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ON THE ORDER DIMENSION OF

LOCALLY COUNTABLE PARTIAL ORDERINGS

KOJIRO HIGUCHI, STEFFEN LEMPP, DILIP RAGHAVAN, AND FRANK STEPHAN

Abstract. We show that the order dimension of any locally countable partial
ordering (P,<) of size κ+, for any κ of uncountable cofinality, is at most κ. In

particular, this implies that it is consistent with ZFC that the dimension of the
Turing degrees under partial ordering can be strictly less than the continuum.

1. Introduction

This paper arose from a question posed by the first to the third author at the
Computability Theory and Foundations of Mathematics conference at Tokyo in
2015 regarding a set-theoretic property of a computability-theoretic structure:

Question 1.1 (Higuchi). What is the order dimension of the Turing degrees re-
garded as a partial order?

Higuchi had already shown that this dimension must be uncountable and asked
whether it is the continuum. This paper provides a partial answer: It is consistent
with ZFC that the dimension is less than the continuum. But Higuchi’s question
raised a number of related questions to which we give some answers in this paper,
all about the order dimension of locally countable partial orders.

We start with some definitions:

Definition 1.2 (Dushnik, Miller [4], Ore [10]). Given a partial order P = (P,≺),
the order dimension (or simply dimension) of P is the smallest cardinality of a
collection of linearizations of ≺ which intersect to ≺.

So, for example, the dimension of a linear order is clearly 1, and the dimension of
an antichain is easily seen to be 2. It is also easy to see that the dimension of an
infinite partial order P can be at most |P |: For each pair x, y ∈ P with y ̸⪯ x, fix
a linearization <x,y of ≺ with x <x,y y.
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Definition 1.3. Call a partial order P = (P,≺) locally finite (or locally countable,
respectively), if for each x ∈ P , the set {y ∈ P | y ≺ x} is finite (or countable,
respectively).

Partial orders which are locally finite (or locally countable, respectively) are also
often said to have the finite predecessor property (or the countable predecessor prop-
erty, respectively).

The order dimension of the Turing degrees can be thought of as a new cardinal
invariant because it is between ℵ1 and 2ℵ0 .

Definition 1.4. Let ⟨D, <T ⟩ denote the class of Turing degrees equipped with the
ordering of Turing reducibility. The cardinal dimT denotes the order dimension of
⟨D, <T ⟩.

Since D has cardinality 2ℵ0 , dimT ≤ 2ℵ0 , and by Higuchi’s Proposition 4.3, ℵ1 ≤
dimT . Thus the cardinal dimT sits between ℵ1 and 2ℵ0 , like many of the standard
cardinal invariants of the continuum such as b, d, a, etc. The reader is referred
to Blass [2] for a general survey of combinatorial cardinal characteristics of the
continuum. Of course, under CH, dimT = ℵ1 = 2ℵ0 . In this paper, we will show
that dimT is smaller than 2ℵ0 “most of the time”. More precisely, we will show that
there are only three circumstances under which dimT = 2ℵ0 is possibly consistent:
2ℵ0 = ℵ1, or 2

ℵ0 is a limit cardinal (either singular or weakly inaccessible), or 2ℵ0

is the successor of a singular cardinal of countable cofinality.
We will now restate a result of Kierstead and Milner [6] on the dimension of

locally finite partial orders in Section 2, state some results of ours on the dimen-
sion of locally countable partial orders and degree structures from computability
theory in Section 3 and in Section 4, respectively, and close with some examples in
Section 5.

2. The dimension of [κ]
<ω

Kierstead and Milner [6] have determined the order dimension of
⟨
[κ]

<ω
,⊊
⟩
, which

is universal among locally finite posets of cardinality κ, i.e., every locally finite
poset P = (P,≺) with |P | = κ embeds into

⟨
[κ]

<ω
,⊊
⟩
by assigning a ∈ P to

{f(b) : b ∈ P, b ⪯ a}, where f : P → κ is any injection. Thus the result in this
section provides an upper bound for every locally finite poset.

Definition 2.1. For any infinite cardinal κ,

log2(κ) = min{λ : 2λ ≥ κ}

We state their theorem in this section for completeness:

Theorem 2.2 (Kierstead, Milner [6]). 1 Let κ ≥ ω be any cardinal. Then the order

dimension of
⟨
[κ]

<ω
,⊊
⟩
is log2(log2(κ)).

It follows from Definition 2.1 that log2(log2(κ)) is the minimal λ such that 22
λ ≥ κ.

Theorem 2.2 says in particular that
⟨
[ω1]

<ω
,⊊
⟩
and indeed

⟨[
22

ω]<ω
,⊊
⟩

have

countable dimension. But

⟨[(
22

ω)+]<ω

,⊊
⟩

has uncountable dimension.

1The authors would like to thank Jing Zhang for pointing out this paper to us.
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3. The dimension of locally countable partial orderings

The setting of locally countable partial orders (for which the Turing degrees and
many other degree structures from computability theory form natural examples) is
quite a bit more complicated.

Even though the following lemma is not needed for the proof of our main result,
it provides information about arbitrary locally countable partial orders which is
likely to be useful in their analysis. It proves the existence of a ranking function
on them.

Lemma 3.1. Suppose P = (P,≺) is any locally countable partial ordering. Then
there is a function r : P → η · ω1 such that for all x, y ∈ P , x ≺ y implies
r(x) < r(y). (Here, η is the order type of the rational numbers and η · ω1 is the
order product of these two order types under the antilexicographical ordering.)

Proof. If P is empty, then there is nothing to prove. So we assume that P is non-
empty. Let κ = |P |. From an enumeration ⟨yβ : β < κ⟩ of P , we construct a cofinal
sequence ⟨xα : α < λ⟩ of elements of P by recursion as follows: Let x0 = y0, and
for α > 0, let xα = yβ for the least β such that yβ ̸⪯ xα′ for any α′ < α. (The
recursion stops at the least ordinal λ when there is no such β.)

Now, for each α < λ, let Aα = {x ∈ P : x ⪯ xα} and recall that by local
countability, each Aα is countable. Now define r by recursion on α < λ: Let r ↾ A0

map A0 into η · {0} using any linearization of ≺↾ A2
0. For α with 0 < α < λ, assume

that r ↾
(∪

α′<αAα′
)
has been defined. Find a countable set Bα ⊆ α such that

Aα ∩
∪

α′<α

Aα′ = Aα ∩
∪

α′∈Bα

Aα′ .

Fix γ < ω1 such that

r′′

( ∪
α′∈Bα

Aα′

)
⊆ η · γ.

Now extend the definition of r to Aα\
(∪

α′∈Bα
Aα′

)
by mapping this set into η ·{γ}

using any linearization of ≺ on this set. It is clear that such countable γ must exist
because

∪
α′∈Bα

Aα′ is countable, giving us the desired map r. □

We will now establish a bound on the order dimension of locally countable partial
orders of size θ in terms of certain cardinal characteristics of θ. The notion of a
separating family of functions is first introduced.

Definition 3.2. Let X be a set and F ⊆ 2X . We say that F separates countable
subsets of X from points if for any countable B ⊆ X and x ∈ X \ B, there exists
f ∈ F so that f ′′B ⊆ {0} and f(x) = 1.

It will be shown below that there is a close connection between separating families
and order dimension. Moreover separating families are related to almost disjoint
families and to weak P-families.

Definition 3.3. Let κ ≥ ω be a cardinal. [κ]
cf(κ)

denotes {A ⊆ κ : |A| = cf(κ)}.
Sets A,B ∈ [κ]

cf(κ)
are said to be almost disjoint or a.d. if |A ∩B| < cf(κ). A

family A ⊆ [κ]
cf(κ)

is almost disjoint or a.d. if the members of A are pairwise a.d.
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Let P(κ) denote the power set of κ. A family F ⊆ P(κ) is said to be a weak
P-family if for any countable B ⊆ F and E′ ∈ F \B, there exists a finite set F ⊆ κ
such that

∀E ∈ B [E ∩ F ̸= E′ ∩ F ] .

Observe that Definition 3.3 deviates from the usual definition of an almost disjoint
family on κ in that we do not require members of A to have size κ. The members
of A have size precisely cf(κ). Observe also that a weak P-family is a family
F ⊆ P(κ) which, when viewed as a subspace of 2κ, has the property that every
countable subset of F is relatively closed in F . In other words, every member of F
is a weak P-point in F . This is a well-studied notion in topology.

Definition 3.4. For partial orders P0 = ⟨P0, <0⟩ and P1 = ⟨P1, <1⟩, we write
P0 ↪→ P1 when there exists an order embedding from P0 into P1. In other words,
there exists ψ : P0 → P1 so that ∀p, p′ ∈ P0 [p <0 p

′ ↔ ψ(p)<1 ψ(p
′)].

Definition 3.5. Let θ be an uncountable cardinal. Define the following cardinals:

la(θ) = min
{
λ : cf(λ) > ℵ0 and ∃A ⊆ [λ]

cf(λ)
[|A | ≥ θ and A is a.d.]

}
;

ls(θ) = min
{
|F| : F ⊆ 2θ and F separates countable subsets of θ from points

}
;

lw(θ) = min {λ : ∃F ⊆ P(λ) [|F| ≥ θ and F is a weak P-family]} ;

le(θ) = min
{
λ : there is an order embedding from

⟨
[θ]

<ω1 ,⊊
⟩
into ⟨P(λ),⊊⟩

}
.

It is obvious that log2(θ) ≤ lw(θ) ≤ θ. Note that la(θ) ≤ θ+, and if cf(θ) > ℵ0,
then la(θ) is at most θ. We prove the following relationships.

Lemma 3.6. Let θ be any uncountable cardinal. Then ls(θ) is the minimal λ so that
there is a sequence ⟨gα : α < θ⟩ such that for each α < θ, gα : λ→ 2, and for every
countable B ⊆ θ and every β ∈ θ \B, there exists ξ < λ so that ∀α ∈ B [gα(ξ) = 0]
and gβ(ξ) = 1.

Proof. Set µ = ls(θ). For one direction, suppose that F ⊆ 2θ, F separates countable
subsets of θ from points, and |F| = µ. Enumerate F as ⟨fξ : ξ < µ⟩. Define a
sequence ⟨gα : α < θ⟩ of functions from µ to 2 by stipulating that for each α < θ
and each ξ < µ, gα(ξ) = fξ(α). If B ⊆ θ is countable and β ∈ θ \ B, then since F
separates countable subsets of θ from points, there exists ξ < µ with f ′′ξ B ⊆ {0}
and fξ(β) = 1. Now for any α ∈ B, gα(ξ) = fξ(α) = 0, while gβ(ξ) = fξ(β) = 1,
as needed. This shows that the minimal λ as in the statement of the lemma is less
than or equal to µ.

For the other direction, suppose λ and ⟨gα : α < θ⟩ are such that for each α < θ,
gα : λ → 2, and that for every countable B ⊆ θ and every β ∈ θ \ B, there exists
ξ < λ so that ∀α ∈ B [gα(ξ) = 0] and gβ(ξ) = 1. For each ξ < λ define fξ : θ → 2
by stipulating that for all α ∈ θ, fξ(α) = gα(ξ). Let F = {fξ : ξ < λ}. Then
F ⊆ 2θ and |F| ≤ λ. Also, if B ⊆ θ is countable and β ∈ θ \ B, then there exists
ξ < λ so that ∀α ∈ B [gα(ξ) = 0] and gβ(ξ) = 1, whence ∀α ∈ B [fξ(α) = 0] and
fξ(β) = 1. So F separates countable subsets of θ from points. This shows that
µ ≤ |F| ≤ λ, completing the proof. □

Lemma 3.7. For any uncountable cardinal θ, ls(θ) = lw(θ) = le(θ) ≤ la(θ).
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Proof. Set λ = lw(θ), µ = ls(θ), and ν = le(θ). By Lemma 3.6, there is a sequence
⟨gα : α < θ⟩ such that for each α < θ, gα : µ → 2, and that for every countable
B ⊆ θ and every β ∈ θ \ B, there exists ξ < µ so that ∀α ∈ B [gα(ξ) = 0] and
gβ(ξ) = 1. This property implies in particular that gα ̸= gβ for any distinct
α, β < θ. Therefore, letting F = {Aα : α < θ}, where Aα = {ξ < µ : gα(ξ) = 1},
we have that F ⊆ P(µ) and |F| = θ. Moreover, it is clear that F is a weak
P-family. It follows that λ ≤ µ.

For the other direction, fix a family F ⊆ P(λ) so that |F| ≥ θ and F is a weak
P-family. By Lemma 3.6, to prove µ ≤ λ, it is enough to prove that there is a
sequence ⟨gα : α < θ⟩ such that for each α < θ, gα : λ → 2, and that for every
countable B ⊆ θ and every β ∈ θ \B, there exists ξ < λ so that ∀α ∈ B [gα(ξ) = 0]
and gβ(ξ) = 1. We noted earlier that log2(θ) ≤ λ ≤ θ. In particular, λ must be

an infinite cardinal. Hence |L| = λ, where L =
{
⟨s,H⟩ : s ∈ [λ]

<ω ∧H ⊆ P(s)
}
.

So it suffices to find a sequence ⟨gα : α < θ⟩ of functions gα : L → 2 satisfying the
above property. Now F contains a subfamily of size equal to θ. Let ⟨Eα : α < θ⟩ be
a one-to-one enumeration of any such subfamily. Fixing α < θ, define gα : L → 2
by stipulating, for all ⟨s,H⟩ ∈ L, that gα(⟨s,H⟩) = 1 if and only if Eα ∩ s ∈ H.
To verify the required property, fix a countable B ⊆ θ and β ∈ θ \ B. There is a
finite set F ⊆ λ such that ∀α ∈ B [Eα ∩ F ̸= Eβ ∩ F ] because F is a weak P-family.

Let H = {F ∩ Eβ}. Note ⟨F,H⟩ ∈ L because F ∈ [λ]
<ω

and H ⊆ P(F ). Since
Eβ∩F ∈ H, gβ(⟨F,H⟩) = 1. On the other hand, for any α ∈ B, Eα∩F /∈ H because
Eα ∩ F ̸= Eβ ∩ F . Hence gα(⟨F,H⟩) = 0. So we have ∀α ∈ B [gα(⟨F,H⟩) = 0], as
required. So we have proved both µ ≤ λ and λ ≤ µ, thus showing µ = λ.

Next, we prove that µ = ν. For one direction, let F ⊆ 2θ be a family separating
countable subsets of θ from points with |F| = µ. Define ψ : [θ]

<ω1 → P(F) by

setting ψ(B) = {f ∈ F : ∃α ∈ B [f(α) = 1]}. Suppose B0, B1 ∈ [θ]
<ω1 . It is clear

that if B0 ⊆ B1, then ψ(B0) ⊆ ψ(B1). Suppose now that B0 ̸⊆ B1 and choose
α ∈ B0 \B1. Since F separates countable subsets of θ from points, there is f ∈ F
so that f ′′B1 ⊆ {0} and f(α) = 1, whence f ∈ ψ(B0) \ ψ(B1). This proves that ψ

is an embedding of
⟨
[θ]

<ω1 ,⊊
⟩
into ⟨P(F),⊊⟩, which implies that ν ≤ |F| = µ.

For the other direction, fix an embedding ψ : [θ]
<ω1 → P(ν). For each ξ ∈ ν,

define a function fξ : θ → 2 by stipulating that fξ(α) = 1 if and only if ξ ∈ ψ({α}),
for all α ∈ θ. Then F = {fξ : ξ ∈ ν} ⊆ 2θ. We check that F separates countable
subsets of θ from points. Indeed, let B ⊆ θ be countable and let α ∈ θ \ B. Since
{α} ̸⊆ B, ψ({α}) ̸⊆ ψ(B). Choose ξ ∈ ψ({α}) \ ψ(B). For each β ∈ B, {β} ⊆ B,
implying that ψ({β}) ⊆ ψ(B), and thus ξ /∈ ψ({β}), whence fξ(β) = 0. Thus
∀β ∈ B [fξ(β) = 0]. On the other hand, fξ(α) = 1 because ξ ∈ ψ({α}). This
proves that F separates countable subsets of θ from points. Therefore µ ≤ |F| ≤ ν,
completing the proof that µ = ν.

Finally suppose that κ = la(θ). Then cf(κ) > ℵ0 and there is an a.d. family

A ⊆ [κ]
cf(κ)

with |A | ≥ θ. Then A ⊆ P(κ), and we will check that A is a weak
P-family. To this end, fix a countable subfamily B ⊆ A and E′ ∈ A \ B. For
each E ∈ B, |E ∩ E′| < cf(κ) by almost disjointness. Since B is countable, and
ℵ0 < cf(κ) and cf(κ) is a regular cardinal,

∣∣∪
E∈B(E ∩ E′)

∣∣ < cf(κ). We can choose
ξ ∈ E′ \

∪
E∈B(E ∩ E′) because |E′| = cf(κ). Then F = {ξ} ⊆ κ is finite and for

any E ∈ B, E′ ∩ F = {ξ} ̸= ∅ = E ∩ F , as required. This proves that λ ≤ κ. □
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Corollary 3.8. For any uncountable cardinal θ, the order dimension of
⟨
[θ]

<ω1 ,⊊
⟩

is at most ls(θ).

Proof. Lemma 3.7 shows that
⟨
[θ]

<ω1 ,⊊
⟩
↪→ ⟨P(ls(θ)),⊊⟩. As shown in Komm [7],

it is well-known that the order dimension of the power set of A under set inclusion
is exactly |A|. Therefore, the order dimension of

⟨
[θ]

<ω1 ,⊊
⟩
is at most the order

dimension of ⟨P(ls(θ)),⊊⟩, which is precisely ls(θ). □

We note that if θ is uncountable, then Lemma 4.2 in Section 4 tells us the order
dimension of

⟨
[θ]

<ω1 ,⊊
⟩
is at least ω1, since any family of ω1-many singletons

forms a strongly independent set. Now, let us turn to the order dimension of
locally countable partial orders.

Theorem 3.9. Let θ be an uncountable cardinal and P = (P,≺) a locally countable
partial order with |P | = θ. Then the order dimension of P is at most ls(θ). In
particular, dimT ≤ ls(2ℵ0).

Proof. Let {xα : α < θ} be a one-to-one enumeration of P . Define ψ : P → [θ]
<ω1

by stipulating that for each x ∈ P , ψ(x) = {α < θ : xα ⪯ x}, which is a countable
subset of θ because of the local countability of P. It is easily checked that ψ is an
embedding of P into

⟨
[θ]

<ω1 ,⊊
⟩
. Therefore, the order dimension of P is at most

the order dimension of
⟨
[θ]

<ω1 ,⊊
⟩
, which is at most ls(θ). □

Theorem 3.9 says that dimT is bounded above by the minimal number of functions
from R to 2 that are necessary for separating countable subsets of R from points.
Recall the well-known fact that there is a countable family of functions from R
to 2 which separates finite subsets of R from points. Kumar and Raghavan [8] have
recently proved that it is consistent that dimT < ls(2ℵ0), so the upper bound proved
in Theorem 3.9 is not sharp. Kumar and Raghavan show that dimT can actually
be characterized as the minimal number of linear orders on R that are necessary
for separating countable subsets of R from points, which is a notion introduced in
[8].

Lemma 3.10. Suppose κ is any cardinal such that cf(κ) > ω. Then la(κ+) ≤ κ.

Proof. By hypothesis cf(κ) > ℵ0. So it suffices to show that there exists an a.d.

family A ⊆ [κ]
cf(κ)

with |A | ≥ κ+. This actually follows from well-known results
like Kunen [9, Theorem 1.2] in the case when κ is regular and some basic facts of
PCF theory, like [1, Theorem 2.23], in the case when κ is singular. We give details
for completeness.

Suppose first that κ is regular. By Theorem 1.2 in [9], there is a sequence
⟨Eξ : ξ < κ+⟩ such that:

(1) ∀ξ < κ+ [Eξ ∈ [κ]
κ
];

(2) ∀ξ, ζ < κ+ [ξ ̸= ζ =⇒ |Eξ ∩ Eζ | < κ].

This is exactly as required.
Next suppose that κ is singular. Let µ = cf(κ). By hypothesis, µ is an uncount-

able regular cardinal. By [1, Theorem 2.23], there exist sequences ⟨λα : α < µ⟩ and
⟨fξ : ξ < κ+⟩ satisfying the following conditions:

(3) for each α < µ, λα < κ;
(4) for each ξ < κ+, fξ is a function, dom(fξ) = µ, and ∀α < µ [fξ(α) ∈ λα];

and
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(5) for all ξ < ζ < κ+, {α < µ : fξ(α) ≥ fζ(α)} is bounded in µ.

Note that for each ξ < κ+, fξ ⊆ µ × κ. Furthermore |fξ| = µ, and if ζ ̸= ξ, then

|fζ ∩ fξ| ≤ |{α < µ : fζ(α) = fξ(α)}| < µ. Therefore {fξ : ξ < κ+} ⊆ [µ× κ]
cf(κ)

is
an a.d. family and |{fξ : ξ < κ+}| = κ+. Since |µ× κ| = κ, this is as required. □

We can now state and prove the main result of this section.

Theorem 3.11. Suppose κ is any cardinal such that cf(κ) > ω and P = (P,≺) is
any locally countable partial order of size κ+. Then P has dimension at most κ.

Proof. Since κ+ is an uncountable cardinal, Theorem 3.9 applies and implies that
the dimension of P is at most ls(κ+). By Lemma 3.10, la(κ+) ≤ κ, and by
Lemma 3.7, ls(κ+) = lw(κ+) ≤ la(κ+). Therefore the dimension of P is at most
κ. □

As mentioned earlier, Theorem 3.11 is not sharp in the sense that it is consistent
to have locally countable partial orders of size κ+ whose order dimension is strictly
smaller than ls(κ+), and therefore strictly smaller than la(κ+). However, we do not
know whether ls(κ+) = la(κ+) for every cardinal κ with cf(κ) > ω. The following
corollary is immediate from Theorems 3.11.

Corollary 3.12. If the order dimension of some locally countable partial order of
size continuum is 2ℵ0 , then either CH holds, or 2ℵ0 is a limit cardinal, or 2ℵ0 is
the successor of a singular cardinal of countable cofinality. □

Kumar and Raghavan [8] have shown that the cases besides CH are also realized. In
other words, they have produced models where dimT = 2ℵ0 = ℵω1 , dimT = 2ℵ0 =
ℵω+1, and dimT = 2ℵ0 where 2ℵ0 is weakly inaccessible. Therefore Corollary 3.12 is
sharp in the sense that ZFC does not eliminate any of the possibilities not covered
by Corollary 3.12.

4. The dimension of some degree structures
from computability theory

In this section, we state some results on the dimension of three degree struc-
tures from computability theory, the Turing degrees, the Medvedev degrees and
the Muchnik degrees.

We start with the Turing degrees since the original motivation for our inves-
tigation was determining the dimension of the Turing degrees under the partial
ordering, for which we obtain two partial results.

Definition 4.1. For a partial order P = (P,≺) and a subset S of P , we say that S
is a strongly independent antichain if for any subset T of S with |T | < |S| and for
any x ∈ S \ T , there is an upper bound y ∈ P of T with y ̸⪰ x.

Lemma 4.2. Let P = (P,≺) be a partial order with a strongly independent an-
tichain S. Then the dimension of P is at least |S|.

Proof. We provide a proof by contradiction. Suppose that the dimension ρ of P is
less than |S|. Let Ŝ ⊆ S satisfy that |Ŝ| > ρ is a successor cardinal and let κ = |Ŝ|.
Choose linear extensions {<α}α<ρ of ≺ whose intersection is ≺.

Fix x ∈ Ŝ. Let {Tα}α<κ be any increasing sequence of subsets of Ŝ of cardinality

< |Ŝ| such that
∪

α<κ Tα = Ŝ \ {x}. By the strong independence, we can find a
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sequence {yα}α<κ of upper bounds of Tα’s such that for each α < κ, x ̸⪯ yα, which
means that there exists β < ρ such that yα <β x by the choice of {<β}β<ρ. Since
ρ < κ and κ is regular (or finite), there must exist a fixed β < ρ such that yα <β x

holds for unboundedly many α < κ. By the choice of {Tα}α<κ, every element of Ŝ
distinct from x is in almost all {Tα}α<κ, and therefore, y <β x must hold for each

y ∈ Ŝ \ {x}. Hence we conclude that for any x ∈ Ŝ, there exists β < ρ such that
y <β x.

Since again ρ < κ = |Ŝ|, there must exist a common β < ρ and distinct x0, x1 ∈ Ŝ

such that y <β xi holds for each y ∈ Ŝ \ {xi} and i ∈ {0, 1}. But this gives us
x0 <β x1 <β x0, and hence x0 <β x0, a contradiction. □

We can now state two partial results about the dimension of the Turing degrees as
a partial order:

Proposition 4.3 (Higuchi). The dimension of the Turing degrees is uncountable.

Proof. By Sacks [12], every locally countable partial order of cardinality ℵ1 is em-
beddable into the Turing degrees. Thus it is enough to find such a partial order
whose dimension is at least ℵ1. Let us consider the suborder (P,⊊) of P(ℵ1) under
set inclusion whose underlying set is

P = {{α} : α < ω1} ∪ {{γ : γ < β} \ {α} : α, β < ω1}.
It is easy to see that {{α} : α < ω1} is a strongly independent antichain of cardi-
nality ℵ1 in the partial order (P,⊊), and therefore, the dimension of (P,⊊) is at
least ℵ1 by Lemma 4.2. □

Theorem 4.4. It is consistent with ZFC that the dimension of the Turing degrees
is strictly less than the continuum. More precisely, the dimension of the Turing
degrees can be continuum only if either CH holds, or 2ℵ0 is a limit cardinal, or 2ℵ0

is the successor of a singular cardinal of countable cofinality.

Proof. The first part is a direct corollary of Theorems 3.11: Work in a model in
which 2ℵ0 = ℵ2 and apply the theorem with κ = ℵ1. The second part follows from
Corollary 3.12. □

It is worth noting that Corollary 3.12 actually implies that if 2ℵ0 ≤ ℵ2, then every
locally countable partial order of size 2ℵ0 has order dimension at most ℵ1. In
particular, under the Proper Forcing Axiom, dimT = ℵ1. This is rather unusual for
a cardinal invariant.

We now turn our attention to the Medvedev and the Muchnik degrees. By a

cardinality argument, the dimension of both can be at most 22
ℵ0
.

Theorem 4.5 (Pouzet [11]). Let P = (P,≺) be a partial order. Then the dimension
of (IniSeg(P),⊂)) is the chain covering number of P, where IniSeg(P) is the set
of initial segments of P and the chain covering number of P is the least cardinal κ
such that there exists a set C of chains of P with |C| = κ and

∪
C = P .

It is known that the Muchnik degrees are isomorphic to the set of all final segments
of the Turing degrees ordered by ⊃. Note that the dimension of a partial order does
not change if we reverse the order. Thus the dimension of the Muchnik degrees is
the chain covering number of the Turing degrees, which is 2ℵ0 since there are at
most 2ℵ0 many Turing degrees and the Turing degrees contain an antichain of
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size 2ℵ0 . Since the Muchnik degrees can be seen a suborder of the Medvedev
degrees, the dimension of the latter is at least 2ℵ0 , and by a cardinality argument

at most 22
ℵ0
.

We can thus determine the dimension of the Muchnik degrees in ZFC but leave
open the following questions:

Question 4.6. 2

(1) Does ZFC determine the dimension of the Turing degrees?
(2) Does ZFC determine the dimension of the Medvedev degrees?

5. Some examples

One of the goals of our paper was to find out whether the order dimension of the
structure of Turing degrees is ℵ1 in all models of ZFC. More generally, we can pose
the following

Question 5.1. 3 Is there a partially ordered set (F,<) such that, in all models of
ZFC, the following holds?

(1) The order < is locally countable;
(2) for every at most countable subset G ⊆ F there is an upper bound x of G,

i.e., y ≤ x for all y ∈ F ;
(3) the cardinality of F is 2ℵ0 ; and
(4) the order dimension of (F,<) is ℵ1.

Each of the examples below will satisfy three of the properties but the fourth at
most partially. Note that additional set-theoretical assumptions like 2ℵ0 ∈ {ℵ1,ℵ2}
might make the examples have all the desired properties.

Example 5.2. Let F be the set of all hereditarily countable sets and let < be the
transitive closure of the element-relation. As every set bounds only countably many
other sets in a hereditary way, the partial order is locally at most countable, and it is
well-founded. Furthermore, every at most countable ordinal α can be identified with
the at most countable set {β : β < α}, and these sets are hereditarily countable.
The set {{{α}} : α is an at most countable ordinal} is an antichain of size ℵ1

consisting of hereditarily countable sets; as each of its at most countable subsets
is hereditarily countable, these sets witness that the antichain is indeed a strong
antichain and that therefore the order dimension is at least ℵ1. It is known that
the set of hereditarily countable sets has cardinality 2ℵ0 .

Example 5.3. Let F be the set of all functions f from an ordinal α < ω1 into ω1;
order F by letting f < g iff there are ordinals α, β ∈ dom(g) such that for all
γ ∈ dom(f), f(γ) = g(α+1+γ), g(α) = g(β), f(γ) < g(α) and α+1+dom(f) = β.
It is easy to see that < is transitive and locally countable. Furthermore, one can
easily see that for at most countably many functions f0, f1, . . ., there is a common
upper bound g by choosing an ordinal α strictly larger than all ordinals occurring
in the fk, considering an ω-power ωγ larger than the domains of all fk, letting the
domain of h be ωγ+1, and setting h(ωγ · k+1+ γ) = fk(γ) for all γ ∈ dom(fk) and
h(δ) = α for all δ in the domain of h where h is not yet defined. So every at most
countable set G of members of F has a common upper bound, which strictly bounds

2Kumar and Raghavan [8] recently announced that Question 4.6(1) has a negative answer.
3Kumar and Raghavan [8] recently announced that Question 5.1 has a negative answer.



10 HIGUCHI, LEMPP, RAGHAVAN, AND STEPHAN

from above exactly the members of G and those members of F which are below a
member of G. The cardinality of F is 2ℵ0 . Furthermore, the set of all functions
with domain {0} forms a strong antichain and therefore, the order dimension is at
least ℵ1.

Example 5.4. Let F be the set of all subsets of R × ω1 which are the unions
of finitely many sets of the form Ax,y,z = {x} × {u ∈ ω1 : y ≤ u ≤ z} and
Bx,y,z = {x} × {u ∈ ω1 : y ≤ u < z}, where x ∈ R and y, z ∈ ω1, and order this
set F by set inclusion. The set (F,<) satisfies all four conditions except for the
second, which is weakened to the existence of common upper bounds of finitely
many elements.

One can see from the definition that every set of the form Ax,y,z or Bx,y,z has
at most countably many subsets of this form in F ; furthermore each member of F
is countable. Thus this is a locally countable partially ordered set.

Furthermore, as the finite union of any members of F is again a member of F ,
one has also that finitely many subsets have an upper bound. However, this does
not extend to all countable subsets of F .

The cardinality of F is 2ℵ0 . The lower bound is seen by looking at all sets
Ax,0,0 with x ∈ R. The upper bound stems from the fact that there are 2ℵ0 many
countable subsets of R.

Furthermore, let p, q be rational numbers with p < q and y ∈ ω1. For each
p, q, y, one defines a linear order <p,q,y as a linear extension of the partial order
<′

p,q,y defined by A <′
p,q,y B iff B has more elements than A of the form (x, y) with

p ≤ x ≤ q; note that each set has only finitely many such elements. Now if B ̸⊆ A
then there is an (x, y) ∈ B \A and there are rationals p, q such that x is the unique
real number z with p ≤ z ≤ q and (z, y) ∈ A ∪B. It follows that A <p,q,y B. So <
is the intersection of all <p,q,y with p, q ∈ Q and y ∈ ω1 and p < q. It follows that
the order dimension of (F,<) is at most ℵ1.

Now consider the set C of all A0,y,y, which are all singletons. The set C forms
a strong antichain, as for every A0,x,x and every at most countable set D of sets
of the form A0,y,y with y ̸= x, there is an upper bound z of all these y. For this
upper bound z, now consider the set E = B0,0,x ∪ A0,x+1,z, which is a superset of
all A0,y,y ∈ D but not a superset of A0,x,x. Now by Lemma 4.2, (F,<) has order
dimension at least ℵ1, as this is the cardinality of C.

Example 5.5. Given F as in Example 5.4, the subset G = {A ∈ F : A ⊆ {0}×ω1}
satisfies the first, second and last property, but differs from the third in all models
of set theory where ℵ1 ̸= 2ℵ0 .

Example 5.6. The set F of all countable subsets of ω1 with the order of inclusion
satisfies the property that every countable subset of F has an upper bound in F
and the cardinality is 2ℵ0 . Furthermore, (F,<) has order-dimension ℵ1.
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