
Iterated Trees of Strategies and Priority Arguments

STEFFEN LEMPP1,3

Department of Mathematics, University of Wisconsin
Madison, WI 53706, USA

lempp@math.wisc.edu

MANUEL LERMAN2,3

Department of MathematicsUniversity of Connecticut
Storrs, CT 06269-3009, USA
mlerman@math.uconn.edu

0. Introduction. It is our intent, in this paper, to try to describe some of the key ideas
developed in the series or papers by Lempp and Lerman [LL1, LL2, LL3, LL4], which use
the iterated trees of strategies approach to priority arguments. This is an approach which
provides a framework for carrying out priority arguments at all levels of the arithmetical
hierarchy. The first attempt to find a framework for (finite injury) priority arguments was
presented by Sacks [Sa] in 1963, who gave the following motivation for his attempt: “Our
purpose of formulating Theorem 1 of this section is to separate (insofar as possible) the
combinatorial aspects of the priority method from the recursion-theoretic aspects. We do
not claim that Theorem 1 stands as a fundamental principle from which all results so far
obtained by the priority method follow, but we do believe that Theorem 1 and its proof will
be useful to anyone who wishes to develop an intuitive understanding of the workings of
the priority method in all its manifestations.” Many others have presented frameworks for
priority arguments or classes of priority arguments since that time, and many new ideas
have changed the way we approach priority arguments. A listing of some of these attempts
can be found in [LL4]. There are several key ideas which have greatly influenced the
framework which is intuitively described in this paper, and we would like to point those
out. The first is the tree of strategies approach to priority arguments which was introduced
by Harrington and refined and popularized by Soare [So]; this is the way in which most
recursion theorists now approach priority arguments. Groszek and Slaman [GS] and Ash
[A] have developed different frameworks, and some of their ideas and ways of thinking
have been incorporated into our approach.

The origin of our work was the proof of a particular theorem which required
priority arguments at all levels of the arithmetical hierarchy. (As with Ash’s method, there

1 Partially supported by National Science Foundation Grant DMS91-00114.

2 Partially supported by National Science Foundation Grant DMS92-00539.

3 Dedicated to Gerald E. Sacks on the occasion of his sixtieth birthday.

1

should be an extension to all levels of the hyperarithmetical hierarchy, but we have not tried
to carry this out). We saw, along the way, that our approach was much more generally
applicable, and decided to try to develop the method. (We hope to develop a detailed
general presentation in a forthcoming monograph.) We set the following goals for
measuring the success of the approach:

Constructive “trees of strategies” approach.

 Applicability to all priority arguments (for r.e. degrees).

 Isolation of the combinatorial lemmas which are part of the priority method,
rather than the individual proofs.

 Helpfulness in finding new proofs.

Shortening of existing proofs.

The “trees of strategies” approach was taken so that the presentation would follow,
as closely as possible, the current presentation of most arguments at lower levels of the
arithmetical hierarchy. The difference is that, rather than using a single tree, we introduce a
tree of strategies for those levels of the arithmetical hierarchy, beginning at the recursive
level, and continuing up to the natural level for the particular theorem to be proved. This
approach seems to be generally applicable, at least for priority arguments in the r.e. degrees
or the lattice of r.e. sets which correspond to effective Cohen forcing, and we have carried
out or sketched proofs of many theorems using this approach. We plan to look at priority
arguments which effectivize other types of forcing in the future.

There is a very general list of properties which need to be verified for any given
construction, and the proof that the verification of these properties suffices seems to be the
common core of priority arguments. This portion of the combinatorics of priority
arguments can be generally isolated. However, the verification of these properties can
differ with the theorem to be proved. We have therefore taken a modular approach, finding
additional properties which can be imposed, simultaneously, on many constructions, and
verify the original properties from the stronger properties. This approach also leads to a
better understanding of some of the techniques used within priority arguments, and points
to similarities between proofs which were not previously noted. The method has been
successfully applied to prove the following new theorems in [LL4, LL2]:

2

THEOREM: The existential theory of the r.e. degrees with predicates n, for all n,

interpreting a(n) b(n), is decidable. ■

THEOREM: There are r.e. degrees a,b such that a and b form a minimal pair, and a and

b form a minimal pair over 0 . ■

There is an interplay between the savings in length produced by the combinatorial
lemmas, and the need to add steps to describe the decomposition of requirements from tree
to tree. The latter is normally easier to carry out, but in simpler proofs, may take longer.
The framework presents real advantages when the construction needs to deal with similar

requirements at different levels, e.g., a b , a b , etc.
It is not our intent to present a detailed development of the “iterated trees of

strategies” approach in this paper, but rather, to present a broader idea of the components
of this approach and the roles played by each of these components. The intuition behind
the framework tends to get lost in the detail of using the framework to prove individual
theorems, and certainly, the intuition obtained in developing the framework does not come
across in the presentation of the finished product. It is our hope that the presentation of this
overview and intuition will make the framework more intelligible to readers of papers
where it is used. We will try to illustrate each idea introduced with an example, choosing
particular familiar requirements where the notion under consideration is used.

1. A broad overview before modularization. Each requirement has a natural level
or dimension based on the quantifier complexity of the statement of the requirement. In

the standard terminology, finite injury or 0 requirements have dimension 1, the standard

infinite injury or 0 requirements have dimension 2, etc. In order to determine where to
carry out an iterated trees of strategies argument, we let n be the largest dimension of a
requirement which must be satisfied, and carry out the proof simultaneously on the trees

 T0,…, Tn. We begin by assigning all requirements, irrespective of their dimensions, to
nodes of Tn. This assignment must be done so that satisfaction of all requirements along
any path through Tn will ensure the theorem being proved. (It is sufficient to have this
property only for those paths through Tn which are computed by a possible construction on

 T0.) Following the assignment, a level-by-level decomposition process is specified; having
determined the roles of nodes of Tk+1, the decomposition process assigns, to nodes of Tk,

subrequirements of requirements assigned to nodes of Tk+1, together with information
about how and when they are expected to act. This is carried out through an assignment of

a node on Tk to a node of Tk+1 for which works; is called a derivative of . The

decomposition continues down to the recursive level, namely, to T0. The construction

3

associated with a proof takes place along a recursive path Λ0 through T0, and action is

determined by the information associated with nodes of T0. We then have a path

computation function which computes a path on Tk+1 from one on Tk, and must essentially
act as the inverse of the decomposition process; by this we mean that the satisfaction of the

instructions assigned to critical nodes on a path Λk [Tk] must ensure the satisfaction of

the instructions assigned to critical nodes on the path Λk+1 [Tk+1] computed by Λk. (The
reader should think of critical nodes as those nodes lying along the true path which ensure
the ultimate satisfaction of requirements.)

More specifically, the processes described above work as follows. A requirement
supplies a node of a tree with several pieces of information; a directing sentence indicating
when the node should take action; another sentence indicating the action to be taken by the
node if the directing sentence is false (this is called the activated action); and a third
sentence indicating the action to be taken by the node if the directing sentence is true (this is
called the validated action). This information must be passed down from tree to tree,
usually by bounding quantifiers. A weight function wt is defined on nodes of trees, and is
used to determine the bounding parameters and numbers on which requirements act. We
demonstrate what these sentences are in some familiar cases.

Example 1.1: Friedberg-Muchnik Incomparability Requirements: In the
Friedberg-Muchnik Theorem [F],[M], r.e. sets A and B of incomparable Turing degree are

constructed. A typical requirement assigned to a node of T1 has the form (A) B,

where is a partial recursive functional. An argument x = wt() is specified for this

requirement. The directing sentence is (A;x) = 0, activated action is B(x) = 0, and
validated action is B(x) = 1. If the directing sentence is false and activating action is

followed, then B(x) = 0 and either (A;x) , or (A;x) 0; and if the directing sentence

is true and validated action is followed, then B(x) = 1 and (A;x) = 0. In either case, the
requirement is satisfied.

Suppose that the decomposition process determines that the node T0 is to work

to satisfy the requirement R assigned to . The framework will then use s = wt() as a

stage of the construction. The directing sentence for is Φs(As;x) = 0, where Φs and As

are the approximations to and A, respectively, at stage s. Activated action is Bs+1(x) =

0, and validated action is Bs+1(x) = 1, where Bs+1 is the approximation to B at stage s+1.

If the directing sentence for is false, then a node will be assigned to work for on

a stage t = wt() > s. If all such directing sentences are false, then R will be satisfied. If

the directing sentence assigned to is true and validated action is followed, then R will be
satisfied as long as the oracle information used from As is not changed; and this is ensured
by the way the framework will assign numbers used by the various requirements. ■

4

Example 1.2: Thickness Requirements. Let Q be an infinite recursive set, and let
S(x,y) be a recursive predicate. We want to build an r.e. set A such that:

∀x yS(x,y) Q * A, and

∀x yS(x,y) Q A =* Ø

where =* means “differs finitely from” and * means “has only finitely many elements not

in”. Suppose that this requirement is assigned to a node T2. The directing sentence

for is ∀x yS(x,y), activated action is Q A =* Ø, and validated action is Q * A. Let

 be a derivative of on T1. A number u = wt() will be assigned to . The directing

sentence for is ∀x u yS(x,y), activated action is Q Q [0,u), and validated action is

p A for all p u such that p Q and p is controlled by . One should think of control

as designating those p for which has the responsibility to determine placement into A. If

the directing sentence for is false, then will control all such p u, and will prevent all

such p from entering A. If the directing sentence for is true and both and lie along

the true paths of their respective trees, then a shortest derivative of extending will

appear on the true path through T1, and will control the numbers in [wt(),wt()) Q. It

then follows that the correctness of directing sentences and action is carried up from T1 to
 T2. If is a derivative of on T0, then s = wt() provides a stage at which we check to

see the truth of the directing sentence for , namely ∀x u y sS(x,y). The decomposition

from T1 to T0, and specification of directing sentences and action, is similar to that
described in Example 1.1, so we do not repeat that description. ■

We have tried to give a very general description of the assignment and
decomposition processes by example. These must satisfy certain basic properties which
are described later in this section. In the two examples presented above, the assignment
and decomposition processes can be presented in a canonical way. The ordering of
requirements assigned is not important, nor is the placement of derivatives in the
decomposition process, as long as certain basic properties are satisfied. This is not the case
in general, as we will see with later examples. Thus for each construction, an assignment
must be specified and shown to satisfy the basic properties. Modularization can be used
here so that satisfaction of the basic properties can be ensured if certain other properties
(easily verified in the given situation) are satisfied.

Having carried out the assignment and decomposition processes, a construction will

now take place on T0, and will be based, almost exclusively, on the directing sentences and
the action specified by the nodes which are encountered. In some cases, some of these
nodes will have forced action, and the sentences and action associated with the nodes will

5

be ignored; if such a node lies on the true path, it will act consistently with the desires of
other requirements on the true path. Once the construction is complete, we will have to
prove the theorem by climbing back up, tree by tree, to Tn, and relating the action taken at

one level to the action taken at the next level. The path directing function will provide a

way to approximate, in the limit, to a path through Tk+1 from a path through Tk. The
reader may have noted that we have yet to specify any details about the trees; it is in the

definition of that the definition of the trees becomes important.
The standard one-tree models of priority arguments provide misleading examples of

how to define trees. Finite injury arguments require only binary trees. While the standard
infinite injury model uses infinitely branching trees, the nodes corresponding to a fixed
requirement R normally do not carry more information than the facts that different nodes
correspond to different attempts at satisfying R, and the order in which the attempts at

satisfaction are made. One can get by with this information for T3 as well. But at higher
levels, this method of coding nodes loses too much information, precluding a close
interaction between the decomposition process and the path computation process. Priority
characterization in terms of a node being to the left or right of another also disappears at
higher levels, and is replaced by the decomposition machinery.

In our presentation, T0 = {0, } < , with the outcome 0 corresponding to activated

action, and the outcome corresponding to validated action. For the other trees, we will

want a node of Tk+1 to uniquely recover the construction followed to reach that node. In
order to accomplish this, we want the outcome for each node to contain the information

telling us how that outcome was obtained. Suppose that Tk+1 is given, and let be its

immediate predecessor. For definiteness, suppose that the directing sentence for begins
with an unbounded block of universal quantifiers. (If the quantifiers are existential,
proceed similarly with the negation of the directing sentence, interchanging activated and

validated action.) If codes the fact that we follow the activated action for , then we will
want there to be be a uniform bound on each quantifier in the block, yielding a sentence

which is false. This should be discovered at a derivative of on Tk, where the

corresponding directed sentence has such a bound, and so will have an immediate

successor along this true path indicating that activated action was followed. In this case,

we want = ; thus knows the location of the node determining the truth or falsity

of the directing sentence for , and the outcome at that location, indicating the truth or

falsity of the sentence. The trees do not need derivatives of which extend . Now

suppose that codes the fact that we follow the validated action for . Then for every

bound on the leading block of quantifiers in the directing sentence for , the induced

sentence is true. must then code the fact that this is the case. There will then have to be

infinitely many derivatives of on the true path through Tk, each having validated outcome

6

along this true path. codes this by determining that the outcome of along is the first

node along the corresponding path through Tk which is a derivative of , together with the
validated outcome for this node. Thus each tree is a tree of finite sequences of nodes from

the previous tree; the last such node in carries the guess of the current approximation to

the true path of Tk about the way will be satisfied. It seems to be impossible to get the
framework machinery to work unless this information is coded into the paths. With this in
mind, the framework theorem implies that all requirements are satisfied as long as we can
verify the following:

(1.1) The assignment process of requirements to nodes of Tn is recursive, and for
each possible true path through Tn, the satisfaction of all requirements along
that path ensures the satisfaction of the theorem being proved.

(1.2) The decomposition process from Tk+1 to Tk is recursive. Furthermore, if
 Λk [Tk] is a possible true path through Tk then (Λk) = Λk+1 is infinite. If

 Λk+1 requires infinitely many derivatives, then has infinitely many

derivatives along Λk; otherwise, has a last derivative along Λk which
determines its outcome.

(1.3) If Λ0 T0 is the true path for the recursive construction, then for every

critical node Λ0, Λ0 extends the validated outcome of and the

construction carries out the validated action for if the directing sentence

for is true; and Λ0 extends the activated outcome of and the construction

carries out the activated action for if the directing sentence for is false.

Furthermore, for such , the truth of the directing sentence for or the

action taken is not injured by action taken for longer nodes along Λ0.

(1.4) For all k < n, if Λk is the true path through Tk and Λk+1 = (Λk), then the

correctness of the prediction by Λk+1 about the truth of the directing

sentence for Λk+1 is ensured by the correctness of the predictions by Λk

about the truth of the directing sentences for derivatives of .

(1.5) For all k < n, if Λk is the true path through Tk and Λk+1 = (Λk), then the

correctness of the action along Λk+1 for Λk+1 is ensured by the

correctness of the action along Λk for the derivatives of along Λk.

7

2. Limitations on canonical processes. For some priority method proofs, one can
follow a canonical process for the assignment and decomposition of requirements, and all
nodes which come from the true path are critical. In this section, we present some
examples to show that, in general, more care needs to be taken. We begin with a
discussion of the Sacks Splitting Theorem [Sa], and assume that the reader has some
familiarity with the standard proof.

Example 2.1: In order to avoid the use of trees with finite maximal paths, we restate the
Sacks Splitting Theorem as follows: For every r.e. set A, there is a splitting of A into two
r.e. sets, A0 and A1 such that either A is recursive, or each of A0 and A1 has strictly
smaller degree than A. There are two types or requirements which need to be satisfied:

 Pe: e A e A0 or e A1, and A0 A1 = Ø.

 NΦ,i: (Ai) = A f = A.

where is a given partial recursive functional, and f is a recursive function being
constructed. Pe has dimension 1, while NΦ,i has dimension 2.

We begin with a description of the satisfaction of NΦ,i. Suppose that NΦ,i is

assigned to a node T2. The directing sentence for is (Ai) = A, and there is no

activated action for . Validated action for is to define a recursive function f which is the
characteristic function of A. We note that if NΦ,i has validated outcome along the true path

of T2, then no requirement NΨ,j is assigned to any node extending a validated outcome of

. (The canonical assignment would be to assign a given requirement to each node on a
fixed level of T2.) The absence of requirements NΨ,j on such paths allows us to arrange

for (1.1)-(1.5) to be satisfied.

A derivative of on T1 will have directing sentence (Ai;x) = A(x) for all x z =

wt(). Again there is no activating action, and validated action is to define f(x) = A(x) for

all x z. A derivative of on T0 operates at stage s = wt() in the same way as in

Example 1.1. We note that if is validated along the true path of T0 and is the immediate

successor of along this path, then has outcome along the true path of T1, and the

maximum use u of the computations Φs(Ai
s;x) for x z is s which will be < wt(). In

order for the construction to satisfy (1.4), we must restrain Ai
s|`u+1.

Now consider the requirement Pe. The standard constructions do not place these
requirements on the tree, but treat them from outside the tree. This is an ad hoc solution,
which is difficult to incorporate into generalizations. Our treatment of these requirements
on the trees is identical to the ad hoc procedure. Thus we assign this requirement a to node

 along any given path through T2, but in the decomposition process, as the dimension of

8

 Pe is 1, will have at most one derivative along any path through T1. Furthermore, the

directing sentence and action will depend on , rather than on . Decomposition from T1 to
 T0 will be the stage decomposition of Example 1.1, and will be carried out in the obvious

way.

Fix . The directing sentence for will be e A, and activating action is e ∉ A0

and e ∉ A1. As a construction is deterministic, the validating action will have to be one of

the following: e A0; or e A1. The choice made by Sacks externally needs to be

specified internally, and depends on the location of on T1. This is where a particular
decomposition process is important. Suppose that a requirement NΦ,i is assigned to a

derivative on T1 which has validated outcome along the computed path, and let be the

immediate successor of along this path. Recall that sees the need to restrain Ai
s|`u+1.

We now ensure this restraint by assigning all requirements Pm for m u along extensions

of if they have not yet been assigned along ; and this assignment precedes the

assignment of any requirement NΨ,j to a node which extends . For each node working

for such a Pm, the validating sentence is m A1–i. (Note that this duplicates the external

action imposed by Sacks.) If there is no NΦ,i imposing such restrictions on , then we

arbitrarily set validating action as m A0. We have thus essentially duplicated the Sacks
construction on the iterated trees of strategies, but note that this required a decomposition
process highly dependent on the particular requirements being satisfied. ■

The minimal pair construction of Lachlan [L1] and Yates [Y] is a more complex
example of a construction where the decomposition process is requirement-dependent. We
refer the reader to [LL2] for a proof of the minimal pair theorem using iterated trees of
strategies.

There are two situations which we have identified where it is important to restrict
(1.3) to critical nodes. One situation deals with implication chains, and is discussed in a
later section. The other situation is when the satisfaction of a requirement uses a basic
module having more than one element. In this case, only the terminal nodes of the basic
module along the true path are critical; the interior nodes perform action which may be
injured by later nodes of the module. A simple example of such a proof is the construction
of a proper d-r.e. degree. Such degrees were originally constructed by Cooper [C], but a
much simpler proof was given by Lachlan (see Epstein [E]). Hinman [H] carried out this
proof in the iterated trees of strategies format. We indicate the main ideas in the next
example.

Example 2.2: A typical requirement for the construction of a d-r.e. set D which is not of
r.e. degree is:

9

u((W|`u;x) D(x) or y<u((D;y) W(y)))

where W is an r.e. set and and are partial recursive functionals. The basic module for

such a requirement R on T1 is assigned to two consecutive nodes along various paths

through T1. The directing sentence for is

u((W|`u;x) = 0 & ∀y<u((D;y) = W(y))),

activated action is D(x) = 0, and validated action is D(x) = 1, where x = wt(). The

sentence is carried down to a derivative of on T0 by bounding u with wt(), and asking

for the truth of the sentence at stage wt(), i.e., replacing all sets and functionals with there

approximations at stage wt() will be a critical node along any such that is

activated along ; along such paths, the directing sentence will be false, and the reader can
check that if activating action is taken, then the requirement will be satisfied. If the
construction follows the validated action, however, we cannot protect the satisfaction of the
requirement; it is possible for W|`u to change, and as we have changed D by setting D(x) =

1, we will not be imposing a difference between (D)|`u and W|`u. Thus it may be the

case that the directing sentence for is false at the end of the construction. However,

has relinquished the responsibility for satisfying R to . The directing sentence for is

z<u(W(z) Wwt(ξ)(z)). (Note that can recover , as will be the outcome of along

and will be the immediate predecessor of ; hence we have a uniform recursive method of

obtaining from .) Activated action is D(x) = 1, which suffices to satisfy the requirement

if the directing sentence for is false, for it will then be the case that (W;x) =

 Φwt(ξ)(Wwt(ξ);x) = 0 1 = D(x). If, however, we find this sentence to be satisfied at a

derivative T0 of , then it will be the case that for some z < u, Wwt(ξ)(z) = 0 and
 Wwt(η)(z) = 1. We specify D(x) = 0 as validated action; R will then be satisfied as

automatic restraint generated by the framework will ensure that (D;z) = Ψwt(ξ)(Dwt(ξ);z) =

 Wwt(ξ)(z) for all z < u, while W(z) Wwt(ξ)(z) for some z < u. is a critical node along all

nodes properly extending , and its action and the truth of its directing sentence can be
preserved. ■

Basic modules are used when the directing sentence is a proper disjunction. The
possible disjuncts are ordered, and we try to satisfy them in order, with the failure of one
leading to an attempt to satisfy the next. When action is described as a disjunction, then
this will frequently lead to nonuniformity of the decomposition process.

10

3. Decomposition Principles. We have listed (1.1)-(1.5) as the properties which
need to be satisfied to carry out a proof within the Lempp-Lerman framework. But beyond
the definition of our trees and the description of the path computation function, we have not
yet indicated what combinatorial principles can be proved, or how to carry out the various
steps. There are certain restrictions on the decomposition process, which we now discuss,
which will enable us to prove lemmas of this type. These are applicable in all cases which
we have investigated. Without these restrictions, we were unable to get a nice relationship
between decomposition, action, and path computation which would enable us to prove
general combinatorial lemmas.

We have referred to the true path for the construction without defining what we
mean; the term is standard in the single tree case, and its generalization is the obvious one.

A construction determines a recursive path Λ0 through T0. The path generating function

now inductively determines a path Λk+1 through Tk+1 from a path Λk through Tk via a limit

process, and we write Λk+1 = (Λk). For all k, Λk is the true path through Tk. Similarly,

 can be used to generate path approximations. If ηk Tk, then we inductively define
 ηk+1 = (ηk), and call ηk+1 the current path through Tk+1 at ηk. Given r > k, σr Tr,

and σk Tk, we call σr an antiderivative of σk if σk is (hereditarily) a derivative of σr.
The first restriction which we place on the assignment process for a construction

beginning on Tn is:

(3.1) If k < n and we specify that σk Tk is a derivative of σk+1 Tk+1, then all
antiderivatives of σk+1 are on the current path at σk.

Another very important restriction (which implies (3.1), although this implication is
not immediately apparent) is that, under the hypothesis of (3.1), there should be no links

restraining antiderivatives of σk+1. Links were introduced by Lachlan [L2] in a 0 -injury
setting, but are needed in priority arguments at all levels; at small levels, however, it is easy
to incorporate the links into the natural assignment and action description, so that they are

not noticed. A primary link along connects two nodes which have the same

antiderivative, but one has activated outcome along , and the other has validated outcome

along . Primary links are generated from smaller levels (except on T0), so can be pulled
down to lower level trees in a natural way to links which are not primary. The
corresponding restriction is:

(3.2) If k < n and we specify that σk Tk is a derivative of σk+1 Tk+1, then no
antiderivative of σk+1 is restrained by a link along a current path computed
by σk+1.

11

The other restrictions have been mentioned earlier. A node σk+1 will have at most
one derivative σk along a given path until we are at a level below the dimension of the
requirement assigned to σk+1. And once we are at such a smaller level, no derivatives of

 σk+1 can extend a derivative σk of σk+1 whose outcome indicates that a witness has been
found for the directing sentence for σk+1 when that sentence begins with an unbounded
existential quantifier (or for the negation of the directing sentence for σk+1 when that
sentence begins with a universal quantifier).

With the above restrictions in place, we can prove a very crucial lemma which
allows us to pass easily by induction from level to level, and to show that, if we have an
assignment process which yields infinitely many blocks (so is renewed infinitely often),
then we have sufficiently many derivatives of nodes along the true path to localize the
proofs of (1.4) and (1.5). This crucial lemma states that if, during the construction, we

assign an outcome to a node which switches the outcome of an antiderivative of , then
even after the switch, no such antiderivative will be restrained by a link.

4. Implication Chains. There are many constructions whose descriptions involve the
action of nodes which do not lie on the current path, but have higher priority than the
longest node on the current path. Constructions involving permitting frequently have this
property, as do constructions where nodes on many paths are trying to satisfy the same
(global) requirement by defining axioms on the same argument. In the latter case, when a

node on the current path wants to act, it is sometimes necessary to allow a higher priority

node which does not lie on the current path to act in its place.
As mentioned in the previous section, allowing nodes to act when they do not lie

along the current path does not mesh well with the path computation function. Let and
be as in the preceding paragraph. Our approach is to show that there is a way, called

backtracking, to return to the current path which causes minimum damage, or injury, to
other requirements, and we can recursively specify this way. The nodes used to
accomplish the change of the current path computation have forced outcomes, consistent

with what is wanted by the path on which lies. The backtracking principle can be
summarized as follows:

Backtracking Principle: We ask whether the way of returning to the current path

involving minimum injury will injure the apparent truth of the directing sentence for . If

the answer is “no”, then we return to the true path, and then let the action for take place.

If injury to the directing sentence for will occur, then we will need to show that all action

12

taken by is corrected, i.e., we have the freedom to allow to act, should ever be
returned to the current path.

The mechanism used to carry this out was introduced in [LL4], and uses
implication chains. The machinery is very complex, but allows us to prove theorems
which yield the principle in the preceding paragraph. When applied, there is a simple
property to be checked to see if correction occurs. If the property holds, then the success
of the construction using backtracking is ensured by the combinatorial lemmas proved
about backtracking. If the property fails to hold, then the construction will not be
successful in any formulation.

We illustrate part of the idea behind backtracking in the next example.

Example 4.1: Satisfaction of requirements of the form A T B .

We fix an A-recursive predicate RA coding A , and build a recursive functional
satisfying, for all x the requirement Rx:

(∀t u RA(x,t,u) lim t limu (B;x,t,u) = 1) &

t∀u RA(x,t,u) lim t limu (B;x,t,u) = 0).

Suppose that this requirement is assigned to a node of T2. The directing sentence for

will be ∀t u RA(x,t,u), activated action will be lim t limu (B;x,t,u) = 0, and validated action

will be lim t limu (B;x,t,u) = 1. If T1 is a derivative of , then the directing sentence

for will be ∀t wt() u RA(x,t,u), activated action will be limu (B;x,t,u) = 0 for all t

controlled by along the current path (see the discussion of thickness requirements in
Example 1.2 for an idea about the notion of control), and validated action will be

 limu (B;x,t,u) = 0 for all t controlled by along the current path. If T0 is a derivative

of , then the directing sentence for will be ∀t wt() u wt() RA(x,t,u), activated action

will be (B;x,t,u) = 0 for all t,u controlled by along the current path through T0, and

validated action will be (B;x,t,u) = 1 for all t,u controlled by along the current path

through T0.

Now consider two incomparable nodes T2 to whichRx is assigned.

Suppose that are comparable nodes of T1, is a derivative of , is a derivative of

, and lie on the current path but does not, and the directing sentence for is true at

some derivative of . It will be the case that wt() > wt(), so the directing sentence for

 will also be true, i.e., the directing sentence for will imply the directing sentence for ,

allowing us to establish an implication chain. We will act to validate , but first check to

13

see if the process of bringing back to the current path will injure the truth of the directing

sentence. This process must switch the outcome of the longest which is extended by

both and , and possibly some other nodes, and does so by switching outcomes of

certain nodes on T1 from activated to validated; one node of T1 which is switched is a

derivative of . When nodes of T1 are switched in this way, we must follow their validated
action, and thereby put numbers into sets, in order to later show that (1.4) and (1.5) are

satisfied. As nodes of T1 of dimension 1 can be switched only once on T2, it will suffice
to consider only the effects of switching nodes of dimension 2; in fact, by the way
control and implication chains interact for requirements of this type, it will suffice to
consider only the effects of switching nodes of dimension 3. For such nodes, we require
constructions to have the property that whenever specified action causes a number to be
placed into A, it will also cause a number of similar magnitude to be placed into every B

with B ≥T A . Thus an injury to the oracle for the directing set for will allow

correction of the action prescribed by . If no injury to the directing sentence for will

occur in backtracking to , then we carry out the backtracking process, the directing

sentence for will also be true, and we validate . Otherwise, if ever returns to the

current path, then correction of axioms defined by will have taken place, so can carry
out the action prescribed. ■

In general, implication chains need to be carried down, level by level, through a
complex alternating machinery. We refer the reader to [LL4] for a detailed description.

5. Control and correction. For some types of requirements R, the determination of
the node which has the responsibility for specifying an axiom or placing an element into a

set is clear. Such is the case in Example 1.1, where each node of T1 to which a

diagonalization requirement is assigned has the responsibility for x = wt(). For the
thickness requirements of Example 1.2, or for the double jump comparability requirements
of Example 4.1, this is no longer the case. For such requirements, the determination of
control of axioms is very delicate, as the need to compute limits requires the correction of
axioms specified by the wrong node. A delicate generalization of the scheme mentioned in
Example 1.1 can be used to determine control, subject to correction properties of other
requirements. This generalization uses the implication chains mentioned in the preceding
section to handle correction and existence of limits when control is exchanged between
nodes with different antiderivatives on Tn (the highest level for the construction) at a given
stage of a construction. A delicate level-by-level decomposition of control using the weight
function allows the proof of a combinatorial lemma, which implies that when control is

14

exchanged on T1, then a node of dimension at least as high as the dimension of R has its
outcome switched from activated to validated. In the case of diagonalization requirements
where original control is localized to a single node of dimension dim(R), the node which is
validated will have an antiderivative which is also an antiderivative of the node gaining
control. As validation will place an element in the oracle set for the axiom being newly
controlled, correction will be possible.

Highness requirements and their generalizations (high2-ness requirements, etc.) are

treated similarly. A highn-ness requirement will have dimension n+1, and will require

specification of axioms from an oracle A which is highn. One way of ensuring the

satisfaction of such a requirement is to require all nodes of dimension n+1 to place
elements into sets, and whenever an element is placed into B, to require an element of

similar size to be placed into all C such that C(n) ≥T B(n). This will ensure that such an
element will be placed into A, thus allowing the correction of axioms.

6. Configurations. The term configuration was introduced by Slaman [Sl] to describe
a certain type of construction. Constructions requiring the building of configurations had
been carried out much earlier, but Slaman named the combinatorial property which was
common to such constructions. We have not, as yet, used our framework to carry out
constructions which require configurations on high dimensional trees, and it is possible that
combinatorial lemmas will have to be proved to deal with this situation. Our current guess,
based on observations of configurations at low dimensions, is that they are handled
through the assignment process, together with a delegation of responsibility for action from
one node to another. We view our description of the Sacks Splitting construction (Example
2.1), as an example of a situation where passive configurations need to be built. A fairly
simple example of a construction where an active configuration is built is the embedding of
the lattice N5 (see Figure 6.1) into the r.e. degrees, preserving least element.

d

b

a

c

0

Figure 6.1

15

Example 6.1: N5 is embedded into the r.e. degrees by building r.e. sets A, B, and C
whose degrees a, b, and c have the properties of their lightface counterparts in Figure 6.1.
The need for configurations comes from the interaction of the three types of requirements

 PΦ: (C;x) A(x); and J: ∀y((C⊕B;y) = A(y)); and NΨ,Ξ: (B) = (A) total → (B) =

(Ø), where we define and , and , , and are given. Suppose that we have fixed

x as above. As long as (C;x)↑ or (C;x)↓ 0, we keep x out of A. While this occurs,

we will have a node whose requirement is (C⊕B;x) = A(x) so we will have to specify an
axiom of the form ∆s(Cs|`u⊕ Bs|`u;x) = 0 for some s and u. And we will specify a p < u to
be placed into either B or C if we ever later find the need to place x into A, and so correct
the above axiom. Now the minimal pair requirement NΨ,Ξ does not allow us to place

numbers of similar size into A and B simultaneously; and the directing sentence for PΦ will

be destroyed if we place p into C when we place x into A. So when we find that (C;x)↓
= 0, we cannot place x into A; for J would then require us to place p into either B or C,
injuring either the directing sentence for PΦ, or the action for NΨ,Ξ.

We build a configuration by having PΦ delegate its permission to act to J, which
acts by placing p into B, and specifying a new axiom with use > some q which is now

targeted for C and is larger than the use for (C;x). The placement of p into B will switch
the current path (as the length of agreement measure for NΨ,Ξ may not have its maximum

value locally for some node along the current path), so the node trying to satisfy PΦ may
no longer have all its antiderivatives on the new current path. However, if this is later the
case, then we are safe to let J place q into C and let PΦ place x into A simultaneously.

The above description has not discussed the use of the framework in detail. As we
have not settled on a combinatorial representation of configurations yet, we avoided
pinning down the precise operation, which is not difficult to carry out in this case. The key
point is that the building of configurations corresponds to having a high priority node force
lower priority nodes to act in certain ways until it is safe for the higher priority node to act.
■

The preceding example described a one-step configuration. The embedding of M5

(Figure 6.2) into the r.e. degrees requires an iteration of this process. The number of times

the iteration is carried out is determined by the outcome of the node on the true path of T3

which satisfies the requirement, and is not determined in advance. Also, nodes to which
responsibility to act has been delegated may themselves delegate responsibility to other
nodes, thus building a delegation chain. We will not present a description of how this
works. The key idea in getting the configuration strategy to work is to show that after
finitely many steps of the delegation process, it is safe for all nodes in the delegation chain
to act simultaneously.

16

a cb

Figure 6.2

References

[A] C.J. Ash, Labelling systems and r.e. structures, Ann. Pure and Applied Logic 47(1990), 99-119.

[C] S.B. Cooper, Degrees of Unsolvability, Ph.D. Dissertation, Leicester Univ., 1971.

[E] R. Epstein, Degrees of Unsolvability: Structure and Theory, Lecture Notes in Math. 759,

Springer-Verlag, Berlin, Heidelberg, New York, 1979.

[F] R.M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc.

Nat. Acad. Sci. U.S.A. 43(1957), 236-238.

[GS] M.J. Groszek and T.A. Slaman, Foundations of the Priority Method, I: Finite and infinite injury,

(manuscript).

[H] P. Hinman, n-r.e. and n-REA sets, private communication.

[L1] A.H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc.

16(1966), 537-569.

[L2] A.H. Lachlan, Bounding minimal pairs, J. Symbolic Logic 44(1979), 626-642.

[LL1] S. Lempp and M. Lerman, Priority arguments using iterated trees of strategies, In: Recursion

Theory Week, 1989, Lecture Notes in Mathematics #1482, Springer-Verlag, Berlin, Heidelberg,

New York, 1990, pps. 277-296.

[LL2] Minimal pairs of r.e. degrees and iterated trees of strategies, In: Logical Methods, J. Crossley, J.

Remmel, R. Shore, M. Sweedler eds., Birkh auser, Boston, Basel, Berlin, to appear.

17

[LL3] S. Lempp and M. Lerman, The existential theory of the poset of r.e. degrees with a predicate for

single jump reducibility, Jour. Symb. Logic, 57(1992), 1120-1130.

[LL4] S. Lempp and M. Lerman, The decidability of existential theory of the poset of recursively

enumerable degrees with jump relations, to appear.

[M] A. A. Muchnik, On the unsolvability of the problem of reducibility in the theory of algorithms,

Dokl. Akad. Nauk SSSR, N.S. 108(1956), 194-197 (Russian).

[Sa1] G.E. Sacks, Degrees of Unsolvability, Ann. Math. Studies no. 55, Princeton University Press,

Princeton, N.J. 1963.

[Sl] T. A. Slaman, The density of infima in the recursively enumerable degrees, Ann. Pure and Applied

Logic 52(1991), 155-179.

[So] R. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic,

Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[Y] C.E.M. Yates, A minimal pair of recursively enumerable degrees, J. Symbolic Logic 31(1966),

159-168.

18

