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Abstract. Inspired by the very successful study of Borel equivalence relations
under Borel reducibility in descriptive set theory and equivalence relations on

ω under computable reducibility in computability theory, R. Miller defined a

family of reducibility notions. Defined on equivalence relations on Baire space
or Cantor space, these reducibilities are required to succeed (uniformly) on

all finite or countable subsets of the whole space. In this paper, we combine

methods from computability theory and descriptive set theory to study equiv-
alence relations under these reductions. In particular, we show existence and

non-existence results of complete equivalence relations in various settings.

1. Introduction

1.1. Questions. To illustrate the questions to be addressed in this article, consider
the well-known results of Hjorth and Thomas stating that the isomorphism problem
TFAbr+1 for torsion-free abelian groups of finite rank r+1 has no Borel reduction
to the corresponding problem TFAbr for rank r. This theorem formalized a general
sense that the problem for rank 1 had specific invariants for which no analogues
existed in rank 2, and extended that intuition to the ranks r and r + 1 in general.
We state it here in full.

Theorem 1 ([2, 9]). Let F be a Borel function such that, given G in TFAbr+1

(by naming the Gödel codes of atomic formulas true in that group), F (G) ∈ 2ω

similarly codes the atomic diagram of a group in TFAbr. Then it is impossible to
have

(∀G,G′ ∈ TFAbr+1) [G ∼= G′ ⇐⇒ F (G) ∼= F (G′)].

From the point of view of computable structure theory, this theorem is partic-
ularly surprising. The isomorphism problem for computable torsion-free abelian
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groups of rank r is always Σ3-complete, for every single r > 0. The following re-
sult, although technical, is not difficult to prove on its own. (Here we use the usual
indexing φ0, φ1, . . . of all partial computable functions.)

Theorem 2. There exists a computable partial function ψ such that

• whenever φe is the characteristic function of the atomic diagram of a tor-
sion-free abelian group of any rank r + 1 ≥ 2 on the domain ω, then ψ
computes an index j = ψ(r+1, e) such that φj is the characteristic function
of the atomic diagram of a torsion-free abelian group of rank r; and

• whenever e and e′ are two such indices (for two computable torsion-free
abelian groups G, G′ of the same rank r + 1), the groups H and H ′ with
indices ψ(r + 1, e) and ψ(r + 1, e′) satisfy

G ∼= G′ ⇐⇒ H ∼= H ′.

Moreover, the computability of the groups in question (i.e., the fact that their
atomic diagrams are decidable) is not the decisive difference between Theorems 1
and 2. In [3], the latter theorem is adapted to give a Turing functional Ψ which
accepts any join ⊕n∈ωGn of atomic diagrams of groups in TFAbr+1 as an oracle
and, given the rank r + 1 of all of these groups, outputs

Ψ(⊕nGn)(r + 1) = H0 ⊕H1 ⊕H2 ⊕ · · · ,

an infinite sequence of groups in TFAbr satisfying

(∀m∀n) [Gm
∼= Gn ⇐⇒ Hm

∼= Hn].

Thus, it is possible to reduce the isomorphism problem for arbitrary countable
collections of groups in TFAbr+1 to the same problem in TFAbr — and moreover,
the reduction is not merely Borel, but actually computable. This indicates that
somehow the impossibility result in Theorem 1 relies on the uncountability of the
space TFAbr+1 of all torsion-free abelian groups of rank r + 1, thus stemming
from semantic or even set-theoretic issues rather than syntactic ones: computable
reductions are possible for arbitrary countable collections of elements from the field
of the first equivalence relation, in a uniform way, but no computable reduction —
indeed, no Borel reduction! — can handle all (uncountably many) of those elements
at once.

(From the set-theoretic side, imagine that one extends the model N of ZFC to
a model M in which the cardinal 2ω of N collapses to ω. Then, in that newly
extended universe M, there would be a computable reduction that succeeded in
reducing the original class (TFAbr+1)

N to TFAbr, although of course in M each
class (TFAbr+1)

M and (TFAbr)
M would contain many more groups than the orig-

inal classes in N did. This suggests that the failure of N to contain a computable
reduction was due to the inability of N to line up all its ducks in a row, i.e., to put
its TFAbr+1 in bijection with ω.)

1.2. Definitions. Some first steps in examining the distinction between countable
and full reductions on Cantor space 2ω, more generally than just for torsion-free
abelian groups, were taken in [6]. In this article, we will continue that work and
extend some of the results to Baire space ωω as well. To begin with, we recall the
following definitions, most of which appear in [6, §1].
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Suppose that E and F are equivalence relations on the domains S and T , re-
spectively. A reduction of E to F is a function g : S → T satisfying the property:

(∀x0, x1 ∈ S) [x0 E x1 ⇐⇒ g(x0) F g(x1)].

If S = T = ω, then it is natural to speak of a computable reduction: this simply
means that the function g is (Turing-)computable. For equivalence relations on
Polish spaces, computability has a related meaning.

Definition 3. Let E and F be equivalence relations on 2ω. A computable reduction
of E to F is a reduction g : 2ω → 2ω given by a computable function Φ (that is, an
oracle Turing functional) on the reals involved:

(∀A ∈ 2ω)(∀x ∈ ω) g(A) = ΦA.

If such a reduction exists, then E is computably reducible to F , denoted E ≤0 F .
Equivalence relations on ωω may be treated in exactly the same way.

Borel reductions on these equivalence relations simply require that the relevant
function Φ be a Borel function, rather than being given by an oracle Turing machine.
Thus Theorem 1 really said that there is no Borel reduction from the isomorphism
relation on TFAbr+1 to the same relation on TFAbr. Borel reductions may be
stratified as follows.

Definition 4. Let E and F be equivalence relations on 2ω. A jump-reduction of E
to F is a reduction g : 2ω → 2ω given by a computable function Φ (that is, an oracle
Turing functional) on the jumps of the reals involved:

(∀A ∈ 2ω) g(A) = Φ(A′).

An α-jump-reduction of E to F is a reduction g : 2ω → 2ω given by a computable
function Φ (that is, an oracle Turing functional) on the α-jumps of the reals in-
volved:

(∀A ∈ 2ω) g(A) = Φ(A(α)).

Definition 4 becomes awkward when the countable ordinal α in question is not
computable. We resolve this by allowing a fixed real O ⊆ ω in the oracle, which
is allowed to be used to compute a specific presentation of α and then to aid the
computation as well. Thus we pass from the so-called lightface hierarchy to the
boldface hierarchy, as is common in descriptive set theory. Doing so brings the
topological notion of continuity into play.

Definition 5. Let E and F be equivalence relations on 2ω. A continuous reduction
of E to F is a reduction g : 2ω → 2ω given by a computable function Φ (that is, an
oracle Turing functional) with an additional (arbitrary, but fixed) oracle set O ⊆ ω:

(∀A ∈ 2ω) g(A) = Φ(O⊕A).

Similarly, a (boldface) α-jump-reduction of E to F is a reduction g : 2ω → 2ω

given by a computable function Φ (that is, an oracle Turing functional), with an
additional fixed oracle O, on the α-jumps of the reals involved:

(∀A ∈ 2ω) g(A) = Φ((O⊕A)(α)).

All of the reductions described in Definitions 3, 4, and 5 are full reductions:
they accept as input any element of S (the domain of E). In Subsection 1.1, we
considered functions that could accept arbitrary countable collections of groups
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from TFAbr+1 as input, outputting one group in TFAbr corresponding to each
group from the countable collection. These are not “full” in the sense above. They
are formalized as “countable reductions” in the following definition.

Definition 6. For equivalence relations E and F on domains S and T , and for
any cardinal µ ≤ |S|, we say that a function g : Sµ → Tµ is a µ-ary reduction of E
to F if, for every x⃗ = (xα)α∈µ ∈ Sµ, we have

(∀α < β < µ) [xα E xβ ⇐⇒ gα(x⃗) F gβ(x⃗)],

where gα : Sµ → T are the component functions of g = (gα)α<µ. For limit cardi-
nals µ, a related notion applies with <µ in place of µ: a function g : S<µ → T<µ

which restricts to a ν-ary reduction of E to F for every cardinal ν < µ is called a
(<µ)-ary reduction. For µ = ω, an ω-ary reduction is called a countable reduction,
and a (<ω)-ary reduction is called a finitary reduction.

When S = T = 2ω and the µ-ary reduction g is computable, we write E ≤µ
0 F ,

with the natural adaptation E ≤µ
α F for α-jump µ-ary reductions. Likewise, when

a (<µ)-ary reduction g is α-jump computable, we write E ≤<µ
α F .

When α > 0, it is important to note that Φ((x⃗)(α)) is required to equal g(x⃗).
This oracle provides more information than we would have had if we had required

Φ((x
(α)
0 ⊕x

(α)
1 ⊕··· ) = g(x⃗), with the jumps of the individual inputs taken separately.

In this paper, when we speak of computable µ-ary reductions, we will also assume
that µ ≤ ω. For µ-ary reductions with µ ≤ ω, the oracle is a single real whose
columns are the µ-many inputs to the reduction. In a (<ω)-ary reduction, with an

input A⃗ ∈ (2ω)n, the oracle is officially equal to {n}⊕A0⊕· · ·⊕An−1⊕∅⊕∅⊕· · · ,
meaning that the oracle does specify the size of its tuple. (However, we usually
gloss over this issue and just write A = A0 ⊕ · · · ⊕An−1 as the oracle.)

For equivalence relations on ω, countable reducibility is equivalent to full re-
ducibility, since a countable reduction can simply be given the entire set ω as its
(countable) input. Finitary reducibility for equivalence relations on ω was first
studied by Miller and Ng in [7]. Notice that full reducibility always implies count-
able and finitary reducibility, just by applying the full reduction to each element of
the countable or finite set of inputs.

In practice, the reason why countable reductions can be computable when full
reductions (on T = 2ω or T = ωω) are not usually involves the ability to “play off”
individual elements of T against each other. Given a countable set ⊕nXn from T as
input, some portion of the output ⊕nYn is devoted to ensuring that if Y0 F Y1 only
if X0 E X1, and similarly for each other pair (i, j) from ω2. Thus each Xj actually
has only countably many requirements to fulfill. In contrast, in a full reduction (on
an uncountable space T ), no such strategy is possible. Several of our results on
countable reducibility will mirror known results about equivalence relations on ω,
where even a full reduction can play each pair of individual elements off against
each other.

Very often, the nature of this “playing off” is that, for each Xj , we construct Yj
worrying only about the finitely many pairs (i, j) with i < j, building Yj to satisfy
each of those requirements. Reflecting on this phenomenon, we developed another
definition to describe it: sequential computable reducibility, in which a Turing func-
tional Φ constructs each Yj = ΦX0⊕···⊕Xj , without access to those Xk with k > j.
This appears as Definition 7 below.
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1.3. Summary of the paper. The rest of the paper is organized as follows: In
Section 2, we discuss the sequential reduction and show that the Vitali equivalence
relation E0 is Σ0

2-complete under sequential computable reductions. In Section 3,
we consider the relation between the descriptive complexity of equivalence relations
and the µ-reduction. In Section 4 we investigate the Louveau jump of an equivalence
relation with respect to a filter. Finally, in Section 5, we focus on the existence and
non-existence of complete equivalence relations in different complexity classes and
under different reducibilities.

2. Sequential reduction

Recall the Vitali equivalence relation E0 (on 2ω or ωω):

X E0 Y ⇐⇒ (∃n)(∀m ≥ n) X(m) = Y (m).

In [6, Proposition 2.2], it is shown that E0 is complete under ≤ω
0 among Σ0

2-definable
equivalence relations on 2ω. We can actually require the reduction to be sequential.

Definition 7. We write ≤µ
c for continuous µ-reductions (or ≤µ

k for k-computable µ-

reductions), meaning Φ is continuous (or computable from (
⊕
i<µ

Xi)
(k), respectively).

If Φ, when computing the i-th output Yi, only uses the first i+1 inputs X0, . . . , Xi,
namely, Yi = Φi(

⊕
j≤i

Xj), then we say the reduction is sequential and write ≤µ,s
c .

Theorem 8. E0 is complete under ≤ω,s
0 among Σ0

2-definable equivalence relations
on 2ω. Relativizing, we also have that E0 is complete under ≤ω,s

c among Σ0
2-

definable equivalence relations on 2ω.

Proof. Let E be a Σ0
2-equivalence relation such that AEB iff (∃k)(∀n)φ(k, n,A,B)

where φ is computable. Given X0, X1, . . . , Xi, we need to define Yi, which is a
countable reduction. We will actually have Yi ∈ ωω, but since E0 on ω

ω computably
reduces to E0 on 2ω, such a reduction suffices.

At each stage, we will define some js and ks. Intuitively, js is the current j < i
such that we are checking if XiEXj ; and ks is the k that we are checking if it is a
(partial) witness of the Σ0

2-outcome. We start with j0 = k0 = 0. At each stage s,
we check if

(∀n ≤ s)φ(ks, n,Xi, Xjs).(1)

• If yes, we set Yi(s) = Yjs(s), and js+1 = js, ks+1 = ks.
• If no, we set Yi(s) = i. We also set (js+1, ks+1) = (js + 1, ks) if js ̸= i− 1;
and (js+1, ks+1) = (0, ks + 1) if js = i− 1.

The intuition is that we try to guess if Xi is E-equivalent to some Xj by checking
the Σ0

2-outcome up to n ≤ s and some guesses at j = js and k = ks. If Xi is not
equivalent to any earlier Xj , then for every guess (js, ks), it will eventually fail at
some stage and we will have infinitely many Yi(s) = i, making Yi not E0-equivalent
to any earlier Yj . If it is, then after a certain point we would have guessed the right
(js, ks), and so Yi will copy Yjs from that point on, so they must be E0-equivalent.

We now verify that the reduction works. Suppose first that Xi E̸ Xj for every
j < i. Then for every (j, k), there is some s such that Equation (1) fails on
(js, ks) = (j, k). This will give Yi(s) = i for such s. As (js, ks) cycles through all
possible guesses, we will have Yi(s) = i for infinitely many s. But by induction,
Yj(s) ≤ j < i for every j < i, so we must have Yi E̸0 Yj for every j < i.
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On the other hand, suppose XiEXj for some j < i. We will prove that there
is some s such that for every s′ > s, Yi(s

′) = Yj(s
′). Pick the j with XiEXj and

with the corresponding k least (if for several such j, the corresponding k is the
same, then pick the least j for that k). As any (k′, j′) lex-smaller than (k, j) is
not a correct guess, there will be a stage s such that we land on the correct guess
(j, k) = (js, ks). Then this guess will stabilize, and for any s′ > s, we will have
Yi(s

′) = Yjs′ (s
′) = Yj(s

′). Now by induction, if j′ is the least member of [i]E , then
there is some t such that for every t′ > t, we have Yi(t

′) = Yj′(t
′). In particular,

we will have YiE0Yj for every j < i with XiEXj .
So we have XiEXj if and only if YiE0Yj , as needed. □

Recall that E∞ is the universal countable Borel equivalence relation. When F2

is the free group on two generators, E∞ can be represented as the shift action of
F2 on the space 2F2 . It is a Σ0

2-equivalence relation, and is universal in the sense
that every countable Borel equivalence relation Borel reduces to it (in fact, embeds
in it, i.e., by a one-to-one reduction). In fact, if E is an equivalence relation
on a 0-dimensional Polish space given as the orbit equivalence relation from the
continuous action of a countable group, then E continuously embeds into E∞. (By
the Feldman–Moore theorem, every countable Borel equivalence relation on a Polish
space is the orbit equivalence relation of a Borel action of a countable group.) The
reader can consult [8] for further details.

Corollary 9. E∞ ≤ω
0 E0. □

From the Harrington–Kechris–Louveau theorem we have that if F is a non-
smooth equivalence relation then E0 continuously embeds into F . So, from the
previous corollary and preceding remarks we have the following

Corollary 10. If E is a countable Borel equivalence relation induced by the action
of a countable group on a 0-dimensional space, and F is a non-smooth equivalence
relation, then E ≤ω,s

c F . □

Note that the condition of 0-dimensionality seems to be needed, since otherwise
E may be induced by the action of Z on R, making every continuous map from R
to 2ω constant, so not a reduction. We implicitly used 0-dimensionality in the proof
as we are thinking of continuous as meaning computable relative to an oracle.

The following corollary is immediate from Theorem 8.

Corollary 11. If E is the orbit equivalence relation induced by the shift action of
a computable group G on 2G, then E ≤ω,s

0 E0. □

We do not know if the computability of G is necessary here. The following
question would yield an obstacle to this:

Question 12. Is there a recursively presented group G such that the orbit equiva-
lence relation of the shift action of G on 2G is Σ0

3-complete?

Note that this question is sensitive to how 2G is presented. Indeed, if G is not
computable, then we cannot find a computable set of words such that every element
of G is uniquely presented.

On the other hand, if F is not smooth, then by Harrington–Kechris–Louveau (or
Glimm–Effros if F is countable), E0 must continuously reduce to F , so in particular,
we have E0 ≤ω,s

c F . Thus, we ask the following.
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Question 13. Suppose F is smooth. When do we have E0 ≤ω,s
c F?

3. Descriptive complexity and µ-reduction

Every (computable) µ-reduction (for µ ≥ 2) naturally induces an m-reduction
of the equivalence relations. Thus, it is natural to look at the structure of the
µ-degrees within the m-degrees:

Question 14. Are there equivalence relations E and F in the same proper boldface
(or lightface, respectively) complexity class that are incomparable under ≤ω

c (or ≤ω
0 ,

respectively)?

We first observe that 2-reductions are the same as Wadge reductions.

Proposition 15. E ≤2
c F if and only if E Wadge-reduces to F as subsets of

(2ω)2. □

We also note that k-computable reductions induce a bound on the descriptive
complexity.

Remark 16. If E ≤2
k F , and F is Σ0

n (or Π0
n), then E is Σ0

n+k (or Π0
n+k, respec-

tively).

Proposition 17. Let µ ≤ ω, let k, ℓ ∈ ω, and let E,F,G be equivalence relations.
If E ≤µ

k F and F ≤µ
ℓ G, then E ≤µ

k+ℓ G. □

For an equivalence relation E on 2ω or ωω, let Eω be the ω-product of E. That
is, Eω is the equivalence relation on 2ω or ωω given by: AEωB iff ∀c ∈ ω A[c] = B[c],
where A[c] denotes the c-th column of A when A is viewed as an array. (So k ∈ A[c]

iff ⟨k, c⟩ ∈ A.)

Proposition 18. Let E be a ∆0
k+1-equivalence relation. Then Eω ≤ω

k =.

Proof. We follow the same proof as in [6, Proposition 3.5].

Let X =
⊕

iXi. Define Yi by putting ⟨j, c⟩ ∈ Yi if and only if X
[c]
i EX

[c]
j , where

we think of Xi as an array and X
[c]
i is the c-th column of Xi. Note that this is

computable from X(k) since E is ∆0
k+1.

To see this is an ≤ω
k -reduction, first suppose that XiE

ωXj . Then we have that

for every c, X
[c]
i EX

[c]
j , so ⟨j, c⟩ ∈ Yi. By symmetry, we have ⟨i, c⟩ ∈ Yj , and by

definition we have ⟨i, c⟩ ∈ Yi and ⟨j, c⟩ ∈ Yj . Thus Yi and Yj agree on the i-th and

j-th columns. For m ̸= i, j, we have ⟨m, c⟩ ∈ Yj ⇔ X
[c]
m EX

[c]
j EX

[c]
i ⇔ ⟨m, c⟩ ∈ Yi.

So Yi and Yj agree on each m-th column for m ̸= i, j as well, making Yi = Yj .

If ¬(XiE
ωXj) then there is some c such that X

[c]
i E̸ X

[c]
j . So ⟨j, c⟩ /∈ Yi but

⟨j, c⟩ ∈ Yj , and we have Yi ̸= Yj . □

Example 19. Recall that two reals X and Y are E3-equivalent if and only if for
every k, the k-th column of X is E0-equivalent to the k-th column of Y . That is,
E3 = Eω

0 .
Since E0 is Σ0

2 (hence ∆0
3), we have E3 = Eω

0 ≤ω
2 = from the previous proposi-

tion.
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4. Louveau jumps and µ-reduction

In this section, we consider a definition of Louveau [5, Definition 4] and investi-
gate its interaction with µ-reductions.

Definition 20. Let F be a filter and E an equivalence relation. Define EF to be
the jump of E with respect to F , defined by AEFB iff {j | AjEBj} ∈ F , where
A =

⊕
iAi and B =

⊕
iBi.

Proposition 21. Let µ ≤ ω and F a filter. If E ≤µ
k F , then E

F ≤µ
k F

F .

Proof. Suppose Φ is the ≤µ
k -reduction from E to F , namely, given X =

⊕
i∈µXi,

we have Y =
⊕

i∈µ Yi = ΦX(k)

such that XiEXj if and only if YiFYj .

We now describe a ≤µ
k -reduction Ψ from EF to FF . Given A =

⊕
i∈µAi,

denote by Â⟨i,c⟩ = A
[c]
i the columns of Ai. Fixing c, let

ˆ̂
Ac =

⊕
i∈µ Â⟨i,c⟩. Let

ˆ̂
Bc =

⊕
i∈µ B̂⟨i,c⟩ = Φ

ˆ̂
A(k)

c , so Â⟨i,c⟩EÂ⟨j,c⟩ if and only if B̂⟨i,c⟩FB̂⟨j,c⟩. For every i

and c, define Bi by columns via B
[c]
i = B̂⟨i,c⟩. Note that B =

⊕
i∈µBi is uniformly

computable from A(k), and we define ΨA(k)

= B =
⊕

iBi.
To show this is indeed a ≤µ

k -reduction, we consider the following:

AiE
FAj ⇔

{
c | A[c]

i EA
[c]
j

}
∈ F

⇔
{
c | Â⟨i,c⟩EÂ⟨j,c⟩

}
∈ F

⇔
{
c | B̂⟨i,c⟩FB̂⟨j,c⟩

}
∈ F

⇔
{
c | B[c]

i FB
[c]
j

}
∈ F

⇔ BiE
FBj □

Definition 22. Let cof be the cofinite filter, i.e., S ∈ cof if and only if S is cofinite.
For an equivalence relation E, the Louveau jump Ecof of E is the jump of E with
respect to cof. Namely, AEcofB iff {j | AjEBj} is cofinite, where A =

⊕
iAi and

B =
⊕

iBi.

In [5, Theorem 5], Louveau proved that this is strictly increasing for Borel re-
ductions, namely, for any Borel E with at least two classes, E <B Ecof .

Recall that two reals are E1-equivalent if and only if all but finitely many of
their columns are equal, namely, E1 is identical to =cof .

Corollary 23. Ecof
3 ≤ω

3 E1. Thus, we have Ecof
0 ≤ω

0 E
cof
3 ≤ω

3 E1 ≡ω
0 E0.

Proof. Note that E3 = Eω
0 and E0 is Σ0

2. So by Proposition 18, we have E3 ≤ω
3=,

and thus Ecof
3 ≤ω

3 E1. □

In [6], the equivalence relations Eset and Z0 are introduced. The relation Eset

is also known as E+
= , the Friedman–Stanley jump of =. We recall that AEsetB iff

{A[c] : c ∈ ω} = {A[c] : c ∈ ω}, that is, A and B when viewed as arrays have the
same set of columns. Also, for A,B ∈ 2ω, AZ0B iff A△B has density 0, viewing A
and B as sets of integers.

Question 24. In [6, Theorem 3.9], it is shown that Eset, Z0 ≰ω
0 E3. Do we have

Eset ≤ω
1 E3?
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We observe that if E is Σ0
n, then E

cof is Σ0
n+2; and if E is Π0

n, then E
cof is Σ0

n+1.

Conjecture 25. For every k, there is some equivalence relation E such that
Ecof ̸≤ω

k E.

Question 26. Let E be a Σ0
3-equivalence relation. Does Ecof ≤ω

2 E?

5. Complete equivalence relations

What does the degree structure look like for µ-reducibility? In particular, we
ask whether there are (natural) equivalence relations that are complete within their
complexity class. There are some known results for complete equivalence relations
on ω, and E0 on Cantor space is Σ0

2-complete under countable reduction, while the
isomorphism relation on subgroups of Q is Σ0

3-complete under countable reduction.

Question 27. Let µ be ω, “< ω”, or a natural number. Is there an equivalence
relation on 2ω (or ωω) that is Σ0

n- (or Π0
n-)complete under ≤µ

0?

In this section, we will show that there are Σ0
n-complete equivalence relations un-

der countable reduction (Corollary 45) and Π0
n-complete equivalence relation under

finitary reduction (Theorem 34). However, we will also show that there is no Π0
n-

complete equivalence relation (for n > 1) under countable reduction (Theorem 39).
For n = 1, the situation is somewhat reversed.

5.1. Π0
1- and Σ0

1-equivalence relations. Studying complete equivalence relations
at the lowest complexity level, we obtain:

Proposition 28. (1) The equivalence relation E= is a Π0
1-complete equiva-

lence relation under ≤ω
0 (in fact, even under ≤ω,s

0 ).
(2) Each Σ0

1-equivalence relation on 2ω (lightface or boldface) has at most finite-
ly many equivalence classes. Thus, there is no Σ0

1-complete equivalence
relation on 2ω under ≤ω

0 .
(3) There is a Σ0

1-complete equivalence relation on ωω under ≤ω
0 .

Proof. (1): Clearly, the equivalence relation E= is Π0
1. Let E be any Π0

1-equivalence
relation, say, AEB iff ∀xR(A,B, x) for a computable relation R. Then, given⊕

iXi, we need to effectively build
⊕

i Yi so that for all i and j, XiEXj iff Yi = Yj ,
and such that Yi only depends on

⊕
j≤iXj . Since E is an equivalence relation, we

may assume a slight “speed-up” in R by requiring that for all i, j < k,

∃y ≤ x¬R(Xi, Xj , y) and ∀y ≤ xR(Xi, Xk, y) =⇒ ∃y ≤ x¬R(Xj , Xk, y).

We start by setting Y0(m) = 0 for all m. For Yi+1, define Yi+1(m) = Yj(m)
for the least j ≤ i such that ∀x ≤ m R(Xj , Xi+1, x) if such j exists; otherwise set
Yi+1(m) = i+ 1.

To show this is a reduction, suppose i < j and ¬XiEXj and Yi = Yj . Since
¬XiEXj , there is some x so that ¬R(Xi, Xj , x). On the other hand, Yi = Yj , so in
particular, Yi(x) = Yj(x). But ¬∀y ≤ x R(Xi, Xj , y), so we must have some k < i, j
such that Yi(x) = Yj(x) = Yk(x) and ∀y ≤ x R(Xk, Xi, y) and ∀y ≤ x R(Xk, Xj , y).
This contradicts the speed-up assumption.

Now suppose i < j and XiEXj . For any m, we have ∀x ≤ m R(Xi, Xj , x).
For any k, if ∀x ≤ m R(Xk, Xi, x), then by the speed-up assumption we also have
∀x ≤ m R(Xk, Xj , x). Thus, we must have either Yi(x) = Yk(x) = Yj(x) for the
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least k < i with ∀x ≤ m R(Xk, Xi, x) = k (and hence ∀x ≤ m R(Xk, Xj , x)), or
Yi(x) = Yj(x) = i. So Yi = Yj .

(2): The equivalence classes of a Σ0
1-equivalence relation on 2ω induce a parti-

tioning of the compact space 2ω into open sets. This is an open cover and therefore
must be a finite cover.

(3): Fix a Σ0
1-complete D on ω (such equivalence relations are called universal

ceers, see [1]) and use it to define a Σ0
1-equivalence relation E on ωω by setting AEB

iff A(0)DB(0). Now let F be any Σ0
1-equivalence relation on ωω. We may assume

there is a computable relation R such that AFB iff ∃m ∃n ∃x R(A ↾ m,B ↾ n, x).
We can form a c.e. set S ⊆ ω<ω ×ω<ω ×ω such that AFB iff there is (α, β, x) ∈ S
with α ≺ A and β ≺ B. In fact, by possibly extending the lengths of α and β, we
may assume that S is computable, and that min{|α|, |β|} ≥ x, so the coordinate x
is not needed and S is just a computable set of pairs of strings (α, β).

Suppose we are given X =
⊕

iXi. For each i, let si = Xi ↾ ni where ni is
least so that (si, si) ∈ S. Clearly the map i 7→ si is computable from Xi, and
these maps are uniformly computable from X. For any i, j we have XiFXj iff
there are ti, tj extending si, sj , respectively, with S(ti, tj). We may identify the
set A = {s : S(s, s)} with ω, and so the equivalence relation on A given by

s1 ∼ s2 ⇐⇒ (∃t1 ⊇ s1)(∃t2 ⊇ s2) S(t1, t2)

is identified with a ceer. The map X =
⊕
Xi 7→ Y =

⊕
si is a ≤ω

0 reduction of F
to this ceer. So, we can reduce F to D and thus to E. □

With the completeness results at the Σ0
1- and Π0

1-levels, one wonders whether
there is a jump-like operator that preserves completeness. The operator E 7→ Eω

and the Louveau jump E 7→ Ecof are possible candidates but we do not know if
they preserve completeness. Note that if E is Σ0

α (or Π0
α), then E

ω is Π0
α+1 (or Π0

α,

respectively), and Ecof is Σ0
α+2 (or Σ0

α+1, respectively).

5.2. Projections of equivalence relations. One possibility is to look at pro-
jections. Recall from [6, Definition 4.1] that for an equivalence relation E, the
equivalence relation Eec is defined by AEecB iff ApEBp, where Ap is defined by
Ap(m) = 1 iff A[m] ̸= ∅, and Ap(m) = 0 otherwise.

Proposition 29. If E is a Π0
n-equivalence relation (Σ0

n-equivalence relation, re-
spectively), then Eec is a Π0

n+1-equivalence relation (Σ0
n+1-equivalence relation, re-

spectively).

Proof. Suppose E is Π0
n (the other case is similar), say, AEB iff

∀x1∃x2 . . . QnxnR(A,B, x)

for a computable relation R. Then AEecB iff ApEBp iff

∀x1∃x2 . . . QnxnR(A
p, Bp, x).

Now R(Ap, Bp, x) is a ∆0
2-relation in the parameters A, B and x, so AEecB is Π0

n+1.
□

Remark 30. In the definition of Eec, the extra quantifier is on the inside, as
opposed to Eω or Ecof , where the extra quantifier is on the outside.

This naturally begs
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Question 31. Let µ be ω, “< ω”, or a natural number. If E is a Π0
n-complete equiv-

alence relation (Σ0
n-complete equivalence relation, respectively) on Cantor space un-

der ≤µ
0 , then must Eec be a Π0

n+1-complete equivalence relation (Σ0
n+1-complete

equivalence relation, respectively) under ≤µ
0?

As we will see later, Theorem 39 gives a negative answer to this question on the
Π0

n-side under computable countable reduction.
We let Eec

= abbreviate (E=)
ec, that is, it is the equivalence relation given by

Definition 31 starting from the equality equivalence relation E = E= on Cantor
space. We give a direct proof that Eec

= is Π0
2-complete for finitary reductions.

Theorem 32. If E is a Π0
2-equivalence relation on ωω, then E ≤<ω

0 Eec
= .

Proof. Fixing n ∈ ω and X0, . . . , Xn−1 ∈ ωω, we effectively compute from them
Y0, . . . , Yn−1 ∈ ωω such that for all i < j < n, XiEXj iff YiE

ec
= Yj . As E is Π0

2, we
have AEB iff ∀m ∃n R(A,B,m, n) where R is computable. Say that, for distinct
i, i′ < n, the pair (i, i′) receives a token at step k if

max{m ≤ k | ∀m′ ≤ m ∃n ≤ k R(Xi, Xi′ ,m
′, n)} >

max{m ≤ k − 1 | ∀m′ ≤ m ∃n ≤ k − 1 R(Xi, Xi′ ,m
′, n)}.

(Note that (i, i′) will receive tokens at infinitely many steps iff XiEXi′ .) Let Y j
i

for i < n and j ∈ ω refer to the jth column of the real Yi we are building. We start
with initial approximations Y j

i,0 to the reals Y j
i . To define these, let A0, . . . , An−1

partition ω with each Ai infinite and computable. Let Y j
i,0(0) = 1 iff j ∈ Ai. At

step k > 0, assume Y j
i,k−1(ℓ) has been defined for all i < n, all j ∈ ω, and all

ℓ < k. Fix i < n and define Y j
i,k(k) for all j ≤ k as follows: For each i′ < n with

i′ ̸= i, if (i, i′) receives a token at step k, then Y j
i,k(k) = 1 iff ∃ℓ ≤ k Y j

i′,k−1(ℓ) = 1;

otherwise set Y j
i,k(k) = 0. For all other j and k, we let Y j

i,k(k) = Y j
i,k−1(k − 1).

Let Y j
i =

⋃
k Y

j
i,k. This completes the definition of the Y j

i . Clearly, the map

(X0, . . . , Xn−1) 7→ (Y0, . . . , Yn−1) is computable.
Suppose i < i′ < n and XiEXi′ . So there are infinitely many steps k at which

(i, i′) receives a token. At such a step k, we have that for all j ≤ k, Y j
i,k(k) = 1

iff Y j
i′,k−1(ℓ) = 1 for some ℓ ≤ k. Since there are infinitely many such k, we have

for all j that if Y j
i′ (ℓ

′) = 1 for some ℓ′, then Y j
i (ℓ) = 1 for some ℓ. A symmetrical

argument shows that if Y j
i (ℓ) = 1 for some ℓ then Y k

i′ (ℓ
′) = 1 for some ℓ′. So

∃ℓ Y j
i (ℓ) = 1 iff ∃ℓ′ Y j

i′ (ℓ
′) = 1. Since this holds for all columns j, we have YiE

n
=Yi′ .

Suppose that i < i′ < n and ¬XiEXi′ . Then for some k0 and all steps k ≥ k0,
tokens are only added to (i, p) for p with XpEXi and likewise only added to (i′, q)

for XqEAi′ . This implies that for j ≥ k0 with j ∈ Ai, Y
j
i′,k(ℓ) = 0 for all ℓ. So,

Y j
i′ (ℓ) = 0 for all ℓ, but Aj

i (0) = 1 since j ∈ Ai. So, ¬YiEec
= Yj . □

We next generalize Theorem 32 to arbitrary levels Π0
m, for m ≥ 2. For A ∈ 2ω,

and for j1, . . . , jm ∈ ω, let Aj1,...,jm ∈ 2ω be given by

Aj1,...,jm(j) = A(⟨j, j1, . . . , jm⟩),

where (j, j1, . . . , jm) 7→ ⟨j, j1, . . . , jm⟩ is a recursive bijection between ωm+1 and ω.
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Definition 33. Let E be an equivalence relation on 2ω. We define the equivalence
relation Eecm on 2ω by Y1E

ecmY2 iff y1Ey2 where y1(j) = 1 iff

∃j1 ∀j2 · · · Qjm Y j1,...,jm
1 (j) = 1,

and similarly for y2.

As before, we let Eecm
= abbreviate (E=)

ecm , that is, it is the equivalence relation
given by Definition 33 starting from the equality equivalence relation E = E=.
Note that Eec1 = Eec.

Theorem 34. For all m ≥ 2, for any Π0
m+1-equivalence relation E on X ≤ ωω,

we have E ≤<ω
0 Eecm

= .

Proof. Fix a computable R so that for all A,B ∈ ωω, we have AEB if and only if
∀a ∃a1 · · · QamR(A,B, a, a1, . . . , am). By modifying R, we may assume that the
first two quantifiers are ∃∞∃ instead of ∀∃, namely, we have AEB iff

∃∞a∃a1 · · · QamR(A,B, a, a1, . . . , am).

Fix n ∈ ω and X0, . . . , Xn−1 ∈ ωω and we effectively compute Y0, . . . , Yn−1 ∈ 2ω

from these such that for all i < i′ < n, we have XiEXi′ iff YiE
ecm
= Yi′ .

First, set Yi(j, 0, j2, . . . , jm) = 1 iff j ∈ Ai, where A0, . . . , An−1 partition ω and
each Ai is infinite and computable (as in the proof of Theorem 32). It might be
helpful to note that in the following definition, the j and k correspond to the first
two of the m+ 1 variables of R, which defines the Π0

m+1-relation E. Set

Yi(j, ⟨j′, k, i′, j1⟩, j2, . . . , jm) = 1

↔ (j ≤ j′) ∧ (i′ ̸= i) ∧ (0 ≤ i, i′ ≤ n− 1) ∧ Si(⟨j, j′, k, i′, j1⟩, j2, . . . , jm)

where Si is computable and such that ∀j2 · · ·Qjm Si(⟨j, j′, k, i′, j1⟩, j2, . . . , jm) iff

∀j2 · · ·Qjm Yi′(j, j1, j2, . . . , jm) = 1 and ∀j2 · · ·Qjm R(Xi, Xi′ , j
′, k, j2, . . . , jm).

This can be done since the two conditions are both Π0
m−1, which is closed un-

der conjunction. (We assume here that our coding of tuples is such that j1 <
⟨j, j′, k, i′, j1⟩.) Now, by induction on the second argument, it easily follows that
this definition of Yi is well-defined, and also Y0, . . . , Yn−1 are computable from
X0, . . . , Xn−1.

Fixing i ̸= i′ with 0 ≤ i, i′ ≤ n− 1, we show that XiEXi′ iff YiE
ecm
= Yi′ .

Suppose first thatXiEXi′ , so ∃∞j ∃j1 · · ·QjmR(Xi, Xi′ , j, j1, . . . , jm). Fix any j
such that ∃j1∀j2 · · ·Qjm Yi′(j, j1, . . . , jm) = 1; we will show that

∃j1∀j2 · · ·Qjm Yi(j, j1, . . . , jm) = 1.

(The proof for the reverse direction is symmetric.) Fix j′ ≥ j and k such that
∀j2 · · ·Qjm R(Xi, Xi′ , j

′, k, j2, . . . , jm). Fix j1 such that

∀j2 · · ·Qjm Yi′(j, j1, j2, . . . , jm) = 1.

For these fixed values of j, j′, k, i′, j1, we then have by the definition of Yi that

∀j2 · · ·Qjm Yi(j, ⟨j′, k, i′, j1⟩, j2, . . . , jm) = 1.

Conversely, suppose that i < i′ < n and ¬XiEXi′ . Fix some j so that j ∈ Ai

and for any 0 ≤ p, q ≤ n − 1 with ¬XpEXq, no j
′ ≥ j is a “false witness”, i.e.,

(∀j′ ≥ j)¬(∃k∀j2 · · ·Qjm R(Xp, Xq, j
′, k, j2, . . . , jm)). Therefore, for any j′ ≥ j

and any k, we have ¬∀j2 · · ·Qjm R(Xp, Xq, j
′, k, j2, . . . , jm)).
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As j ∈ Ai, by definition, we have that Yi(j, 0, j2, . . . , jm) = 1 for all j2, . . . , jm,
so ∃j1 ∀j2 · · · Qjm Yi(j, j1, j2, . . . , jm) = 1. We will show ¬YiEecm

= Yi′ by showing
that ¬∃j1 ∀j2 · · · Qjm Yi′(j, j1, j2, . . . , jm) = 1.

For each p ≤ n − 1, by definition of Yp, if ∀j2 · · · Qjm Yp(j, t, j2, . . . , jm) = 1,
then t must be of the form t = ⟨j′, k, q, j1⟩ for some j′ ≥ j and q ̸= p with 0 ≤ q ≤
n−1 and ∀j2 · · · Qjm Sp(⟨j, j′, k, q, j1⟩, j2, . . . , jm). By definition of Sp, this implies
that ∀j2 · · ·Qjm R(Xp, Xq, j

′, k, j2, . . . , jm). Finally, by the choice of j, we have
that XpEXq. However, the recursive definition of Y shows Yi(j, 0, j2, . . . , jm) = 1
iff j ∈ Ai, so by induction, if ∀j2 · · · Qjm Yp(j, t, j2, . . . , jm) = 1 for some t, then
we must have XpEXi. As we have ¬XiEXi′ , this shows that

¬∃j1 ∀j2 · · · Qjm Yi′(j, j1, j2, . . . , jm) = 1.

□

Here is an analogous definition on Baire space, together with related propositions
and questions.

Definition 35. • For A ∈ ωω, define Ap(m) = min
n
A[m](n).

• Let E be an equivalence relation on ωω. Define AEecB iff ApEBp.

We have the analogous proposition and questions.

Proposition 36. If E is a Π0
n-equivalence relation (Σ0

n-equivalence relation, respec-
tively) on ωω, then Eec is a Π0

n+1-equivalence relation (Σ0
n+1-equivalence relation,

respectively). □

The projections of the equality relations =C on Cantor space and =B on Baire
space turn out to be bi-reducible.

Theorem 37. (=B)
ec ≡ (=C)

ec.

Proof. The reduction ≥ is clear. The idea for ≤ is that for every column i in X, we
use countably many columns ⟨i, j⟩ in Y to code if min(X [i]) ≤ j. GivenX =

⊕
X [i],

define Y (⟨i, j,m⟩) = 1 if and only if X(⟨i,m⟩) ≤ j.
Suppose X =ec

B X ′, we need to show Y =ec
C Y ′. Fixing i, let j0 = min(X [i]).

Then for every j < j0, we have X(⟨i,m⟩) ≥ j0 > j for every m, so Y (⟨i, j,m⟩) = 0
and Y [⟨i,j⟩] = ∅, and thus Y p(⟨i, j⟩) = 0. For j ≥ j0, we have X(⟨i,m⟩) = j0 ≤ j
for some m, so Y (⟨i, j,m⟩) = 1 and Y p(⟨i, j⟩) = 1. This is the same for Y ′, and
since min(X [i]) = min(X ′[i]), we have that Y p(⟨i, j⟩) = Y ′p(⟨i, j⟩). Thus Y =ec

C Y ′.
Conversely, suppose X ̸=ec

B X ′. Without loss of generality, suppose there is

some i with min(X [i]) = j < min(X ′[i]). Then X ′(⟨i,m⟩) > j for every m, so
Y ′(⟨i, j,m⟩) = 0 and Y ′p(⟨i, j⟩) = 0. However, we have X(⟨i,m′⟩) ≤ j for some m′,
so Y (⟨i, j,m′⟩) = 1 and Y p(⟨i, j⟩) = 1 ̸= Y p(⟨i, j⟩). Thus Y ̸=ec

C Y ′. □

Question 38. Let µ be ω, “< ω”, or a natural number. If E is a Π0
n-complete equiv-

alence relation (Σ0
n-complete equivalence relation, respectively) on ωω under ≤µ

0 ,
must Eec then be a Π0

n+1-complete equivalence relation (Σ0
n+1-complete equivalence

relation, respectively) under ≤µ
0?

Again, Theorem 39 gives a negative answer to this question on the Π0
n-side under

countable reduction.
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5.3. Transferring completeness from ω to Baire space. For equivalence rela-
tions on ω, there are no Π0

n-complete equivalence relations under countable reduc-
tion [4]. The proof there exploits the fact that when one closes a binary Π0

2-relation
under transitivity, the resulting relation may no longer be Π0

2. (Reflexivity and
symmetry do not have the same problem.) Using the idea in the proof, we show
this is also the case for ωω under computable countable reduction.

Theorem 39. For n ≥ 2, there is no Π0
n-complete equivalence relation on ωω under

computable countable reduction.

Proof. We first prove the statement for n = 2. Given a Π0
2-equivalence relation E,

we will build a Π0
2-equivalence relation F such that F ̸≤ω

0 E.
Fix a computable predicate R such that AEB if and only if ∀i∃jR(A,B, i, j).

We build F by diagonalizing against every possible computable reduction Φe. Fix
a computable family of distinct computable reals {Xe, Ye, Zk,e}e,k∈ω. The diag-
onalization for each Φe will be independent, and we use Xe, Ye, Z0,e, Z1,e, . . . for
the diagonalization against Φe. For simplicity, we will write X = Xe, Y = Ye, and
Zk = Zk,e. We also define X̂, Ŷ , Ẑk so that Φe(X⊕Y ⊕(

⊕
Zk)) = X̂⊕ Ŷ ⊕(

⊕
Ẑk).

Note that X̂, Ŷ , Ẑk are all computably enumerable.
Intuitively, we think of a Π0

2-event happening if and only if it acts infinitely often.

We proceed to make XFZ0 until E acts on X̂EẐ0, then we switch making Y FZ0

until E acts on Ŷ EẐ0, then go back to XFZ0 and loop. We break the loop when
E acts on X̂EŶ , and get into another loop by replacing Z0 with Z1. In the end,
every Zi will force X̂EŶ to act once, so it will act infinitely often, while we never
acted on XFY . This yields ¬XFY but X̂EŶ , diagonalizing against Φe being a
reduction.

Formally, we define F by defining a computable predicate S and declaring AFB
if and only if ∀i∃s[S(A,B, i, s)∨S(B,A, i, s)] or A = B. We will define S so that for
every stage s, there is at most one tuple (A,B, i, s) with A,B ∈ {X,Y, Z0, Z1, . . . }
that S holds on, and it is computable to find this tuple. At stage s, define k
to be the largest number such that k ≤ s and ∀i < k∃j ≤ s R(X̂, Ŷ , i, j) (this

includes requiring that X̂ and Ŷ have converged enough for R to converge and
hold, similarly for Ẑk below). We then define ℓX to be the largest number such

that ℓX ≤ s and ∀i < ℓX∃j ≤ s R(X̂, Ẑk, i, j), and similarly define ℓY . Define iX be
the largest number so that ∃j′ < s S(X,Zk, i

′, j′) for every i′ < iX , and similarly
define iY . If ℓX ≤ ℓY , define S(X,Zk, ix, s); and if ℓX > ℓY , define S(Y,Zk, ix, s).
This completes the definition of S and thus F .

We now show that Φe is not a reduction from F to E. Suppose, toward a
contradiction, that Φe is a computable countable reduction. Note that we never
have S(X,Y, i, s), so we must have ¬XFY , and hence ¬X̂EŶ . Let k be the largest

number so that ∀i < k ∃jR(X̂, Ŷ , i, j), and fix a stage s0 so that ∀i < k ∃j <
s0 R(X̂, Ŷ , i, j). Considering Ẑk, as E is an equivalence relation, we must have

¬X̂EẐk or ¬Ŷ EẐk. Thus, at least one of ℓX and ℓY will converge, so we can fix
a stage s1 > s0 such that (without loss of generality, assume) ℓX ≤ ℓY for any
stage s > s1. From then on, we will have S(X,Zk, i, s) for each stage. Indeed,
considering a particular stage s, the choice of iX at that stage shows we have
∃j′ < s S(X,Zk, i

′, j′) for every i′ < iX , and at the subsequent stages we will
increase iX by 1 at every stage. Thus, we have ∀i∃jS(X,Zk, i, j), showing that
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XFZk. But the fact that ℓX converges means that ¬X̂EẐk, a contradiction, so Φe

is not a reduction.
We note that F is an equivalence relation: If X̂EŶ , we will never have AFB

for any A ̸= B and F is just the equality relation; and if ¬X̂EŶ , we have seen in
the proof above that we make exactly one of XFZk and Y FZk but nothing else
equivalent.

The above proof constructs, for every Π0
2-equivalence relation E, a Π0

2-equivalence
relation F such that F ̸≤ω

0 E. Relativizing, we get that for n ≥ 2, for every Π0
n-

equivalence relation E, there is a Π0
n-equivalence relation F such that F ̸≤ω

n−2 E.
In particular, this means that we also have F ̸≤ω

0 E, completing the proof. □

On the other hand, we are able to transfer completeness results from ω assuming
enough uniformity.

Definition 40. Let µ be ω, “< ω”, or a natural number, and let E be a Σ0
α-

equivalence relation on ω such that the Σ0
α-definition of E can be uniformly rel-

ativized to any oracle X ∈ ωω. We say that E is uniformly Σ0
α-complete with

oracles under ≤µ
0 if for every equivalence relation F that is Σ0

α in X, there is an
X-computable µ-reduction from F to EX such that this reduction is uniform in X.
(We define this similarly in the Π0

α-case.)

Under this definition, the Σ0
α-complete equivalence relation that is the join of all

Σ0
α-equivalence relations is uniformly Σ0

α-complete with oracles (under full reduc-
tion).

Question 41. Is the equivalence relation En
= (defined in R. Miller and Ng [7] as

i En
= j iff W ∅(n)

i = W ∅(n)

j ) uniformly Π0
n+2-complete with oracles under finitary

reduction?

Definition 42. Let E be an equivalence relation on ω that is uniformly Σ0
α- (or

Π0
α-)complete with oracles under ≤µ

0 . We define EB to be the equivalence relation
on Baire space, which we think of as ωω × ωω, by setting (Y,X)EB(Y

′, X ′) iff
X = X ′ and Y (0)EXY ′(0).

Remark 43. In Definition 42, note that if α ≥ 2 (or α ≥ 1 in the case of Π0
α),

then EB is Σ0
α (or Π0

α, respectively).

Theorem 44. Suppose E is an equivalence relation on ω which is uniformly Σ0
α-

complete (or Π0
α-complete, respectively) with oracles under ≤µ

0 among equivalence
relations on ω, where α ≥ 2 (or α ≥ 1 in the case of Π0

α). Then EB is Σ0
α-

complete (or Π0
α-complete, respectively) under ≤µ

0 among equivalence relations on
Baire space.

Proof. We will prove the theorem for Σ0
α. The proof for Π0

α is identical.
Given a Σ0

α-equivalence relation G on ωω, we need to produce a µ-ary reduction
from G to EB . That is, given X =

⊕
i<µ

Xi, we need to define a Turing functional Φ

that uses X as an oracle and outputs Y =
⊕
i<µ

Yi so that XiGXj iff YiEBYj .

Given X =
⊕
i<µ

Xi, we first define a Σ0
α-equivalence relation G′ on ω via iG′j iff

XiGXj for i, j < µ, letting any i ≥ µ form a singleton class if µ ∈ ω. Then G′

is Σ0
α relative to X, and this definition is uniform in X. Thus, since E is uniformly
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Σ0
α-complete with oracles, there is a (uniformly) X-computable µ-ary reduction Φ

from G′ to EX .
For any oracleX, there is a (full) reduction ΨX from EX to EB , namely, ΨX(i) =

((i)ω, X). It is straightforward to see that ΨX(i)EBΨ
X(j) iff iEXj, and ΨX is

uniform in X.
We now have X-computable µ-reductions Φ : ωµ → ωµ from G′ to EX , and

Ψ : ωµ → (ωω × ωω)µ from EX to EB . Write τ = (0, 1, . . . , µ− 1) if µ is a natural
number, τ = (0, 1, 2, . . . ) if µ = ω, and let τ ∈ ω vary if µ is “< ω”. Then Ψ ◦Φ(τ)
is an element of (ωω × ωω)µ, so we will write Y = Ψ ◦ Φ(τ) =

⊕
i<µ

Yi. Define

Φ(X) = Y , noting that Y is uniformly computable from X.
Finally, since Φ and Ψ are both µ-ary reductions, we have for all appropri-

ate i and j that XiGXj iff iG′j iff πi(Φ(τ))Eπj(Φ(τ)) iff Yi = πi(Ψ(Φ(τ))) is EB-
equivalent to Yj = πj(Ψ(Φ(µ))). This shows that Φ is a µ-ary reduction from G
to EB . □

The definition of EB and the proof can be modified to work for Cantor space.
Using the theorem, we can transfer completeness results from equivalence relations
on ω to equivalence relations on Baire space (or Cantor space).

Recall that for every α ≥ 1, there is a Σ0
α-complete equivalence relation on ω.

Indeed, for any Σ0
α-relation E, its closure Ē under reflexivity, symmetry, and tran-

sitivity is also Σ0
α. Thus, listing all Σ0

α-relations as E0, E1, . . . , the uniform join of
their closure

⊕
Ēi is a Σ0

α-complete equivalence relation on ω. This construction
can be relativized to get that E is uniformly Σ0

α-complete with oracles under ≤ω
0 .

So from the previous theorem, we obtain the following.

Corollary 45. For every α ≥ 2, there are Σ0
α-complete equivalence relations on ωω

under countable reducibility.

6. Further questions

We end the paper with the following question. Intuitively, it asks how much uni-
formity is needed to “upgrade” n-reductions for every n ∈ ω to a finitary reduction.

Question 46. Suppose E and F are two equivalence relations such that E ≤n
0 F

holds for all n. Must it be the case that E ≤<ω
0 F?

Notice that there is an obvious uniform procedure which, for all n and all m < n,
creates an m-ary reduction from an n-ary one. Therefore, if we had (for example)
n-ary reductions uniformly for every n ∈ ∅′, we would also have a finitary reduction.
The same comment applies with any infinite non-immune set (i.e., any set with an
infinite c.e. subset) in place of ∅′. Thus a negative answer to Question 46 would
require substantial non-uniformity among the n-ary reductions.
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