verification. We are now ready to prove the satisfaction of all requirements. The following two
lemmas complete the verification of the construction of Section 4 and the proof of our main theorem.

Lemma 5.12 (Si-requirements). Every Si-requirement is satisfied.

Proof. Let β be the last Si-parent node along the true path. It is easy to check that, once we perform diagonal-
ization, then the Ψi(B; x)-use is going to be preserved (as we choose the killing point y to be the least one such
that some γ(y) may enter B later in the construction). So we only need to consider the case when we infinitely
often see a believable computation Ψi(B; x) but we cannot perform diagonalization.

Our argument now splits into two cases. One is that there is an Si-child node below β on the true path which
has true gα-outcome (we call this case the Σ3-outcome for β, i.e., the requirement is satisfied in a Σ3-fashion).
The other is that every Si-child node below β on the true path has true c-outcome (similarly, we say β has true
Π3-outcome).

In the first case, obviously according to the criterion at β, ψi(x) ≥ γ(x′) for the killing point x′ at β, and the
latter goes to infinity by our construction. So Ψi(B; x) diverges and our requirement is satisfied.
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In the second case, by our criterion for going to c-outcomes, ψi(x) is going to be greater than or equal to γ(z)
for arbitrary large z, and this also implies that Ψi(B; x) diverges.

In addition, in the second case, it is easy to see that, for each claim point z, all Si-child nodes eventually
give up using z and start using the next z′ as a killing point (later this will allow us to show that the “impact” of
this action on each higher-priority Γ is finite). �

Lemma 5.13 (Ri-requirements). Every Ri-requirement is satisfied.

Proof. We let α be the last Ri-node along the true path. Of course, we only need to consider the case that
W = Φ(A) is total, and so we go to the i-outcome of α infinitely often, building Γ. Now if there is an Si-child
node along the true path with true g-outcome associated with α, then by Lemma 5.11, the function ∆ built there
is going to correctly compute W, and so the Ri-requirement is satisfied.

If there is no such S-child node along the true path, then we need to argue that for each fixed x, γ(x) only
changes finitely often, and so by Lemma 5.10, Γ is going to be a functional computing A from B ⊕W, and our
Φ-requirement is also satisfied.

So fix an x. We can assume that A(x) = 0 in the end, since otherwise, after x enters A, the Γ-use is going to
change for the last time and then settle down forever. By our construction, if W changes, we only increase the
B-use without changing the W-use, and so the only case in which we may increase the Γ-use forever is that it
happens infinitely often that some S-child node below α has outcomes associated with α and puts γ(y) for y ≤ x
into B during B-stages (where y is the killing point). By induction hypothesis, we can assume that Γ(B⊕Wi; x′)
has settled down for every x′ < x. Obviously, only finitely many S-requirements can use x as a killing point.
Now by the last paragraph of the proof of the previous lemma and by our assumption, all such child nodes
which use x as its killing point will eventually give up using x, and so eventually each Γ(B ⊕Wi; x)-use settles
down. �
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