
1

PRIORITY ARGUMENTS USING ITERATED TREES OF STRATEGIES

Ste�en Lempp and Manuel Lerman

Dept. of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Dept. of Mathematics, University of Connecticut, Storrs, CT 06269, USA

Abstract. A general framework for priority arguments in classical recursion

theory, using iterated trees of strategies, is introduced and used to present new

proofs of four fundamental theorems of recursion theory.

1. Introduction. Only a few years after Cohen invented forcing in set theory in

1961, a quite general framework had been developed by Shoen�eld, Solovay, Feferman,

and others. This framework has since allowed set theorists to prove a wide variety of

theorems by de�ning the appropriate partial order and appealing to the general lemmas

on forcing. The lemmas could also be applied to extensions of forcing such as iterated

forcing or class forcing.

Recursion theorists, unfortunately, have had a much harder time with the priority

argument invented in 1956/57 by Muchnik and Friedberg. Even nowadays and even

for �nite-injury priority arguments, recursion theorists either reprove the combinatorics

of �nite injury or simply assume that the reader is familiar enough with the combina-

torics to �ll in the details. For the most complicated well-understood kind of priority

argument, the 0

000

-priority argument, the whole framework has to be reproved every

time.

Of course, there have been numerous attempts at �nding a framework: Lachlan

[7, 8] tried a game-theoretical approach, and also a topological approach, using an

e�ective version of the Baire Category Theorem. (The true stages method for some

in�nite-injury priority arguments has its origin there.) Lerman [11] devised the pinball

machine model for in�nite-injury priority arguments. Harrington conceived the tree of

strategies method as a way to understand Lachlan's Nonsplitting Theorem, an approach

that was then worked out in detail and popularized by Soare [18, 19]; this method is

the most widely used today.

In the 1980's, Harrington introduced the \worker at level n" approach, later widely

used in recursive model theory by Knight and others. Ash [1, 2] gave a more detailed

version of this, working out a general framework in terms of iterated trees, which he

and Knight then extended and used to prove results in recursive model theory. Groszek

and Slaman [4] attempted a tree of trees approach in their work on reverse mathematics

in recursion theory. Finally, Ku�cera [5, 6] introduced the construction of recursively

The authors would like to thank C. Ash, M. Groszek, J. Knight, A. Ku�cera, and T. Slaman for

stimulating discussions and/or providing related preprints. The �rst author was partially supported

by NSF grants DMS-8701891, DMS-8901529, a Binational NSF grant U.S.-West Germany, and post-

doctoral fellowships of the Deutsche Forschungsgemeinschaft and the Mathematical Sciences Research

Institute. The second author was partially supported by NSF grants DMS-8521843 and DMS-8900349

and by the Mathematical Sciences Research Institute.

2

enumerable degrees below degrees of diagonally nonrecursive functions as a way of elim-

inating one level of injury and of separating negative and positive strategies in the

construction.

The framework that we would like to introduce here grew out of our work on the

decidability of the existential theory of the recursively enumerable (r.e.) degrees with

nth jump reducibility predicates [9], which, by the Shore Noninversion Theorem [17],

requires a general 0

(n)

-priority argument for arbitrarily large n. Of course, this frame-

work was inspired by many of the approaches above, especially Ash's, and Groszek's

and Slaman's. However, we see our approach as the most promising at this time to

reach the goal set above, namely to prove combinatorial lemmas about the framework

and to eliminate these from the individual priority arguments, which we hope to achieve

in [10]. In this paper, however, we will prove the combinatorial lemmas in each instance

separately to better give the intuition for the framework.

Our notation generally follows Chapter XIV of Soare [19]. We denote the use (the

largest number actually used) of a partial recursive functional by the corresponding

lower-case Greek letter, so e.g. ' is the use function of �. With the \opponent's"

(i.e. the given) functionals, we will always assume that the use of a computation is

bounded by the stage at which the computation �rst appears.

2. The Framework. We will de�ne, for �xed n > 0, a sequence of trees of

strategies T

0

, T

1

, : : : , T

n

such that, roughly speaking, the construction taking place

on T

i

is recursive in 0

(i)

, and for i > 0 is actually a �nite-injury construction relative

to 0

(i�1)

, and such that each strategy � 2 T

i+1

is split up into ! many substrategies

�

k

2 T

i

, working on the kth instance of �'s requirement. By the way the strategies will

be arranged on the tree, the construction on T

i

, which is recursive in 0

(i)

, will work to

satisfy not only (sub)requirements on T

i

, but also higher-level (sub)requirements from

T

i+1

, : : : , T

n

. The assignment of (sub)requirements to nodes on the trees is thus at the

heart of the framework. The splitting-up of requirements will automatically ensure the

negative requirements and will follow the same pattern for all four theorems presented

here. (For some other theorems, such as the Minimal Pair Theorem, the splitting-up

would have to be modi�ed slightly, however, to ensure that \at most one side of the

minimal pair" is injured.)

We de�ne the trees of strategies by induction as follows:

T

0

= f1; 0 g

<!

;

T

i+1

=

�

f1g [

[

j�i

T

j

�

<!

:

(1)

Here 1 and 0 are distinct symbols, and we tacitly assume that the nodes of each tree

(including the empty node) are appropriately tagged so that the trees form pairwise

disjoint sets, and we can thus tell which tree a particular node comes from. (Intuitively,

for � 2 T

i

, �bh1i denotes the �

i

-outcome of �, and �bh�i denotes a �

i

-outcome

witnessed by the �

i�1

-outcome of � on T

i�1

.)

Suppose we are given two partial functions up:T

i

! T

i+1

and lev:T

i

! f j j j � n g.

(In the following, these will denote that � 2 T

i

is a substrategy of up(�) 2 T

i+1

and

works for a requirement of complexity level lev(�). We do not split up a requirement in

3

going from T

i+1

to T

i

if i � lev(�), but only if i < lev(�).) We de�ne the approximation

function �:T

i

! T

i+1

by induction on m as follows (until �(�)(m)"):

�(�)(m) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�(k); if lev(�(�) j

n

m) � i and

k = �k

0

< j�j (up(� j

n

k

0

) = �(�) j

n

m),

�; if lev(�(�) j

n

m) > i and

� = ��

0

� � (up(�

0

) = �(�) j

n

m& �

0

bh1i � �),

1; if lev(�(�) j

n

m) > i and

8� � � (up(�) = �(�) j

n

m! �bh1i 6� �) and

9� � � (up(�) = �(�) j

n

m),

" ; if 8� � � (up(�) 6= �(�) j

n

m).

(2)

(Intuitively, � believes that if � is an initial segment of the true path on T

i

then �(�)

is an initial segment of the true path on T

i+1

. We notice that, by the remark at the

end of the preceding paragraph, we need not specify the i for T

i

on up and �; and we

denote by up

j

and �

j

the j-fold iteration of up and �, respectively.)

The de�nition of the approximation function naturally extends to in�nite paths

� 2 [T

i

]; here �(�) can be either a path through T

i+1

or a node on T

i+1

.

Next, we de�ne the concept of consistency. We say that an instance of � 2 T

i+1

is

consistent at � 2 T

i

i�

8j < n� i

�

up

j

(�) � �

j+1

(�)

�

; (3:1)

lev(�) � i! 8�

0

� �

�

up(�

0

) 6= �

�

; and (3:2)

lev(�) > i! 8�

0

� �

�

�

0

bh1i � �! up(�

0

) 6= �

�

: (3:3)

(Intuitively, we state in (3.1) that up

j

(�) is consistent with �'s guess at the true path

through T

i+j+1

; in (3.2) that �'s requirement need not be split up from T

i+1

to T

i

and

has not already been taken care of before �; and in (3.3) that along �, no substrategy

working for � has had a �

i

-outcome and that therefore at � we must still search for a

�

i+1

-witness for �'s requirement. There are theorems (not presented here) in the proofs

of which this notion of consistency has to be de�ned in a less restrictive way.)

Next, we �x an e�ective 1{1 poset homomorphism par from [

i2!

T

i

onto ! with

the following property:

8�; � 2 T

i+1

8 2 T

i

�

�bhi � �! par() < par(�)

�

: (4)

We call par(�) the parameter of �. (The intuition is that par(�) is a number reserved

for � and \big" relative to �'s predecessors.)

We now assign requirements to nodes. Fix n to be the highest (quanti�er) com-

plexity level of any requirement for the theorem at hand. Given an e�ective !-ordering

of all requirements fR

k

g

k2!

for the theorem, we assign R

k

to all nodes � 2 T

n

with

j�j = k (or a proper subset thereof if certain outcomes contradict the hypotheses of

the theorem, as in the Sacks Splitting and the Sacks Density Theorems, but always

such that the nodes that are assigned requirements form a recursive subtree of T

n

). We

also de�ne the complexity level lev(�) to be the (quanti�er) complexity level of require-

ment R

k

. (This assignment of requirements on T

n

will have to be modi�ed slightly for

the Sacks Splitting Theorem.)

4

We then proceed by reverse induction on i < n and by induction on j�j for � 2 T

i

.

Given an e�ective !-ordering � of f � 2 T

i+1

j some requirement is assigned to � g � !

with the property

�

� = �

0

& k � k

0

�

or

�

� � �

0

& k � k

0

+ par(�

0

)

�

! h�; ki � h�

0

; k

0

i; (5)

and given an assignment to all �

0

� �, we let h�; ki be �-minimal such that

9

�k

�

0

� �

�

up(�

0

) = �

�

; and (6:1)

an instance of � is consistent at �. (6:2)

We then assign �'s requirement to � (if lev(�) � i) or the kth instance of �'s requirement

to � (if lev(�) > i), respectively, and we set up(�) = � and lev(�) = lev(�). If h�; ki

does not exist then we assign no requirements to any �

0

� �.

We will now prove a general lemma about the splitting-up of requirements.

Lemma 1 (Splitting-Up Lemma). Assume �

0

2 [T

0

] and �

j

= �

j

(�

0

) for 0 < j � n.

Then:

(i) If 0 < j � n and j�

j

j <1 then no requirement is assigned to the node �

j

.

(ii) If 0 < j � n then for all t (with t � j�

j

j if �

j

is a node) there is some t

0

such that

�

j

(�

0

j

n

t

0

) = �

j

j

n

t and for all j

0

< j, �

j

0

(�

0

j

n

t

0

) � �

j

0

.

(iii) If R is a requirement of complexity level i assigned to a (necessarily unique) node

on �

n

, say �

;

n

, then for all j < n:

(a) If j � i then R is assigned to a (necessarily unique) node on �

j

, say �

;

j

.

(b) If j < i and �

�

j+1

bh�i � �

j+1

for some � 2 T

j

and some � 2 !

i�j�1

then

the kth instance of �

�

j+1

's requirement (for some k) is assigned to � with

�bh1i � �

j

, and no instance of �

�

j+1

's requirement is assigned to any �

0

with

� � �

0

� �

j

. We denote by �

�bhk

0

i

j

the (necessarily unique) �

0

� �

j

to which

the k

0

th instance of �

�

j+1

's requirement is assigned (for k

0

� k).

(c) If j < i and �

�

j+1

bh1i � �

j+1

for some � 2 !

i�j�1

then for all k, the kth

instance of �

�

j+1

's requirement is assigned to a (necessarily unique) node on

�

j

, say �

�bhki

j

.

Proof. If no requirement is assigned to some � � �

0

then we rede�ne �

0

to be

the least such �, otherwise we leave � as is. This will not a�ect the de�nition of �

j

for

j > 0.

(i) We proceed by induction on j. Suppose (i) fails for some (least) j � n. Then �

j

is �nite, and some requirement is assigned to it. Since �

j

= �(�

j�1

), we have, by the

de�nition of �, that �

j

= �(�

j�1

j

n

t) for all t � t

0

(for some t

0

). Furthermore, by (3.1),

up

l

(�

j

) � �

j+l

for all l � n�j, and thus h�

j

; 0i must eventually be the least pair h�; ki

used in splitting up T

j

's requirements along �

j�1

. Therefore (the 0th instance of) �

j

's

requirement must be assigned to some � � �

j�1

whence �

j

� �(�

j�1

), a contradiction.

(ii) We proceed by induction on j. Set � = �

j

j

n

(t � 1). If lev(�) < j then

there is a unique � � �

j�1

with up(�) = �, and we have �

j�1

(j�j) = �

j

(j�j). If

lev(�) � j and �bh�i = �

j

j

n

t for some � then �bh1i � �

j�1

. If lev(�) � j and

�bh1i = �

j

j

n

t then there is a (least) � � �

j�1

with up(�) = �, and we have

�bhi � �

j�1

for some . In all these cases, set t

00

= j�j+1. Since up(�) = �, we have

5

� � �(�) and thus �

j

j

n

t � �(�

j�1

j

n

t

00

). By (3.2) and (3.3), it is also easy to see that

�

j

j

n

t = �(�

j�1

j

n

t

00

). Now apply (ii) with t

00

and j � 1 in place of t and j to get t

0

which will then make (ii) true for t and j.

(iii) We proceed by reverse induction on j. By the hypothesis, (a) holds for �

;

n

.

Suppose one of (a), (b), or (c) holds for j + 1, and �x �

�

j+1

� �

j+1

for some � 2 !

<i

in our notation. If j < i and �

�

j+1

bh�i � �

j+1

for some � 2 T

j

then (b) holds since

�

j+1

= �(�

j

). So suppose j � i or �

�

j+1

bh1i � �

j+1

, and (a) or (c) fails, respectively.

We distinguish two cases.

If �

j

is a node (i.e. of �nite length) then �

k

(�

j

) = �

j+k

for all k � n � j. Since

up

k

(�

�

j+1

) � �

j+1+k

for all k < n � j by hypothesis, (some instance of) �

�

j+1

's re-

quirement would be assigned to �

j

, contradicting (i) (or the �rst paragraph of this

proof).

If �

j

is an in�nite path then by an application of (ii), there are in�nitely many t

such that for all k < n � j, �

k+1

(�

j

j

n

t) � up

k

(�

�

j+1

). Thus an instance of �

�

j+1

is

consistent at � j

n

t for in�nitely many t, contradicting the failure of (a) or (c).

This concludes the proof of Lemma 1.

The general procedure to use this framework will then be as follows: For a theorem

on r.e. objects, we de�ne an !-sequence of requirements of the form

(�! �) & (:�! �) (7)

where � is a �

i

-formula (or �

i

-formula), � a �

i+1

-formula (or �

i+1

-formula), and � a

�

i

-formula (or �

i

-formula) if the complexity level i is odd (or even, respectively). We al-

low �, �, and � to contain free variables that will be substituted by parameters of nodes

(or numbers computed from them), and we allow the innermost quanti�er of � to be re-

stricted to a set of \stages" S = f par(�) j � � �

0

&up

n

(�) = �& 8j � n

�

up

j

(�) � �

j

�

g

when a T

0

-strategy works for this requirement with correct guesses at the true path on

all trees. In splitting (sub)requirements into subrequirements, we bound the outermost

unbounded quanti�er in �, �, and � by k (for the kth instance of that requirement)

or by par(�) (for � working on the kth instance of that requirement), proceeding from

T

n

down to T

i

without splitting up, and then from T

i

all the way down to T

0

while

splitting up. The requirements assigned to T

0

-nodes then determine the true path �

0

on T

0

(where we follow �bh1i if the ifold instance of � from the requirement for � 2 T

0

is true, and we follow �bh0i otherwise). We now have to de�ne the action of an � 2 T

0

depending upon its \outcome" (1 or 0). We thus obtain the (recursive) true path �

0

on T

0

by starting with ; 2 T

0

and, whenever � has been determined to be on �

0

, letting

� act and determine �bhai to be on �

0

for �'s outcome a. The construction consists

of the actions of all � � �

0

. We �nally de�ne �

i

= �

i

(�

0

) to be the true path on T

i

(which is recursive in 0

(i)

) and verify that all � 2 �

n

satisfy their requirements.

3. The Sample Theorems. We now present the details of the construction in our

framework for four well-known theorems of recursion theory. (We assume familiarity

with the traditional proofs, as e.g. in Soare [19].)

6

Friedberg-Muchnik Theorem (Muchnik [13], Friedberg [3]). There are two r.e. sets

A and B of incomparable Turing degree.

Proof. We need to satisfy A 6= �

B

and B 6= �

A

for all partial recursive (p.r.)

functionals �. By symmetry, we assume throughout that we want to satisfy the former

whenever we discuss an individual requirement. To ensure such an inequality, we need

to ensure it at a number x. A requirement thus takes the form

9s 2 S

�

�

B

s

s

(x)#= 0

�

!9s8t � s

�

�

B

s

s

(x)#= 0 & x 2 A

s+1

&

B

s

j

n

('

s

(x) + 1) = B

t

j

n

('

s

(x) + 1)

�

:9s 2 S

�

�

B

s

s

(x)#= 0

�

!8s (x =2 A

s

) :

(8)

The complexity level is thus 1. We �x an e�ective !-ordering fR

e

g

e2!

of all require-

ments, assign requirement R

e

to all nodes � 2 T

1

with j�j = e, and substitute the x in

�'s requirement by par(�) for all � 2 T

1

.

The split-up requirements for � 2 T

0

are obtained by restricting s � par(�) (where

B

par(�)

is that part of B enumerated before � acts). The action of � 2 T

0

is to measure

if

9s � par(�)

�

s 2 S & �

B

s

s

(par(up(�)))#= 0

�

; (9)

which, since all previous instances of �'s requirement before � have had outcome 0,

i.e. have been answered negatively, just means

�

B

par(�)

par(�)

(par(up(�)))#= 0: (9

0

)

If the answer is no then � has outcome 0, otherwise it has outcome 1 and enumerates

par(up(�)) into A.

We now verify that the construction satis�es the requirements.

We �rst observe a combinatorial fact about �nite injury, namely that � � �

0

and

up(�) � �

1

implies that up(�) and up(�

0

) are comparable for all �

0

with � � �

0

� �

0

.

Suppose A = �

B

. Then some unique � � �

1

was supposed to ensure A(par(�)) 6=

�

B

(par(�)). First assume �bh1i � �

1

. Then, by Lemma 1, there are in�nitely many

� � �

0

with up(�) = �, and for all such � we have �bh0i � �

0

. Thus �

B

par(�)

par(�)

(par(�))#

= 0 fails for all these �. This implies :�

B

(par(�))#= 0 and par(�) =2 A, a contradiction.

On the other hand, assume �bh�i � �

1

for some � 2 T

0

. Thus �bh1i � �

0

,

�

B

par(�)

par(�)

(par(�))#= 0, and par(�) 2 A. It su�ces to show that no �

0

with � � �

0

� �

0

will enumerate a number � '

par(�)

(par(�)) into B in order for us to establish that

B

par(�)

j

n

('

par(�)

(par(�)) + 1) = B j

n

('

par(�)

(par(�)) + 1). We analyze the di�er-

ent possibilities for the position of �

0

= up(�

0

) relative to �. By (3.1) and (3.3),

�

0

bh�

00

i � � (for some �

00

) is impossible. By (3.1), �bh1i � �

0

is impossible. By

� � �

1

, �

0

bh1i � � implies that �

0

does not enumerate any number. By (3.1),

�bh�

00

i � �

0

(for some �

00

) implies � = �

00

, and thus par(�

0

) > par(�) > '

par(�)

(par(�))

by (4). Suppose � and �

0

are incomparable, say they split at ��. But then � � �

0

� �

0

is impossible by (3.1) and our observation.

7

Sacks Splitting Theorem (Sacks [14]). Any nonrecursive r.e. set A can be split into

two r.e. subsets A

0

and A

1

of incomparable Turing degree.

Proof. Given an r.e. set A, we need to satisfy (for all p.r. functionals � and i = 0

or 1) the requirements

A = A

0

t A

1

; and (10:1)

A = �

A

i

! A �

T

;: (10:2)

(Here t denotes disjoint union.) We ensure A

0

\ A

1

= ; simply by not enumerating

the same number into both A

0

and A

1

, and we ensure A

0

; A

1

� A simply by only

enumerating elements of A into A

0

or A

1

; so ensuring (10.1) is reduced to showing

A � A

0

[A

1

: (10:1

�

)

We try to show that A is recursive by building a partial recursive function �

�

such that

A = �

�

(for some � 2 T

2

working on (10.2)). Our requirements thus take the following

form (for all x and all i and �):

9s 2 S (x 2 A

s

)! 9s

�

x 2 A

0;s+1

[A

1;s+1

�

; and (10:1

0

)

8x9s 2 S 8y � x

�

A

s

(y) = �

A

i;s

s

(y)#

�

! 8x9s8t > s

�

A

t

(x) = �

�;t

(x)#

�

: (10:2

0

)

In the notation of (7), formulas � are trivial, say 0 = 0, so the requirements take

the simpler form � ! �. The complexity level of requirements (10:1

0

) and (10:2

0

) is

1 and 2, respectively. We index the requirements (10:1

0

) and (10:2

0

) by fP

x

g

x2!

(for

the x in (10:1

0

)) and fN

e

g

e2!

, respectively. We will assign requirements to nodes of

T

2

in a di�erent fashion than usual, namely as follows: We assign N

0

to ; 2 T

2

. Given

assignments to all �

0

� � for some � 2 T

2

, we denote by �

0

the longest �

0

� � to which

a requirement (10:2

0

), say N

e

0

, has been assigned. If �

0

bh1i � � then no requirement

is assigned to � (since �

0

has shown that A is recursive contrary to the hypothesis of

the theorem). Otherwise let �

0

bh�i � � for some �; then N

e

0

+1

is assigned to � if

(for all x � par(�)) P

x

has already been assigned to some �

0

� �; otherwise let x

0

be

minimal such that P

x

0

has not been assigned to some �

0

� �, and assign P

x

0

to �. It

is now easy to check that along any path � 2 [T

2

], all requirements have been assigned

unless A �

T

; is shown by �bh1i � � for some � working on a requirement (10:2

0

).

In going from T

2

to T

1

, we do not split up requirements (10:1

0

), and we split up

requirements (10:2

0

) by bounding x � k (for � 2 T

1

working on the kth instance of

(10:2

0

)). The split-up requirements for T

0

are simply obtained by bounding s � par()

for 2 T

0

. (Here we �x an enumeration fA

s

g

s2!

of A, and A

i;par()+1

is the part of

A

i

enumerated by all

0

� , and likewise for �

�

.)

The action of a 2 T

0

working on a requirement (10:1

0

) is to measure if

9s 2 S (s � par() & x 2 A

s

) ; (11)

which just amounts to measuring if

x 2 A

par()

: (11

0

)

8

If the answer to (11

0

) is no then has outcome 0; otherwise it has outcome 1, and,

if now x =2 A

0

[A

1

, then enumerates x into A

1�i

0

where �

0

� up

2

() is the longest

strategy working on a requirement (10:2

0

), and �

0

uses i = i

0

.

The action of a 2 T

0

working on the kth instance of a requirement (10:2

0

) is to

measure if

8x � k9s � par()8y � x

�

s 2 S & A

s

(y) = �

A

i;s

s

(y)

�

#; (12)

which, just as for (9), simply amounts to measuring if

A

par()

j

n

(k + 1) = �

A

i;par()

par()

j

n

(k + 1)# : (12

0

)

If the answer is no then has outcome 0; otherwise it has outcome 1 and de�nes

�

�

(k) = A

par()

(k) (if �

�

(k) is unde�ned so far where � = up

2

()).

We now verify that the construction satis�es all the requirements (up to the �rst

one, if any, that contradicts the hypothesis of the theorem by showing A �

T

;).

First, it is easy to see that any � � �

2

working on a requirement P

x

will ensure P

x

;

so if �

2

is an in�nite path then (10.1) is satis�ed.

Next, we observe that � �

0

and up

2

() � �

2

implies up() � �

1

. Suppose not,

say up() and �

1

split at

�

�. By up() � �(), we have

�

�bh1i � up() and

�

�bh�i � �

1

for some � with � � � �

0

. By the way requirements are assigned to nodes of T

2

, we

have up(

�

�) � up

2

(), and by (3.2) or (3.3), even up(

�

�) � up

2

(). But up

2

() � �

2

.

So if up(

�

�) works on some requirement (10:1

0

) then up

2

() has a correct guess on

�

�'s

outcome by

�

� � �

1

. And if up(

�

�) works on some requirement (10:2

0

) then, by (3.1), we

have up(

�

�)bh

�

�i � up

2

(), contradicting

�

�bh�i � �

1

. This establishes the observation,

and furthermore that up() � �(

0

) and up

2

() � �

2

(

0

) for all

0

with �

0

� �

0

.

Now suppose that �bh1i � �

2

for some strategy working on a requirement (10:2

0

).

Then �bh1i = �

2

by the assignment of requirements to nodes of T

2

, and �bhi � �

1

(for some) for all � � �

1

with up(�) = �. Thus, by Lemma 1(iii)(c), �

�

is total. So

suppose �

�

(x)# 6= A(x) for some (least) x. Then �

�

(x) was de�ned by some � �

0

,

and later x entered A. Since '

par()

(x) < par(), it su�ces to show that no ~ with

 � ~ � �

0

will put any number � par() into A

i

.

So suppose there is such a ~. We set ~� = up

2

(~). By our observation above and

� � �

2

, � and ~� must be comparable. If ~� � � then up(~) � up() and, by � ~,

up(~)bh1i � up() � �

1

, and so ~ will not enumerate any number.

We conclude that � � ~�. Let �

0

� ~� be the strategy determining if ~ enumerates

its ~x into A

0

or A

1

in the construction. Obviously, � � �

0

; and since y enters A

i

we

even have � � �

0

, say �bh�

0

i � �

0

� ~�. Then ~x > par(�

0

) by the way requirements

are assigned to nodes of T

2

. But by our observation, up() � �

1

and so up()bhi � �

0

;

thus ~x > par(�

0

) > par().

We have thus shown that A >

T

; forces �bh�i � �

2

(for some � 2 T

1

) for all

� � �

2

working on a requirement (10:2

0

). Thus �

2

is in�nite, and all requirements are

satis�ed.

9

Sacks Jump Inversion Theorem (Sacks [15]). For any set J �

T

;

0

r.e. in ;

0

, there

is an r.e. set A with A

0

�

T

J .

Proof. We need to build an r.e. set A and p.r. functionals � and � satisfying, for

all x, the requirements

J(x) = lim

y

�

A

(x; y) (13)

(establishing J �

T

A

0

by the Limit Lemma), and

A

0

(x) = �

J��

1

(x) (14)

(where �

1

�

T

;

0

is the true path on T

1

, thus establishing A

0

�

T

J � ;

0

). Since J is a

�

2

-set there is a recursive relation R such that x 2 J i� :8y9sR(x; y; s). We ensure

(13) by requiring

8y9sR(x; y; s)!8y > y

0

9s 2 S

�

�

A

s+1

s+1

(x; y)#= 0 &

s+1

(x; y) = �1

�

; and (15:1)

:8y9sR(x; y; s)!9y 8z � y 8s � s

z

�

s 2 S ! �

A

s+1

s+1

(x; z)#= 1 &

s+1

(x; z) �

s

z

+1

(x; z)

�

: (15:2)

(Here y

0

and the s

z

will be numbers determined by � 2 T

2

and the � 2 T

1

working

on (15). In the above, use -1 means that the oracle string is ;.) The complexity level

of this requirement is 2.

Recall that A

0

= fx j �

A

x

(x)# g. We ensure (14) by requiring

9s 2 S

�

�

A

s

x;s

(x)#

�

! 9s 2 S 8t > s

�

�

��(�bhi)

s+1

(x)#= 1 & �

A

s

x;s

(x)# &

A

s

j

n

('

x;s

(x) + 1) = A

t

j

n

('

x;s

(x) + 1)

�

; and (16:1)

:9s 2 S

�

�

A

s

x;s

(x)#

�

! 8s 2 S

�

�

��(�bh1i)

s+1

(x)#= 0

�

(16:2)

where � � J and �bhi � �

1

(or �bh1i � �

1

, respectively) are determined by � 2 T

2

and the � 2 T

1

working on (16), respectively. The complexity level of this requirement

is 1.

We �x an e�ective !-ordering fR

e

g

e2!

of all the above requirements (in ascending

order of x) and assign requirement R

e

to all nodes � 2 T

2

with j�j = e. For � working

on (16), we set

�(i) =

8

<

:

0; if (for some j) �(j)#=1 and � j

n

j works on (15) with x = i,

1; if (for some j) �(j)# 6=1 and � j

n

j works on (15) with x = i,

" ; otherwise.

In going from T

2

to T

1

, we split up the left-hand sides of �'s requirement (15) into

the kth instance for � 2 T

1

by bounding y � par(�) in (15). (The splitting-up of the

right-hand sides is a bit more complicated, there we bound y by a number computable

from �.) We do not split up requirement (16) from T

2

to T

1

, but we identify � 2 T

1

with the � in (16) (and will be the unique

0

with �bh

0

i � �

1

if it exists). In going

from T

1

to T

0

, we just split up �'s (sub)requirement (for � 2 T

1

) into the lth instance

for 2 T

0

by bounding s; z � par().

10

The action of a 2 T

0

working on (the lth instance of the kth instance of) (15) is

to measure if

8y � par(up())9s � par()R(x; y; s): (17)

If the answer is no then has outcome 0 and sets �

A

(x; y) = 1 for all y � par() (unless

now de�ned to a di�erent value). If the answer is yes then has outcome 1; de�nes

�

0

to be the longest �

0

� up() with up(�

0

) = up

2

() and

0

to be the longest

0

�

with up(

0

) = �

0

(if �

0

exists); enumerates par(

�

) into A (if �

0

exists) where

�

�

is minimal with up

2

(

�

) = up

2

() and up(

�

) � �

0

; sets �

A

(x; y) = 0 (unless now

de�ned to a di�erent value) for all y with par(

0

) < y � par() (if

0

exists); and sets

�

A

(x; y) = 1 (unless now de�ned to a di�erent value) for all other y � par(). The

use (x; y) for setting �

A

(x; y) = 0 here is �1 (i.e. oracle string ;), and the use (x; y)

for setting �

A

(x; y) = 1 here is par(

�

) where

�

� is minimal with par(

�

) � y,

up(

�

) � up(), and up

2

(

�

) = up

2

(). (When using oracle string ;, we still get a

p.r. functional if we adopt the convention that if two contradictory de�nitions would

apply to a �xed oracle then the de�nition enumerated �rst is the one used. In our

example, there will never be contradictory de�nitions applying to the r.e. oracle A.)

The action of a 2 T

0

working on (the kth instance of) (16) is to measure if

9s � par()

�

s 2 S & �

A

s

x;s

(x)#

�

; (18)

which, as for (9), just means

�

A

par()

x;par()

(x)# : (18

0

)

(Here A

par()

is the subset of A enumerated before 's action.) If the answer is no then

 has outcome 0 and sets �

��(�bh1i)

(x) = 0 (for its � and �, unless previously set to 1

for a compatible initial segment of the oracle); otherwise has outcome 1 and sets

�

��(�bhi)

(x) = 1 (for its � and �, unless previously set to 0 for a compatible initial

segment of the oracle).

We now verify that the construction satis�es all the requirements.

We �rst observe a combinatorial fact about in�nite injury, namely that if � �

0

,

up() � �

1

, and up

2

() � �

2

then for all

0

with �

0

� �

0

, either up

2

() and

up

2

(

0

) are comparable, or up

2

() � ��bh1i and up

2

(

0

) � ��bh

�

�i for some �� and

�

�

with lev(��) = 2. Suppose not, and say up

2

() and up

2

(

0

) split at ��. First assume

lev(��) = 1. Then

�

� � up() for some

�

� with up(

�

�) = ��, and so �

1

j

n

(j

�

�j+1) � �(

0

) by

up() � �

1

, contradicting up

2

() and up

2

(

0

) splitting at ��. So assume ��bh

�

�i � up

2

()

for some

�

� 2 T

1

. Then

�

�bh1i � up() � �

1

, and so again �

1

j

n

(j

�

�j + 1) � �

2

(

0

),

contradicting up

2

() and up

2

(

0

) splitting at ��.

Now suppose x

0

2 J . Then �bh�i � �

2

(for some �) for the unique � � �

2

working

on (15) with this x

0

. Thus �bh1i � �

1

, and :8y � par(�)9sR(x

0

; y; s). Let � �

0

be minimal with up() = �. Then for all

0

with �

0

� �

0

, we have �(

0

) � �. Any

such

0

with up(

0

) � � working on (15) with x

0

will measure (17) negatively (since

par(up(

0

)) � par(�)) and thus set �

A

(x

0

; y) = 1. For any

0

� �

0

with up(

0

) � �

working on (15) with this x

0

, if

0

sets �

A

(x

0

; y) = 0 then up(

0

)bh

0

i � � by � � �

1

,

and thus

0

� . Therefore �

A

(x

0

; y) = 1 for all y � par(). (Note that �

A

(x

0

; y) is

de�ned for all y since all

0

� �

0

with up(

0

) � �

1

and up

2

(

0

) = � de�ne �

A

(x

0

; y)

11

with the same use par(

�

) for the �xed string

�

that

0

uses for y if y � par(

0

) unless

already set to 0 with use �1.)

On the other hand, suppose x

0

=2 J . Then �bh1i � �

2

for the unique � � �

2

working on (15) with this x

0

. Thus �bh

�

i � �

1

(for some

�

) for all � � �

1

with

up(�) = �; and for all these � (except for �

0

, the least of them),

�

will try to ensure

�

A

(x

0

; y) = 0 with use �1 for all y 2 (par(

�

�
); par(

�

)] (where �

�

is the maximal

�

0

� � with up(�

0

) = up(�)). This will establish �

A

(x

0

; y) = 0 with use �1 for all

y > par(

�

0

) (and �

A

(x

0

; y) is de�ned for y � par(

�

0

) as above).

Thus suppose �

A

(x

0

; y) #= 1 for some (least) y > par(

�

0

). Then some (mini-

mal)

�

would like to set it to 0. Thus par(

�

�

) < y � par(

�

), and some � with

�

�
� � �

�

set �

A

(x

0

; y) = 1. Set �� = up

2

(�) and

�

� = up(�).

First suppose � 6= ��. Since both work on the same x

0

, they must be incomparable,

say they split at ~�.

By our observation, ~�bh1i � � and ~�bh

~

�i � �� for some

~

� 2 T

1

, and so �(�) �

�

� �

~

�bh1i but �(

�

) 6�

~

�bh1i. Pick ̂ maximal with � � ̂ �

�

and �(̂) �

~

�bh1i.

Set �̂ = up

2

(̂) and

^

� = up(̂). So

^

� �

~

�. We will show

^

� =

~

� and thus �̂ = ~�. First

suppose �̂ 6= ~�. Now �̂ � ~� is impossible by ~� � �

2

and

^

� �

~

�. Also ~� � �̂ implies

~�bh

~

�i � �̂ by �(̂) �

~

�bh1i, contradicting

^

� �

~

�. So ~� and �̂ must be incomparable,

say they split at ��. By our observation, ��bh

�

�i � �̂ and ��bh1i � ~� for some

�

� �

^

�,

contradicting

^

� �

~

�. Thus �̂ = ~�. But then

^

� �

~

� contradicts up(

^

�) = up(

~

�) (as

^

�

changes outcome), so

^

� =

~

�. By

�

�
� � and �

�

� �

1

, we have �

�

�

~

�. By ~� � �,

there is some

~

�

0

� �

�

with up(

~

�

0

) = ~�. Thus ̂ enumerates par(̂

�

) into A for its node

�

= ̂

�

. By

�

� �

~

�bh1i and �� � ~�, necessarily ̂

�

� �, and so par(̂

�

) < par(�).

Thus ̂

�

would destroy the computation �

A

(x

0

; y) = 1 that was de�ned by � as desired.

So � and �� must be equal. By �

�

� �

1

and

�

�
� �, we must have �

�

bh

�

�
i �

�

�.

But then

�

would put a number � par(�) into A, destroying �'s de�nition of �

A

(x

0

; y),

yielding the desired contradiction. Thus �

A

(x

0

; y) = 0 for all y > par(

�

0

).

As for the other type of requirements, suppose � � �

2

is the unique strategy

working on some �xed requirement (16). We will show �rst that any � �

0

with

up() � �

1

and up

2

() = � can de�ne �

J��

1

(x) for its x without being prevented

from doing so by a previous de�nition. For the sake of a contradiction, suppose some

0

� �

0

sets �

�

0

��

0

(x) to a di�erent value for �

0

��

0

compatible with 's intended oracle

� � � . Since each requirement R

e

is worked on exactly by all �

0

2 T

2

with j�

0

j = e, we

must have j�j = j�

0

j and thus � = �

0

. By the construction, � = up() � � and �

0

=

up(

0

) � �

0

; and by compatibility, �

0

� � or � � �

0

. Furthermore, jup(�)j = jup(�

0

)j,

and again by the splitting-up from T

2

to T

1

and lev(�) = lev(�

0

) = 1, up(�) and up(�

0

)

must be incomparable, say they split at ��. Since � and �

0

are comparable, we must

have up(�) � ��bh1i or up(�

0

) � ��bh1i. By � = �

0

, �� cannot work on a requirement

(15), thus it works on a requirement (16). By lev(�) = 1, there is a unique

�

� such that

up(

�

�) = ��,

�

� � �, and

�

� � �

0

. But � and �

0

make di�erent predictions on the outcome

of

�

�, a contradiction. This establishes that can de�ne �

J��

1

(x).

Now suppose �rst that �bh1i � �

2

for the unique � � �

2

working on a require-

ment (16). Then �bh1i � �

1

for the unique � � �

1

working on this requirement, so

12

all � �

0

with up() = � will measure (18

0

) negatively, i.e. �

A

x

(x)" . Furthermore, the

least such , say

0

, will set �

��(�bh1i)

(x) = 0.

On the other hand, suppose �bhi � �

2

(for some 2 T

0

) where � works on (16).

Then �bhi � �

1

for the unique � � �

1

with up(�) = �, and bh1i � �

0

. Thus

measures (18

0

) positively and will set �

��(�bhi)

(x) = 1. So we need to show �

A

x

(x)# .

It su�ces to show thatA

par()

j

n

('

x;par()

(x)+1) = A j

n

('

x;par()

(x)+1). Note that

par() > '

x;par()

(x). For the sake of a contradiction, suppose some � with � � � �

0

puts some y � par() into A where y = par(�

�

) for �'s node

�

= �

�

from the

construction. We set

�

�

�

= up(�

�

). By par(�

�

) � par(), we have �

�

� . We set

�� = up

2

(�) and

�

� = up(�). We denote by

�

�

0

and �

0

the nodes �

0

and

0

of � from the

construction, respectively. Then

�

�

0

bh�

0

i �

�

�. We proceed by comparing the positions

of � and �� on T

2

. As � � �

1

,

�

�

0

� � �

�

�.

First, � � �� is impossible since � changes outcome at , and thus �

2

(�

0

) � �bh1i

and �

2

(�) � �bhi, contradicting �� � �

2

(�

0

); �

2

(�).

Next, suppose � and �� are incomparable, say they split at ~�. By our observation,

� � ~�bh1i and �� � ~�bh

~

�i for some

~

� 2 T

1

, thus �(�

0

) �

~

�bh1i and �() 6�

~

�bh1i,

so �(�) �

~

�bh1i is impossible by �

0

� � �.

Next, ��bh

~

�i � � (for some

~

� 2 T

1

) is impossible since then

~

�bh1i � �; thus, by

 � � and �(�) �

~

�bh1i, we have up(�) =

~

�, and so � will not enumerate any number

by up(�)bh1i � �

1

.

Finally, assume ��bh1i � �. By �

0

bh1i � �

�

� , we must have

�

�

0

bh�

0

i �

�

�

�

and

�

�

0

bh�

0

i � �. By � = up() � �

1

, we must have �(

0

) � � for all

0

with

 �

0

� �

0

; thus � and

�

� must be comparable. If

�

� � � then by � � �

1

, we have

�

�bh�i � �, contradicting � �. Thus �bhi �

�

� by bh1i � �. By our assumption

on � and �

0

, there are no �

0

with

�

�

0

� �

0

� � and up(�

0

) = up(

�

�

0

), and by ��bh1i � �,

there can be no

0

� with up(

0

) =

�

�; so � and

�

�

�

must be incomparable, say they

split at

~

�. Note that

~

� �

�

�

0

bh�

0

i since �;

�

�

�

�

�

�

0

bh�

0

i; and that

�

�

�

�

~

�bh1i since

�

�

� .

We now set ~� = up(

~

�) and compare the positions of �� and ~� on T

2

(still under the

assumption ��bh1i � �).

If ~� � �� then, by our observation, lev(�) = 2 and ~�bh1i � �� by

�

�

0

�

~

� and

�� � �

2

. But this is impossible by

�

�

�

�

~

�bh1i.

If �� � ~� then, by

~

� �

�

�, we must have lev(~�) = 2 and ��bh1i � ~�, contradicting

�

� �

~

�bh1i.

If �� and ~� are incomparable, say they split at ��, then, by our observation, we must

have �� � ��bh1i and ~� � ��bh

�

�i for some

�

� 2 T

1

, which in turn contradicts

~

� �

�

� and

�� = up(

�

�).

We have now established that the existence of a � � destroying �

A

x

(x) is impos-

sible, so �

A

x

(x)# as desired.

13

Sacks Density Theorem (Sacks [16]). For any r.e. set D <

T

C there is an r.e. set A

such that D <

T

A <

T

C.

Proof. We will actually build an r.e. set A such that if D <

T

C � D then

D <

T

A�D <

T

C �D. So we need to build A satisfying

A �

T

C �D (19)

and, for all p.r. functionals � and 	,

C = �

A�D

! C �

T

D; and (20)

A = 	

D

! C �

T

D: (21)

We could ensure (19) by building an explicit reduction. Instead, we will show at the

end that A �

T

C�D essentially by showing that �

2

is co-r.e. in C�D. We ensure (20)

and (21) by strategies � 2 T

3

threatening to build a reduction �

�

or �

�

, respectively,

showing C �

T

D. (Of course, once we have established C �

T

D for some requirement,

we do not have to ensure the lower-priority requirements since the hypothesis of the

theorem fails.) Requirements (20) and (21) then take the form

8x9s8y � x8t � s

�

C

s

(y) = �

A

s

�D

s

s

(y)# & (A

s

�D

s

) j

n

('

s

(y) + 1) =

(A

t

�D

t

) j

n

('

s

(y) + 1)

�

!

8x > x

0

9s8y8t > s

�

x

0

< y � x! C

s

(y) = �

D

s

�;s+1

(y)# &

D

s

j

n

(

�;s

(y) + 1) = D

t

j

n

(

�;s

(y) + 1)

�

;

(22)

and

8x9s8y � x8t � s

�

A

s

(y) = 	

D

s

s

(y)# &

D

s

j

n

(

s

(y) + 1) = D

t

j

n

(

s

(y) + 1)

�

!

8x9s8y � x8t > s

�

C

s

(y) = �

D

s

�;s+1

(y)# &

D

s

j

n

(�

�;s

(y) + 1) = D

t

j

n

(�

�;s

(y) + 1)

�

:

(23)

(Here x

0

will be a number determined by � 2 T

3

. Note that (22) and (23) both only

use :�! � in (7) whereas �! � is vacuous.)

We �x an e�ective !-ordering of the above requirements (22) and (23) and assign

requirement R

e

to all nodes in f� 2 T

3

�

�

j�j = e & 8i < e(�(i) 6=1) g since outcome

1 of any requirement corresponds to showing C �

T

D.

In going from T

3

to T

2

, we split up �'s requirement into the kth instance for � 2 T

2

by bounding x � k, except in the left-hand side of (23) where we bound x � par(�).

In going from T

2

to T

1

, and from T

1

to T

0

, we split up a subrequirement into its lth,

or mth, instance for 2 T

1

, or � 2 T

0

, by bounding s � l, or t � par(�), respectively.

The action of a � 2 T

0

working on (the mth instance of the lth instance of the kth

instance of) (22) is to measure if

8x � k9s � l 8y � x8t 2 [s; par(�)]

�

C

s

(y) = �

A

s

�D

s

s

(y)# &

(A

s

�D

s

) j

n

('

s

(y) + 1) = (A

t

�D

t

) j

n

('

s

(y) + 1)

�

;

(24)

14

which just means

C

l

j

n

(k + 1) = �

A

l

�D

l

l

j

n

(k + 1)# &

(A

l

�D

l

) j

n

('

l

(k) + 1) = (A

par(�)

�D

par(�)

) j

n

('

l

(k) + 1):

(24

0

)

(This uses the tacit assumption that use functions are increasing in the argument and

nondecreasing in the stage. Here and in (25), A

par(�)

and D

par(�)

are the sets A and D

enumerated before �'s action.) If the answer is yes then � has outcome 0 (recall that

(24

0

) is an instance of :� in (7)) and de�nes �

D

�

(k) = C

l

(k) with use

�

(k) = '

l

(k)

(unless already de�ned to a di�erent value) where � = up

3

(�); otherwise � has outcome

1.

The action of a � 2 T

0

working on (the mth instance of the lth instance of the kth

instance of) (23) is to measure if

8x � par(�)9s � l 8y � x8t 2 [s; par(�)]

�

A

s

(y) = 	

D

s

s

(y)# &

D

s

j

n

(

s

(y) + 1) = D

t

j

n

(

s

(y) + 1)

�

;

(25)

which just means

A

l

j

n

(par(�) + 1) = 	

D

l

l

j

n

(par(�) + 1)# &

D

l

j

n

(

l

(par(�)) + 1) = D

par(�)

j

n

(

l

(par(�)) + 1):

(25

0

)

Independent of the answer to (25

0

), � enumerates par(�) into A if now �

D

�

(k)# 6= C(k).

If the answer to (25

0

) is yes then � has outcome 0 (again recall that (25

0

) is an instance

of :� in (7)) and de�nes �

D

�

(k) = C

l

(k) (unless already de�ned to a di�erent value)

with use �

�

(k) =

l

(par(�)). (Here � = up

3

(�) and � = up

2

(�).) If the answer to (25

0

)

is no then � has outcome 1.

We now verify that the construction satis�es all requirements (22) and (23) (up to

the highest-priority one showing C �

T

D, if any), and that A �

T

C �D.

We observe �rst that on T

3

, �bh1i � �

0

implies that no requirement is assigned to

�

0

; therefore on T

2

, � � �

0

(if subrequirements are assigned to � and �

0

) implies up(�) �

up(�

0

) as follows: If up(�) 6� up(�

0

), say up(�) � �

0

bh�

0

i and up(�

0

) 6� �

0

bh�

0

i for

some minimal �

0

and some �

0

, then � � �

0

bh1i but �

0

6� �

0

bh1i, contradicting

� � �

0

. Furthermore, if �

1

and �

2

are incomparable on T

2

and up(�

1

) � up(�

2

) then �

1

and �

2

split at a � 2 T

2

with up(�) = up(�

1

). This is because otherwise up(�) � up(�

1

),

say up(�)bh

�

�i � up(�

1

), and so

�

�bh1i � �

1

; �

2

and � �

�

� by (3.3), contradicting �

1

and �

2

splitting at �.

First suppose that C = �

A�D

(and none of the higher-priority requirements has

shown C �

T

D). Then �bh1i = �

3

for the unique � � �

3

working on this requirement.

Thus �

k

bh

k

i � �

2

(for some

k

2 T

1

) for all k where �

k

is the unique � � �

2

working

on the kth instance of �'s requirement. Since

k

bh1i � �

1

, all � � �

0

with up(�) =

k

answer (24

0

) positively, and so one of them de�nes �

D

�

(k) D-correctly (unless some

other strategy does so). So �

D

�

is total. Suppose �

D

�

(k) 6= C(k) for some k. Then

some � � �

0

last de�nes �

D

�

(k) = 0 D-correctly, but k 2 C and some (least)

�

� � �

enumerates some y �

1

2

'

par(�)

(k) into A (since �

A�D

(k) = C(k)). We set � = up

2

(�),

 = up(�), �� = up

3

(

�

�),

�

� = up

2

(

�

�), and � = up(

�

�). Then y = par(

�

�). Notice that

'

l

(k) < l � par() (where l bounds s for above) and '

par(�)

(k) < par(�) by the usual

15

convention of stage bounding use. Below, we will typically show par() < par(

�

�) or

par(�) < par(

�

�) for a contradiction.

We argue by cases, comparing the positions of � and �� on T

3

. First assume that �

and �� are incomparable, say � � �

0

bh�

0

i and �� � �

0

bh

�

�

0

i for �

0

6=

�

�

0

. (Recall that

there is no outcome 1 on T

3

.) Thus � � �

0

bh1i and

�

� �

�

�

0

bh1i. We distinguish

subcases, comparing the positions of �

0

and

�

�

0

.

First assume �

0

�

�

�

0

. Then �

0

bh

0

i �

�

�

0

for some

0

since up(�

0

) = up(

�

�

0

). Thus

� �

0

bh1i but 6�

0

bh1i. If �

0

then par() � par(

0

) < par(

�

�

0

) < par(

�

�),

a contradiction. Thus and

0

bh1i are incomparable. Since � �

�

� we must have

 � ~bh1i and � �

0

bh1i � ~bh

~

�i for some ~ and some

~

� � �, again a contradiction

by par(

�

�) > par(

�

�

0

) > par(

0

) > par(

~

�) > par(�).

Next assume

�

�

0

� �

0

. Then

�

�

0

bh�

0

i � �

0

for some �

0

since up(

�

�

0

) = up(�

0

).

Thus � �

0

bh1i but � 6� �

0

bh1i. Now �

0

bh�

0

i � � � �

3

, so

�

�

0

bh�

0

i � �

0

� �

2

and �

0

bh1i � �

1

. Thus � � �

0

is impossible by

�

� � �. Also �

0

bh1i � � �(�), so

�

0

bh1i � �(�

0

) for all �

0

with � � �

0

� �

0

, contradicting � � �(

�

�) and � �

�

� � �

0

.

Finally assume that �

0

and

�

�

0

are incomparable, say they split at �

1

. By our obser-

vation above, up(�

1

) = �

0

, and there are distinct

1

and �

1

such that �

1

bh

1

i � �

0

and

�

1

bh�

1

i �

�

�

0

. So

1

bh1i � and �

1

bh1i � �. Thus and �

1

bh1i are incomparable.

Since � �

�

� we must have � ~bh1i and � � �

1

bh1i � ~bh

~

�i for some ~ and some

~

� � �, again a contradiction by par(

�

�) > par(

�

�

0

) > par(�

1

) > par(

~

�) > par(�).

We have thus established that � and �� must be comparable. So assume next that

� � ��, say �bh�

0

i � �� for some �

0

. Then �

0

bh1i �

�

�. We distinguish subcases,

comparing the positions of � and �

0

.

First assume � � �

0

. Then �bh

0

i � �

0

for some

0

since up(�) = up(�

0

), and so

� �

0

bh1i but 6�

0

bh1i. If �

0

then par() � par(

0

) < par(�

0

) < par(

�

�),

a contradiction. Thus and

0

bh1i are incomparable. Since � �

�

� we must have

 � ~bh1i and � �

0

bh1i � ~bh

~

�i for some ~ and some

~

� � �, again a contradiction

by par(

�

�) > par(�

0

) > par(

0

) > par(

~

�) > par(�).

Next assume � � �

0

, so � 6� �

0

bh1i but

�

� � �

0

bh1i. By �

2

(

�

�) �

�

�, �(

�

�) �

bh1i is impossible; so let

~

� �

�

� be maximal such that for all �

0

with � � �

0

�

~

�,

�(�

0

) � bh1i. Then ~ = up(

~

�) � , ~bh1i � bh1i, and ~bh

~

�i � �(

~

�bh1i). We

set

~

� = up(~) and ~� = up

2

(~). We will show ~� = � and

~

� � �. For the sake of a

contradiction, �rst suppose � 6� ~�, say �

1

bh�

1

i � � but �

1

bh�

1

i 6� ~� for minimal such

�

1

and some �

1

. Thus �

1

bh1i � � but �

1

bh1i 6�

~

�. Assume �

1

6�

~

�, say

^

� �

~

� is

maximal with

^

� � �

1

. Then, by our observation, up(

^

�) = �

1

, and so

^

�bĥi � �

1

for

some ̂. By � � �

3

we have �

1

bh1i � �

2

and so ̂bh1i � �

1

. Now � �

~

� � �

0

implies ̂bh1i � �(

~

�) and thus

^

�bĥi � �

2

(

~

�) by

~

� � �

2

(

~

�) and

^

� �

~

�. By

~

� 6�

^

�bĥi

and

~

� � �

2

(

~

�), we have

~

� =

^

�, and thus ~ = ̂ by ̂bh1i � �(

~

�). But we have,

~bh1i � �

1

, contradicting the choice of ~ = ̂. Thus �

1

�

~

�. Now �

1

bh

1

i �

~

�

for some

1

is impossible by ~ � and �

1

bh1i � �; so

~

� = �

1

and thus

~

�bh1i � �,

contradicting ~bh1i � . Thus � � ~�, so suppose, again for the sake of a contradiction,

� � ~�, say �bh�

1

i � ~�, and so

~

� � �

1

bh1i. Now �

1

6� � is impossible since then

16

�

2

bh

2

i � �

1

but �

2

bh

2

i 6� � for minimal such �

2

and some

2

(by up(�

1

) = � and

our observation), and so ~ �

2

bh1i but 6�

2

bh1i, contradicting ~ � . Thus

�

1

� �. Now �(

~

�) � bh1i, and so �

2

(

~

�) � �bhi or �

2

(

~

�) � �

2

bh

2

i for some �

2

� �

and some

2

� bh1i. The latter implies ~ �

2

bh1i by � � ~�, contradicting ~ � .

Thus �

2

(

~

�) � �bhi, contradicting �

2

(

~

�) �

~

�. Thus � = ~�. We next show that

~

� � �.

Suppose not; then

~

� � �

1

bh

1

i but � 6� �

1

bh

1

i for minimal such �

1

and some

1

.

Then ~ �

1

bh1i, contradicting ~ � . We have thus established ~� = � and

~

� � �,

and so D

~

l

j

n

('

~

l

(

~

k) + 1) 6= D

par(

~

�)

j

n

('

~

l

(

~

k) + 1) for

~

�'s numbers

~

k and

~

l.

We will now show that this implies D

l

j

n

('

l

(k)+1) 6= D j

n

('

l

(k)+1), contradicting

the D-correctness of �'s de�nition of �

D

�

(k). First of all, there is some maximal

~

�

0

� �

with up(

~

�

0

) = ~ since ~ � . Furthermore,

~

�

0

bh0i � �, and so D

~

l

j

n

('

~

l

(

~

k) + 1) =

D

par(

~

�

0

)

j

n

('

~

l

(

~

k) + 1). By up

i

(

~

�

0

) � up

i

(�) for all i 2 f 0; 1; 2; 3 g and by (5), we must

have ~m

0

� m + par() (where

~

�

0

and � work on the ~m

0

th and the mth instance of

~'s and 's subrequirement, respectively) since otherwise the (~m

0

+ 1)th instance of

~'s subrequirement would have been assigned to � rather than the mth instance of

's subrequirement. Thus par(

~

�

0

) � ~m

0

� par() � l, and so D

~

l

j

n

('

~

l

(

~

k) + 1) =

D

l

j

n

('

~

l

(

~

k) + 1) and '

~

l

(

~

k) = '

l

(

~

k). Therefore D

l

j

n

('

~

l

(

~

k) + 1) 6= D j

n

('

~

l

(

~

k) + 1),

which gives the desired implication above, using

~

k � k and '

~

l

(

~

k) = '

l

(

~

k) � '

l

(k).

Finally assume � and �

0

are incomparable, say they split at �

0

. Then, by our

observation, up(�

0

) = �, and there are distinct

1

and

2

such that �

0

bh

1

i � � and

�

0

bh

2

i � �

0

. So

1

bh1i � and

2

bh1i � �. Thus and

2

bh1i are incomparable.

Since � �

�

� we must have � ~bh1i and � �

2

bh1i � ~bh

~

�i for some ~ and some

~

� � �, again a contradiction by par(

�

�) > par(�

0

) > par(

2

) > par(

~

�) > par(�).

We have thus established that �� � �, in fact �� � � since they work on di�erent

requirements, say ��bh

�

�

0

i � �. Then

�

�

0

bh1i � �, and

�

�

0

bh1i � �

2

by � � �

3

. We

distinguish subcases, comparing the positions of

�

�

0

and

�

�. First assume

�

� �

�

�

0

, say

�

�bh�

0

i �

�

�

0

for some �

0

. Now

�

�bh�

0

i �

�

�

0

� � and so �

0

bh1i � ; also

�

�bh�

0

i � �

2

and so �

0

bh1i � �

1

. Thus �(�

0

) � �

0

bh1i for all �

0

with � � �

0

� �

0

. This implies

up(

�

�) = �

0

, by (3.3), contradicting

�

�bh1i � �

0

.

Next assume

�

� 6�

�

�

0

, say

~

� �

�

� is maximal with

~

� �

�

�

0

. By our observation,

up(

~

�) = ��, and so

~

�bh~i �

�

� for some ~ but

~

�bh~i 6� �. Thus ~bh1i � � but

~bh1i 6� . If and ~ are incomparable, say they split at ̂, then ̂bh1i � and

̂bh

^

�i � ~ for some

^

� � � by � �

�

�. But then par(

�

�) > par(~) > par(

^

�) > par(�),

a contradiction. So necessarily � ~, and thus par() < par(~) < par(

�

�), again a

contradiction.

We are thus left with only one subcase, namely

�

� =

�

�

0

. Since ��bh

�

�i � �, this

subcase can generate at most one injury for each �� � �. We have thus established

C =

�

�

D

�

as desired. (We remark that this �nite injury to the �'s can be eliminated if

we rephrase requirement (21) as

A = 	

D

!

�

C r.e. in D: (21

0

)

17

Now the witness

�

�

0

� �

2

for (21

0

) will not be the least � � �

2

working on (21

0

) with

A j

n

(par(�) + 1) 6= 	

D

j

n

(par(�) + 1), but the least such for which also k

�

=2 C (unless

C is co�nite in which case certainly C �

T

D). The trick is that for this

�

�

0

, par(

�

�

0

) will

not be enumerated into A (which causes the �nite injury in the above construction).

This also implies that A �

T

�

1

�

T

C �D, giving an easier proof of (19).)

Next suppose A = 	

D

(and none of the higher-priority requirements has shown

C �

T

D). Then �bh1i = �

3

for the unique � � �

3

working on this requirement. Thus

�

k

bh

k

i � �

2

(for some

k

� �

1

) for all k where �

k

is the unique � � �

2

working on the

kth instance of �'s requirement. Since

k

bh1i � �

1

, all � � �

0

with up(�) =

k

answer

(25

0

) positively, and one of these � de�nes �

D

�

(k)D-correctly (unless some other strategy

does so). So �

D

�

is total. Suppose �

D

�

(k) 6= C(k) for some k. Then one of the � � �

0

with up(�) =

k

, say

�

�, will enumerate par(�

k

) into A, trying to destroy the D-correct

computation �

D

�

(k) de�ned by some

^

� �

�

�. We set

^

� = up

2

(

^

�) and ̂ = up(

^

�). (Note

� = up

3

(

^

�).) We will show

^

� = �

k

, so D

l

j

n

(

l

(par(�

k

)) + 1) 6= D j

n

(

l

(par(�

k

)) + 1)

(since A(par(�

k

)) = 	

D

(par(�

k

))), and

^

� did therefore not de�ne �

D

�

(k) D-correctly by

�

�

(k) =

l

(par(�

k

)), yielding the desired contradiction. Now since �

k

and

^

� work on

the same k, �

k

6=

^

� would imply that they are incomparable, say they split at �

0

. Then,

by our observation, we have up(�

0

) = �; and so �

0

bh

0

i � �

k

and �

0

bĥ

0

i �

^

� for

some

0

and ̂

0

. Thus

0

bh1i �

k

and ̂

0

bh1i � ̂, and so

0

bh1i and ̂

0

bh1i must

be incomparable. Therefore there is some �

0

with

^

� � �

0

�

�

� such that �(�

0

) 6� ̂

0

bh1i.

Let

~

� �

�

� be maximal such that for all �

0

with

^

� � �

0

�

~

�, �(�

0

) � ̂

0

bh1i. Then

~ = up(

~

�) � ̂, ~bh1i � ̂bh1i, and ~bh

~

�i � �(

~

�bh1i). We set

~

� = up(~) and

~� = up

2

(~). We will show ~� = � and

~

� � �

0

. For the sake of a contradiction, �rst

suppose � 6� ~�, say �

1

bh�

1

i � � but �

1

bh�

1

i 6� ~� for minimal such �

1

and some �

1

.

Thus �

1

bh1i �

^

� but �

1

bh1i 6�

~

�. Assume �

1

6�

~

�, say

�

� �

~

� is maximal with

�

� � �

1

.

Then, by our observation, up(

�

�) = �

1

, and so

�

�bh�i � �

1

for some �. By � � �

3

we

have �

1

bh1i � �

2

and so �bh1i � �

1

. Now

^

� �

~

� � �

0

implies �bh1i � �(

~

�) and

thus

�

�bh�i � �

2

(

~

�) by

~

� � �

2

(

~

�) and

�

� �

~

�. By

~

� 6�

�

�bh�i we have

~

� =

�

�, and

thus ~ = � by �bh1i � �(

~

�). But we have ~bh1i � �

1

, contradicting the choice of

~ = �. Thus �

1

�

~

�. Now �

1

bh

1

i �

~

� for some

1

is impossible by ~ � ̂; so

~

� = �

1

and thus

~

�bh1i �

^

�, contradicting ~bh1i � ̂

0

. Thus � � ~�, so suppose, again for

the sake of a contradiction, � � ~�, say �bh�

1

i � ~� for some �

1

, and so �

1

bh1i �

~

�.

Now �

1

6� �

0

is impossible since then �

2

bh

2

i � �

1

but �

2

bh

2

i 6� �

0

for minimal such

�

2

and some

2

(by up(�

1

) = � and by our observation above), and so ~ �

2

bh1i

but ̂ 6�

2

bh1i, contradicting ~ � ̂

0

. Thus �

1

� �

0

. Now �(

~

�) � ̂

0

bh1i, and so

�

2

(

~

�) � �

0

bĥ

0

i or �

2

(

~

�) � �

2

bh

2

i for some �

2

� �

0

and some

2

� ̂

0

bh1i. The

latter implies ~ �

2

bh1i by � � ~�, contradicting ~ � ̂

0

. Thus �

2

(

~

�) � �

0

bĥ

0

i,

contradicting �

2

(

~

�) �

~

�. Thus ~� = �. We next show

~

� � �

0

. Suppose not; then

~

� � �

1

bh

1

i but �

0

6� �

1

bh

1

i for minimal such �

1

and some

1

. Then ~ �

1

bh1i

but ̂

0

6�

1

bh1i, contradicting ~ � ̂

0

. We have thus established ~� = � and

~

� � �

0

.

Therefore, D

~

l

j

n

(

~

l

(par(

~

�)) + 1) 6= D

par(

~

�)

j

n

(

~

l

(par(

~

�)) + 1) for

~

�'s number l =

~

l.

18

We will show that this implies D

^

l

j

n

(

^

l

(par(

^

�)) + 1) 6= D

par(

�

�)

j

n

(

^

l

(par(

^

�)) + 1)

for

^

�'s number l =

^

l, contradicting the D-correctness of

^

�'s de�nition of �

A

�

(k). First

of all, there is some maximal

~

�

0

�

^

� with up(

~

�

0

) = ~ since ~ � ̂. Also

~

�

0

bh0i �

^

�

and so D

~

l

j

n

(

~

l

(par(

~

�)) + 1) = D

par(

~

�

0

)

j

n

(

~

l

(par(

~

�)) + 1). By up

i

(

~

�

0

) � up

i

(

^

�) for all

i 2 f 0; 1; 2; 3 g and by (5), we must have ~m

0

� m̂+par(̂) (where

~

�

0

and

^

� work on the

~m

0

th and the m̂th instance of ~'s and ̂'s subrequirement, respectively) since otherwise

the (~m

0

+ 1)th instance of ~'s subrequirement would have been assigned to

^

� rather

than the m̂th instance of ̂'s subrequirement. Thus par(

~

�

0

) � ~m

0

� par(̂) �

^

l, and so

D

~

l

j

n

(

~

l

(par(

~

�)) + 1) = D

^

l

j

n

(

~

l

(par(

~

�)) + 1) and

~

l

(par(

~

�)) =

^

l

(par(

~

�)). Therefore

D

^

l

j

n

(

^

l

(par(

~

�)) + 1) 6= D

par(

~

�)

j

n

(

^

l

(par(

~

�)) + 1), which gives the desired implication

above, using par(

~

�) < par(

^

�) and par(

~

�) < par(

�

�). Thus

^

� = �

k

as desired.

This establishes the satisfaction of requirements (20) and (21) if C 6�

T

D since then

clearly �

3

must be an in�nite path. It remains to prove A �

T

C �D. We �rst exhibit

a (C �D)-recursive set M � T

2

� ! and a (C �D)-r.e. set M

0

� T

2

such that

M

0

= f � j 9t (h�; ti 2M) g = T

2

� �

2

; and (26:1)

8h�; ti 2M 8t

0

� t

�

� 6� �

2

(�

0

j

n

t

0

)

�

: (26:2)

We enumerate M as follows: The pair h�bh1i; ti is enumerated into M i�

h�; ti 2M; or (27:1)

9

0

9�

0

�

up(�

0

) =

0

& up(

0

) = � & �

0

bh0i � �

0

& j�

0

bh0ij = t&

�

0

's condition (24

0

) or (25

0

) is D-correct &

8

�

� � �

�

k

�

�

2 C ! k

�

�

2 C

t

& :

�

�

D

t

up(

�

�);t

(k

�

�

)#= 0

��

�

:

(27:2)

The pair h�bhi; ti is enumerated into M i�

h�; ti 2M; or (28:1)

up() 6= �; or (28:2)

h�bh1i; ti 2M & bh1i 6� �(�

0

j

n

t); or (28:3)

9�

0

�

up

2

(�

0

) = � & �

0

bh1i � �

0

& j�

0

bh1ij = t

�

(28:4)

We �rst establish (26.2). By induction, and by inspection (for (28.4)), we have to

verify (26.2) only for pairs enumerated into M through (27.2) or (28.3). So suppose

h�bh1i; ti 2 M via (27.2), or h�bhi; ti 2 M via (28.3) (where the latter implies the

former). We will show

8t

0

� t

�

� 6� �

2

(�

0

j

n

t

0

) or �bh

0

i � �

2

(�

0

j

n

t

0

)

�

(29)

for the

0

in (27.2). Suppose this fails for some (least) t

0

� t. Then � � �

2

(�

0

j

n

t

0

)

but

0

bh1i 6� �(�

0

j

n

t

0

). Let

�

� be maximal with �(

�

�) �

0

bh1i and � �

�

� � �

0

.

19

Thus �bh1i �

0

bh1i and �bh

�

�i = �(

�

�bh1i) for � = up(

�

�). We distinguish cases,

comparing the positions of � and

�

� = up(�). If � and

�

� are incomparable then by

� �

0

, �(

0

) � � and �(�) �

�

�, we have

^

�bh1i �

�

� and

^

�bĥi � � for some

^

� and ̂,

which implies �bh1i � ̂bh1i �

0

, contradicting �(

�

�) �

0

and �

2

(

�

�) �

�

�. If

�

� � �

then �bh1i 6� �(�

0

) and so � 6� �

2

(�

0

) for all �

0

with

�

� � �

0

� �

0

, a contradiction. If

� �

�

� then �bh

0

i �

�

� by (29) and

�

� � �

2

(

�

�), contradicting � �

0

. So � =

�

�, and, by

(3.3) and �bh1i �

0

bh1i, we must have � =

0

. Now

�

�'s condition (24

0

) or (25

0

) was

D-correct by (27.2). Thus

�

� works on a requirement (22), and (A

l

�D

l

) j

n

('

l

(k)+1) 6=

(A

par(

�

�)

�D

par(

�

�)

) j

n

('

l

(k) + 1) by an A-change.

The y at which A changed was enumerated into A by some

^

� with �

0

�

^

� �

�

�.

We set

^

� = up

2

(

^

�) and ̂ = up(

^

�), so y = par(

^

�). We show that such a

^

� cannot

exist, distinguishing subcases by comparing the positions of � and

^

�. If � �

^

� then,

by

^

� � �

2

(

^

�) and

^

� �

�

�, we have �bh

0

i �

^

�; so y = par(

^

�) > par(

0

) � l > '

l

(k),

a contradiction. Also

^

� � � is impossible by the last conjunct of (27.2). So � and

^

�

must be incomparable, say they split at

~

�. If

~

�bh~i � � for some ~ then, by

~

�bh~i 6�

^

�,

~bh1i 6� �(�

0

) for any �

0

with

^

� � �

0

� �

0

, contradicting j

^

�j < t

0

. So

~

�bh1i � � and

~

�bh~i �

^

� for some ~, and thus ~bh1i 6�

0

but ~bh1i � ̂. If

0

� ~ then par(

^

�) >

par(~) > par(

0

) � l > '

l

(k), a contradiction. So

0

and ~ must be incomparable,

say they split at �. By �

0

�

^

� and by

0

� �(�

0

), we must have �bh1i �

0

and

�bh

�

�i � ~ for some

�

� � �

0

. Thus par(

^

�) > par(~) > par(

�

�) > par(�

0

) � l > '

l

(k),

again a contradiction. This shows that no A-change � '

l

(k) can have occurred; thus

�

�

cannot exist, establishing (29) and (26.2).

By Lemma 1(ii) and (26.2), we can conclude M

0

\ �

2

= ;. We establish (26.1)

by showing that T

2

�M

0

does not contain incomparable nodes. (Note that T

2

�M

0

is a tree by (27.1) and (28.1).) For the sake of a contradiction, suppose �

1

and �

2

are

incomparable nodes in T

2

�M

0

of minimal length. By minimality, any node in T

2

�M

0

of length < j�

1

j must be on �

2

; also j�

1

j = j�

2

j and �

1

j

n

(j�

1

j�1) = �

2

j

n

(j�

1

j�1) = �,

say. By (26.2), we can assume �

1

� �

2

.

First assume �bhi = �

1

for some . Then bh1i � �

1

, and for all � � �

0

with up(�) = , the �rst �ve conjuncts of (27.2) hold true for =

0

and � = �

0

. By

up

j

() � �

1+j

for j 2 f 0; 1; 2 g, there in�nitely many � � �

0

with up(�) = , and by

the correctness of the functionals �

��

and �

��

(for �� � up(�)), all conjuncts of (27.2)

must hold for some � � �

0

with up(�) = . Thus �

2

must eventually enter M

0

, a

contradiction.

So assume �bh1i = �

1

. Then up(�) � �

3

, and so any �bhi must eventually

enter M

1

via (28.2) or (28.4), again a contradiction. We have thus established (26.1)

and (26.2). It is now easy to see why A �

T

C�D as follows: Fix x. By the surjectivity

of par, determine if x = par(�) for some � 2 T

2

. If not then x =2 A. Otherwise

check if � works on a requirement (23) and if k

�

2 C. If not then x =2 A. Otherwise

simultaneously enumerate (recursively in C � D) the sets M and A. If h�; ti 2 M for

some t then x 2 A i� x 2 A

t

by (26.2). Otherwise k

�

2 C

s

, say, so the �rst � � �

0

with up

2

(�) = � and s < par(�) will enumerate par(�) into A if then �

D

up(�)

(k

�

)#= 0,

or else par(�) =2 A. This establishes A �

T

C � D and thus concludes the proof of the

Sacks Density Theorem.

20

REFERENCES

1. C.J. Ash, Stability of recursive structures in arithmetical degrees, Ann. Pure Appl. Logic 32

(1986), 113-135.

2. C.J. Ash, Labelling systems and r.e. structures, to appear.

3. R.M. Friedberg, Two recursively enumerable sets of incomparable degree of unsolvability, Proc.

Natl. Acad. Sci. USA 43 (1957), 236-238.

4. M.J. Groszek, T.A. Slaman, Foundations of the priority method I: Finite and in�nite injury,

preprint.

5. A. Ku�cera, An alternative priority-free solution to Post's problem, in: Twelfth Symposium held in

Bratislava, August 25-29, 1986, edited by J. Gruska, B. Rovan, and J. Wiederman, Lecture Notes

in Computer Science No. 233, Proceedings, Mathematical Foundations of Computer Science '86,

Springer-Verlag, Berlin, 1986.

6. A. Ku�cera, On the use of diagonally nonrecursive functions, Logic Colloquium '87 (Granada,

1987), Studies in Logic and Foundations of Mathematics, 129, North-Holland, Amsterdam, 1989,

219-239.

7. A.H. Lachlan, On some games relevant to the theory of recursively enumerable sets, Ann. of Math.

(2) 91 (1970), 291-310.

8. A.H. Lachlan, The priority method for the construction of recursively enumerable sets, in [12],

299-310.

9. S. Lempp, M. Lerman, The decidability of the existential theory of the poset of recursively enu-

merable degrees with jump relations, in preparation.

10. S. Lempp, M. Lerman, The decidability of the existential theory of the poset of the Turing degrees

with jump and 0, in preparation.

11. M. Lerman, Admissible ordinals and priority arguments, in [12], 311-344.

12. A.R.D. Mathias, H. Rogers, Jr., Cambridge Summer School in Mathematical Logic (editors), held

in Cambridge (England), August 1-21, 1971, Lecture Notes in Mathematics No. 337, Springer-

Verlag, Berlin, 1973.

13. A.A. Muchnik, On the unsolvability of the problem of reducibility in the theory of algorithms,

Dokl. Akad. Nauk SSSR, N.S. 108 (1956), 194-197.

14. G.E. Sacks, On the degrees less than 0

0

, Ann. of Math. (2) 77 (1963), 211-231.

15. G.E. Sacks, Recursive enumerability and the jump operator, Trans. Amer. Math. Soc. 108 (1963),

223-239.

16. G.E. Sacks, The recursively enumerable degrees are dense, Ann. of Math. (2) 80 (1964), 300-312.

17. R.A. Shore, A non-inversion theorem for the jump operator, Ann. Pure Appl. Logic 40 (1988),

277-303.

18. R.I. Soare, The in�nite injury priority method, J. Symbolic Logic 41 (1976), 513-530.

19. R.I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Omega

Series, Springer-Verlag, Berlin, 1987.

