
EMBEDDING FINITE LATTICES INTO THE

COMPUTABLY ENUMERABLE DEGREES —

A STATUS SURVEY

STEFFEN LEMPP, MANUEL LERMAN, AND REED SOLOMON

Abstract. We survey the current status of an old open question
in classical computability theory: Which finite lattices can be em-
bedded into the degree structure of the computably enumerable
degrees? Does the collection of embeddable finite lattices even
form a computable set?

Two recent papers by the second author show that for a large
subclass of the finite lattices, the so-called join-semidistributive lat-
tices (or lattices without so-called “critical triple”), the collection
of embeddable lattices forms a Π0

2
-set.

This paper surveys recent joint work by the authors, concen-
trating on restricting the number of meets by considering “quasi-
lattices”, i.e., finite upper semilattices in which only some meets
of incomparable elements are specified. In particular, we note that
all finite quasilattices with one meet specified are embeddable; and
that the class of embeddable finite quasilattices with two meets
specified, while nontrivial, forms a computable set. On the other
hand, more sophisticated techniques may be necessary for finite
quasilattices with three meets specified.

1. Introduction

One of the longstanding open questions in classical computability
theory is the characterization of all finite lattices embeddable into the
computably enumerable (c.e.) degrees. This problem was first raised in
the late 1960’s but has up to now defied many attempts at a solution.
At this point, it is even unclear whether a “reasonable” (e.g., decidable,
or “purely lattice-theoretic”) characterization exists. Progress has been
steady over the past decade but very slow. In this paper, we will try
to point out an approach to solving the problem which we consider

1991 Mathematics Subject Classification. Primary: 03D25.
Key words and phrases. lattice embedding, computably enumerable degrees.
The first author’s research was partially supported by NSF grant DMS-9732526

and by the Vilas Foundation of the University of Wisconsin. The second author’s
research was supported by the University of Connecticut Research Foundation. The
third author’s research was partially supported by an NSF Postdoctoral Fellowship.

1



2 LEMPP, LERMAN, AND SOLOMON

hopeful and which has led to some further, yet unpublished, partial
results by the authors.

We note here that the lattice embeddings problem is currently the
primary remaining obstacle toward showing the decidability of the ∀∃-
theory of the c.e. degrees (in the language of partial ordering) as the
former obviously forms a subproblem of the latter. If the lattice em-
beddings problem can be shown to have a decidable (and “reasonable”)
solution, then one would hope to show the remainder of the ∀∃-theory
also to be decidable using the techniques of Slaman and Soare [14] in
their solution of the extension of embeddings problem (i.e., given two
finite partial orders P ⊂ Q, deciding whether any embedding of P into
the c.e. degrees can be extended to an embedding of Q) and of Ambos-
Spies, Jockusch, Shore, and Soare [1] in their work on the promptly
simple degrees (i.e., those c.e. degrees not forming half of a minimal
pair).

To very briefly recap the history of the lattice embeddings prob-
lem up to this point, the first lattice embeddings result is contained
in the minimal pair theorem of Lachlan [6] and Yates [17], which im-
plies that the four-element diamond lattice can be embedded into the
c.e. degrees. Lerman (unpublished) and Thomason [16] extended this
by showing that all finite (indeed, all countable) distributive lattices
can be so embedded. Lachlan [7] found the first two examples of finite
embeddable nondistributive lattices, namely the five-element lattices
M3 and N5. Lachlan and Soare [8], following a suggestion of Lerman,
exhibited the first nonembeddable finite lattice, S8 (see Figure 1). The
best possible results obtainable by the techniques of the late 1980’s
were presented in Ambos-Spies and Lerman [2, 3], which isolated a
Nonembeddability Condition (NEC) and an Embeddability Condition
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Figure 1. Lattice S8



LATTICE EMBEDDINGS INTO THE C.E. DEGREES 3

(EC), respectively. The latter condition, ensuring embeddability, is
very complicated and formulated in terms of trees used to carry out
the construction. The former condition, however, ensuring nonembed-
dability, is a simple lattice-theoretic condition.

To formulate NEC, we introduce the following

Definition 1. Let L = 〈L,≤,∨,∧〉 be a finite lattice.

(1) Elements a, b, c ∈ L form a critical triple if they are pairwise
incomparable; a ∨ c = b ∨ c; and a ∧ b ≤ c.

(2) L satisfies the Nonembeddability Condition (NEC) if there are
a critical triple a, b, c ∈ L and two additional incomparable
elements p, q ∈ L such that

a ≤ p ∧ q ≤ a ∨ c ≤ q. (1)

(3) L is principally decomposable if for any two elements a > b in
L such that a is minimal over b, the set [0, a]− [0, b] has a least
element (where 0 is the least element of L).

(4) L is join-semidistributive if for all a, b, c ∈ L,

a ∨ c = b ∨ c implies a ∨ c = (a ∧ b) ∨ c. (2)

These notions are closely connected by the following easy

Lemma 2. A finite lattice L is join-semidistributive iff it is has no
critical triple iff it is principally decomposable.

From now on, we will use the term “join-semidistributive” in place of
“principally decomposable” since the former is the one used by lattice
theorists.

Remark 3. (1) There is a dual, but distinct notion called “meet-
semidistributive”. Figure 2 shows a finite lattice which is join-semi-
distributive but not meet-semidistributive.

(2) Join-semidistributive lattices form in some sense a class of fi-
nite lattices complementary to the modular lattices: Any finite join-
semidistributive modular lattice is distributive. For more information
on the lattice theory of semidistributive lattices, see Gorbunov [5].

The condition NEC thus pointed to the fact that the first step in
solving the lattice embeddings problem was to consider the case of
finite join-semidistributive lattices. When Downey [4] showed that
there is an initial segment of c.e. degrees into which no finite non-join-
semidistributive lattice can be embedded, he conjectured that on the
other hand, every finite join-semidistributive lattice can be embedded
into any nontrivial interval of the c.e. degrees.
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Figure 2. A join-semidistributive
non-meet-semidistributive lattice

This conjecture was refuted by Lempp and Lerman [9], who exhibited
a finite join-semidistributive lattice, L20 (see Figure 3), which cannot be
embedded into the c.e. degrees. Further developing the techniques used
for L20, Lerman [11, 12] subsequently isolated a necessary and sufficient
Π0

2-criterion for the embeddability of finite join-semidistributive lattices
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into the c.e. degrees. (Lerman [11] gives the partial result for finite so-
called “ranked” lattices, which is then extended in Lerman [12] to the
case of all finite join-semidistributive lattices.)

We defer the precise definition of Lerman’s Embeddability Criterion
to section 3.5 since we need to first introduce a number of additional
definitions and also provide some intuition explaining the various con-
ditions of Lerman’s criterion.

First of all, however, we would like to point out the approach we
have taken over the past several years in attacking the lattice embed-
dings problem. As will become clearer in the intuitive discussion of
lattice embedding techniques in the next section, the hardest part is to
ensure that meets are preserved under the embedding. It is therefore
natural to take an inductive approach towards the lattice embedding
problem by restricting the number of meets to be considered, moti-
vating our definition of quasilattices. We first remark that any finite
upper semilattice carries a natural lattice structure.

Remark 4. Any finite upper semilattice L = 〈L,≤,∨, 0, 1〉 (with least
element 0 and greatest element 1) can be made into a lattice by defining
the meet function by

a ∧ b =
∨

{c ∈ L | c ≤ a, b}. (3)

(The existence of 0 in L ensures that the set on the right-hand side
above is always nonempty.)

We can now make the following

Definition 5. A quasilattice L = 〈L,≤,∨,∧, 0, 1〉 (with least element
0 and greatest element 1) is an upper semilattice 〈L,≤,∨〉 together
with a partial meet function ∧ defined on some (but not necessarily
all) unordered pairs of incomparable elements of L, where a ∧ b (if
defined) equals the meet defined by Remark 4.

Both a finite upper semilattice and a finite lattice are thus examples
of quasilattices (where the meet is never or always defined, respec-
tively). However, we will be most interested in examples where the
meet is defined for a limited number of unordered pairs of incompara-
ble elements, say, n many; we will call such a quasilattice a quasilattice
with n meets specified.

We note that Lerman [11, 12] used closely related structures called
pseudolattices. Lerman uses, in place of the partial meet functions,
(n + 1)-ary meet relations Mn(a1, . . . , an, b), denoting that c ≤ ai for
all i implies c ≤ b.
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The current status of the lattice embeddings problem can thus be
summarized in the following

Main Statement. (1) (Folklore) Any finite quasilattice with no
meets specified (i.e., any finite upper semilattice) is embeddable
into the c.e. degrees.

(2) Any finite quasilattice with one meet specified is embeddable into
the c.e. degrees.

(3) It is decidable which finite quasilattices with two meets speci-
fied are embeddable into the c.e. degrees; and not every finite
quasilattice is so embeddable.

(4) It is currently unknown whether the characterization of the em-
beddable finite quasilattices with three meets specified is decid-
able. Our techniques developed for only two meets are not known
to suffice to solve this problem.

The rest of this paper is devoted to explaining, at least on an intu-
itive level, why we believe that our approach to the lattice embeddings
problem via quasilattices is the most promising one; and to discuss
the various clauses of our Main Statement. Specifically, we will ad-
dress clause (1) of our Main Statement in section 2.4; clause (2) in
section 3.4; clause (3) in section 3.7; and clause (4) in section 3.8.

We conclude this section by remarking that a large number of vari-
ations of the lattice embeddings problem into the c.e. degrees have
been studied, too numerous to cover in detail here. Firstly, one can
study lattice embeddings preserving 0 and 1, i.e., mapping 0 to the
degree 0 and 1 to the degree 0′, respectively. (Any currently known
“plain” lattice embedding into the c.e. degrees also preserves 0.) Next,
one can study lattice embeddings into initial segments or intervals of
c.e. degrees. Finally, lattice embeddings into the lattice of ideals of
c.e. degrees have been studied.

2. Embedding Finite Upper Semilattices

We start with an intuitive description of the basic lattice embedding
construction and the conflicts between the various strategies involved.
Since the meet requirements are the most complicated ones, we first
concentrate on the other requirements, i.e., we will present the argu-
ment for embedding finite upper semilattices (viewed as quasilattices
with no meet specified). Fix a finite quasilattice L and its set JL of
join-irreducible elements. (Here 0 is not considered a join-irreducible
element.)
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Convention 6. In order to simplify notation from now on, we denote
the c.e. degree which is the image of a lattice element a, say, by the
corresponding bold-face letter a, and the c.e. set representing the degree
a by the corresponding upper-case letter A.

There are now four types of requirements to be satisfied for an em-
bedding of L into the c.e. degrees:

Ca,b : A ≤T B (for a < b in L) (4)

Ia,b
Φ : A 6= Φ(B) (for a 6≤ b in L; a ∈ JL) (5)

J d,e,f : ∃Γd,e
(

F = Γd,e(D ⊕ E)
)

(for f = d ∨ e in L) (6)

Mp,q,r
Ψ : Ψ(P ) = Ψ(Q) is total =⇒

∃∆p,q
(

Ψ(P ) = ∆p,q(R)
)

(for r = p ∧ q in L) (7)

Here Φ and Ψ range over all possible Turing functionals. Clearly, the
C- and J -requirements are “global”, each building a single reduction
(whose names we will suppress, except in the initial discussion of the
J -strategies below), whereas the I- and M-requirements are “local”,
each strategy on the tree of strategies working with a separate diago-
nalization witness or a separate functional ∆p,q, respectively.

We now gradually introduce the strategies for the four types of re-
quirements and each time sketch the conflicts with the strategies dis-
cussed before. The discussion of the meet requirements will be deferred
to the next section.

2.1. Comparability Requirements Ca,b. For this requirement, we
simply ensure that any number x targeted for a c.e. set A, say, is first
chosen at a stage < x, and that when (if ever) x enters A, it simultane-
ously enters all sets B with b > a. Clearly, this simple strategy ensures
the comparability requirements: Given a < b in L and a number x, we
first check if x is chosen with target C (for some c ≤ a) by stage x. If
not, then x /∈ A; otherwise, x ∈ A iff x ∈ B.

2.2. Incomparability Requirements Ia,b
Φ . The strategy for this re-

quirement is simply the Friedberg-Muchnik strategy: We choose a
“big” diagonalization witness x (i.e., larger than any number previ-
ously mentioned in the construction) and keep x out of A for now.
We then wait for a computation Φ(B; x) = 0. When (and if) such a
computation appears, we enumerate x into A and preserve Φ(B; x) by
restraining B up to its use.
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The above two types of strategies present no serious conflict and
can easily be combined to show that any finite partial order can be
embedded into the c.e. degrees.

2.3. Join Requirements J d,e,f . When, at a stage s, a “big” number
x > s is targeted to be enumerated into a set C (with c ≤ f , and so
x may also be enumerated into F ), then we also define a computation
Γ(D⊕E; x) (for the functional Γ = Γd,e) with “big” use γs(x). We now
agree that

(1) the current use γ(x) must enter D or E by the stage at which
x enters C and thus must enter F ;

(2) if the current use γ(x) enters D or E at a stage s′, say, before x
enters C, then, at stage s′, we redefine the computation Γ(D⊕
E; x) with new “big” use γ(x); and

(3) the use γ(x) of x is increased at most finitely often.

Clearly, this will ensure the join requirement since we can define Γ(D⊕
E; x) = 0 for all x which are not targeted for some set C with c ≤ f
by stage x. In this latter case, x cannot enter F , and so Γ(D ⊕ E) is
correct on those x. If x is chosen as a target by stage x, then by (3)
above, γ(x) will eventually stabilize, and D⊕E can compute the stage
when this happens by (2). Now x ∈ F iff γ(x) ∈ D ∪ E by (1) for the
final value of the use γ(x).

Instead of being so explicit about the join functionals, however, we
will now present an alternative way to deal with the comparability and
join requirements simultaneously, which will also be useful in dealing
with the meet requirements later on.

2.4. Co-Principal Filters. We start with the following

Definition 7. Let L be a finite quasilattice.

(1) A filter of L is any upward closed subset F 6= L, ∅ of L.
(2) The filter generated by a set S ⊂ L (where S 6= ∅ and 0 /∈ S)

is the upward closure of S in L and is denoted by (S). If
S = {a0, . . . , an}, we abbreviate ({a0, . . . , ak}) by (a0, . . . , ak)
or simply by (−→a ).

(3) A co-principal filter of L is a filter F such that L− F is closed
under join, or equivalently, such that L−F is of the form [0, b]
for some b ∈ L − {1}. For any b ∈ L − {1}, we denote the
co-principal filter L− [0, b] by F (b).

Note that as long as we enumerate numbers of “roughly equal” size
into all sets C (for all c in some co-principal filter F ) then we can build



LATTICE EMBEDDINGS INTO THE C.E. DEGREES 9

the join functionals Γ for all possible joins as above. This observa-
tion allows one to establish clause (1) of our Main Statement, namely,
to show that all finite upper semilattices can be embedded into the
c.e. degrees by combining the above three types of strategies as fol-
lows: When an Ia,b-strategy chooses a witness x targeted for A, it will
also target the same number x for all sets C with c 6≤ b. Now since
F (b) = L− [0, b] forms a co-principal filter in L, it is easy to check that
if the Ia,b-strategy enumerates x into all sets C with c ∈ F (b) when x
enters A, then each J d,e,f -requirement is satisfied, since f ∈ F (b) iff
d ∈ F (b) or e ∈ F (b), so x is targeted, and possibly later enters, F iff
x enters D or E.

2.5. Covering Sequences and Covering Arrays. Since we will also
have to consider meet requirements later on, we now restrict our at-
tention to embedding finite join-semidistributive lattices. (This will
allow us to present the Embeddability Criterion of Lerman [11, 12] in
a somewhat modified and simplified form.)

First of all, when taking into consideration meet requirements, it
will not always be possible to enumerate diagonalization witnesses in
one step as sketched two paragraphs above; rather, we will have to
“retarget” a number of times as indicated in the general description
of the join functional Γ above. To simultaneously deal with all join
requirements, and to simplify the description, we introduce two key
notions in the following

Definition 8. Let L be a finite lattice.
A covering sequence is an ordered sequence −→a = 〈a0, . . . , al〉 of el-

ements of L such that (a0, . . . , ai) is a co-principal filter for all i ≤ l.
(We allow l = −1, i.e., a covering sequence may be empty.)

Covering sequences provide an easy method to ensure the satisfaction
of all comparability and join requirements intuitively as follows: When
an Ia,b

Φ -strategy chooses a diagonalization witness x, then

(I) the strategy chooses a covering sequence 〈a0, . . . , al〉 with a = al

and b /∈ (a0, . . . , al), and chooses associated “big” numbers xi

for all i ≤ l where xl = x;
(II) if the strategy enumerates any associated number before enu-

merating x into A, then, for some l′′ < the current l, it enu-
merates, for all i ≤ l′′, the currently associated numbers xi into
all sets C with c ≥ the current ai, and chooses a new covering
sequence 〈a′0, . . . , a

′

l′〉 (which contains the tail 〈al′′+1, . . . , al〉 of
the current covering sequence as a subsequence) as well as “big”
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associated numbers x′i for all “new” elements a′i of the new cov-
ering sequence (whereas for all “old” elements a′i of the new
covering sequence, the currently associated number remains as-
sociated with a′i);

(III) if the strategy enumerates x into A then it enumerates, for all
i ≤ the current l, the currently associated number xi into all
sets C with c ≥ the current ai; and

(IV) it chooses a new covering sequence (as in (II) above) at most
finitely often.

It is now not hard to see that the above (I)–(IV) will ensure the in-
comparability and join requirements since, by the definition of covering
sequences, the associated numbers can be viewed as uses of join func-
tionals Γ.

We make this more precise in the following

Definition 9. A covering array consists of a sequence
−→
A = 〈−→a0 , . . . ,

−→am〉 (8)

of target sequences −→aj = 〈a0,j , . . . , alj ,j〉 together with a sequence of
transition maps 〈T0, . . . , Tm−1〉 such that for each j < m, Tj is a map
from (l′j, lj ] into [0, lj+1] (for some l′j < lj) satisfying, for all j < m,

l′j < i < i′ ≤ lj =⇒ Tj(i) < Tj(i
′), and (9)

∀i ∈ (l′j, lj]
(

ai,j = aTj(i),j+1

)

. (10)

(So each Tj is an order-preserving map from a final segment of (indices
of) −→aj to (indices of) −−→aj+1, preserving the lattice element ai,j . Here
we allow lj = −1 only if j = m, i.e., only the last covering sequence
of the covering array may be empty. We abbreviate the composition
Tj1−1 · · ·Tj0 (for 0 ≤ j0 ≤ j1 ≤ m) by Tj0,j1.)

We say that
−→
A is a covering array for an Ia,b

Φ -requirement if further-
more a = al0,0 and b /∈ (a0,0, . . . , al0,0). (I.e., a is the last element of the

first covering sequence in
−→
A , and the set B is not initially targeted,

namely, not before a computation Φ(B; x) = 0 has been found. Of
course, once such a computation has been found, we can target new
numbers y for sets C with c ≤ b since such y can be chosen above the
use of the computation Φ(B; x).)

The above clauses (I)–(IV) for satisfying all comparability and join
requirements can now be phrased as follows: All enumerations of an
Ia,b-strategy, once it chooses a diagonalization witness x, correspond to

a covering array
−→
A = 〈−→a0 , . . . ,

−→am〉 for this requirement in the follow-
ing sense: When the I-strategy chooses a new “big” diagonalization
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witness x targeted for A at a stage s0, say, it also chooses new “big”
numbers xi,0 targeted for Ai,0. Once a computation Φ(B; x) = 0 has
been found, the I-strategy enumerates into sets and chooses new num-
bers in m many steps: At step j > 0 of this process, say, at a stage sj,
any number xi,j−1 such that i /∈ domTj−1 is enumerated into its target
Ai,j−1 (and thus into all sets C with c ≥ ai,j−1). Also, for any i ≤ lj,
if i ∈ ranTj−1 then we set xi,j = xT−1

j−1
(i),j−1; if i /∈ ranTj−1 then we

choose a new “big” number xi,j targeted for Ai,j.
It is now easy to verify that the use of the covering array for the

Ia,b
Φ -requirement will also satisfy any J d,e,f -requirement: Suppose a

number y = xi,j0 is targeted for some set C with c ≤ f at some stage
sj0 < y, say. Consider the sequence

〈xi,j0, xTj0
(i),j0+1, xTj0,j0+2(i),j0+2, . . . , xTj0,j1

(i),j1〉 (11)

such that j1 = m or Tj0,j1(i) /∈ domTj1 . Since each −→aj is a covering se-
quence, we have that for all j ∈ [j0, j1], there is some ij < Tj0,j(i)
with aij ,j ≤ d or ≤ e. So we can define Γd,e(D ⊕ E; x) with use

γd,e(y) = xij ,j, and the clauses (1)–(3) of subsection 2.3 will hold.
(We reiterate here the remark that the above technique only works for
finite join-semidistributive lattices. For finite lattices in general, with-
out the assumption of principal decomposability, the notion of covering
sequence has to be generalized, requiring that only certain, but not all,
initial segments of the sequence generate co-principal filters. E.g., even
in the example of arbitrary finite upper semilattices at the end of sub-
section 2.4, it may not be possible to use covering sequences to generate
co-principal filters of the form L−[0, b] as outlined there, as the example
of the lattice M3, viewed as an upper semilattice, illustrates.)

3. Embedding Finite Quasilattices

We are now ready to add the meet requirements, in the context of
covering sequences and covering arrays as defined above.

3.1. Meet Requirements Mp,q,r
Ψ . The basic strategy for a meet re-

quirement is quite simple even though its interaction with the other
requirements is very complicated: As the length of agreement between
Ψ(P ) and Ψ(Q) increases, the strategy defines more and more of ∆(R)
by initially setting ∆(R; y) to the common value of Ψ(P ; y) and Ψ(Q; y)
and setting the use δ(y) ≥ the uses ψ(P ; y) and ψ(Q; y). Whenever
∆(R; y) is defined for some argument y, the strategy tries to have at
least one of Ψ(P ; y) or Ψ(Q; y) defined and agreeing with ∆(R; y). If
that fails, then the strategy must destroy the computation ∆(R; y) by
enumerating a number ≤ δ(y) into R.
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The main difficulty in the above strategy is the following typical sce-
nario: After ∆(R; y) has become defined, both computations Ψ(P ; y)
and Ψ(Q; y) may become undefined, although never at the same time.
Each may now return with the same value but a larger use, so the
strategy outlined in the previous paragraph sees no reason to act yet.
However, this creates the so-called “dangerous interval”

Iy =
(

δ(y),min{ψ(P ; y), ψ(Q; y)}
]

, (12)

dangerous for ∆(R) since the enumeration of any number z ∈ Iy into
R (and thus into both P and Q by comparability requirements) will
destroy both Ψ(P ; y) and Ψ(Q; y) but not ∆(R; y). This now makes
it necessary to enumerate another number z′ ≤ δ(y) into R to correct
∆(R; y). However, this z′ may be in a dangerous interval Iy′ for some
y′ < y, possibly setting off a cascade of smaller and smaller numbers
having to enter R until no dangerous interval is hit. (It is exactly this
type of behavior which was at the heart of the proof of the nonem-
beddability of the lattice S8 by Lachlan and Soare [8]. However, S8 is
not a join-semidistributive lattice, and a nonembeddability construc-
tion for join-semidistributive lattices, such as for the nonembeddable
lattice L20 discovered by Lempp and Lerman [9], has to use dangerous
intervals in a more subtle way.)

Since the incomparability strategies (which are, as we have now seen,
the only ones initiating the enumeration of numbers into sets) are all
finitary, we agree that we will never allow enumeration of any num-
bers y into dangerous intervals, but rather always directly enumerate
the largest number y′ ≤ y which does not hit a dangerous interval,
thus never triggering the kind of cascade of enumerations described
in the previous paragraph. This restriction will be implemented by
the prohibition functions defined below in section 3.5 where we will
also take into account the interaction between dangerous intervals of
different meet strategies. However, even though only the incompara-
bility strategies will initiate the enumeration of numbers into sets, the
meet strategies may respond to other enumerations by enumerating
numbers on their own, namely so-called correction markers to correct
their functionals ∆. We will show that this can only happen for finite
join-semidistributive quasilattices with at least three meets specified.
However, up to this point, we do not know if correction markers are
necessary at all, or whether correction will always be automatic by
numbers entering purely for coverage reasons. (In the latter case, we
would have a decision procedure for a fixed number of “gates”, as we
will outline in section 3.8.)
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First of all, however, we will set up the machinery of pinball ma-
chine constructions and blocks which will allow us to make precise the
implementation of the meet strategies.

3.2. Pinball machine constructions. Lattice embedding construc-
tions are traditionally done using the so-called pinball machine con-
struction introduced by Lerman [10] (see also Soare [15, Ch. VIII.5]).
The rough idea is the following: Diagonalization witnesses are repre-
sented by “balls” originating from “holes” (corresponding to incom-

parability, i.e., Ia,b
Φ -requirements) which then have to pass by “gates”

(corresponding to higher-priority meet requirements). Balls may either
get permanently stuck at (i.e., be permanently restrained by) one of the
gates below the hole, or they may pass by all of the finitely many gates
below the hole and enter the “enumeration basket” (i.e., be enumerated
into their target set). In addition to the balls corresponding to diag-
onalization witnesses, we need other balls (i.e., numbers) to “cover”
the diagonalization witnesses (i.e., to generate a co-principal filter con-
taining a). These other balls either originate at the same hole as the
diagonalization witness (and then correspond to the elements of −→a0);
or they originate at gates below a hole to “cover” balls currently at or
above that gate now that some of the previously covering balls may
have been enumerated. These latter balls correspond to “new” ele-
ments ai,j (for j > 0) of covering sequences −→aj (i.e., for which T−1

j−1(i)
is undefined).

Before explaining how the pinball machine construction helps satisfy
the meet requirements, we first explain some of the simple mechanics
of how the gates and the covering arrays interact.

3.3. Blocks. The main tool to combine the target array with the pin-
ball machine construction is the notion of blocks. (We deviate here
somewhat from the way Lerman [11, 12] defines blocks by slightly
changing the definition of the functions hk and hj,k; however, our defi-
nition here is equivalent.)

Definition 10. Fix n > 0. (The intuition here will be that G0 through
Gn−1 are gates (with gate G0 the lowest, corresponding to the highest-
priority requirement) below a hole Hn. For now, however, these gates
can be viewed simply as giving us indices for the block functions.)

(1) A covering sequence 〈a0, . . . , al〉, together with a function f :
[0, l] → [0, n] and partial functions hk : [0, l] → [0, l] (for k < n), forms
a blocked target sequence if for all k < n,

ran f = {n} or ∀i, i′ ≤ l
(

i < i′ =⇒ f(i) ≤ f(i′) < n
)

; (13)
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domhk = {i ≤ l | f(i) ≥ k}; (14)

∀i ∈ domhk

(

i ≤ hk(i)
)

; (15)

∀i, i′ ∈ domhk

(

i < i′ =⇒ hk(i) ≤ hk(i
′)
)

; (16)

∀i, i′ ∈ domhk

(

hk(i) < hk(i
′) =⇒ hk(i) < i′

)

; (17)

k < n− 1 =⇒ ∀i, i′ ∈ domhk
(

hk(i) = hk(i
′) =⇒ hk+1(i) = hk+1(i

′)
)

; and
(18)

∀i, i′ ∈ domhk

(

hk(i) = hk(i
′) =⇒ f(i) = f(i′)

)

. (19)

(Intuitively, f indicates that the “ball” (number) xi associated with
ai currently is at gate Gf(i) (if f(i) < n), or at the hole Hn of the
diagonalization requirement (if f(i) = n). Clause (13) now states that
the balls either all reside at the hole Hn, or all reside at gates such that
later balls in the sequence do not reside at lower gates. Each function
hk induces a partition of the balls at or above gate Gk into intervals
called k-blocks, where ahk(i) indicates the last element of the k-block;
this is ensured by clauses (14)–(17). Clause (18) indicates that the k-
blocks refine the (k+1)-blocks, while clause (19) states that any k-block
resides at a single gate or hole. The intuition here is that each k-block
consists of balls which pass gate Gk simultaneously (which explains the
choice of the domain of hk).) We denote the eth k-block of 〈a0, . . . , al〉
by Be

k, starting with e = 0.

(2) A covering array
−→
A = 〈−→a0 , . . . ,

−→am〉 with transition functions
T0, . . . , Tm−1 (where each of the covering sequences −→aj = 〈a0,j, . . . , alj ,j〉
is a blocked target sequence with functions fj and hj,k for all k < n)
forms a blocked target array if for all k < n,

∀j ≤ m ∀i ≤ lj

(

fj(i) = n ⇐⇒ j = 0
)

; (20)

lm = −1; (21)

∀j < m ∀i ∈ [0, lj] − B0
j,fj(0)

(

i ∈ domTj and fj(i) = fj+1(Tj(i))
)

;
(22)

∀j < m ∀i ∈ B0
j,fj(0)

(

i /∈ B0
j,0 ⇐⇒ i ∈ domTj

)

; (23)

∀j < m ∀i ∈ B0
j,fj(0)

−B0
j,0

(

fj+1(Tj(i)) = min{k − 1 | i ∈ B0
j,k}

)

; and
(24)
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∀j < m ∀i, i′ ∈ domTj

(

Tj(i), Tj(i
′) ∈ domhj+1,k =⇒

(hj,k(i) = hj,k(i
′) ⇐⇒ hj+1,k(Tj(i)) = hj+1,k(Tj(i

′)))
)

.
(25)

(Here clause (20) states that only the balls corresponding to −→a0 are at
the hole; all balls corresponding to later −→aj are at gates. Clause (21)
states that only the last covering sequence −→am is empty. Clauses (22)–
(24) exactly prescribe the motion of the balls in the pinball machine
from step j to step j + 1: Set kj = fj(0), which is the (index of the)
lowest gate containing a ball at step j. Now any ball not in the first
kj-block B0

j,kj
at Gkj

remains at the same gate at which it was by

clause (22); the balls in the first 0-block B0
j,0 at Gkj

are enumerated by
clause (23); and the balls in B0

j,kj
− B0

j,0 move down to gate Gk−1 iff

they are in B0
j,k − B0

k−1 by clause (24). (This is more restrictive than
the definition of Lerman [11, 12], but by Lerman’s proof, it still gives
an embeddability criterion for finite join-semidistributive lattices.) Fi-
nally, clause (25) states that k-blocks are preserved from step j to step
j+1 unless a ball is no longer in a k-block at step j+1, i.e., is already
below gate Gk.)

(3) A blocked target array is a blocked target array for an Ia,b
Φ -

requirement if furthermore a = al0,0 and b /∈ (a0,0, . . . , al0,0).

3.4. A Single Meet p∧q = r. We are now ready to consider in detail
our first argument involving meet strategies. Following the philosophy
of the introduction of this paper, we start by describing how to deal
with a single meet in a quasilattice. Since the incomparability strategies
(which are the only ones initiating the enumeration of numbers into

sets) are finitary, it suffices to consider the interaction of a single Ia,b
Φ -

requirement with a finite number of higher-priority Mp,q,r-strategies
(in the context of all comparability and join requirements). We first
restrict ourselves to the case of a single gate G0 since several gates for
the same meet present no additional difficulties. We need to distinguish
three cases, depending on the position of a and b relative to p, q, and r.

Case 1: r 6≤ b: Then there is no conflict since the enumeration
of the diagonalization witness x into A can take place immediately
upon finding a computation Φ(B; x) = 0 and simultaneously with the
enumeration of some number xi,0 into a set Ai,0 where ai,0 ≤ r since
xi,0 can correct the meet functional ∆p,q(R). The covering array can

thus be chosen as
−→
A = 〈−→a0 ,

−→a1〉 with −→a0 consisting of a single 0-block
and −→a1 empty where r ∈ (a0,0, . . . al0,0), i.e., all numbers xi,0 associated
with ai,0 are enumerated immediately.
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Case 2: p ≤ b (or symmetrically q ≤ b): Then again there is no
conflict since the enumeration of the diagonalization witness x into A
can take place immediately upon finding a computation Φ(B; x) = 0
and the functional Ψ(P ) will not be injured. The covering array can

thus be chosen as
−→
A = 〈−→a0 ,

−→a1〉 with −→a0 consisting of a single 0-block
and −→a1 empty where p /∈ (a0,0, . . . al0,0), i.e., all numbers xi,0 associated
with ai,0 are enumerated immediately.

Case 3: r ≤ b but p, q 6≤ b: This is the nontrivial case since the enu-
meration of the diagonalization witness x into A will typically require
the enumeration of numbers into both P and Q while the preservation
of the computation Φ(B; x) = 0 does not allow the immediate enumer-
ation into R. We resolve this problem by splitting the first covering
sequence −→a0 with a = al0,0 into 0-blocks Be

0,0 such that for each e,

p /∈ (Be
0,0) or q /∈ (Be

0,0). (26)

(This can certainly be achieved by making each 0-block consist of a
single element, but it probably makes more sense to use maximal 0-
blocks satisfying clause (26).)

The second covering sequence −→a1 is now obtained from −→a0 by (i) delet-
ing the first 0-block B0

0,0 of −→a0 ; (ii) copying each subsequent 0-block Be
0,0

of −→a0 (for e > 0) into the 0-block Be−1
1,0 of −→a1 ; and (iii) adding a covering

sequence generating F (p) or F (q) at the beginning of each 0-block Be
1,0

depending on whether the remainder of Be
1,0, coming from Be+1

0,0 , is con-
tained in F (p) or F (q), respectively. The remaining covering sequences
−→aj (for j > 1) are now obtained from the previous covering sequence
−−→aj−1 by simply deleting the first 0-block of −−→aj−1 until we end up with
the empty sequence. Recall that the corresponding enumeration enu-
merates a number xi,j into Ai,j when Tj(i) is undefined, i.e., when ai,j

is deleted from the sequence between step j and step j + 1.
This ensures that at each step of the enumeration, either Ψ(P ) or

Ψ(Q) will not be injured.
We illustrate the above with the example of the quasilattice in Fig-

ure 4.

Example 11. The covering array for a hole H1 (for an incomparability

requirement Ia,b
Φ ) above a gate G0 (for a meet requirement Mp,q,r

Ψ )
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consists of the following covering sequences

〈a0, a1, a2, a〉

〈p′, a1, q
′, a2, p

′, a〉

〈q′, a2, p
′, a〉

〈p′, a〉

〈 〉

where the transition maps are defined as indicated by vertical align-
ment. This uses that a1, a ∈ F (p) = [p′, 1] whereas a0, a2 ∈ F (q) =
[q′, 1].

Since the above can be generalized to n many gates G0 through Gn−1

for the same meet p ∧ q = r by simply making all 0-blocks simultane-
ously also k-blocks for all k < n, this simple construction shows that
any finite quasilattice with only one meet specified can be embedded
into the c.e. degrees. This establishes clause (2) of our Main Statement.

Before we can address the embedding of quasilattices with more than
one meet specified, we need to introduce the notion of a prohibition
function, which will help us identify and avoid enumeration into dan-
gerous intervals.

3.5. Prohibition functions and Lerman’s Embeddability Crite-

rion. For each blocked target array
−→
A = 〈−→a0 , . . . ,

−→am〉, we define pro-
hibition functions gj (for each j ≤ m, corresponding to each blocked
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target sequence −→aj ), which associates each element ai,j of −→aj with a

subset gj(i) of {G0, . . . , Gn−1}. (Here, each gj will depend only on
−→
A ,

and more specifically only on 〈−→a0 , . . . ,
−→aj 〉. Intuitively, Gk ∈ gj(i) will

tell us that we cannot currently target new balls ≤ rk at or before the
k-block of ai,j. Once the prohibition functions have been defined, we
will define the notion of a good blocked target array, which implements
this prohibition. This approach has the advantage that the various
features of meet strategies in the literature (“minimal pair strategy”,
“Lachlan meet strategy”, etc.) are unified into one single definition.)

Definition 12. Fix a blocked target array
−→
A = 〈−→a0 , . . . ,

−→am〉. For each
element ai,j, we will have gj(i) ⊆ {G0, . . . , Gn−1}, so we fix a gate Gk

(corresponding to a meet pk ∧ qk = rk, for some k < n) and define
whether Gk ∈ gj(i) by induction on j ≤ m.

Let kj = fj(0), which is the (index of the) lowest gate containing a
ball at step j. If j > 0 and i ∈ domhj,k then fix ik ≤ lj−1 maximal such
that Tj−1(ik) is undefined or ≤ hj,k(i). (I.e., aik,j−1 is the last element
of the “preimage k-block” in −−→aj−1 of the k-block of ai,j in −→aj . We leave
ik undefined if i /∈ domhj,k.)

Adding a gate: We add Gk to gj(i) iff k < kj and both pk, qk ∈
(a0,j, . . . , ahj,k(i),j) but rk /∈ (a0,j , . . . , ahj,k(i),j).

Deleting a gate: Suppose j > 0. Then we delete Gk ∈ gj−1(ik) from
gj(i) iff k ≤ kj−1 and at least one of pk and qk is not in (a0,j, . . . , ahj,k(i),j).

Otherwise: If Gk is not added into, or deleted from, gj(i) by one
of the above clauses, then Gk /∈ gj(i) (if j = 0), or Gk ∈ gj(i) iff
Gk ∈ gj−1(ik) (if j > 0, respectively).

Note that whether Gk ∈ gj(i) depends only the k-block of ai,j since
the definition of gj(i) only uses hj,k(i) but never i itself. Note also
that whether Gk ∈ gj(i) can only change (from whether Gk ∈ gj−1(ik))
when there are no balls at G0 through Gk−1, i.e., at an “expansionary
stage” for Gk.

Intuitively, we add a gate Gk into gj(i) when the gates G0 through
Gk contain no balls and when the k-blocks up the k-block of ai,j target
sets below both Pk and Qk but not Rk, i.e., these k-blocks destroy
both Ψk(Pk) and Ψk(Qk) while not allowing the correction of ∆k(Rk)
at an expansionary stage for Gk when Gk should be extending the
definition of ∆k(Rk) since there are no balls at G0 through Gk. We
delete Gk ∈ gj−1(ik) from gj(i) when the gatesG0 through Gk−1 contain
no balls and when the k-blocks up to the k-block of ai,j target no sets
below Pk or no sets below Qk, i.e., these k-blocks do not destroy one
of Ψk(Pk) and Ψk(Qk) at an expansionary stage for Gk. Otherwise,
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we leave Gk ∈ gj(i) iff Gk ∈ gj−1(ik). This corresponds to the meet
strategy outlined in section 3.1.

Definition 13. A blocked target array
−→
A is a good blocked target array

if for any gate Gk (corresponding to a meet pk ∧ qk = rk, for some
k < n) with k ≤ kj (where kj = fj(0) is the (index of the) lowest gate
containing a ball at step j), Gk /∈ gj(0).

Note that by Definition 12, if Gk ∈ gj(0) while k ≤ kj then both
pk, qk ∈ (B0

j,k), with, by Definition 12, (hereditarily) smaller numbers
targeted for both Pk and Qk than any number possibly targeted for Rk.
Thus we cannot allow Gk ∈ gj(0) while k ≤ kj, as stated in Defini-
tion 13.

We can now state in full detail

Lerman’s Embeddability Criterion. (Lerman [11, 12]) A finite
join-semidistributive lattice (or quasilattice) is embeddable into the c.e.
degrees iff for any sequence of gates (corresponding to meet require-
ments, allowing repetition) and any hole (corresponding to an incom-
parability requirement), there is a good blocked target array.

Lerman’s Embeddability Criterion thus provides a Π0
2-condition for

the embeddability of finite join-semidistributive lattices, with the uni-
versal quantifier ranging over sequences of gates and the existential
quantifier ranging over good blocked target arrays. Bounding these
two quantifiers would yield an effective condition and thus a decision
procedure.

3.6. Two Gates for Two Meets p0 ∧ q0 = r0 and p1 ∧ q1 = r1.
Here we will encounter a sketch of the first nonembeddability proof,
for a lattice we call L14. We will also give a decidable (although rather
complicated) criterion for the embeddability of finite quasilattices with
two meets specified.

We first consider an incomparability strategy (hole H2) having to
deal with two higher-priority meet strategies (gates G0 and G1, one for
each meet). We again distinguish cases, first depending on the position
of a and b relative to p1, q1, and r1:

Case 1: r1 6≤ b or p1 ≤ b or q1 ≤ b: Then the entire initial covering
sequence −→a0 will be a single 1-block, i.e., immediately pass by gate G1

and go on to gate G0, where we will proceed as in the case of one meet
(i.e., as in section 3.4).

Case 2: r1 ≤ b and p1, q1 6≤ b: We first handle a special subcase:
Case 2.1: r0 ≤ b: We begin by stating some simplifying assumptions

we can make:
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(1) It is useless to add an element c ≤ rk to a block at gate Gk (for
k = 0, 1) since this is only allowed, by Definition 13, when there is
currently no element ≤ pk or no element ≤ qk in the blocked target
sequence up to the k-block of c. Note that, by Definition 12, if such c
is not added to the first k-block at Gk but to a later one, then the first
k-block through the k-block of c can be combined into one k-block; but
adding such c to the first k-block at Gk gives no advantage to providing
coverage for the rest of the covering sequence. (However, it is possible
to add some c ≤ r1 at G0 without any restrictions since corresponding
balls will be above any G1-restraint; and to add some c ≤ r0 at G1 as
long as the goodness of the blocked target array is not violated.)

(2) Whenever there are balls at G0, we may assume that, as in sec-
tion 3.4, they are arranged in 0-blocks each beginning with a covering
sequence for all of F (p0) or F (q0). This is since, by Definition 12, this
cannot violate the goodness of the covering array and cannot otherwise
restrict the covering sequence at G0 or G1. We may also assume the
0-blocks B at G0 to alternatingly satisfy (B) = F (p0) or (B) = F (q0).

(3) Whenever there are at least two 0-blocks, B0 and B1, say, at G0

then there is no need to add new elements at G1 since (B0 ∪ B1) =
F (p0) ∪ F (q0) = F (r0), which will cover anything allowed at G1.

(4) Whenever an element c ≤ r0 is added at G1, then we may add
all of F (r1) (which by (1) is the maximal filter we can use) together
with c. This is because once we target below r0 at G1 (and since we
may not target below r1 at G1), targeting below all of F (r1) cannot
violate the goodness of the blocked target array.

The above now allow us to define an effective decision procedure to
decide whether, given two gates below one hole, there is a good blocked
target array: There are only finitely many choices as to what to add
at gate G1 since duplicating elements at G1 only helps if one targets
below r0; but then we can use all of F (r1) by remark (4) above. And
by remark (1) above, the number of choices of what to add at gate
G0 is also effectively bounded, so there is an overall bound on the size
of a potential good blocked target array, giving an effective decision
procedure for its existence.

We illustrate the above with two examples, which analyze two quasi-
lattices with two meets specified that are the same except for the posi-
tion of one top p1 of one meet. Surprisingly, this small difference makes
one embeddable while making the other nonembeddable.

Example 14. Figure 5 shows an embeddable quasilattice with the two
meets p0 ∧ q0 = r0 and p1 ∧ q1 = r1 specified. The good blocked target
array for a hole H2 (for an incomparability requirement Ia,b

Φ ) above the
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gates G0 and G1 (for the corresponding meet requirements) consists of
the following blocked target sequences

〈m11, m01 ; p1; a〉

〈sm01, m11 p1; p1; a〉

〈m11 p1; p1; s a〉

〈r0 p1;m11, s a〉

〈m11, s a〉

〈s a〉

〈 〉

where the transition maps are defined as indicated by vertical align-
ment; the 0-blocks and 1-blocks are separated by commas and semi-
colons, respectively; and the 0-blocks 〈sm01, m11 p1〉, 〈m11 p1〉, and
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〈m11〉 of the second, third, and fifth blocked target sequence, respec-
tively, are at gate G0, while all the other blocks are at gate G1. This
uses that

(s,m01) = F (q0)

(m11, p1) = F (p0)

(r0, p1) = F (q1)

(m11, s, a) = F (p1), and

(s, a) = F (q0).

Finally note that in the fourth blocked target sequence, we are not
prohibited from inserting r0 since p0 /∈ (m11, p1).

Example 15. Figure 6 shows the nonembeddable quasilattice L14 with
the two meets p0∧q0 = r0 and p1∧q1 = r1 specified. (Compared to the
lattice L20 in Figure 3 of Lempp and Lerman [9], the nonembeddability
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proof for L14 is much simpler since it requires only two meets instead
of four.)

We will illustrate that there is no good blocked target array, and
thus that L14 cannot be embedded into the c.e. degrees as follows.

The only possible blocked target sequences we can start with are the
sequences 〈m11, m01;m10, a〉 and 〈m11;m10;m01; a〉 where the 0-blocks
and 1-blocks are separated by commas and semicolons, respectively.
(The first sequence could be split into more 1-blocks, at no advantage.)
The proof that these two starting blocked target sequences will not yield
a good blocked target array and thus will not lead to an embedding
strategy are similar, so we only indicate the proof for the first sequence.

Starting from the blocked target sequence −→a0 = 〈m11, m01;m10, a〉,
the second blocked target sequence −→a1 must contain 〈m01;m10, a〉 as a
subsequence, with m01 at gate G0 and the other elements at gate G1.
In order to have m01 pass by gate G0, we must make it part of a
prime filter F ⊆ F (q0), and the only choice here is F = F (q0); so the
second blocked target sequence −→a1 must contain 〈r1m01;m10, a〉 as a
subsequence. This is still not a covering sequence since (r1, m01, m10)
is not a prime filter, so we need add either r0 or m11 between m01 and
m10. By prohibition and since p0, q0 ∈ (m01, m11), we cannot add r0, so
the second blocked target sequence must be −→a1 = 〈r1m01, m11;m10, a〉
(or some supersequence, or possibly with more 1-blocks, at no advan-
tage) where 〈r1m01, m11〉 is at gate G0 and 〈m10, a〉 is at G1. Now
the third blocked target sequence −→a2 must contain 〈m11;m10, a〉 as a
subsequence. This is not yet a covering sequence since (m11, m10, a) is
not a prime filter but needs r0, r1, or m01 before a. The former two
are prohibited, so we need to use m01, yielding −→a2 = 〈m11;m10;m01; a〉
or −→a2 = 〈m11, m01;m10, a〉 (or some supersequence thereof), i.e., we
have returned to one of the two starting sequences. In this vein, one
can show formally that L14 is not embeddable since any good cover-
ing array starting with one of the starting sequences keeps repeating a
starting sequence (or some supersequence thereof) over and over.

Case 2.2: r0 6≤ b: This case is similar to Case 2.1 except that when-
ever a 0-block contains an element c ≤ r0 from the starting sequence,
that 0-block (which can extend to the end of the current 1-block) can
pass by gate G0 without problems. A simple modification of the strat-
egy in Case 2.1 thus also shows this case to be decidable.

3.7. Two Meets p0 ∧ q0 = r0 and p1 ∧ q1 = r1. The full argument for
two meets is very similar to the case of just two gates outlined in the
previous section. We sketch the argument here.
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First of all, note that we can think of consecutive gates for the same
meet as just one single gate for the purpose of this construction since
one gate, or several gates for the same meet, will impose the same
restrictions on the allowable blocked target sequences. So assume from
now on that any sequence of gates alternates between the two meets
specified, say, even-indexed gates work for the meet p0 ∧ q0 = r0 and
odd-indexed gates work for the meet p1 ∧ q1 = r1.

Next, note that due to clause (1) of Case 2.1 in section 3.6, we cannot
add an element c ≤ rl at a gate for the meet pl ∧ ql = rl. Also, when
we add an element c ≤ rl at a gate for the meet p1−l ∧ q1−l = r1−l, we
can only add it where it is not prohibited.

Now observe that adding duplicate elements c neither ≤ r0 nor ≤ r1
is unnecessary since there is no additional coverage, and such elements
cannot serve as correction markers. Thus we can bound the number
of such elements added at any gate. Furthermore, we can argue, as
in section 3.6, that any element c ≤ rl added at a gate can be re-
placed by the full filter F (r1−l). This yields an effective bound on
the length of the blocked target sequences, thus giving us an effective
bound on the length of blocked target arrays before blocked target se-
quences are repeated. Therefore, the embeddings problem for finite
semi-distributive quasilattices with two meets specified is decidable as
claimed in clause (3) of our Main Statement.

3.8. Three Meets pi ∧ qi = ri for i ≤ 2. Remarks (1) and (4) in
section 3.6 and their extension to the full two-gate case tell us that
for a finite quasilattice with only two meets specified, there is no need
for so-called “correction markers” to correct meet functionals ∆. The
reason for this is that correction markers are balls targeted for elements
c ≤ rk at a gate Gk′ (for some k′ > k) specifically to correct the meet
functional ∆k(Rk) such that these elements are not needed for coverage;
however, we saw that for two meets, in the only possible case, namely,
targeting below r0 at gate G1, we will only target so when needed for
coverage, and then only with the full filter F (r1).

In the three-meet case, this may no longer be so. The partial evidence
we have for this is only indirect in that we cannot point to a specific
finite join-semidistributive lattice which is embeddable but only using
correction markers. However, we have worked out a method of “trace
trees” (coding the elements needed to cover other elements), which
suggests that correction markers may be necessary for some finite join-
semidistributive quasilattices with three meets specified. On the other
hand, if correction markers are not needed (i.e., if all numbers entering
sets are for coverage and not only to correct meet functionals ∆p,q),
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then the decision procedure for two meets outlined in the previous
section will bound the number of good blocked target arrays to be
considered in Lerman’s Embeddability Criterion. This may then lead
to the decidability of the lattice embeddings problem, provided one can
also bound the number of gates to be considered.
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