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Abstract. By constructing a maximal inco1nplete d.r.e. degree, the nondensity of the partial 

order of the d.r.e. degrees is established. An easy modification yields the nondensity of the 

n-r.e. degrees (n 2 2) and of the w-r.e, degrees, 

1. INTRODUCTION 

Call a set D ~ w d.r.e. (difference of r.e. sets} iff there are r.e. (recursively enumerable) 

sets Ai,A2 ~ w such that D =Ai - A2. 
Another way of defining these sets is by recursive approximations to their characteristic 

functions: A is r.e. iff there is a recursive function f such that for all x: 

(i) 

(ii) 

(iii) 

A(x) = lims f(x,s), 

f(x,O) = 0, 

l{s I f(x,s) # f(x,s + l)}I :S 1. 

(That is to say, we can change our guess about the membership of x m A at most once, 

namely when we enumerate x into A.) Now a set D is d.r.e. iff it satisfies the same 

definition where (iii) is replaced by 

(iii') l{s I f(x,s) # f(x,s + l)}I :S 2. 

This explains also why d.r.e. sets are sometimes called 2-r.e., and it naturally leads to the 

definition of an n-r.e. set E (for n E w) and an w-r.e. set F satisfying the same definition 

where (iii) is replaced by 

(iii") l{s I f(x,s) # f(x,s + 1)}1 :Sn, 

The authors would like to thank T. Slaman for helpful discussions. The first author was partially sup­

ported by the University of Illinois at Chicago, the University of Chicago 1 and T. Slaman's Presidential 

Young Investigator Award DMS-8451748 during the first author's visit in 1985-86. The second author \Vas 

partially supported by NSF Grant DMS-8910312. The third author was partially supported by NSERC 

(Canada) Grant A3040, The fourth author was partially supported by NSF Grants DMS-8701891 and 

DMS-8901529 and fellowships of the Deutsche Forschungsgemeinschaft and the Mathematical Sciences 

Research Institute. The fifth author was partially supported by NSF Grant DM S-8807389 and a grant of 

the Deutsche Forschungsgemeinschaft. 1'he last two authors were also partially supported by NSF Grant 

INT-8722296. 



and by 

( .. · 111) 
111 J{s J J(x,s) i= J(x,s + l)}J::; x, 

respectively. (Of course, the 1-r.e. sets are exactly the r.e. sets.) 

The d.r.e. and n-r.e. sets were first introduced and studied by Putnam [12] and Ershov [6] 

as a natural extension of the concept of r.e. sets. (For an extensive survey, see Epstein, 

Haas, Kramer [5].) The d.r.e. degrees (Turing degrees of d.r.e. sets) were first studied by 

Cooper (early 1970's, unpublished) and Lachlan (1968, unpublished), who showed that 

there is a properly d. r. e. degree (a d.r.e. degree that does not contain an r.e. set), and 

that every nonrecursive d.r.e. degree bounds a nonrecursive r.e. degree, respectively. The 

latter result established the downward density of the d.r.e. degrees (by the Sacks Density 

Theorem). 

The main interest in the n-r.e. and, most of all, the d.r.e. degrees, lies in comparing 

them to the r.e. degrees, a structure that is now well understood. A lot of work has been 

done in this direction in the past decade. One example is the extension of the Arslanov 

Completeness Criterion to n-r.e. (and even n-REA) degrees by Jockusch, Lerman, Soare, 

and Solovay [7]. One main question in this area is whether the partial orders of the 

r.e. degrees and the d.r.e. degrees (or n-r.e. degrees in general) are elementarily equivalent. 

This was first refuted by Arslanov, and later by Downey using a different argument. 

THEOREM (Arslanov [1,2]). For all n 2: 2, every nonrecursive n-r.e. degreed cups to O' 

in the n-r.e. degrees, i.e. there is an incomplete n-r.e. degree e such that d U e = O'. 

THEOREM (Downey [4]). For all n 2: 2, there are nonrecursive n-r.e. degrees d and e such 

that d n e = 0 and d U e = O'. 

Since both of these statements fail in the r.e. degrees by a result of Yates and Cooper ( un­

published, see D. Miller [11]), and by the Lachlan Nondiamond Theorem [9], respectively, 

either of the above theorems establish the following 

COROLLARY (Arslanov [1,2]). For all n 2: 2, the pm·tia.J orders of the r.e. degrees and of 

the n-r.e. degrees m·e not elementarily equivalent. 

A related issue is the comparison between n-r.e. and m-r.e. degrees for distinct n and m. 

We restate the following 

OPEN QUESTION: Are the partial orders of the n-r.e. and the m-r.e. degrees (for distinct 

n, m 2: 2) elementarily equivalent? 

2. THE THEOREMS 

Probably the most fundamental result about the r.e. degrees is the Sacks Density Theo­

rem [13], which states that for any two r.e. degrees a< b, there is an r.e. degree c such that 
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a < c < b. The question of whether the d.r.e. degrees are also dense therefore generated a 

lot of interest and conjectures among recursion theorists. Partial evidence for density was 

Lachlan's observation that they are downward dense, and the following "weak" density 

theorem: 

THEOREM (Cooper, Lempp, Watson [3]). For any r.e. degrees a< b, there is a properly 

d.r.e. degree d such that a < d < b. 

Furthermore, by an easy modification of the observation by Jockusch and Soare [8] that 

Q(n) is not a minimal cover for any n > O, it can be seen that no nonrecursive n-REA and 

thus no nonrecursive n-r.e. degree can be a minimal cover in the Turing degrees. 

However, by a proof that crystallized over several years in discussions between the au­

thors, the density conjecture is refuted by our main theorem: 

D.R.E. NONDENSITY THEOREM. There is a maximal incomplete d.r.e. degree, i.e. a d.r.e. 

degree d < O' such that there is no d.r.e. degree e with d < e < 0 1
• Thus the partial 

order of the d.r.e. degrees is not dense. 

An easy modification yields the 

n-R.E./w-R.E. NoNDENSITY THEOREM. There is an incomplete d.r.e. degree maximal in 

the n-r.e. degrees (for all n 2': 2) as well as in the w-r.e. degrees. Thus the n-r.e. degrees 

(for n 2': 2) and the w-r.e. degrees are not dense. 

(We prove this last theorem in Section 11.) 

Our nondensity result and Downey's diamond theorem both obviously imply the follow­

mg 

COROLLARY (Downey [4]). The partia.J orders of the r.e. degrees and the n-r.e. degrees (for 

n 2': 2) are not E 2 -elementarily equiva.lent (i.e. they do not satisfy the same E2 -statements). 

Since the two structures both allow the embedding of any finite partial order, they are 

E1 -equivalent. The following is therefore the remaining 

OPEN QUESTION (Slaman): Do the r.e. degrees form a Ei-substructure of the d.r.e. de­

grees? 

This question arose through the corresponding negative answer about the r.e. and the 

Ll.2-degrees given by Slaman [14]. 

Our notation is standard and generally follows Soare [15]. X I [m, n] has the set­

theoretic meaning, i.e. X I (n + 1) - X I m. The use (largest number actually used 

in a computation) of a functional r, 8, etc. is denoted by the corresponding lower-case 

Greek letters 'Y, ,J, etc. (Thus changing X at some y :<:; 7( x) will allow rx ( x) to change, 

etc.) If the oracle is a join of two sets we assume the use is computed on the two sets 
separately, i.e. r(XE!lY) t(')'(x)+l) will mean rx t(')'(x)+l)E!lY t(')'(x)+l). All use functions are 
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assumed to be increasing in the argument and nondecreasing in the stage. When describing 

the construction, all parameters A, r, x, etc. are assumed to be taken at the current 

(sub )stage. 

We assume familiarity with 0 111-arguments (see e.g. Soare [15]). 

3. THE D.R.E. NONDENSITY THEOREM: 

THE REQUIREMENTS AND THE BASIC STRATEGIES 

We have to construct a d.r.e. set D <r ]{ such that there is no d.r.e. set U with 

D <r U <r K. This is ensured by the following two types of requirements: 

For all d.r.e. sets U, we build a partial recursive functional r = I'u satisfying: 

(4) Su : ]{ = rDEIJU or 36.(U = 6. D). 

To ensure that D is incomplete, we also build an auxiliary r.e. set A and satisfy for all 

partial recursive functionals 8: 

(5) 

The basic strategy for Su in isolation is to build rDEBU, ensuring that it is total, and 

that it computes ]{ correctly by enumerating 1( w) into D when w enters ]{. The strategy 

will always insist on the correctness of rDEBU on its domain but it may allow rDEBU to 

be partial if some lower-priority strategy builds a partial recursive functional 6. such that 

U = c,.D. An Su-strategy itself always has only one outcome on the tree of strategies. 

The basic strategy for Re in isolation is the one developed by Friedberg and Muchnik: 

1. Pick an unused witness x and keep it out of A. 
2. Wait for GD(x) l= 0. 

3. Put x into A and restrain DI (19(x) + 1). 

While the strategies for the requirements in isolation are thus very simple, there are 

obviously severe conflicts between them. The Su-strategy threatens to make D complete 

while the Re-strategy would like to preserve initial segments of D. The main difficulty of 

the 0'11-priority argument for the D.r.e. Nondensity Theorem therefore lies in combining 

them. We will slowly lead up to the full construction, trying to explain the intuition behind 

each feature as we add more and more elements of the construction. 

4. THE Re-REQUIREMENTS BELOW ONE Su-STRATEGY 

The Intuition. The fundamental idea here is the following. Since an 'Re 0 -strategy obvi­

ously cannot prevent a higher-priority Su-strategy from correcting rDEIJU, the former will 

instead try to clear its Bf-computation of r-uses (i.e. of values 1(w) for almost all w). 
The 'Re 0 -strategy picks a fixed number wo and allows the Su-strategy to initialize the 

Re
0
-strategy whenever ]{ I w0 changes and rDEBU I w0 needs to be corrected (which 
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constitutes only finite injury to the Re,-strategy). Whenever a computation E>f(x0) l= 0 

appears but is threatened by 'Y(w0 ) _:; i90 (x 0 ) then the Re,-strategy, instead of putting 

x0 into A, will put the current value of 'Y( w0 ) into D and request that the new use 'Y( wo) 
be very big, at least greater than the current value i90 (x 0 ). (This action is often called 

"capricious destruction" of the computation Elf ( x 0 ) (that we would really like to preserve) 

and was first used by Lachlan in the proof of his Nonsplitting Theorem (10].) If this hap­

pens infinitely often then our attempt of "finitarily" diagonalizing E>f(x0 ) ll A(x0 ) fails. 

Furthermore rDEE>U ( w0 ) I because 'Y( w0 ) ---> oo, so the Re,-strategy must assume responsi­

bility to define and keep correct a functional .6. D = U on larger and larger initial segments 

in order to satisfy Su. Now keeping .6.D correct involves changing D r ( o( w) + 1) whenever 

U( w) changes. So we still satisfy Su; but what have we gained for an Re,-strategy below 

the infinite outcome of the Re,-strategy since the Re,-strategy now has to deal with Li.­
uses? The trick is that its 8 1-computation is only threatened by .6.-uses if o(w) _:; i91 (x 1 ) 

and U(w) changes later. But then the Re,-strategy should not have put 'Y(wo) into D 

since 'Y( Wo) could have been increased past i9o ( Xo) using the U-change alone. It is here 

that we need to use the fact that D is d.r .e. since we can now extract the old value 'Y( wo) 
from D, stop destroying rD ( w 0 ) (and forcing 'Y( w 0 ) ---> oo), and stop correcting .6.. This 

lets Su be satisfied by r again, and Re, is satisfied finitarily since 'Y(w0 ) > i90 (x 0 ). 

An extra complication here is that U can change back and forth many times on w's with 

o(w) _:; i91(x1), so we have to ensure that D can change below the old value of 'Y(wo) more 

often. Technically, we will reserve an entire interval B = ['Y(w0 ) - n, 'Y(wo)] (for some n) 
solely for destroying and restoring rDEE>U ( Wo ). Every time rDEE>U ( Wo) is destroyed, it will 

be redefined by the Su-strategy using not only larger min B but also a longer such "use 

block". We will assume that IBI (the length of the interval B) is less than the least 

element of the interval B. (Thus i9(x0 ) < IBI implies i9(x 0 ) < minB.) Furthermore, the 

Re, -strategy will ensure the satisfaction of Re, at its own witness x 1 . 

With this intuition in mind, we now describe the Re-strategies more precisely: 

The Re,-strategy. It works with a fixed fresh witness x0 for 8 0 and a fixed "killing 

point" w 0 for r and proceeds as follows (where i is the number of times that the Re,­
strategy has put ')'o(w0 ) into D so far): 

1. Wait for E>f(x0 ) l= 0 and Elf r (i + 1) l= A r (i + 1). (The second clause slows down 

the Re,-strategy.) 

2. If min('Y(wo)-use block) > i9o(xo) then put Xo into A, restrain D r (i9o(xo) + 1), and 

stop. 

3. Otherwise, define Bi to be the current 'Y(wo)-use block, put 'Y(w0 ) into D, request that 

the Su-strategy choose the new 'Y(w0 )-use block "very big", i.e. of length greater than 

any number mentioned so far in the construction, define .6.D(i) = U(i), keep it defined 

and correct from now on (unless stopped), and go back to 1. (Notice that Xo is not yet 
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put into A.) 
The Re 0 -strategy will be initialized whenever K I w 0 changes but the parameter w 0 

remains unchanged then. (This causes only finite injury to the Re 0 -strategy.) 

The Re 0 -strategy will continue as above unless it is stopped by some other strategy (as 

specified below). 

Our Re 0 -strategy can thus have either a finite or an infinite outcome, depending on 

whether it is eventually always in 1. or in 2., or whether it goes from 3. to 1. infinitely 

often. (Note that by the below, the finite outcome of the Re0 -strategy can also be achieved 

by being stopped by another strategy.) 

An Re-strategy of lower priority. If the Re-strategy assumes a finite outcome of the 

Re 0 -strategy then the Re-strategy proceeds exactly as the Re0 -strategy itself since it 

is in the same position as the Re0 -strategy once the latter has stopped. Of course, this 

Re-strategy then has to use a fixed "killing point" w > w 0 so that the finite outcomes of 
Re-strategies destroy rD©U(w) only finitely often for fixed w. 

The situation is different for an Re, -strategy assuming the infinite outcome of the Re 0 -

strategy. 

The Re, -strategy. It works with a fixed fresh witness x 1 > x 0 for 8 1 and 8 0 , and at 

stages at which the Re0 -strategy enters 3., it proceeds as follows: 

1. Wait for 8f(x1) != 8f(x1) != 0, and IBil > '91(x1) + 3 at some stages,. (Here B; is 
the 'Y(w0 )-use block now being used by the Re

0
-strategy to destroy rD©U(w0). Recall 

IBil < minB;.) 

2. Set Y1 = '91(x1), Yo = max{'91(x1), '9o(x1)}, set i* = i, put x1 into A, and restrain 

D I (Yo + 1) from lower-priority strategies. (We pause briefly to analyze the situation 

now when we say that the Re,-strategy is taking charge of the Re0 -strategy. If U I 
(Y1 + 1) = U,. I (Y1+1) then we can ensure D I (Y1 + 1) = D,. I (Y1 + 1) without 
making ~ D incorrect so Re, is satisfied finitarily without disturbing the Su- or the Re 0 -

strategy. Otherwise, since Y1 < IE;• I and hence < min B;·, we have U I ( 'Ys. ( wo) + 1) # 
U •• I ('Y •• (wo) + 1), so the Re,-strategy will restore D I (Yo+ 1) = D,. I (yo+ 1) (by 
removing from D any element from B;· and any ti(y) from after stages.), thus restore 

8f(x1) != 8f(x1)[s,], and prevent the Re 0 -strategy from acting since Re0 is satisfied 

via x 1 . Notice that now, after taking charge, the Re,-strategy will stop and restart the 

Re 0 -strategy when necessary.) 

3. From now on ensure (using IE;• I> Y1 + 3): 

a. Whenever U I (Y1 + 1) = U,. I (Y1 + 1) then let the Re0 -strategy act and have 

DnB;· # D,. n B;· by enumerating an element into D if necessary. (Re, is satisfied 

and ~ D is correct.) 

b. Otherwise, prevent the Re 0 -strategy from acting and restore D I (Yo+ 1) = D,, I 
(Yo+ 1) by possibly extracting elements from D. (Re 0 is satisfied via the r-cleared 
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computation E>f(x1).) 

The possible combined outcomes. The possible outcomes of an Rea- and an Re,­
strategy below one Su-strategy are now as follow: 

A. The Re, -strategy never reaches 2. 

a. The Re0 -strategy eventually stops at 2. or waits at 1. forever. Then E>f(xo) f A(xo), 
and Rea is satisfied finitarily (and the 'Re, -strategy has an incorrect guess about the 

'Rea-strategy). 

b. The 'Rea-strategy goes from 3. to 1. infinitely often. Then 6.D = U, and Re, is sat­

isfied finitarily by E>f(x1) f A(x1), using the slow-down feature of the 'Rea-strategy 

in 1. 

B. The Re, -strategy passes 2. Since U I (y1 + 1) can only change finitely often, the 

Re, -strategy will eventually be in 3a. or in 3b. forever: 

a. The Re, -strategy is eventually in 3a. Then, since U I (Y1 + 1) = Us. I (Y1 + 1 ), 

6.D = U is correct, so eventually the 'Rea-strategy is not affected by the Re, -strategy. 

Furthermore, since D I (Y1+1) = D •• I (Y1 + 1), Re, is satisfied by E>f(x1) != 0 f 
A(x1). 

b. Otherwise. Then, since D I (yo+ 1) = Ds. I (Yo+ 1), Rea is satisfied finitarily by 

E>f(x1) != 0 f A(x1), a computation that is cleared of 'Y(wo) by the U I (Y1+1)­
change. (The Re, -strategy is "to the left of the true path" since the 'Re 0 -strategy 

has finite outcome. But, of course, the Re, -strategy did all the work.) 

We have purposely overlooked one minor complication so far. 1 Our assumption at 3b. 

in the 'Re1-strategy was that we would be able to redefine fDEllU(wo) with 1'(w0 ) > y0 

using the U I (Y1 + 1 )-change. If that U-change, however, is caused by the extraction of 

some y ::; y1 from U, then some definition of fDEllU(wo) may already exist with a small 

use 1'( w 0 ). The problem here is obviously that U had changed "too early" at y since y was 

enumerated into U before the Re, -strategy passed 2. We get around this complication by 

rephrasing 1. of the Re, -strategy as follows: 

11
• Wait for E>f(x1) != E>f(x1) != 0, IBil > 191(x1) + 3, and U I (191(x1) + 1) = u •. I 

( 191 (x1)+1) at some stages, (wheres* is the stage at which use block Bi-1 was defined). 

This minor change does not affect the Re, -strategy since U I ( 191 ( x1 ) + 1) must settle 

down if E>1(x1) is defined. If some y E Us. I (191(x1) + 1) now leaves U after stage s, 

then it must have entered U before stage s*. Since stage s*, however, D was permanently 

changed on use block Bi-l by the Re0 -strategy, so D Ell U will, through the extraction of 

y from U, not return to an initial segment of D Ell U previously used to define fDElJU ( w 0 ). 

Summarizing the situation below one Su-strategy (see Diagram 1), we can distinguish 

two types of Re-strategies. First, there are the strategies of type Rea, which deal with r­
uses by threatening to destroy fDEllU at their "killing point" w0 • Below the finite outcomes 

1 The authors would like to thank R. Shore for pointing this out. 
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Re, I finite 

Re3 

I finite 
• . 
• 

Rei 

1 finite 

Rei 

1 finite 

Su 

I 

. . 
Diagram 1. The Re-strategies below one Su-strategy 
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Diagram 2. The Re-strategies below two Su-strategies 
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of these, we are still in the same situation and continue with Re 0 -strategies. ("The Su­

flip from r to !::.. has not occurred.") Below the infinite outcome of an Re0 -strategy, we 

only use strategies of type Re,, which either satisfy their requirement finitarily without 

disturbing!::.. ("The Su-flip from r to!::.. has occurred."), or else satisfy Re0 and therefore 

force themselves to the left of the true path ("The Su-flip from r to !::.. turned out to be 

fake, and Su continues with r.") 

5. THE Re-REQUIREMENTS BELOW TWO Su-STRATEGIES 

The Intuition. It would be accurate to say that this case just involves nesting the above 

combination of strategies; however, this nesting is very complicated and will therefore be 

presented in detail. We hope that the case of two higher-priority Su-strategies will give 

the intuition for the general case of arbitrarily many. 

Just as we had two types of Re-strategies above (handling r- and !::..-uses, respectively), 

we here have four types of Re-strategies (called Re 0 -, Re,-, Re,-, and Rea-strategies, 

respectively) depending on the I:3 -outcomes of the Su0 - and the Su,-strategy (see Dia­

gram 2). 

An Re 0 -type strategy has only finitary outcomes of Re-strategies above itself. Its job 

is to destroy rfEllU, unless it happens to find a Go-computation cleared of both ro- and 

ri-uses. Its outcome is either finite, or it destroys rfEllUi and builds t::..f = U1 (even if ro 

is the "culprit"). 

An Re,-type strategy works below the infinite outcome of an Re0 -strategy. It will de­
stroy both rjfEllUo and t::..f and build !::..{? = U0 unless it happens to find a 8 1 -computation 

cleared of both ro- and !::..i-uses. Its outcome is either finite, or it destroys both rfEllUo 

and t::..f and builds!::..{?= U0 . 

Below the infinite outcome of an Re, -strategy, Su, is not satisfied since both rfEllUi and 

t::..f have been destroyed. So we first have to introduce another version of an Su, -strategy, 

say an Su, -strategy, building f'fEllUi. Thus an Re-strategy below the infinite outcome of 

an Re, -strategy has to deal with !::..{? and f'fEllUi. 

An Re,-type strategy works below the infinite outcome of an Re, -strategy and therefore 

also below an Su, -strategy. It will destroy f'fE!lU, and build 6.f unless it happens to find 

a 82-computation cleared of both !::..o- and r 1-uses. 

An 'Rea-type strategy works below the infinite outcome of an 'Re,-strategy. It has to 

deal with !::..0- and 6.1-uses in the same way the 'Re, -strategy of the previous section dealt 

with !::..-uses. Namely, roughly speaking, if neither U0 nor U1 changes then the !::..0 - and 

Ai-uses will not cause a problem. If exactly one of U0 and U1 changes then this will clear 

the 8-computation of the 'Re,- or the Re,-strategy of r 0 - or f'i-uses, respectively. And 

if both U0 and U1 change then the 'Re 0 -strategy has a cleared 8-computation. 

We now give a detailed description of the various 'Re-strategies: 
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The Re0 -strategy. It works with a fresh witness xo for Go and a "killing point" Wo for 

I'1 (here i0 is the number of previous I'1-killings of the Re 0 -strategy) and proceeds as 

follows: 

1. Wait for Gf(xo) t= 0 and ef r (io + 1) t= A r (io + 1). 

2. Ifmin(1o(wo)-, 11(wo)-use blocks)> 19o(xo) then put Xo into A, restrain D r (19o(xo)+l), 

and stop. 

3. Otherwise, define Bf
0 

to be the current 11(w0)-use block, put 11(wo) into D, request 

that the new 11(wo)-use block be very big, define .6.f(io) = U1(io), keep it defined and 

correct from now on (unless stopped), and go back to 1. 

The Re1 -strategy. It is below the infinite outcome of an Re 0 -strategy and works with 

a fresh witness x1 > x0 for 81 and a "killing point" w1 > wo (here il is the number 

of previous I'0-killings performed by the Re1 -strategy), and at stages at which the Re 0 -

strategy passes 2., the Re, -strategy proceeds as follows: 

1. Wait for ef(x1) t= o, ef r (i1+1) =A r (i1+1), !Bf.I > il · 191(i1), and Uj r 
(191(i1) + 1) = Uj,s• r (191(i1) + 1) for j = 0, 1. (Here Bf

0 
is the 11(wo)-use block just 

being used by the Re 0 -strategy to destroy rfEllU'(w0), ands* is the stage at which use 

block Bf
0

_ 1 was defined. The last three clauses of 1. all slow down the Re, -strategy.) 

2. If min(lo ( w1)-, 81 ( W1 )-use blocks) > 191 ( W1) then put x1 into A, restrain D r ( 191 ( X1)+1 ), 
and stop. 

3. Otherwise, define B?
1 

and Cf, to be the current 10 (w 1 )- and 81(w1)-use blocks, respec­

tively, put 10( w1) and 81 ( w1) into D, request that the new 10( w1)- and 81 ( w1)-use blocks 

be very big, define Lif(i1) = U0 (i 1 ), keep it defined and correct from now on (unless 

stopped), and go back to 1. 

The Re,-strategy. It is below the infinite outcomes of an Re 0 - and an Re,-strategy 

and below an Su, -strategy. It works with a fresh witness x2 > x1 for 02 and a "killing 

point" w2 > w1 (here i2 is the number of previous l\-killings of the Re,-strategy), and at 

stages at which the Re 1 -strategy passes 2., the Re,-strategy proceeds as follows: 

1. Wait for ef(x2) t= O; ef r (i2 + 1) =A r (i2 + 1); all of !Bf.I, IB?, I, ICl, 1>i2·19(i2); 
and Uj r (192(i2) + 1) = Uj,s• r (192(i2) + 1) for j = O, 1. (Here Bf

0
, B?

1
, and Cf, are 

the current 1 1(w 0 )-, 10 (w 1 )-, and 81(w1)-use blocks, respectively, ands* is the stage at 

which Bp
1 

_ 1 and Cf
1 

_ 1 were defined.) 

2. If min( 80( w2)-, i'1 ( w2)-use blocks) > 192( x2) then put X2 into A, restrain D r ( 192( x2)+ 1 ), 

and stop. 

3. Otherwise define Bf, to be the current i'1(w2)-use block, put i'1(w2) into D, request 

that the new i'1(w2)-use be very big, define .6.f(i2) = U1(i2), keep it defined and correct 

from now on (unless stopped), and go back to 1. 

The Re
3
-strategy. It is below the infinite outcome of an Re,-strategy and works with 
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a fresh witness X3 for 8 3, 8 2, 81, and Go. At stages at which the Re,-strategy passes 2., 

the Rea-strategy proceeds as follows: 

1. Wait for eR(x3) t= 0 for n = 0,1,2,3; io,i1,i2 > x3; min{IB[,I, IB?,I, 1c1,1, IBf,I} > 
2 · 193(x3) + 4; and Uj r (193(x3) + 1) = Uj,s• r (193(x3) + 1) for j = O, 1 at some stage 
s.. (Here Bf, is the ,Y1 ( w2 )-use block currently used by the Re,-strategy to destroy 

f'fEllU1 (w0 ), ands* is the stage at which B[
2

_ 1 was defined.) 

2. Set Yn = maxn:o;m:o;3{ 19m(x3)} for n = 0, 1, 2, 3; set i~ =in for n = 0, 1, 2; put X3 into A; 
and restrain D r (Yo+ 1) from lower-priority strategies. (We say the Re 3 -strategy is 

taking charge of the Re,-, Re,-, and Re,-strategies.) 

3. From now on ensure (using IBI > 2y3 + 4 in a., IBI > 2y2 + 4 in b., and IB[
0 
I > 2y1 + 4 

inc.): 

a. Whenever Uo r (y3 +1) = Uo,s. r (y3+1) and U1 r (Ya+ 1) = U1,s. r (y3+1) then let 
the Ren -strategies act for n = O, 1, 2; and have D n B f D •• n B for B = Bf;, B?i, 

Cf., Bf •. (Re 3 is satisfied, and .6.f' and .6.{/ are correct.) 
1 2 

b. Otherwise, whenever Uo r (Y2+1) = Uo,s. r (Y2+1) and Ui r (y3+1) f U1,s. r (y3+1) 
then let the Ren -strategies act for n = 0, 1; prevent the Re,-strategy from acting; 

restore D r (Y2 + 1) = Ds. r (Y2+1); and have DnB f D,. n B for B = Bf0, B?i' 

Cf •. (Re, is satisfied and cleared of ri, r 0, and f'1; and .6.{/ is correct.) 
1 

c. Otherwise, whenever Uo r (Y2+l) f Uo,s. r (Y2+l) and U1 r (y1 +1) = U1,s. r (Y1 +1) 
then let the Re,-strategy act; prevent the Ren -strategies from acting for n = 1, 2; 

restore D r (Y1 + 1) = D,. r (Y1 + 1 ); and have D n Bf; f D,. n Bl;. (Re, is satisfied 

and cleared of r 1 and r 0 while f'1 is not active; and .6.f' is correct.) 

d. Otherwise (i.e. whenever Uo r (y2 + 1) i Uo,s. r (Y2 + 1) and U1 r (y3 + 1) f U1,,. r 
(y3+l); or Uo r (y3+l) i Uo,s. r (ya+l) and U1 r (Y1 +1) # U1,s. r (Y1 +1)), prevent 

theRen-strategiesfromactingforn = 0,1,2; andrestoreD r (y0 +1) = Ds. r (yo+l). 

(Re, is satisfied and cleared of r0 and r1 while f'1 is not active.) 

The possible combined outcomes. The possible outcomes of the Ren -strategies for 

n = 0, 1, 2, 3 are as follow: 

A. The Re3 -strategy never reaches 2. 

a. For some n ::; 2, the Ren -strategy eventually stops at 2. or waits at 1. forever. For 

the least such n, ef? f A (notwithstanding the slow-down features, as in the previous 

section); also the .6. built by the Ren_,-strategy is correct if n > 0. 

b. Otherwise the Rea-strategy cannot proceed to 2. because of 1., and Re3 is satisfied 

while .6.{? and .6. f' are correct. 

B. The Rea-strategy passes 2. Since U0 r (y1+1) and U1 r (y1+1) can only change finitely 

often, the Re3 -strategy will eventually be in one of 3a. through 3d. forever: 

a. Since D r (y3 + 1) = D,. r (y3 + 1), Rea is satisfied by 8f(x3) t= 0 i A(x3); since 

Uo r (Ya+ 1) = Uo,s. r (y3 + 1) and Ui r (y3 + 1) = U1,s. r (y3 + 1), both .6.{? = Uo 
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and Ap = U1 are correct. 

b. Since D t (yz + 1) = D •• t (y2 + 1), Re, is satisfied by 0:f(x3) l= 0 # A(x3), 
a computation that is cleared of 1'1 ( Wz) by the Ui [ (y3 + l )-change and of ')'o ( w1 ), 

81(w1), and ')'1(wo) by the D-change; since Uo [ (Y2+1) = Uo,s, [ (yz + 1), !::,.{? = Uo 
is correct. 

c. Since D [ (Y1 + 1) = Ds, [ (Y1 + 1), Re, is satisfied by 0f(x3) l= 0 # A(x3), 
a computation that is cleared of 1o(w1) by the Uo [ (y2 +1)-change and of ")'1(wo) by 

the D-change; since U1 [ (Y1+1) = Ui,s, [ (y1+1), t,.f = U1 is correct. 

d. Since D [ (Yo + 1) = D •• t (Yo+ 1), Re 0 is satisfied by 0{?(x3) l= 0 # A(x3), 
a computation that is cleared of /1 ( wo) and 10( W1) by the U1 [ (Y1 + 1 )- and Uo [ 
(yz + 1 )-changes, respectively. 

There is an easier variant of Re-strategies working below two Su-strategies, namely 

when r 0 is destroyed and Ll.0 is built by an Re-strategy before the Su, -requirement is 

introduced. In this case, the Re 0 - and Re 1 -strategies above collapse into one strategy, 

namely the Re 0 -strategy from the previous section, and the Re,-strategy works below the 

infinite outcome of it and the Su, -strategy as described above, using r 1 in place of f' 1. For 

the Re3 -strategy, cases 3c. and 3d. collapse into one, namely "whenever U0 [ (y3 + 1) # 
Uo,s. [ (y3+1), or Uo [ (Y2+1) # Uo,s. [ (yz + 1) and U1 [ (y3+1) # U1,s, [ (y3+1)", in 
which case Re 0 is satisfied by 0{?(x3) l= 0 # A(x3 ), a computation cleared of /o(wo) by 

the U0 t (y2 + 1 )-change while r 1 is not active since the Re
0 
-strategy has finite outcome. 

6. THE GENERAL Re-STRATEGY 

In general, an Re-strategy will have to deal with a finite number of r's built by higher­

priority Su-strategies (and not destroyed yet), and a finite number of L'::,.'s built by higher­

priority Re-strategies (and not destroyed yet). There are two cases: 

Case 1. There is such a r. Then the Re-strategy will destroy the lowest-priority one of 

them, say r ., and also the Ll.'s of lower priority than r ., and it will build Li.?= u., unless 

it happens to find a 0-computation cleared of all 1- and 8-uses. This Re-strategy will 

thus work like the Re 0 -strategy, or the Re 0 -, Re 1 -, and Re,-strategies, from the previous 
two sections, respectively. We call this type of an Re-strategy an Re-destroyer strategy. 

An Re-destroyer strategy has a fixed "killing number" w which is only increased when­

ever it appears to be to the right of the true path. Whenever J( [ w, or U t w for some 

higher-priority Su-strategy, changes, the Re-destroyer strategy is initialized while keeping 

w fixed. (The strategy thus assumes that J( t w and the U t w have settled down, which 
is true after finite injury.) The strategy will make r;,:i(]JU. and those Ll. D's of lower priority 

than r * undefined at w unless Re can be satisfied finitarily. 

Case 2. The Re-strategy has to deal only with higher-priority Ll.'s. Then the Re-strategy 

will wait for computations at some x for its own 0 and all the 0 of the higher-priority Re-
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strategies with infinite outcome (including the ones whose Zi. has been destroyed already), 

in such a way that O(x) (for each such J) and ti(x) is less than the length of the use blocks 

of f's and Zi.'s destroyed by R0-strategies of higher priority than the Re-strategy. If our 

Re-strategy fails to find all these computations as specified, then Re is satisfied without 

taking any action, else our Re-strategy will attack using its witness x ("take charge of 

all higher-priority infinitary R0-destroyer strategies") and ensure that it itself or one of 

these higher-priority R0-destroyer strategies satisfies its requirement finitarily. This Re­
strategy will thus work like the Re, -strategy, or the 'Re3 -strategy, from the previous two 

sections, respectively. We call this type of Re-strategy an Re-controller strategy. 

There is one minor difference between an Re-destroyer strategy satisfying its require­

ment and a lower-priority 'Re-controller strategy satisfying Re: The latter may satisfy 

Re using the "killing number" w of an 'Re-destroyer strategy of lower priority than the 

Re-strategy. Thus w > w, and Re may turn out to be not satisfied because K or some 

U changes on [w, w). In that case, the Re-destroyer strategy should really have continued 

acting instead of relying on the 'Re-controller strategy. But nothing is lost if the Re­
destroyer strategy now just "catches up" on all the actions it failed to perform since the 

R0-controller strategy stopped it. 

7. DEFINING THE r's AND 6.'S 

We have thus far been very vague about how the r's and 6.'s are defined apart from 

saying that their uses, and the lengths of their use blocks, should be increased to dear 

8-computations, and to allow to destroy and restore computations a greater and greater 

number of times, respectively. The problem is to balance these demands against the need 

to make the r's and 6. 's total (unless deliberately destroyed by one fixed lower-priority 

Re-destroyer strategy), and therefore to let their uses come to finite limits. Surprisingly, 

the technique is the same for the construction of a r by an Su-strategy and of a 6. by 

an Re-destroyer strategy. The only difference is that an Su-strategy will act whenever it 

appears to be on the true path while an Re-destroyer strategy may, even when apparently 

on the true path, be prevented from acting by an 'Re-controller strategy. In the following, 

we thus restrict ourselves to explaining the definition of r. 

When an Su-strategy defines r on some argument w, it reserves a use block B for its 

use, i.e. an interval of w of length less than its least element, reserved solely for correcting 

rDfllU(w) and for destroying and restoring rDEJJU (w). We call a eD(x)-computation cleared 

of 1(w) when ti(x) < least element of the use block for rDEilU(w). (Consistently with 

standard notation, however, we will denote by 1( w) itself the greatest element of this use 

block.) We agree that whenever some element needs to enter this use block, it will be the 

leftmost unused element of it. 

For the initial definition of rDEJJU ( w ), the Su-strategy will pick a use block beyond any 

number, and longer than any use block, mentioned thus far in the construction. 
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Occasionally, the oracle D EB U may change below a use 7( w), and no previous definition 

of rDEIJU ( w) may apply. The Su-strategy now has to decide whether or not to increase the 

use and proceed to a new use block. 

If D has not changed on any 7(w')-use block for any w' :::; w then we will keep the 

rightmost use block previously used for rDEJJU ( w) and define rDEIJU ( w) = K( w) with use 

7( w) equal to the rightmost element of that use block. 

Otherwise, we will pick a new use block with leftmost element, and of length, greater than 

any number mentioned thus far in the construction, and we will define rDEJJU ( w) =I<( w) 

with use equal to the rightmost element of that new use block. 

Now if infinitely often some use block of rDEJJU ( w) changes for fixed w and so Jim,%( w) = 
oo, then we have to ensure that one fixed Re-destroyer strategy wants to destroy rDEJJU. 

Otherwise, the use 1( w) will come to a finite limit, and rDEJJU ( w) will eventually be de­

fined permanently. Furthermore, the Su-strategy can correct rDEJJU ( w) by enumerating an 

element into the use block of rDEJJU ( w) when K( w) changes. Thus at any stage at which 

the Su-strategy can act, its rDEJJU will correctly compute I< on its domain. 

We are now ready for the formal description of the construction. 

8. THE TREE OF STRATEGIES 

As usual in 0 111-priority arguments, the construction uses a tree of strategies. For the 

sake of simplicity, we use a binary tree T <;;; z<w where we interpret 0 as the infinite and 

1 as the finite outcome of a strategy ~ E T. Of course, Su-strategies only have infinite, 

and Re-controller strategies only finite outcome, while Re-destroyer strategies may have 

either outcome. 

We start with a definition about satisfaction of requirements on the tree: 

DEFINITION 1: (i) The priority ranking of the requirements will be Su0 , Re0 , Su,, Re,, 
etc. where {Ue}eEw and {Ge}eEw are effective enumerations of all d.r.e. sets and all partial 

recursive functionals, respectively. 

Let~ ET. 

(ii) A requirement Su is active at ( iff there is an Su-strategy a C ( and there is no 

Re-destroyer strategy (3 with a c (3 A 0 <;;; ~ that is targeted to destroy a's r (as defined 

below). 

(iii) A requirement Su is satisfied at ~ iff there is an Re-destroyer strategy (3 such 

that (3 A 0 <;;; E' (3 is targeted to destroy the r of an Su-strategy °' c (3' and there is no 

R 0 -destroyer strategy iJ such that (3 C iJ' 0 <;;; ( and iJ is targeted to destroy a r of an 

Sc,-strategy a c a. (Note that here Su would be a higher-priority requirement than Su 
by Definition 2.) 

(iv) A requirement Re is satisfied at ( iff there is an Re-( destroyer or controller) strategy 

1) with 11'1 <;;; ~-
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(The intuition is that in cases (iii) and (iv), Su and Re are satisfied by some ,6,. or 

finitarily, respectively, whereas in case (ii) the r for Su could still be destroyed at or 

below() 

We can now define the tree T and the assignment of requirements to nodes of T: 

DEFINITION 2: We proceed by induction on IEI (starting with 0 ET). Let EE T. 

(i) The node e works on (or, is assigned to) the highest-priority requirement that IS 

neither active nor satisfied at e. 
(ii) If e is an Re-strategy (i.e. works on Re) then e is an Re-controller strategy iff no 

requirement Su is active at e; otherwise E is an Re-destroyer strategy targeted to destroy 

the r of the longest °' c E such that a's Su-requirement is active at e. 
(iii) The immediate siiccessors of E on T are E' 0 if E is an Su-strategy, E '1 if E is an 

Re-controller strategy, and both E '0 and E' 1 if E is an Re-destroyer strategy. 

We are now in a position to prove a lemma about the formal structure of T: 

LEMMA 1 (Finite Injury and Satisfaction Along Any Path Lemma). Let p be a path 

through T and R a requirement. Then R is assigned to only Enitely many nodes E c p. 

If ea is the longest such, then either R is satisEed at p t n via ea for all n > IEo 1, or R is 

active at p I n via Eo for all n > lea I· 

PROOF: Let R be the least requirement for which the lemma fails. Fix the least no such 

that all higher-priority requirements are either satisfied at p I n for all n ::'.': no or active at 

p In for all n ::'.':no. 

Thus some strategy E <;; p t no must work on our fixed requirement. Pick e maximal 

such. If it is an Re-requirement then, by maximality of E and our assumption on n 0 , 

e' 1 <;; p, and then Re is satisfied at p t n via ea = e for all n > IEo 1. If it is an Su­

requirement then either it is active at p t n via Eo = e for all n > IEo I; or there is a minimal 

nl > IEI such that it is satisfied at p t n1 via some Re-strategy 'r/· By maximality of e and 

minimality of n 0 , necessarily n 1 > n 0 • Thus by our assumption on no, no higher-priority 

So-requirement can become satisfied at p I n for n > n 1 , and so Su is satisfied at p I n 

via Eo = rJ for all n > IEol- D 

For the remainder of this section, we fix an arbitrary R9-controller strategy 'Y and 

develop some notation for the Su-strategies a C 'Y and the Re-destroyer strategies (3 with 

(3 '0 <;; 'Y· This notation is relative to our fixed 'Y and will be useful in the description of 

the construction and the verification. 

Denote by Su0 , Su,, ... , Su;
0 

the Su-requirements of higher priority than Re (in de­

creasing order of priority). Denote by a 0 C a1 C · · · C °'ko the Su-strategies a C 'Y· 

Denote by (30 C (31 C · · · C (31 0 _ 1 the Re-destroyer strategies (3 with (3'0 <;;"(,and set 

(310 = 'Y· For each f31 (0 ::=; l ::=; 10), define a guess a1 E z:'.:jo+l of f31 on the 2::3-outcomes of 
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higher-priority Su-strategies as follows (for 0 :S: J '.O: Jo): 

1 
0 if SU; is active at (Ji, 

a1(j) = 1 if Su; is satisfied at fh, 
I otherwise. 

(The intuition is that, in the first case, /31 assumes rf/kfJJU; = J( (where Su; is active at /31 

via ak)i in the second case, /31 assumes t:>.F,, = Uj (where Su; is satisfied at /31 via /31' for 

some I'< l); and in the third case, Su; has lower priority than the requirement of /31.) 
We next define parameters that will help 'Y decide whether or not to stop a certain /31. 

For l :S: lo, j < l<nl, we set 

J l' + 1 

L(l,j)= l 1 

if a1(j) = O, where l' 2 l is minimal such that 

(31, is targeted to destroy the r of some Su; -strategy, 

if a1(j) = 1. 

We now prove a combinatorial lemma, which will show that the R0-controller strategy 

'Y can act as prescribed in the next section: 

LEMMA 2 (Re-Controller Strategy Decision Lemma). (i) If l < l' ::; lo then lad :S: 10"1' I 
and a1 < L a1'. 

(ii) The set { O"/ I l ::; 10 } forms a maximal anti chain in z::;jo+1 . 

(iii) For all l::; lo, all J ::; Jo, if a1(j) is defined then so is L(l,J). 

(iv) IfJ::; Jo and l < l::; 10 , and both L(l,J) and L(Z,j) are defined then L(l,J) :S: L(Z,j). 

(v) Let U0 , Ui, ... , U10 be the d.r.e. sets from above. For all stages s. < s and all 

numbers Yo 2 Y1 2 · · · 2 y101 there is l :S: lo such that for all J < lad 

(la) a1(j) = 0-> Uj,s r (YL(l,j) + 1) =/= Uj,s, r (YL(l,j) + 1), 

and 

(lb) 0"1(j) = 1-> Uj,s r (YL(l,j) + 1) = Uj,s, r (YL(l,j) + 1). 

(Intuitively spealdng, an Re-controller /31 0 will think that it is /31 that has finite outcome, 

so it will let /31' act iff l' < l.) 

PROOF: (i) Obvious by the way requirements are assigned to nodes of T. 
(ii) By (i), the set is an antichain. 

It is easy to verify that a0 ~ oi0 +1 and a10 = li0 +1 . It therefore remains to verify 

that there is no T with a1 <L T <L a1+1 for some l < lo. Since /31 is an Re-destroyer 

strategy, some Su is active at /31, and so a1 = a· 0·1 m (for some a and some m 2': 0). If 

we had applied the definition of a1 to /31 • 0 instead of /31, we would have obtained a· 1. 
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Now between f31 and f31+ 1, there are no Re-destroyer strategies (3 with (3"0 c;;; f31+1· Thus 

a1+1 = a· 1 ·om' (for some m1 2'. m ). Now observe that there is no r with a· 0" 1 m <L 

r<La·1·om'. 

(iii) It suffices to show that if a1(j) = 0 then 1' in the definition of L(l,j) exists. But 

Su; is active at f31 (since a1(j) = 0) and is satisfied at "f, so there must be some f31' with 

f31 c;;; f31• c f31' • 0 c;;; 'Y that is targeted to kill the r of some Su; -strategy, so L( l, j) = l' + 1. 

(iv) The claim is clear by the definition of L(-,j) if a1(j) = 1 or ar(j) = 0. So assume 

a1(j) = 0 and ar(j) = 1. Then Su; is active at f31 and satisfied at f31, so there must be 

some (3 with f31 c;;; (3 C (3 • 0 c;;; f31 that is targeted to kill the r of some Su; -strategy. Since 

(3 = f31• for some l :<; l' < l we have L(l,j) :<; l' + 1 :<; l = L(l,j). 
(v) We construct a string a E z:Oio+I by induction, satisfying for all m :<; lal, all I:; lo, 

and all j :<; m, 

a Im c;;; O"/ &a(j) = 0 -t uj,s I (YL(l,j) + 1) f Uj,s. I (YL(l,j) + 1) 

and 

a Im c;;; O"/ &a(j) = 1-t Uj,s I (YL(l,j) + 1) = Uj,s. I (YL(l,j) + 1). 

We will continue the definition of a until a = a1 for some l :<; 10 . This process must 

terminate by (ii). 

Suppose a I m has been defined and a I m f a1 for a.II l :<; 10 . Then, by (ii), there 

must be "' extending (a I m r 0 and "" extending (a I m r 1. Let r be maximal such 

that (a I mro c;;; "l· Now, by (iv), L(l,m):; L(T + 1,m). Thus YL(l,m) ::: Yr,(l+I,m)i 

and so Um,s I (Yr,(l,m) + 1) f Um,s. I (Yr,(i,m) + 1) or Um,s I (Yr,(i+I,m) + 1) = Um,s. I 
(YL(l+i,m) + 1) holds true. 

Set a( m) = 0 in the first case, and a( m) = 1 otherwise. Then a I ( m + 1) satisfies the 

inductive condition. D 

9. THE CONSTRUCTION 

We use the tree of strategies defined above to describe the construction. 

We construct one d.r.e. set D and one r.e. set A. Each Su-strategy a E T builds its own 

p.r. functional r "' and each Re-destroyer strategy (3 E T builds its own p.r. functional 

!::.p. (By abuse of notation, we may leave off the indices a and (3.) Whenever a strategy ~ 

is initialized, all its parameters become undefined, its functional (if any) becomes totally 

undefined, and ~ no longer takes charge of any other strategy. The same holds when a 

strategy is reset except that then the killing number w of an Re-destroyer strategy does 

not become undefined. (Intuitively, we will initialize a strategy that appears to be to the 

right of the true path, and we will reset a strategy if there is a I<- or U-change below its 

killing point.) 

At stage 0, all strategies are initialized, and D and A are set to 0. 
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At a stages+ 1, we first reset every strategy e ET for which there is an Re-destroyer 

strategy (3::; e such that Ks+i I Wf3 #Ks I Wf3, or such that Ua,s+I I Wf3 # Ua,s I Wf3 for 
some Su-strategy a C (3. 

Next, we let certain strategies on T be eligible to act as follows: First we let 0 be eligible 

to act. Given e that is eligible to act, we allow an immediate successor of E (determined 

by Cs action as defined below) to be eligible to act next. We proceed to stage s + 2 and 

initialize all strategies'// > e (if lei = s), or initialize all strategies'// > e (if the stage is 

ended by some strategy e'). 
For the remainder of this section, we describe the action of an individual strategy e. 

This description, of course, splits into three cases, depending on what type of strategy e is. 
Case 1. e is an Su-strategy. For each w :S s (in increasing order), proceed according to 

the subcase that applies: 

Case la. rDEllU(w) l= K(w). Do nothing. 

Case lb. rDE!lU ( w) l# K( w ). Put the least unused element of the current 1( w )-use block 

into D, and continue as in Case ld. 

Case le. rDE!lU ( w) J, rDE!lU ( w )[s'] l for s 1 
::; s maximal, and D has not changed on any 

of the 1(w')-use blocks between stage s1 and now (for any w' :S w). Redefine rDEllU(w) = 

K( w) with the largest 1( w )-use block defined so far as the new 1( w )-use block. (This need 
not be the 1( w )-use block from stage s1

.) 

Case ld. Otherwise. (Re)define rDEllU(w) = K(w) with a use block of length (and thus 

with least element) greater than any number mentioned thus far in the construction. 

In any case, e. 0 is eligible to act next. 

Case 2. e is an Re-destroyer strategy targeted to destroy the r" of some Su-strategy 

ace. 
Let i = i<_. First, check if Cs killing point w = W<_ or Cs witness x = X<. is undefined. If 

so then redefine it/them to a number greater than any number mentioned thus far in the 

construction, and let i = 0. 

Next, check if e has stopped by itself (as defined below) since it was last initialized or 

reset. If so, end Cs action at this stage by letting e · 1 be eligible next. 

Next, check if one or more Re•-controller strategies I =:> e are taking charge of e (as 

defined below). If so, then let these i's act now in decreasing order of priority (with respect 

to the ordering :S on T) according to Case 3b below . If one of these 1's stops e then end 

Cs action at this stage by letting e · 1 be eligible next. (Of course, if I ends the stage then 

neither e nor e · 1 will act at this stage.) 

Finally, let C be the set of all R 8 -destroyer strategies (3 with (3. 0 <;;; e, and let 130 be 

the set of all use blocks used by some (3 E C to destroy a functional at the current stage. 
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Check if 

(2) 

(3) 

(4) 

( 4') 

E>D(x) l = 0, 

E>D t(x+i+l)l=A t(x+i+l), 

V /3 E C(i13 > ti(x + i)), 
VB E Bo(IBI > i · (t!(x + i) + 1)), and 

(5) V Su-strategies a C f3 V s1 

(s* :'.':: s1 :'.'::s+1---> Ucx,s' t (t!(x + i) + 1) = Ucx,s• t (t!(x + i) + 1)) 

where s* = max{ s' :'.':: s I s' = 0 or ~ was eligible to act at stage s'}. 

If no then end Cs action at this stage by letting e .. 1 be eligible next. 

Otherwise, let 131 be the set of all current .. fo( w )-use blocks (such that some requirement 

Su is active ate via a) and of all current 813(w)-use blocks (such that some requirement 

Su is satisfied at ~ via fJ). Check if 

(6) 

If yes, say ~ stops by itself, put x into A, and let ~ end the stage. 

Otherwise, let B2 be the set of all use blocks B E B1 corresponding to functionals built 

by a or R0-destroyer strategies /3 with a c /3 .. 0 <;;; e. Put the least unused element of each 

B E 8 2 into D (we say ~ uses B to destroy the functional corresponding to B); increment 

i by +1; and handle t:,.D t (i + 1) by subcases the same way an Su-strategy handles 

rDE!)U t ( s + 1) in Case 1. End Cs action at this stage by letting ~ .. 0 be eligible next. 

Case 3. e is an Re-controller strategy. (Recall the definitions of the /31's, etc., at the end 

of the previous section.) We distinguish two subcases: 

Case 3a. ~ is currently not taking charge of other strategies. First, check if Cs witness x 

is undefined. If so then redefine it to a number greater than any number mentioned thus 

far in the construction. 

Next, denote by i 0 , ... , i1,-1 the parameters i of /Jo, ... , /31,-1, respectively; let 83 be 

the set of all use blocks used by some /31 (for 0 :'.':: l < lo) to destroy a functional at the 

current stage; and check if 

(7) 

(8) 

(9) 

VI< l0(i1 > max{x, 3j0 + l}), 

E>D(x) l = 0, 

VB E 83(JBI > 3(jo + l)(tl(x) + 1) + 2), and 

(10) V Su-strategies a C 1V s' 

(s* :'.':: s1 
:'.':: s + 1---> Ucx,s' t (tl(x) + 1) = Ucx, 8 • t (tl(x) + 1)) 

19 



wheres* =max{ s' :::; s Is' = o ore was eligible to act at stages'}. 
If not then end Cs action at this stage by letting e A 1 be eligible to act next. Otherwise, 

say e is taking charge of /30,. .. ,/310-1; put x into A; set YI= max{tlp,,(x) j I:::; I':::; lo} 
(for l :::; lo); set s. = s; say e does not stop any of /30, ... '/310-l; set z. = lo; and end the 
stage. 

Case 3b. e is currently taking charge of /30 , ••• , /310- 1. First reset z. to be the greatest 

l :::; lo such that for all j < lad 

(la) a1(j) = 0 --> Uj,s l (YL(l,j) + 1) "I Uj,s, l (YL(l,j) + 1) 

and 

(lb) a1(j) = 1---> Uj,s l (YL(l,j) + 1) = Uj,s, l (YL(l,j) + 1). 

(Such z. exists by the Re-Controller Strategy Decision Lemma at the end of the previous 

section. The intuition is that /31. 's requirement can be satisfied finitarily. If z. has not 

changed since the last stage at which I was eligible to act then no action will be taken by 

/ at this stage.) 

Let 8 4 , 8 5 be the sets of all use blocks used by some /31 (for 0:::; l < z. and I. :::; l <lo, 
respectively) to destroy a functional at stage s •. Now restore 

(11) D t (Y1. + 1) = D s, t (Y1. + 1) 

(by possibly extracting elements from D), and ensure 

(12) 

(by possibly putting the least unused element of B into D). 

(We pause to verify in a tedious counting argument that it is possible to achieve (11) 

and (12). First of all, since at stage s. + 1, ~ ended the stage, no other R0-controller 

strategy ( ever uses any use block of 8 4 U 8 5 as each (31 works on different use blocks 

when (first takes charge (except that once some R0-controller strategy ( < e may restore 

D on these use blocks at which time e is initialized so that these use blocks are never 

again worked on). Furthermore, for any use block B E 8 4 U 8 5 used by /31, say, to destroy 

a functional, we have that the action of e on D n B depends only on whether I. > l, 

i.e. on whether (la) and (lb) hold for some I. > l. This in turn depends on whether 

certain initial segments of Uj I (Y1+ 1 + 1) for d.r.e. sets Uj are equal to initial segments of 

Uj,s, I (Y1+1 + 1 ). For fixed j, this can become false and true again at most Y1+1 + 1 many 
times, i.e. (jo + 1) · (Y1+1 + 1) many times for all j :::; jo combined. For each such time, an 

Su-strategy or an R0-strategy may put an element into D n B at most twice to correct 
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rD(J)U or /:;. D which must later be extracted. Finally, some Re-destroyer strategy f31 puts 

one element into DnB to initially destroy rDffiU(wµ,) or D.0(wµ,). All this adds up to 

3(j0 + l)(Yl+J + 1) + 1 many times that D must be changed back and forth on B. 

Now by (4') for f31+1 and (7), 

(13) 

or by (9), IBI > 3(jo + 1)(19(x) + 1) + 2. In the latter case, we are done; in the former case, 

it remains to show 

(14) 

Now (14) follows by (7) for I' = l + 1, and by ( 4) and (7) for I' > l + 1 since 

This concludes our counting argument.) 

Furthermore, say e stops f31 for z. :'.:: l < 10 , and e does not stop f31 for O :'.:: l < z •. If I. 
has changed from the last time when e (re )set z. then e ends the stage. 

Otherwise, if some Re-destroyer strategy f3 let e act first then return to f3's action. 

Otherwise, end Cs action at this stage by letting e A 1 be eligible to act next. 

10. THE VERIFICATION 

We need to verify that the above construction satisfies both the Su- and the Re­
requirements. We start with the definition of, and a lemma about, the true path. 

DEFINITION 3: The true path f of the construction is the path through T defined induc­

tively as follows: Suppose e = f r n. Then: 

i) f(n) = 0 if e is an Su-strategy. 

ii) f(n) = 1 if e is an Re-controller strategy. 

iii) f( n) = 0 if e is an Re-destroyer strategy and C 0 is eligible to act at infinitely 

many stages; otherwise f( n) = 1. 

LEMMA 3 (Finite Initialization Along the True Path Lemma). Any strategy e C f is 

initialized or reset at most :finitely often, and it is eligible to act at innnitely many stages. 

PROOF: We proceed by induction on lei. The lemma clearly holds for the Su,-strategy 0. 
So suppose 1e I > 0 and no 'f/ c e is ever initialized or reset after stage So. Let e- = 

e r (lei - 1 ). Then e cannot be initialized at a stage s > so unless 1e-1 = s, e- is an 

Re-controller strategy or Re-destroyer strategy and ends the stage s, or e- is an Re­
destroyer strategy, e = e- A 1, and e- A 0 is eligible to act at stage s. The first and second 

cases can occur at most finitely often after stage s0 (since e- can end the stage at most 
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finitely often before being initialized or reset again); and the third case can occur at most 

finitely often by the definition off. Thus E cannot be initialized after some stage s1 2'. so, 
and E is eligible to act infinitely often. 

If E is not an Re-destroyer strategy then E cannot be reset after stage s1. If it is an 

Re-destroyer strategy then its parameter w cannot change after stage s 1 . Thus E cannot 

be reset once J{ r w and Ua r w (for all Su-strategies °' < E which have acted before 

stage s1) have settled down. D 

In the next lemma, we will prove that the Su-requirements are satisfied. Recall that, by 

the Finite Injury and Satisfaction Along Any Path Lemma from Section 8, each requirement 

Su is either active at f r n for almost all n or satisfied at f r n for almost all n. 

LEMMA 4 (Su-Satisfaction Lemma). i) If Su is active at f r n for almost all n then the 

requirement Su is satisfied. 

ii) If Su is satisfied at f r n for almost all n then the requirement Su is satisfied. 

PROOF: i) We will show J{ = rDEllU where I' = I'°' for the Su-strategy a C f such that 

Su is active at f In via a for all n > lal. 
Since a is initialized or reset only finitely often, r will eventually not be made completely 

undefined by a. Since°' is eligible to act at infinitely many stages and will correct rDE!lU r 
( s + 1) at each of these stages we see that rDE!lU correctly computes I< on its domain. It 
remains to show that I'DEllU is total. 

So suppose rDE!lU (x) t for minimal x. Let So be a stage by which rDE!lU r x has 

been defined ( D EEi U)-correctly. Since I'DEllU ( x) becomes defined infinitely often and thus 

7(x) -too, D must change infinitely often on a 7(x)-use block. Now the only strategies 

changing D on a 'Y( x )-use block are a itself (to correct rDEllU ( x) ), at most one Re-destroyer 

strategy /3 ::> a (for which x = w13), and any R0-controller strategies 'Y with 'Y <L /3 or 

'Y ::2 f3' 0. Since 7(x) -t oo, a will eventually not correct rDEllU (x) any more. If f3 or any of 

the 7's change Don a 7(x )-use block infinitely often then /3 Cf. (Note here that /3 > L f 
implies Wf3 -7 oo.) Now (3'0 cf is impossible since Su is active at f r n via°' for all 

n > 1/31. Thus/]' 1 C f, and once (3' 1 is no longer initialized, neither f3 nor any 'Y will 

change D on a 'Y( x )-use block. 

ii) We will show U = !:!. D where !:!. = !:!.13 for the Re-destroyer strategy /3 C f such that 

Su is satisfied at f r n via /3 for all n > 1/31. 
Since f3 is initialized or reset only finitely often, !:!. will eventually not be made completely 

undefined by (3, and i = i13 will not be set to 0. Since /3' 0 C f we have i -t oo, and /3 
can define and correct !:!. D r ( i + 1) infinitely often. Thus !:!. D correctly computes U on its 

domain. It remains to show that !:!. D is total. 

So suppose !:!. D( x) t for minimal x. Let So be a stage by which !:!. D r x has been defined 

D-correctly. Since f:!.D(x) becomes undefined infinitely often and thus o(x) -too, D must 
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change infinitely often on a 8(x)-use block. Now the only strategies changing Don a 8(x)­
use block are (3 itself (to correct LlD(x)), at most one Re-destroyer strategy fl:::> (3 (trying 

to kill Ll with killing point Wf3 = x), and any Re-controller strategies 'Y with 'Y <L fl or 

'Y ;;::> fl'O for this fl. Since 8(x)-> oo, (3 will eventually not correct LlD(x) any more. If 

fl or any of the 'Y's change Don a 8(x)-use block infinitely often then fl Cf. (Note here 

that fl >L f implies Wf3-> oo.) Now fl'O Cf is impossible since Su is satisfied at f In 
via (3 for all n > lf31. Thus fl'l Cf, and once fl'l is no longer initialized, neither fl nor 

any 'Y will change D on any 8( x )-use block. 

This completes the proof of the lemma. D 

We now turn to the Re-requirements. Recall that, by the Finite Injury and Satisfaction 

Along Any Path Lemma, each requirement Re is satisfied at f I n via an Re-strategy for 

almost all n. 

LEMMA 5 (Re-Satisfaction Lemma). If Re is satisfied at f In via a.n Re-strategy e for 

all n > lel then the requirement Re is satisfied. 

PROOF: By hypothesis, we have e' 1 Cf. Let so be minimal such that e is not initialized 

or reset after stage s 0 . We distinguish five cases: 

Case 1. e is an Re-destroyer strategy and stops by itself after stage s0 , say, at stage 

s1 > s0 . By initialization and our assumption on so, only some Su-strategy rt c e or some 

Re-destroyer strategy rt with rt'O <::; e can destroy 0f,,
1 
(x.;) l= 0 # 1 = A(x<)· 

So fix such an rt· By (4) and our assumption on so, the only way rt could possibly 

destroy 0f(x.;)[s.] is by correcting r ~ or 1'.l~ on some argument x ;:: we- If no requirement 

is satisfied ate via rt then some R0-destroyer strategy (3 with rt<::; (3 c (3'0 <::; e destroys 

rq or 1'.lq. By (4'), we have minB > IBI > i9i;(xe) at stage s1 for the 'Yq(w<)- or 8q(w<)-use 

block B. (3 changes Don Bat stage si, and by initialization and our assumption on s0 , 

this change is permanent. Thus rt will never want to change D I (i9e(xe) + l)[s.]. 

If some requirement is satisfied at e via rt then by (6), minB > IBI > i9e(xe) at stage 

s1 for the 'Yq(w.;)- or 8~(w<)-use block B, and by initialization and our assumption on so, 

no R0-controller strategy will ever cause the 'Yq(we)- or 8q(we)-use to be lower at a stage 

s > s1 than it was at stage s1 . Thus again 17 will never want to change D I ( i9i;(xe) + 1 )[s.]. 

Case 2. e is an Re-destroyer strategy and neither stops by itself, nor is permanently 

stopped by some fixed Re-controller strategy 'Y ;;::> C 0, after stage s0 . We first claim that 

e is eligible to act at infinitely many stages without being stopped by any Re-controller 

strategy 'Y ;;::> e. 0. For the sake of a contradiction, assume there are only finitely many, 

and that s1 is the largest such. Certainly s1 2 s0 by initialization or resetting. Then after 

stage s1 , no strategy rt ;;::> e. 0 is eligible to act, and only Re-controller strategies 'Y ;;::> e. 0 

are allowed to act first by e or some e' c e. Whenever some such 'Y no longer stops e 
then all strategies rt > 'Y are initialized, and the next 'Y' to stop e must therefore satisfy 
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7 1 < "! and must have been eligible to act before stage s1 • But there are only finitely many 

such 7; so either one fixed such "! eventually stops e forever or E is no longer stopped, a 

contradiction. 

Thus E must eventually be stuck waiting for (2) through (5) to happen for a fixed 

x = xe r/:. A. Suppose Gf = A. Thus limie < oo and lim19e(xe + ie) < oo while 

lims* = oo, limiµ = 00 for all (J E c, and limmin{IBI I BE Bo}= 00 since e cf. So (2) 
through (5) hold true at cofinitely many stages, a contradiction. 

Case 3. e is an Re-controller strategy that never takes charge of other strategies after 

stage So. Suppose ef =A. Thus x = X( ¢:.A and lim19e(x) < 00 while limi1 = 00 for all 

l <lo, lims* = oo, and limmin{IBI I BE B3} = 00 since e cf. So (7) through (10) must 

hold at cofinitely many stages, a contradiction. 

Cases 4 and 5. e is an Re-destroyer strategy that is permanently stopped by some fixed 

Re-controller strategy "( ;;;> C 0 after stage so; or E is an Re-controller strategy 'Y that 

takes charge of other strategies after stage s0 • We adopt 7's notation in the following. 

Since "( ~ f, "( will be initialized or reset after stage s0 only finitely often, say never after 

(a least) stage s 1 2 s 0 • Then 'Y takes charge of other strategies forever at some stage 

s. + 1 2 s1 . As in the counting argument in Case 3b of the construction, 'Y's parameter z. 
can change at most finitely often once "! tal<es charge of other strategies, so say z. will not 

change after (a least) stage s2 2 s. + 1. 

By the minimality of s2, 'Y will ensure (11) and (12) for l. at stage s2. By (11), we 

have 8f(x7 )[s2] l= 0 # 1 = A(x7 ). By initialization and our assumption on s 1 , only 

Su-strategies a c e and Re-destroyer strategies (J with (J' 0 <;;; e can possibly destroy 

the computation 8f(x7 ) after stage s 2, and then only when correcting r a or -6.µ on an 

argument 2 max{ w µ1 I l < 10 }. Denote the set of these strategies by C0 • We will show 

that no 1J E Co will destroy ef(x,) after stage Sz. 

Let C1 be the set of all Su-strategies a E C0 such that a's requirement is not active at 

e via a, and of all Re-destroyer strategies (J E Co (targeted to destroy some r a for a C C 
say) such that a's requirement is not satisfied at e via (J. (These are exactly the 1J E Co 

the functional of which has been "destroyed before C.) Let C2 = Co - C1. 

First consider a strategy 1J E C1. Then the 'Ya( wµ,, )- or 8µ( wµ
1
, )-use block B (for some 

l' < I.) is in e's set Bo (in Case 4), or B3 (in Case 5), at stages.; and by (4') and (7) 
(in Case 4), or by (9) (in Case 5), we have minB > IBI > 19e,s.(x7 ). By initialization, no 

Re-controller strategy ;y # 'Y can restore D on B after stage s •. Now B is in 'Y's set B4 

(since r a or -6.µ is destroyed by fJI' ). Thus by (12), D is permanently changed on B by 'Y 

at stage s 2, and thus any 'Ya( w )- or 8µ( w )-use block (for w 2 wµ,,) that applies after stage 

s2 exceeds 19e,s.(x7 ). Thus no 1J E C1 can destroy 8f(x7 ) after stage s2. 

Next consider an Su;-strategy a E C2 (for some j ~ jo). Then u1.(j) = O, and so by 

(la), Uj,s r (Yl'+i + 1) # Uj,s. r (YI'+!+ 1) for alls 2 S2 where l' 2 z. is minimal such 
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that fJI' is targeted to destroy r a· By (4') (for fJ1, I' < l < 10 ), and by (7) and (9) for')', 

YI'+!= max{t9/31(x-y) j 1' < l:::; lo}< IBI < minB for the 1'a(wf31,)-use block B that f31' 

uses to destroy r" at stage s. + 1. 

Notice that whenever a newly defines rf?EllU; ( w) for some w then the 1'a( w )-use block is 

at least as big as the 1'a( w )-use block used at the last definition of rf;EllU; ( w ), and bigger if 

D has changed on the previous 'Ya( w )-use block. Thus any new definition of rf?EllU; ( w) (for 

any w?: Wf3
1
,) after stages. must use a')'a(w)-use block B' with minB' > IB'I > t9e,s.(x-y)· 

For any 1'a(Wf3
1
, )-use block B' with minB' < minB, fJI' has destroyed that definition, 

and if it was ever restored by some Sa-strategy 1 2 fJI' '0 then that restoration was 

only temporary (else f31' would be permanently stopped by 1 # 1' ). Any definition of 

rf;EllU; ( wf3,,) using use block B must have occurred between fJ1'+l 's stage s* (as measured 

at stage s. + 1) and stage s. + 1 (since any definition from before stage s* has been 

permanently destroyed by stage s2 ). Now by (5) or (10) for f31'+1 

\:/ s\:/t(s*:::; s:::; s. + 1 &t?: Sz-> Uj,s I (YI'+!+ 1) # Uj,t I (Yi'+!+ 1), 

and YI' +i < min B by the above; so any definition using use block B never applies after 

stage s2. Thus no Su;-strategy a E C2 can destroy 0f(x-y) after stage s2. 

Finally, consider an Re-destroyer strategy (J E Cz. Then lT1.(j) = 1, and so by (lb), 

Uj,s I (Yi. + 1) = Uj,s. I (Y1. + 1) for all s ?: s2. Thus when ')' restores D I (Yi. + 1) at 
stage s2 (by (11)) then f,.D I (Yi.+ 1) is correct, and (J will not correct it after stage s2, so 

it will not change D I (il(y1.) + 1) or, a fortiori, D I (t9e(x-y) + 1). Thus no R0-destroyer 

strategy (J E C2 can destroy 0f(x-y) after stage Sz. 

We have thus established ef ( x-y) # A( x-y) in all five cases. 

This concludes the proof of the lemma. D 

Lemmas 1, 4, and 5 establish the D.r.e. Nondensity Theorem. D 

Notice, incidentally, that, since D ffi U ?:r ]{for some U, there will be only finitely many 

Re-controller strategies along the true path. However, their role is crucial, of course, since 

the Re-controller strategies to the left of the true path really do all the hard work whereas 

the Re-destroyer strategies along the true path only satisfy Re by themselves when they 

"accidentally" hit upon a 0-computation that is clear of r- and /';.-uses. 

11. THE PROOF OF THE n-R.E.jw-R.E. NONDENSITY THEOREM 

Notice that the only fact we use about the U's in the above proof is that we have an 

effective bound on the number of times that U8 I z = Us. I z can become false and true 

again ass increases (for fixed s., z). For a d.r.e. set U, this number is z. For an n-r.e. set 

U (for n ?: 2), this number is certainly bounded by nz. Thus inserting a factor Jo+ 1 in 

the right-hand sides of (4), (4'), (7), and (9) malrns the counting argument in Case 3b of 

the construction above work, assuming that all sets U0 , ••• , Uj, are (j0 + 1 )-r.e. Thus (11) 

25 



and (12) can be established whenever necessary. (The same argument works for the w-r.e. 

degrees.) 
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