
JUMPS OF MINIMAL DEGREES BELOW 0

0

Rodney G. Downey, Steffen Lempp, and Richard A. Shore

Abstract. We show that there is a degree a REA in and low over 0

0

such that no

minimal degree below 0

0

jumps to a degree above a. We also show that every nonlow

r.e. degree bounds a nonlow minimal degree.

Introduction.

An important and long-standing area of investigation in recursion theory has

been the relationship between quanti�er complexity of the de�nitions of sets in

arithmetic as expressed by the jump operator and the basic notion of relative com-

putability as expressed by the ordering of the (Turing) degrees. In this paper we

are concerned with an aspect of the general problem of characterizing the range

of the jump operator on various classes of degrees. The �rst such result was the

completeness or jump inversion theorem of Friedberg [1957].

Theorem (Friedberg Jump Inversion). If c � 0

0

then there is an a such that

a

0

= c.

As a

0

is obviously at least 0

0

for every degree a, this result says that every

\possible" degree c (i.e., every degree not ruled out on trivial grounds) is the

jump of some degree a. A number of other important jump inversion theorems

of this sort followed Friedberg's. In particular Shoen�eld [1959] and Sacks [1963]

characterized the jumps of the degrees below 0

0

and of the r.e. degrees, respectively,

as all \possible" degrees:

Theorem (Shoen�eld Jump Inversion). If c � 0

0

and c is r.e. in 0

0

then there is

a degree d � 0

0

such that d

0

= c.

Theorem (Sacks Jump Inversion). If c � 0

0

and c is r.e. in 0

0

then there is an

r.e. degree d such that d

0

= c.

Our concern in this paper is the problem of jump inversion into the minimal

degrees below 0

0

. The general problem for the degrees as a whole was solved by

Cooper [1973]:

1991 Mathematics Subject Classi�cation. 03D25.

Key words and phrases. minimal degree, Turing jump, low degree.

Research partially supported by NSF Grants DMS-9100114 (Lempp), DMS-9344740 (Shore), a

U.S.-New Zealand Binational Cooperative Research grant including NSF INT 90-20558 (Downey,

Lempp and Shore), ARO through ACSyAm at MSI, Cornell University, DAAL-03-91-C-0027

(Downey and Shore), and IGC of Victoria University, Wellington (Downey).

Typeset by A

M

S-T

E

X

1

Theorem (Cooper Jump Inversion). If c � 0

0

then there is a minimal degree m

such that m

0

= c.

The natural conjecture at this point would have been that the Shoen�eld jump

inversion theorem could be extended analogously, i.e., if c � 0

0

is r.e. in 0

0

then

there should be a minimal m � 0

0

with m

0

= c. Cooper [1973], however, refuted

this by showing that no high degree m below 0

0

(i.e., no degree with m

0

= 0

00

) can

be minimal. The only known positive result at the time was that there were minimal

m < 0

0

with m

0

= 0

0

. (This follows from the existence of a minimal degree below

any r.e. degree a (Yates [1970]) by taking a to be low (i.e., a

0

= 0

0

).) Indeed, the

minimal degrees d constructed in the proof of the Cooper jump inversion theorem

all had the property thatm

0

= m_0

0

(m is inGL

1

or generalized low

1

). Answering

a question from Yates [1974], Sasso [1974] proved that this is not always the case

by constructing a minimal m < 0

0

with m

0

> 0

0

.

In the early 70's Jockusch conjectured (see Sasso [1974, p.573], Yates [1974,

p. 235]) that the jumps of minimal degrees m < 0

0

are precisely the set of c � 0

0

with c r.e. in 0

0

and low over 0

0

, i.e., c

0

= 0

00

. Jockusch and Posner [1978] eventually

proved the (remarkable) half of this conjecture.

Theorem (Jockusch and Posner [1978]). Every minimal degree m is in GL

2

, i.e.,

(m _ 0

0

)

0

=m

00

. In particular, every minimal m � 0

0

is low

2

, i.e., m

00

= 0

00

.

The other half of Jockusch's conjecture, that the jumps of minimal degrees m �

0

0

include all those c � 0

0

r.e. in 0

0

with c

0

= 0

00

, has remained an open problem.

In this paper we refute this attractive conjecture by exhibiting an entire upward

cone of such degrees which contains no jump of a minimal degree below 0

0

:

Theorem 1.1. There is a degree a recursively enumerable in and above 0

0

with

a

0

= 0

00

such that a is not recursive in the jump of any minimal degree below 0

0

.

A similar but (in terms of determining the range of the jump on the minimal

degrees below 0

0

) somewhat weaker result has been independently (and slightly

earlier) obtained by Cooper and Seetapun (personal communcation

1

):

Theorem (Cooper and Seetapun). There is a degree a recursively enumerable in

and above 0

0

with a

0

= 0

00

such that if d � 0

0

and a is r.e. in d then there is a

1-generic degree below d.

We have not seen Cooper and Seetapun's proof but they have told us that it

is a 0

000

-argument like the proof of Lachlan's nonbounding theorem as presented

in Soare [1987, Chapter XIV]. Our construction is of a considerably simpler type.

Indeed, it is really a �nite injury argument relative to K (as one might expect

in building a low r.e. degree a relative to K). As we cannot actually deal with

potential minimal degrees d < 0

0

in a construction recursive in K, we use recursive

approximation procedures for K and A which turn the construction into a 0

00

-tree

argument.

We also prove that the theorem fails if we try to replace upward cones by down-

ward ones.

1

Recently, Cooper has claimed a full characterization of this class of degrees as the class of

what he calls the almost �

2

-degrees.

2

Theorem 2.1. If D is any r.e. set with ;

0

<

T

D

0

, then there is a setM of minimal

degree with M �

T

D and ;

0

<

T

M

0

�

T

D

0

.

Corollary 2.3. If c > 0

0

is r.e. in 0

0

, then there is a minimal degree m < 0

0

such

that 0

0

<m

0

� c.

Thus the range of the jump operator on the minimal degrees below 0

0

cannot be

characterized simply in terms of the jump classes of degrees r.e. in and above 0

0

.

We �nally include sketches of the proofs of two old unpublished related results by

the third author concerning cone avoiding by the jumps of minimal degrees below

0

0

:

Theorem 3.1. If c is r.e. in and above 0

0

and c

0

= 0

00

then (uniformly in the

information) there is a minimal degree a < 0

0

with a

0

6� c.

Theorem 3.2. There are minimal degrees a

0

; a

1

< 0

0

such that a

0

0

[a

0

1

= 0

00

.

1. An upward cone with no jumps of minimal degrees.

In this section we will prove that there is a degree a r.e. in 0

0

and low over K

such that no minimal degree m < 0

0

jumps above it.

Theorem 1.1. There is a degree a recursively enumerable in and above 0

0

with

a

0

= 0

00

such that a is not recursive in the jump of any minimal degree below 0

0

.

We let K = fhx; yi j '

x

(y)#g be the complete r.e. set. Our plan is to de�ne a

�

2

-set A via a recursive approximation so that the degree of A�K is the a of our

theorem. There are two types of requirements that we must satisfy. The �rst is the

standard lowness requirement relativized to K:

N : (A�K)

0

�

T

K

0

:

As usual, N is divided up into in�nitely many requirements

N

e

: preserve �

e

(A�K; e):

As our construction will be recursive, we can only expect to succeed modulo the

K-correctness of our computations (and, of course, the outcomes of requirements

of higher priority).

The second type of requirements, P , deal with the jumps of minimal degrees

below 0

0

. We can list all candidates, �, for minimal degrees below 0

0

by taking a list

of all partial recursive f0; 1g-valued functions �(x; s). If we let �(x) = lim

s!1

�(x; s),

we have, by the limit lemma, a list which includes all sets recursive in K. One more

application of the limit lemma tells us how to represent sets recursive in �

0

, the

jump of �. They are all those of the form � = �y lim

n!1

�(�; y; n) for some partial

recursive functional � of the appropriate form. Thus we can express the remaining

conditions of the theorem by the requirements P

�;�

as �(x; s) and �(�; y; x) range

over the appropriate classes of partial recursive functionals:

P

�;�

: If � and � are total functions and � = A then there is a Z such that

0 <

T

Z <

T

�.

3

We divide each requirement P

�;�

into two in�nite sequences of subrequirements

R

�;�;	

: Z 6= 	

S

�;�;	

: 	(Z) 6= �

where 	 ranges over all partial recursive functionals (and 	 is short for 	(;)).

If the hypotheses of P

�;�

hold, � and � are total and � = A, then our plan is

to de�ne a recursive functional � so that setting �(�) = Z satis�es R

�;�;	

and

S

�;�;	

for each functional 	. For each subrequirement we will have a number y

called the killing point which we will alternately put into and take out of A to

try to force a win (We will explain the precise mechanics of this later. For now

just note that the killing point for the version of a requirement at node � will be

(the code of) �.) Roughly speaking, the plan for R = R

�;�;	

is as follows: We

put y into A and wait for an n such that �(�; y; n) = 1. (If there is no such n,

� 6= A.) When we get such an n, we use it by choosing a follower x and setting

Z(x) = 0 = �(�; x) by an axiom from � of length (y; n). We now wait for x to

be realized, i.e., for 	(x) = 0. At this point, we remove y from A. If � changes

on (y; n) we can rede�ne �(�; x) = Z(x) to be 1 and win R. If not we can put

y back into A and try again for a new n and x. The idea is that if we never get a

win (Z(x) 6= 	(x)) we cycle through this scenario in�nitely often each time getting

an n with �(�; y; n) = 1 via a �-correct computation. As we remove y from A

in�nitely often, y =2 A

K

. As y =2 A

K

requires that lim

n!1

�(�; y; n) = 0, we have the

desired failure of the hypotheses of P

�;�

.

Note that if x 2 !

[i]

and the i

th

requirement is not an R

�;�;	

for any 	 then

Z(x) = 0 by a trivial axiom h;; x; 0i which we put into � at stage 0.

The basic plan for satisfying S = S

�;�;	

is similar. We begin by putting y into

A and waiting for an n such that �(�; y; n) = 1 that we can use. We also want a

	-computation of the � use from Z, 	(Z)�(y; n) = ��(y; n). At this point, we

remove y fromA. If we get a � change on (y; n) we would hope to be able to restore

Z� (y; n) to its previous value for a diagonalization 	(Z)�(y; n) 6= ��(y; n). If

we cannot do this, we return y to A and try again for a new n with �(�; y; n) = 1

and 	(Z) = �� (y; n). We will have to argue that we can be prevented from

eventually restoring Z to one of these older desired values only if there are in�nitely

many n with �-correct computations �(�; y; n) = 1. As y =2 A we will again have

contradicted the hypotheses of P

�;�

.

The general structure of our argument is actually that of a �nite injury argument

(modulo the approximations to K). Although this may seem surprisingly simple,

we are after all constructing (relative to K) a low r.e. set. General considerations

as in Soare [5] then suggest that our argument should be a �nite injury one (over

K). As the actual construction must be recursive, our approximation procedure

produces a standard tree structure for it.

We begin by listing all the requirements N

e

, R

�;�;	

and S

�;�;	

in an !-list

Q

i

. As usual, the tree structure will consist of sequences � of outcomes of the

requirements Q

i

, i < j�j. Such a node � will be devoted to requirement Q

j�j

. We

say that � is associated with P

�;�

if Q

j�j

is R

�;�;	

or S

�;�;	

for some 	. The

possible outcomes of a requirement R

�;�;	

or S

�;�;	

are 0 and 1 depending on

whether it believes y =2 A or y 2 A, respectively. A requirement N

e

can have any

4

element of ! as its outcome. It will be the use of �

e

(A

K

�K; e) if it is believed to

converge and 0 otherwise. To specify the actions and outcomes of the requirements

more precisely we need to �x various approximation procedures.

Approximations: We have already �xed K as the complete r. e. set. We also �x

some recursive one-one enumeration k(s) of K. As usual, K

s

= fk(t) j t < sg. We

approximate � in the obvious way: �

s

(x) = �(x; s). We follow the convention of

adding an s in brackets at the end of an expression to denote that we are using the

s

th

stage approximation to each set or functional in the expression. Thus K(x)[]

and �(x)[s] mean K

s

(x) and �

s

(x). More interestingly, �(�; y; n) = 1[s] means

that �

s

(�

s

; y; n)# = 1. (To compute the functional � for s steps.) If we wish to

denote the state of a�airs at substage i of stage s we append \[s; i]" to the relevant

expression. We also adopt the standard conventions that small Greek letters such

as (y; n) indicate the use of the functional denoted by the corresponding capital

Greek letters �(�; y; n) and that uses are nondecreasing in both the input and stage

of the approximation.

For each � and � we will enumerate axioms into a functional �

�;�

= � to de�ne

Z = �(�). We can take the axioms to be of the form h�; x; ji where � is a binary

string and, for j = 0; 1, �(�;x) = j , 9�(h�; x; ji 2 � & � � �). This de�nes

the obvious approximations to Z : Z

s

(x) = j , 9�(h�; x; ji 2 �

s

& � � �

s

). Of

course, we must make sure that axioms are enumerated so that � is consistent and

that �(�) is total if � and � satisfy the hypotheses of P

�;�

.

The last approximation is the one to the �

2

set A that we are constructing. We

begin with A = ; at stage 0. At various times during the construction we may put

a number y into A or take it out. Our approximations to, or beliefs about, A at

any point in the construction are the obvious ones: We believe that A(x) = 1 if the

last action we took was to put x into A and A(x) = 0 otherwise. Our �nal �

2

set

A is de�ned by A(x) = 1, there is a point in the construction at which we put x

into A and then never take it out. We can now describe our construction.

The construction: We begin each stage s of the construction by declaring the

empty sequence ; to be accessible. Stage s will now have s substages each of which

starts with some node � being accessible. If � is the node accessible at the beginning

of substage i, we remove � from A for every � to the right of �. If permitted, we

may now act for requirement Q

i

. In any case, we declare �bq to be accessible for

some q 2 !. If i < s, we proceed to substage i + 1. If i + 1 = s, we �nish stage s

and move on to stage s + 1. Our actions at substage i depend on the form of the

requirement Q

i

.

Q

i

= N

e

: Let r be the last �-stage, i.e., one at which � was accessible (0 if this

is the �rst �-stage). Let k(�; s) be the least number enumerated in K since stage

r, i.e., k(�; s) = min(K

s

�K

r

). We say that there is an �-believable computation

of �

e

(A�K; e)# if �

e

(A�K�k(�; s); e)# [s; i]. If there is such a computation with

use u we declare �bu to be accessible. If not, we declare �b0 to be accessible.

If Q

i

is of the form R

�;�;	

or S

�;�;	

, the killing point for � is � itself, i.e., the

natural number coding the sequence �. The dependence of �'s actions on higher

priority requirements in terms of its enumerating axioms in � is expressed in terms

5

of its dependency set , D(�; s) = fh�;mi j � � � ^ � is associated with P

�;�

and

has used m at some point prior to substage j�j of stage sg.

We begin substage i by having � impose a global wait for �(�; �;m) to be

convergent for every h�;mi 2 D(�; s), i.e., no node � � associated with P

�;�

can act at any stage t � s unless �(�; �;m)# [t] for all h�;mi 2 D(�; s). If this

condition is not met, we proceed directly to the terminal step (5) below of substage

i. Otherwise, our actions depend on whether Q

i

is R

�;�;	

or S

�;�;	

.

Q

i

= R

�;�;	

: Step 1. If there is a marker x such that � is satis�ed by x, i.e.,

Z(x)# = 1 and 	(x)# = 0 then we proceed to step 4 below. If not, we see if we can

satisfy � via some marked x, i.e., we see if there is a marked x not controlled by

any � < � such that Z(x)". In this case we set Z(x) = 1 by enumerating an axiom

h�

s

�m;x; 1i into � where m is the maximum of the length of any previous axiom

for x in � and u(�; s) = maxf(�;m)[s] j h�;mi 2 D(�; s)g. (Note that all such

(�;m) are de�ned by our global wait requirements.) If so, go to step 4. Otherwise,

let d be the number of times � has been taken out of A and proceed to step 2.

Step 2. If � is not in A, put � into A and impose a global wait for an n > d,

with �(�; �; n)# = 1, i.e., no action can be taken for any � � � associated with

P

�;�

at any stage t � s unless there is an n > d with �(�; �; n)# = 1[t] until � is

removed from A. If at any t � s we act for a requirement � on the basis of such a

computation �(�; �; n) = 1, we say that � uses n at t. If this global wait condition

is satis�ed, we proceed to step 3. Otherwise, we go to step 5.

Step 3. If there is an unrealized follower x of � we proceed to step 4. If

there is a realized follower x of � which is associated with a number n > d and

�(�; �; n) = 1[s] then we mark x, remove � from A and proceed to step 4. If there

is no such x but there is an m > d not used by � such that �(�; �;m) = 1[s] let

n be the least such. We now use n by associating it with a follower x 2 !

[i]

of �

which is larger than any number mentioned so far. We set Z(x) = 0 by an axiom

of length

u(�; s) = max

�

f(�;m)[s] j h�;mi 2 D(�; s)g [f(�; n)[s]g

�

:

We say that x is realized at t � s if 	

t

(x) = 0, otherwise it is unrealized. In any

case, we now go to step 4.

Step 4. We have � take control of every x < s, x 2 !

[i]

which is not currently

controlled by any � < �. (Of course, if � > � had control of x before, it no longer

does.) If x 2 !

[i]

is now controlled by some � � � (which is necessarily associated

with P

�;�

), � �rst took control of x at t � s and Z(x) is now unde�ned (i.e., � 6� �

s

for every h�; x; ji now in �), we rede�ne Z(x) to be its value at the last �-stage (0 if

there is none) via an axiom of length the maximum of that of any axiom previously

de�ning Z(x) and u(�; t; s) where u(�; t; s) = maxf(�;m)[s] j h�;mi 2 D

0

(�; t)g

and D

0

(�; t) = fh�;mi j � � � ^ � is associated with the same P

�;�

as � ^ � has

used n at some point prior to the end of substage j�j of stage tg. We now go to

step 5.

Step 5. If � is now in A, we let �b1 be accessible. Otherwise, we let �b0 be

accessible. This ends substage i of stage s.

6

Q

i

: S

�;�;	

: Step 1. If � is satis�ed, i.e., there is an x controlled by � such

that 	(Z;x)# 6= �(x)[s], we go to step 4. Otherwise, we see if we can satisfy �, i.e.,

there is an n marked for � at some r < s such that, for every x < ((�; n))[r; i],

Z(x)[s; i] is either unde�ned or equal to Z(x)[r; i]. If so, � takes control of every

x < ((�; n))[r; i] with x 2 !

[i]

such that Q

i

is associated with P

�;�

(no others

can ever even appear to be in Z.) not controlled by some � < �. (Of course, no

� > � controls any such x from now on.) For each such x, we rede�ne Z(x) to be

Z(x)[r; i] by an axiom of length u(�; s). (The relevant (�; n) are all de�ned by our

global wait requirements. Moreover, our procedures for rede�ning Z(x) (in Steps

4) guarantee that Z(x)# [s; i] for all x controlled by some � < �.) We now go to

step 4. If we cannot satisfy �, we let d be the number of times � has been removed

from A and proceed to step 2.

Step 2. If � is not in A, put � into A and impose a global wait for an n > d

with �(�; �; n) = 1. If this condition is now satis�ed we go to step 3. Otherwise

we go to step 5.

Step 3. If there is an n marked for � such that 	(Z;x) is unde�ned for some

x < (�; n)[s], go to step 4. If not and there is an unmarked n > d such that

�

1

(�; �; n) = 1[s] and 	(z)� (y; n) = �� (�; n)[s; i] then � uses and marks the

least such n. We remove � from A and proceed to step 4.

Step 4. If x is controlled by some � � � and Z(x)" [s; i], we rede�ne Z(x) as

we did for R

�;�;	

.

Step 5. If � is now in A, �b1 is accessible. Otherwise, �b0 is accessible. This

ends substage i of stage s.

End of Construction.

We must now verify that the construction de�nes a set A which satis�es all the

requirements N and P

�;�

. We begin by showing that there is a leftmost path f on

the tree T of nodes � which are ever accessible and that (A�K)

0

is determined by

the outcome along f . Remember that an in�nite path f on T is the leftmost path

on T if 8� � f (� is the leftmost node on level j�j of T which is accessible in�nitely

often).

Lemma 1.2. There is a leftmost path f on T and the outcomes along f are the

true ones:

i) If Q

i

is R

�;�;	

or S

�;�;	

and � = f� i, then � 2 A, f(�) = 1.

ii) If Q

i

= N

e

, then �

e

(A�K; e)# , f(i) = 1.

Proof. We proceed by induction on the length of � � f . Clearly � = ; is the

leftmost sequence of length 0 accessible in�nitely often. Suppose by induction that

j�j = i and � is the leftmost node of length i accessible in�nitely often. Let s

0

be

such that no node � <

L

� is accessible at any s � s

0

.

i) If Q

i

is R

�;�;	

or S

�;�;	

and � is accessible at s, then �b1 is accessible if �

is in A and �b0 is accessible otherwise. As � 2 A i� it is in A from some point on,

�bA(�) is clearly the leftmost immediate successor of � which is accessible in�nitely

often.

7

ii) Q

i

= N

e

: We say an �-stage s is K-true if K

s

� k(�; s) = K� k(�; s). There

are clearly in�nitely many such stages. The outcomes of � at such stages are what

really matter.

Sublemma 1.2.1. If there is a K-true �-stage s

1

� s

0

at which there is an �-

believable computation of �

e

(A�K; e) with use u, then this computation is A�K-

correct, i.e., (A � K)� u = (A
 K)� u[s; i] and �bu is accessible at every �-stage

s � s

1

.

Proof. First note that �'s beliefs about A(�) for � < u and � 6� � are correct and

return to their correct state at every �-stage s � s

1

. For � <

L

�, this holds by

our choice of s

0

. For � >

L

�, it holds by our removing � from A at the beginning

of substage i of every �-stage. For � � �, it holds by induction. On the other

hand, as long as �bu is accessible, we cannot change A(�) for any � <

L

�bu. As

K

s

�u never changes by the de�nitions of a K-true �-stage and �-believability, we

see that the current computation at s is �-believable at every �-stage. Of course,

any � � �bv for v � u is itself bigger than u and so irrelevant. Thus A(�) is never

changed at s � s

1

for � < u and � � � and so the computation is A�K correct

as well. �

Note that we have now proved that � has a leftmost successor which is accessible

in�nitely often: If the hypotheses of Sublemma 1.2.1 hold then �bu is accessible at

all su�ciently large �-stages. If not, �b0 is accessible at everyK-true �-stage. Thus

there is a leftmost path f on � whose outcomes for nodes R

�;�;	

and S

�;�;	

are

correct, i.e., (i) holds. We conclude the veri�cation of Lemma 1.2 by establishing

the following:

Sublemma 1.2.2. If �

e

(A�K; e)# with use u, then �bu is accessible at all su�-

ciently large �-stages.

Proof. The proof of Sublemma 1.2.1 shows that it su�ces to prove that the correct

computation is �-believable at some �-stage s � s

0

by which K

s

� uK � u and

k(�; s) > u. It also shows that �'s beliefs are correct at all such stages for all

� 6� �. Let � � f be of length u and suppose that � is accessible at s

1

� s

0

. By our

results so far, ((i) holds), we know that A�u[s

1

; s

1

] = A�u. If s is the �rst �-stage

after s

1

, then no changes have been made on A(�) for � < � and so A�u[s; i] = A�u

and the true computation of �

e

(A�K; e)# is �-believable as required. �

Corollary 1.3. (A�K)

0

� K

0

.

Proof. Clearly K

0

� (A � K)

0

. It thus su�ces to show that we can compute

(A � K)

0

from K

0

. Now, by Lemma 1.2, there is a leftmost path f on T . By

de�nition, f � K

0

. As the Lemma also shows that �

e

(A�K; e)# , f(i) = 1 where

Q

i

= N

e

we have the desired reduction. �

We now wish to show that the requirements P

�;�

are met. If the hypotheses

of P

�;�

fail then there is nothing to prove. Note, however, that in any case no

subrequirement of P

�;�

has an e�ect on any � on the true path f which is associated

with any other P

�

0

;�

0

(at least not after a stage after which no node to the left of

� is ever accessible). Suppose, therefore, that the hypotheses of P

�;�

are met. We

prove by induction along f that the outcome of � � f associated with P

�;�

satisfy

the subrequirements of P

�;�

. We must also show that �(�) = Z is total.

8

Lemma 1.4. Suppose the hypotheses of P

�;�

are met and � � f is associated with

P

�;�

.

i) If Q

j�j

= R

�;�;	

then there is a stage t

0

such that at every s � t

0

either (as

de�ned in Step 1) � is already satis�ed or we satisfy � at s or � has an unrealized

follower.

ii) If Q

j�j

= S

�;�;	

then there is a stage t

0

such that at every s � t

0

either (as

de�ned in Step 1) � is already satis�ed or we satisfy � at s or there is an n marked

for � and an x < (�; n)[s] such that 	(Z;x) is unde�ned.

Proof. We suppose that the hypotheses of P

�;�

are met and proceed by induction

on � � f . First, note that (i) and (ii) imply that from some point on no action is

taken for � except possibly in step 4 to rede�ne Z(x) for those x which � controls.

More speci�cally, no more numbers are used or marked or followers appointed by

�; Z(x) is not changed from its last value by � for any x; and no more global

waits are imposed by �. All global waits for �(�; �; n)# are eventually met by the

hypotheses of P

�;�

. Any global wait for any n with �(�; �; n)# = 1 imposed in

step 2 is permanent only if � is never removed from A (and so � 2 A). Thus, by

the hypotheses of P

�;�

, any such condition is also eventually permanently met. Of

course if � <

L

�, then � is accessible only �nitely often and the same conditions

eventually hold for � as well. Suppose, therefore, that s

0

is a stage after which no

� <

L

� is ever accessible but all these conditions always hold for � < �.

We divide the proof into cases according to whether � 2 A or not.

� 2 A: In this case, there is a stage s

1

� s

0

after which � is never removed from

A. Let d be the number of times � is removed from A. By the hypotheses of P

�;�

,

there is eventually a permanent current computation of �(�; �; n

0

) = 1 for some

n

0

> d; s

1

, say by s

2

� s

1

. Similarly, for any �nite set F we must eventually have

�(�; �; n)# for every n 2 F . Thus � must be accessible in�nitely often at stages

s � s

2

when all global wait conditions are satis�ed.

It is now clear that if the conclusions of the Lemma do not hold then we will

eventually associate some follower x with n

0

and later mark it (if Q

j�j

= R

�;�;	

)

or use and mark n

0

(if Q

j�j

= S

�;�;	

). In either case, we would remove � from A

for the desired contradiction.

� =2 A: When � is accessible after s

0

and not in A and all global wait conditions

are met, we can be prevented from putting � into A only by satisfying �. Thus we

may assume that we put � into A and remove it in�nitely often. By the hypotheses

of P

�;�

, there must be an n

0

such that �(�; �; n) = 0 for every n � n

0

. Consider

now the n

0

th

time we put � into A, say at stage s

1

� s

0

. We impose a global wait

for an n � n

0

such that �(�; �; n) = 1. Note that we can now act for � (and so

de�ne Z(x) for any new x at an s � s

1

for Q

j�j

= R

�;�;	

) only when we either

have � satis�ed or an n � n

0

with �(�; �; n) = 1 which we have used.

We now assume that Q

j�j

= R

�;�;	

and prove (i). As we remove � from A

in�nitely often, we must eventually appoint and then mark an x � n

0

at stages

s

3

� s

2

� s

1

, respectively. By our induction hypotheses and choice of s

0

, � retains

control of x and so Z(x) is, for all su�ciently large �-stages s, de�ned by axioms

of length u(�; t; s) (plus a constant) for a �xed t. By our hypotheses in P

�;�

,

lim

s!1

u(�; t; s) exists and � is eventually constant on all the relevant uses. If � is

9

not already satis�ed, we can be prevented from satisfying � by de�ning Z(x) = 1

at such a point only by there being some axiom � de�ning Z(x) = 0 which was

put into � at some stage since x was appointed and is now �-correct. As we have

noted, any such axiom contains the information needed to either satisfy � via some

other x or to give a computation �(�; �; n) = 1 for some n � n

0

. As this correct

�-information is, in fact, correct, we have the desired contradiction.

Finally, we assume that Q

j�j

= S

�;�;	

and prove (ii). Consider the numbers

x controlled by some � < � at s

1

. For each such x, Z(x) is de�ned by an axiom

of length u(�; t; s) (plus a constant) for a �xed t. By our hypotheses on P

�;�

, we

may choose a stage s

2

� s

1

after which u(�; t; s) is �xed as is ��u(�; t; s) for each

such x. As we remove � from A in�nitely often, there is a stage s

3

� s

2

at which

we mark some n > n

0

. By our choice of n

0

, �(�; �; n) = 0. Once � � (�; n)

has reached its correct value, we can be prevented from satisfying � (if it is not

yet satis�ed) only by there being an axiom � de�ning some Z(x) inappropriately.

By our assumptions, � was put into � at a stage at which we had � satis�ed or

an n � n

0

with �(�; �; n) = 1 and this information was included in �. Thus this

information (about �) must be correct and we would either have � satis�ed or have

a correct computation �(�; �; n) = 1 for n > n

0

for the desired contradiction. �

Lemma 1.5. If the hypotheses of P

�;�

are met then �(�) = Z (for the associated

functional �) is well de�ned and total.

Proof. As we only add a new axiom h�; x; ji for x to � when all previous ones are

incorrect (� * �) and any new axiom is always at least as long as any previous one,

� is consistent. Consider now any number x. If x =2 !

[i]

for some i such that Q

i

is

an R

�;�;	

, Z(x) is set to be 0 by a trivial axiom. Suppose x 2 !

[i]

, Q

i

= R

�;�;	

and � � f is of length i. It is clear from the construction that � eventually takes

control of x if it is not controlled by a higher priority requirement. As the priority

ordering is well ordered, there is a highest priority � such that � ever controls x.

Suppose � �rst takes control of x at t. It then controls x at every stage s � t.

Z(x), if unde�ned, is rede�ned when � is accessible at s via an axiom of length

u(�; t; s). Our assumptions on P

�;�

guarantee that lim

s!1

u(�; t; s) exists and so Z(x)

is eventually de�ned by a �xed (necessarily �-correct) axiom. �

Lemma 1.6. If the hypotheses of P

�;�

are met then Z = �(�) meets every sub-

requirement Q

i

of the form R

�;�;	

or S

�;�;	

and so 0 <

T

Z <

T

�.

Proof. Let � be the initial segment of f of length i and let t

0

be as in the conclusions

of Lemma 1.4.

i) Q

i

= R

�;�;	

: No new followers are ever appointed after t

0

. If one of them,

x, is unrealized then 	(x) 6= 0 but Z(x) = 0 as we can never change the value of

Z(x) once it is de�ned. Thus 	 6= Z as required. Otherwise, there is a t

1

� t

0

by

which all the followers are realized. At every �-stage s � t

1

, � must be satis�ed,

i.e., Z(x)# = 1[s] and 	(x) = 0[s] for some follower x of �. As Z(x) is eventually

constant by Lemma 1.4, 	(x) 6= Z(x) for one of these x's. Again 	 6= Z as required.

ii) Q

i

= S

�;�;	

: No numbers n are marked for � after t

0

. By our hypotheses

on P

�;�

, (�; n)[s] is eventually constant for all n maked for �. If 	(Z;x) is not

de�ned for some x < (�; n) for a marked n, then 	(Z) 6= �. Otherwise, � is

satis�ed at every su�ciently large �-stage by 	(Z;x) 6= �(x) for some x < (�; n)

10

for one of the marked n. As �(x) and 	(Z;x) eventually stabilize for each such x,

there is some x such that 	(Z;x)# 6= �(x) as required. �

2. Jumps of minimal degrees in downward cones.

Theorem 2.1 Let D be any r.e. set with D

0

>

T

?

0

: Then there exists a set M of

minimal degree with M �

T

D and ?

0

<

T

M

0

�

T

D

0

.

Proof. We will construct M �

T

D by a full approximation construction along

the lines of, for instance, Lerman [1983], Epstein [1975] and Yates [1970] with

M = lim

s

M

s

. At each stage s, we shall construct nested sequences of recursive

trees T

�;s

� : : : � T

�;s

for certain paths � on the stage s priority tree. At stage s,

if j�j � s, j�j � e, and � is on T

�;s

then � will have a j-state for some j � e. Such

a state is a string of length j + 1 that codes guesses as to the \arena" in which �

must live. (We will be assuming that the reader has at least nodding acquaintance,

if not familiarity, with the full approximation technique. In particular, the notion

of state will be somewhat similar to the usual notion of e-state, in the sense that

it will characterize whether the node at hand is locally e-splitting. The notion of

state will also need to encode additional �

2

behaviour, namely the behaviour of

diagonalization requirements of stronger priority as they a�ect the trees we search

to decide if splittings exist. Because of this nonstandard notion of state, in the full

construction we shall replace \state" by \guess" to avoid confusion. However, in

the discussion of the basic modules we will stick to state since the need for more

elaborate notions only becomes apparent when we look at interaction between the

requirements.) We will meet the minimality requirements below, for all partial

recursive functionals �

e

.

N

e

: �

e

(M) total) [(M �

T

�

e

(M)) _ (? �

T

�

e

(M))]

Additionally, we need to ensure that ?

0

(= K) cannot compute the jump of M . In

fact, we build a set V which is r.e. in M, and satisfy the following requirements.

R

e

: �

e

(K) 6= V:

Let Q = K

D

denote the standard enumeration of D

0

so that K

D

s

s

= Q

s

= fe :

feg

D

s

s

(e) # & e � sg: We briey remind the reader of the manner by which one

satis�es the N

e

. We assume that the reader is familiar with, for instance, the

Sacks [1961] construction of a minimal degree below 0

0

. However, our construction

will be a full approximation one as follows. As with all known minimal degree

constructions, in a full approximation argument, one tries to get M on either an

e-splitting (partial recursive) tree or a tree with no e-splittings. For simplicity in

the following discussion we will drop some of the tree notation and pretend that we

are only constructing a nested sequence T

0;s

� :::T

s;s

and are working to maximise

e-states on T

e;s

. In the perfect set version �a la Spector [1956] and Shoen�eld [1971],

one does this using recursive total trees, and uses 0

00

as an oracle to achieve this

in one step. In the present construction, one can only work locally. With no

permitting around, this simply corresponds to waiting till one sees extensions �

1

; �

2

of some node � which are e-splitting at stage s. Clearly we need �

1

and �

2

on tree

T

e;s

, �

1

and �

2

having the same (e�1)-state as � , and �

i

�M

s

for some i. If we see

11

such �

1

and �

2

we can raise � 's state to the high e-state �b1, assuming it was in the

low e-state �b0. [We reserve � for states; �, �, and for nodes on the priority tree

(and sometimes states); �; �; �; � for strings; and ' and � for uses corresponding to

� and �, respectively.] So the idea is to slowly build the trees T

e;s

as subtrees of

T

e�1;s

so that lim

s

T

e;s

is achieved stringwise. At each stage s, this enables us to

de�ne a string,M

s

, of length s, the leftmost common path on T

0;s

; : : : T

s;s

of length

s. By the way we de�ne e-states and by construction, lim

s

M

s

(x) =M(x) will exist

for all x. One can argue that M has minimal degree as in Sacks [3], except that in

a full approximation argument we use e-states as follows. Let �bi (i = 0 or 1) be

the well-resided e-state. By well-resided, we mean that for almost all � on lim

s

T

e;s

,

if � is an initial segment of M , then � has state �bi. If this state is �b1 then we

simply go to some � � M on T

e

such that all � � � on T

e

have �nal e-state �b1:

From this parameter, as in the Sacks construction, we know that we can inductively

generate M from the tree of extensions on T

e

that achieve state �b1 and �

e

(M).

Similarly, if i = 0, then there are no e-splittings on the \well-resided tree", so any

computation �

e;s

(M

s

; x) with M

s

of the correct e-state must agree with �

e

(M).

[Minimality will then follow by the fact that we meet the R

e

and hence M 6�

T

?:]

We remark that in the present construction, the above is not quite correct, since

we will construct at each stage s a path �

s

(through the priority tree) that \looks

correct", and M

s

will lie on the trees T

;s

for � �

s

where �

s

denotes the path

of length s that looks correct at stage s. As we see, this means that the trees

are actually determined also by the actions of the jump requirements. The idea,

however, is essentially the same.

Keeping M �

T

D in the above construction entails adding r.e. permitting. For

this theorem, we are able to use simple permitting. That is, we ensure that

D

s

[x] = D[x] implies M

s

[x] =M [x];

where E[x] = fz j z 2 E & z � xg:

Such permitting really causes no problems with the e-state machinery. Remem-

ber, we seek e-splittings �

1

; �

2

extending � such thatM

s

� �

1

or M

s

� �

2

. Without

loss of generality, suppose M

s

� �

1

. Then all that the minimality machinery re-

quests is that we re�ne the tree to either cause M � �

1

or M � �

2

should M � � .

The point is that we can ensure this re�nement while keeping M

s

� �

1

. It follows

that if �

e

(M) is total then either �

e

(M) �

T

M or �

e

(M) �

T

?.

What becomes more di�cult is to ensure that M is nonlow by meeting the R

e

.

Now we are only able to diagonalize against an \�-correct" version of V when

permitted by D.

Thus, we now turn to the satisfaction of the jump requirements, keeping M

0

>

T

?

0

. To meet these requirements, the reader should recall that the plan is to build

a set V which is �

M

1

making sure that �

e

(K) 6= V . Let `(e; s) = maxfx : (8y <

x)[�

e;s

(K

s

; y) = V

s

(y)]g. Of course, V is built by enumerating axioms relative to

M . We meet these R

e

requirements via a Sacks encoding type strategy, only here

we desire to encode Q = K

D

into V via axioms about M . The idea is to try to

encode more and more of Q into more and more of V so that if �

e

(K) = V , then

K will be able to compute Q, since K will be able to ascertain if a coding location

c(i; s) for i 2 Q is �nal, for a contradiction.

12

So the idea is that when `(e; s) > c(i � 1; s) we choose a coding location c(i; s)

for coding whether \i 2 Q". For simplicity we will not worry about the interaction

with the state machinery, but consider only the basic module. The idea in the basic

module is to pick some number d(i; s) (intuitively the (lower bound on the) use of

c(i; s)) so that the following four conditions are satis�ed.

(i) There exists � on T

e;s

with � = T

e;s

(�), say, so that one of T

e;s

(�b0) or

T

e;s

(�b1) is an initial segment of M

s

. Without loss of generality, assume

this to be T

e;s

(�b0).

(ii) j�j = d(i; s).

(iii) i 2 K

D

s

s

= Q

s

and u(fig

D

s

s

(i)) < d(i; s).

(iv) d(i; s) > t where t is the greatest stage, if any where d(i; t) was previously

de�ned.

If such a number exists, we declare that d(i; s) is the axiom location for \c(i; s) 2

V at s". We enumerate an axiom saying that

if T

e;s

(�b0) �M then c(i; s) 2 V:

Also R

e

will assert control of the construction in the sense that it will constrain M

to travel through T

e;s

(�b0) while the conditions above are maintained.

The key idea is that if i leaves Q (i.e. i 2 Q

s

� Q

s

1

for some least s

1

> s) it

must be that D

s

[u(fig

D

s

s

(i))] 6= D

s

1

[u(fig

D

s

s

(i))]. Hence, in particular, D permits

below d(i; s) by (iii) above. Therefore by (i) and (ii), we can cause M to now

extend T

e;s

(�b1) [instead of T

e;s

(�b0)], since we are D-permitted to do so. In such

a case we will abandon T

e;s

(� b0) forever. [This abandonment makes it necessary

to ensure that some strings are set aside for other lower priority requirements, but

this causes no special problems. See the remarks below.]

Now d(i; s

1

) becomes unde�ned (and hence the parameter d(i;�) will need to

be rede�ned to a new number) and c(i; s) = c(i; s

1

) leaves V

s

1

. The next axiom

location for c(i; s), if any, will be chosen so that the relevant analogues of (i)-(iv)

all hold. Note that if the cycle recurs in�nitely often then c(i; s) =2 V and i =2 Q.

The only problem that occurs with the cycle for i outlined above is the following.

The cycle could cause unbounded constraint onM because �

e

(K) may not be total,

but could have unbounded use for some c = c(i; s). Imagine �

e;s

(c)!1. As with

the density theorem for the r.e. degrees, we might de�ne coding locations c(i

0

; s) for

all i

0

> i and eventually this might cause M to be recursive, although �

e

(K; c) ",

since lim sup `(e; s) =1. To overcome this familiar problem, when we pick a coding

location c(i; s) for i at stage s if the �

e

(K

s

; c) # computation is later seen to have

incorrect K-use we cancel c(i

0

; s) for all i

0

> i and pick c(i

0

; t) anew later (where

c(i

0

; t) > s) (we call this kicking). For all such c(i

0

; s), we also declare d(i

0

; s) to be

unde�ned; we do not cancel the corresponding T

e;s

(�b0) or T

e;s

(�b1) but release

them to the construction.

The conclusion that �

e

(K) 6= V remains correct since using �

e;s

and K

s

; K can

still decide if a coding location is �nal.

Finally, in the full construction, we will need to deal with various versions of the

R

e

and N

e

above working in a \tree of strategies" type of setting. Coding locations

with the wrong guesses will need to be initialized and kicked as above. An R

e

requirement at node � which is guessing that � is the well-resided \e" guess (note

13

\guess" not \state") will need to wait till it sees �'s and � 's of guess � before it

enumerates an axiom involving an axiom location d(�; i; s) for the coding location

c(�; i; s). The reader should note that the trickiest part of the construction is to

get the correct environment within which each R

e

operates. Here, not only do we

need to guess the lim inf of the length of agreement associated with R

e�1

, but the

exact behavior of the various markers associated with this lim inf. We now turn to

the formal details.

Remarks. As we mentioned above, the reader should note that a single c(�; i; s) has

the potential of killing all of the tree T

�

save for one branch (making M recursive)

if we are not careful. If i 62 Q but i is in Q

s

in�nitely often, then the R

e

cycle could

be repeated in�nitely often for the sake of i. As above the action of the R

e

is to

kill T

�

(�bj) and if we then killed one extension of T

�

(�b(1� j)) and so forth, one

could kill all but one path on the tree. This is �ne from R

e

's point of view, but has

the potential for making M recursive. To ensure that this problem is avoided we

shall use various control devices to guarantee that there will be enough available

branches for the relevant requirements when we play the appropriate outcome of

R

e

. This is a little messy but is the point of the control functions count(�; s) and

maxcount(�; s), and the freezing machinery. The idea is that suppose we wish to

play an outcome o of �, as its guess has just looked correct. At this stage we

acknowledge that we want a supply of strings available to the nodes guessing �bo

when we pass �bo. We will not allow �, or any guesses extending �bo, to assign

any strings until we see count(�bo; s) exceed a previous bound maxcount(�bo; s),

or we unfreeze the node because we see many strings of the appropriate guess. We

increment count(�bo; s) each time we visit � and would like to play �bo. In this

way, when we actually get to play �bo we have many strings to assign to nodes

guessing �bo.

The priority tree. We generate the priority tree PT by induction �rst on length

and then on the lexicographic ordering generated by the ordering < that we de�ne

on outcomes. We also denote this lexicographic ordering on nodes by <. It is the

usual priority ordering. The left-to-right ordering � <

L

� is de�ned as usual by

� < � and � * �. On any path � a requirement is assigned to a node � � � as

follows. Assign N

0

to �, the empty string. We write e(�) = 0 and req(�) = N

0

.

� will have outcomes 0 and 1, meaning that �b0 = 0 and �b1 = 1 are on PT .

The idea here is that the outcome 1 corresponds to M lying upon a 0-splitting tree

and we set 1 < 0. To each of �'s outcomes we now assign a version of R

0

so that

req(0) = req(1) = R

0

, and e(0) = e(1) = 0.

Each version of R

0

will sit atop an in�nite tree of outcomes of R

0

, the R

0

tree,

coding the precise behavior of the coding locations, axiom locations and K-uses.

At the top level will be the node � with the c(0)-outcomes of R

0

. Namely, � will

have outcomes (in < order)

h0; ui; h0;1i; h0; di; h0; fi:

The intended meaning of these outcomes is as follows:

h0; ui: c(�; 0) (= lim

s

c(�; 0; s)) has unbounded �

0

(K) -use (\u" for \unbounded").

h0;1i: This corresponds to no win via c(�; 0), but we change d(�; 0; s) in�nitely

often. In essence, this entails �

0

(K; c(�; 0)) = 0 and cycling through h0; di

in�nitely often.

14

h0; di: c(�; 0) witnesses a win by a disagreement (\d" for \disagreement").

h0; fi: No win via c(�; 0) and we only change d(�; 0; s) �nitely often (\f" for \�-

nite").

Remark. The reader should note that the outcomes h0;1i and h0; fi do not code

a win for � but do code the behavior of �'s action with respect to c(�; 0). The idea

is that we will continue to try to satisfy R

0

at each of these outcomes generating

an R

0

tree as described below.

In general to de�ne the R

0

tree below � suppose we have de�ned � to be in this

tree. If � is of the form �bhi; ui or �bhi; di, then � represents a win for R

0

and we

would assign N

1

to � . If � is of the form �bhi;1i or �bhi; fi, then we again assign

R

0

to � and give it outcomes hi+ 1; ui; : : : ; hi+ 1; fi. (See Diagram 1.)

For the full priority tree we assign N

e

and R

e

in order as above with e in place of

0 for the highest priority requirement not yet (completely) assigned. Note that the

presence of R

e

trees means that there exist paths P on PT whose nodes are only

assigned to �nitely many requirements. For such a path, almost all of the nodes

will be assigned to a �xed R

e

and will be of the form �bhi;1i or �bhi; fi. We will

need to argue that none of these paths is the true path of the construction, and

hence all requirements get their chance to be met.

Parameters and Terminology for the Construction.

c(�; i; s) : The coding marker associated with \ i 2 D

0

" at guess � at stage s.

c(�; i; s) is targeted for V . We attempt to code D

0

into V via these markers.

d(�; i; s) : The current axiom location for \c(�; i; s) in V at stage s."

count(�; s) : A control function at guess � used to ensure that when we play an

N

e

-node � then there are many unused strings available for guesses below �.

maxcount(�; s) : The reference control function that count(�; s) must exceed

before we can play �.

�-freezing : While a node � is waiting to see enough strings to make it seem

reasonable to play outcome o then we will say that the node is frozen with outcome

o.

req(�) : The requirement assigned to �.

e(�) : The index of the requirement req(�).

j(�) : The j for which � is used to code \c(�; j; s) 2 V ."

`(e(�); s) = maxfx : 8y < x(�

e;s

(K

s

; y) = V

s

(y)))g.

The most complex requirements are the higher level Sacks coding requirements,

the R

e

. The reader should think of their action as that of an automaton.

Construction, stage s+ 1:

In substages we shall generate a guess (i.e. a node on the tree) �

s+1

that looks

correct, and a collection of trees T

;s+1

(for � �

s+1

and req() of the form N

e

).

For convenience, let T

�;0

= 2

<!

. Initially, let all � on T

;0

have e-guess �. We

proceed in substages t � s + 1. We will append a superscript t to a parameter to

indicate its guess at the end of substage t. (At substage 0, the initial value of a

parameter will be its value at the end of stage s). We also suppose that we are told

that s+ 1 is an �-stage (� = �

t

s+1

) at the end of each substage t (� = � initially).

Our action will be to determine how to modify trees, guesses, etc., and to de�ne

the outcome of �

t

s+1

. Our actions will be determined by s; t; and req(�). We will

15

assume that if req(�) = R

e

, we are at the top of an R

e

tree. We often use the phrase

\initialize �." This follows standard usage, and means cancelling �'s followers, etc.

Furthermore, if � <

L

� initializes � (� is visited at s+ 1, say) then we let T

�;s+1

be the full subtree of T

�;s+1

extending M

s+1

above T

�;s+1

(�)) with j� j = s+1 and

M

s+1

� T

�;s+1

, with all guesses becoming initialized. Finally setting a value for

�

s+1

ends a stage.

Convention. We will also adopt the following convention that saves on terminology.

During the construction we can visit nodes � in one of two ways. One way is to

visit them at substage t of stage s such that for all �

0

� � we also visited �

0

at

the same stage. The other possibility is that we did not visit some �

0

� � during

stage s but jumped directly to � because although �

0

was not accessible, there was

a permitted action at �. In the latter case, we adopt the convention that visiting �

either ends the stage or we visit some b� � � via a permitted action. As we shall see

when we act in this way we do not appoint markers etc. but merely modify trees.

De�nition 2.2. We say that � (on PT) has a permitted action at substage t of

stage s+ 1 if, for some j,

(i) c = c

t

(�; j; s+ 1) is de�ned,

(ii) c 2 V

t

�;s+1

, and

(iii) j =2 Q

s+1

(i.e. fjg

D

(j)[s+ 1] ").

Substage t: Let � be the node eligible to act at substage t.

Case 1: req(�) is N

e

.

Subcase 1: There exist �; �

0

; �

1

such that �; �

0

; and �

1

are on T

t

�;s+1

with

� = T

t

�;s+1

(�), �

1

= T

t

�;s+1

(�

1

), �

2

= T

t

�;s+1

(�

2

), and

(i) �

0

and �

1

e-split � ,

(ii) �

0

<

L

�

1

,

(iii) �

0

�M

s

or �

1

�M

s

,

(iv) �; �

0

; �

1

had e-guess �b0 at the beginning of substage t,

(v) j�

0

j; j�

1

j > maxcount(�b1; s) (the last stage at which � genuinely had out-

come 1), and

(vi) � is the shortest such string.

Action: For � 6� �, let T

t+1

�;s+1

(�) = T

t

�;s+1

(�). For � � � and i < 2, de�ne T

t+1

�;s+1

via

T

t+1

�;s+1

(�bib�) = T

t

�;s+1

(�

i

b�):

Raise the e-guess of � to �b1. All else remains the same.

Set count(�b1; s+ 1) = count(�b1; s) + 1: There are three subcases.

Subcase 1a: count(�b1; s+1) < maxcount(�b1; s) and there exists a � � �b1

with a permitted action.

Action: Set �

t+1

s+1

= � and declare s+1 to be an �b-stage for all �b � �. [For

all with �b1 � �b $ �, however, s + 1 not a genuine �b-stage. A stage is a

genuine �-stage if we actually visit � at one of its substages.]

Subcase 1b: count(�b1; s + 1) < maxcount(�b1; s) but Subcase 1a fails to

apply.

16

Action: Set �

s+1

= �b0 and declare s + 1 to be an �b0-stage. [This ends the

stage. Recall that a low count indicates we have not yet seen enough potential

strings in the good guess.]

Subcase 1c: count(�b1; s+ 1) � maxcount(�b1; s).

Action: Set maxcount(�b1; s+1) = s+1 and reset count(�b1; s+1) = 0. Declare

s+ 1 to be an �b1-stage and set �

t+1

s+1

= �b1.

Subcase 2: Subcase 1 does not hold, but there exists a permitted action at

some � � �b1.

Action: For the highest priority such � (that is, the lexicographically least) let

�

t+1

s+1

be � and declare s + 1 to be an �b-stage for all �b � �. [For all with

�b1 � �b $ �, however, s + 1 is not a genuine �b-stage]. Otherwise nothing

changes.

Subcase 3: Otherwise.

Action: Nothing changes. Set �

t+1

s+1

= �b0: Declare s+ 1 to be an �b0-stage.

Case 2: req(�) is R

e

. We begin with the case that � is the top of an R

e

-tree. We

continue to consider R

e

until we play either an outcome hj; di or hj; ui for some j.

We consider the j in order, beginning with j = 0. Suppose j = 0 or we have already

considered j � 1 and are considering j. We can assume that we have inductively

generated a string �b(j) so that �b(j) � �

s+1

and for all j

0

< j; there exist �; k

with �b�bhj

0

; ki � �b(j) and k 2 f1; fg: [For j = 0; (j) = �.] Finally, we let

T

t

�;s+1

= T

t

�;s+1

for all � extending � which are devoted to R

e

below �, i.e. they

all use the same tree.

Pick the �rst subcase that applies and perform the action indicated. Here let s

0

be the last genuine �b(j)-stage at (the beginning of) which �b(j) was not frozen.

Subcase 1: c = c

t

(�; j; s+ 1) is unde�ned.

Action: Pick a large fresh number c = c

t+1

(�; j; s+ 1) and set �

s+1

= �

t+1

s+1

=

�b(j).

Subcase 2: � has a permitted action at substage t of stage s+ 1.

Action: Let d = jT

t

�;s+1

(�bi)j be the use of \c 2 V

t

�;s+1

" (where T

t

�;s+1

(�bi) �

M

t

s+1

); abandon the part of T

t

�;s+1

above T

t

�;s+1

(�bi) by setting

T

t+1

�;s+1

(�) =

�

T

t

�;s+1

(�); if � 6� �

T

t

�;s+1

(�b(1� i)b�

0

); if � � � , say � = �b�

0

(and so c =2 V

t+1

�;s+1

); letM

t+1

s+1

be a path through T

t+1

�;s+1

extending T

t+1

�;s+1

(�b(1�i));

declare �b(j) frozen with outcome u (if �b(j) was already frozen with outcome

u or if �

K

e

� (c + 1) was not de�ned at any time since stage s

0

) or with outcome

1 (otherwise); and set �

t+1

s+1

= �b(j)bhj; ui or �b(j)bhj;1i, respectively.

Subcase 3: �b(j) is frozen (with outcome o since stage s

0

, say).

Action: Check if there are at least s

0

many strings � such that

(i) � is on T

t

�;s+1

, say � = T

t

�;s+1

(�),

(ii) � �M

t

s+1

,

(iii) the e(�)-guess of T

t

�;s+1

(�bi) is �(e(�)) for all N -strategies � � � and all i < 2,

and

(iv) j(T

t

�;s+1

)

�1

(�)j > s

0

.

17

If so then declare �b(j) no longer frozen, and let �b(j) have outcome o. If

furthermore

(v) �b(j) was frozen with outcome 1, and

(vi) c =2 V

t

�;s+1

and j 2 Q

s+1

(i.e. fjg

D

(j)[s+ 1] #),

then enumerate c into V

t+1

�;s+1

with use T

t

�;s+1

(�bi) where � is the longest string satis-

fying (i)-(iv) not used by a strategy � �b(j) for V -enumeration and T

t

�;s+1

(�bi) �

M

t

s+1

.

Otherwise, i.e. if (i)-(iv) fail, �b(j) remains frozen with outcome o. In either

case, we set �

t+1

s+1

= �b(j)bhj; oi.

Subcase 4: �

K

e

� (c+ 1) has not always been de�ned since stage s

0

.

Action: Declare �b(j) frozen with outcome u and set �

t+1

s+1

= �b(j)bhj; ui.

Subcase 5: Q(j) has changed since stage s

0

, i.e. there are stages s

1

; s

2

2

[s

0

; s+ 1] such that exactly one of fjg

D

(j)[s

1

] # and fjg

D

(j)[s

2

] # holds.

Action: Declare �b(j) frozen with outcome 1 and set �

t+1

s+1

= �b(j)bhj;1i.

Subcase 6: j 2 Q

s+1

and c =2 V

t

�;s+1

.

Action: Declare �b(j) frozen with outcome 1 and set �

t+1

s+1

= �b(j)bhj;1i.

Subcase 7: �

K

e

� (c+ 1) = V

�

� (c+ 1) has not always held since stage s

0

.

Action: Declare �b(j) frozen with outcome d and set �

t+1

s+1

= �b(j)bhj; di.

Subcase 8: Otherwise.

Action: Let �b(j) have outcome f and set �

t+1

s+1

= �b(j)bhj; fi.

This completes the action of �b(j). We now initialize all strategies � >

L

�

t+1

s+1

and check if

(i) �b(j) is now frozen and there is a strategy � <

L

�

t+1

s+1

or � �

t+1

s+1

with a

permitted action (as de�ned in Subcase 2 above), or

(ii) there is a strategy � <

L

�

t+1

s+1

with a permitted action.

If so then let the highest-priority such � act next. Otherwise, let �

t+1

s+1

act at the

next substage (if �b(j) is not frozen now and Subcase 1 above did not apply) or

end the stage (otherwise).

End of construction.

Veri�cation.

The reader should note that M �

T

D because we always maintain the simple

permitting invariant : M

s

[x] = M [x] if D

s

[x] = D[x]. [While we might re�ne the

underlying trees, we only change M due to a permitted action.] Let TP denote the

true path.

We need to argue that for all � � TP , the following hold:

(i) lim

s

T

�;s

= T

�

exists stringwise.

(ii) Let � = �

�b

a. If req(�

�

) = N

e

, then for almost all � on T

�

with � � M

the e(�

�

)-guess of � agrees with �.

(iii) If � � TP then there are in�nitely many �-stages and � is only initialized

�nitely often.

(iv) If req(�) = R

e

then there are at most �nitely many �

0

on TP with req(�

0

) =

R

e

and R

e

is met by some such �

0

. Furthermore, if req(�) = req(�

0

) then

for all � with � � � � �

0

; req(�) = R

e

:

18

(v) Let � be the shortest string on TP with req(�) = R

e

and let � be any such

string. Let �ba � TP . Then a is of the form hj; i; and lim

s

c(�; j; s) =

c(�; j) exists. Furthermore the following hold:

(va) If a = hj; ui then the K-use of �

e

(K; c(�; j)) is unbounded.

(vb) If a = hj;1i then �

e

(K; c(�; j)) = 0 and j =2 Q; c(�; j) =2 V , and d(�; j; s)

tends to in�nity as s does.

(vc) If a = hj; di then �

e

(K; c(�; j)) 6= V (c(j)) and d(�; j; s) is only reset �nitely

often.

(vd) If a = hj; fi, then �

e

(K; c(�; j)) is de�ned, equals V (c(j)) and d(�; j; s) is

reset only �nitely often.

These are all fairly straightforward and are veri�ed by simultaneous induction.

Let � � TP and let s

0

be a stage such that we are never again to the left of �, and

� is not initialized after s

0

.

We begin with (i). If req(�) is R

e

, then � is devoted to some subrequirement

attempting to produce a disagreement at some j in the R

e

tree below some �. Note

that all the �

0

in this tree work on the same T

�

. Now � only modi�es trees in

Subcase 2, where it deletes nodes, and rede�nes the tree. But whenever we do this

we pick � at the end of Subcase 3 much longer the next time. From this and the

induction hypothesis it follows that lim

s

T

�;s

= lim

s

T

�;s

exists stringwise. In the

case that req(�) = N

e

, we see that (i) follows immediately for � since we were

permitting, and only raise guesses.

To see that (ii) holds, after stage s

0

, we know that �

�

and � will not be initial-

ized, and that req(�

�

) = N

e

. If � = �

�b

1, then we only get to play � when we see

a new splitting (Case 1, Subcase 1), or there is a permitted action at some � � �.

In either case, the only places we will change M

s

will be on trees T

for � �, and

by induction, these will only involve strings of e guess �. Note that the same can

be said of the case � = �

�

b0 since we will not be to the left of � again.

Turning to (iii), we can suppose that there are in�nitely many �

�

-stages and all

of the above holds for �

�

. If req(�

�

) = N

e

, then we know � = �

�

b0 or � = �

�

b1.

In the former case, after some stage we will set a new count which is never exceeded.

(Otherwise, we would move left of �.) This means that T

�;s

is never again reset

and all the nodes on it are of guess � �

�

b0. Since (iii) holds for nodes � �

�

, it

follows that �

�

is given arbitrarily large numbers of strings of guess �

�

. These

strings constitute an in�nite collection with guess �

�

b0 = �. The case � = �

�

b1,

is similar, only there we know that in�nitely often we see further strings with guess

�

�

. We only need to argue that in�nitely often count(�

�

; s+ 1) is exceeded.

We remark that the same argument works for req(�

�

) = R

e

via the freezing

machinery in place of the count machinery. Thus a node is frozen and waits in

Subcase 3. The result now follows from (ii) and the induction hypothesis applied

to �

�

.

To establish (iv) and (v) we argue exactly as in the basic module. The trees T

�

for � � TP are not initialized after a certain stage s

0

. Let � be the top of an R

e

tree with � � TP . All its nodes � � � are devoted to R

e

and T

�

. Now the key

point is that for nodes in the R

e

-tree of the form �b(j) = �

j

, if d = d(j; �; s) is

de�ned, then whenever j leaves Q at stage s + 1 we will be able to cancel d via

Subcase 2 as there will be a permitted action at �

j

and hence s will either be a

19

genuine �

j

-stage, or s will be a �-stage for some � to the left of, or below �

j

. In

the latter case we will have picked d after we visited � and hence �'s action will

also move M

s

from extending the string corresponding to d at �

j

. The remaining

details are to do a routine case by case analysis of the subcases to show that our

construction mirrors the basic module, with the additional freezing delay put in

to ensure that � � � have enough strings to work with. These details are by and

large straightforward, and should probably be apparent now to the reader, but

we supply some as examples. First note that (va) holds since we only play the

outcome hj; ui when the K use of �

e

(K; c(�; j)) has been seen to increase. Since

�bhj; ui � TP , we know that c(�; j) reaches a limit and hence the fact that the

use increases in�nitely often implies that for the �nal c(�; j) the use is unbounded.

Similarly for (vb), we must have that �

e

(K; c(�; j)) equals 0. As with the basic

module, each time we unfreeze � we will get to assign d(�; j; s) corresponding to

the same c(�; j), and after this j will later leave Q, and hence (vb) follows since

then the �

e

use has �nite limit but fjg

D

s

(j) " by divergence. The other two cases

are similar. Finally, to see that (iv) holds, suppose that it fails. Then below � the

only nodes on the true path are ones of the form �ba with e(�) = e = e(�), and

a 2 f1; fg. We claim that K can compute Q. To see this once � will never again

be initialized, any c(�; j; s) once de�ned will be �xed unless the K-use of c(�; i; s)

changes for some i < j. We know that all such uses reach a limit so for each j,

some incarnation of c(�; j; s) is eventually �xed. Furthermore, note that since K

can �gure out if the use at c is �nal, K can �gure out if an incarnation of c(�; j)

is the �nal one. By induction, and the argument above we see that (vb) or (vd)

applies to all nodes on the true path above �. We can therefore apply the argument

of the basic module, and conclude that j 2 Q i� c(�; j) 2 V .

The argument that M is minimal is totally routine. To see that all the N

e

are

met, pick � on TP devoted to N

e

, and look at its outcomes. First, since � is only

initialized �nitely often, for almost all strings on T

�

, � will be able to raise guesses

at will. Because of this the standard argument will work. We leave the details to

the reader. �

We now immediately have the desired corollary showing that the range of the

jump operator on the minimal degrees below 0

0

cannot be characterized simply in

terms of the jump classes of degrees r.e. in and above 0

0

.

Corollary 2.3. If c > 0

0

is r.e. in 0

0

, then there is a minimal degree m < 0

0

such

that 0

0

<m

0

� c.

3. Some related results on minimal degrees.

We now sketch the proof of two related results on jumps of minimal degrees below

0

0

. We assume familiarity with the standard oracle construction of a minimal degree

below 0

0

introduced by Shoen�eld [1966] as in Lerman [1983, IX.2] (whose notation

we adopt below) and the diagonalization method introduced by Sasso [1974] using

what Lerman [1983, V.3] calls narrow trees to construct a minimal degree a < 0

0

with 0

0

< a

0

as in Lerman [1983, V.3 and IX.2.11]. We also assume familiarity with

the standard method of recursively approximating the answer to a �

B

1

question for

low B originally introduced in Robinson [1971] as in Soare [1987, XI.3]. We use

this method relativized to 0

0

.

20

Theorem 3.1. If c is r.e. in and above 0

0

and c

0

= 0

00

then (uniformly in the

information) there is a minimal degree a < 0

0

with a

0

6� c.

Proof (Sketch). We replace the nonrecursiveness requirements in the oracle con-

struction of a minimal degree a < 0

0

by ones to guarantee that �

i

(C) 6= A

0

. At

each stage s of the standard construction we would have a sequence of partial re-

cursive trees T

0;s

; : : : ; T

n

s

;s

such that T

i+1;s

is either Ext(T

i;s

; �), the full subtree

of T

i;s

above �, for some � or Sp(T

i;s

; i), the (partial recursive) i-splitting subtree

of T

i;s

. Instead, we now have a sequence in which T

2i+1;s

is either a full subtree of

T

2i;s

or Nar(Ext(T

2i;s

; �)), the narrow subtree of some full subtree of T

2i;s

. (The

narrow subtree of T is the tree which eliminates the right hand branches above all

nodes at odd levels of T . Nar(T)(�) = T (� � 0

n

) where n = lh(�).) Moreover,

T

2i+2;s

is either a full subtree of T

2i+1;s

or the i-splitting subtree of T

2i+1;s

.

It is easy to see that we can recursively in (the index for) T

2i;s

calculate an

x such that if A is on T

2i;s

then x 62 A

0

i� A is on T

2i+1;s

, the narrow subtree

of T

2i;s

. If, at stage s of our construction, we see that �

i

(C;x)[s] = 0 then we

would like to let T

2i+1;s+1

be some full subtree of T

2i;s

which forces A o� T

2i+1;s

such as Ext(T

2i+1;s

; 01). The problem is that, as the construction is recursive in

0

0

and C is only r.e. in 0

0

, this computation may prove false. We use the low

oracle approximation procedure to prevent us from acting in�nitely often for this

requirement.

At stage s we �rst rede�ne the trees T

0;s

; : : : ; T

n

s

;s

as in the standard construction

(to attempt to satisfy the minimality condition). We then see if there is a 2i < n

s

for

which we do not think we have satis�ed the requirement �

i

(C) 6= A

0

; �

i

(C;x) = 0[s]

where x is calculated from T

2i;s

as above; and our oracle approximation procedure

says that there is a stage with these properties at which the C computation is

actually correct. (If the approximation says \no" we speed up our enumeration

of C and the approximation until either we no longer have �

i

(C;x) = 0 or the

approximation says \yes.") If so, we let T

2i+1;s+1

be a full subtree of T

2i;s

(=

T

2i;s+1

) which forces A o� T

2i+1;s

. (As usual, n

s+1

= 2i + 1.) If not, we make no

additional changes in the trees to get the other T

i;s+1

.

The only new element of the veri�cation is the analysis of the e�ects of moving o�

the narrow subtrees. The lowness of C over 0

0

(and the recursion theorem relative

to K) guarantees that our K-recursive approximation is correct and so we act only

�nitely often to satisfy the requirement �

i

(C) 6= A

0

and we eventually C-correctly

satisfy it. As this action is �nite, the argument that the trees T

i;s

are eventually

constant and the minimality requirements are satis�ed proceeds as usual. �

A nonuniform version of the above result also follows from the following.

Theorem 3.2. There are minimal degrees a

0

; a

1

< 0

0

such that a

0

0

[a

0

1

= 0

00

.

Proof (Sketch). Simultaneously build two sets A

0

, A

1

of minimal degree as above

but use the narrow subtrees in each construction to code the �nal result of the

other in an interleaved way as in Simpson [1975]. Suppose the sequences of trees

for A

0

and A

1

at stage s are hT

0

0;s

; : : : ; T

0

n;s

i and hT

1

0;s

; : : : ; T

1

n

s

;s

i, respectively, and

�

j;s

= T

j

i

(�

i;j

; s) for j = 0; 1. We will also use the narrow subtrees to code ?

00

into

A

0

0

_ A

0

1

in place of diagonalization. At each stage s of our construction we will

have, for j = 0; 1, a sequence of (partial recursive) trees hT

j

0;s

; : : : ; T

j

n

s

;s

i and an

21

initial segment �

j;s

of A

j

with strings �

i;j;s

, i � n

s

, such that T

j

i;s

(�

i;j;s

) = �

j;s

.

In particular, �

n

s

;j;s

= ?. T

j

0;s

= id for every s while, for k � 0, T

j

2k+j+1;s

will

be either the k{splitting subtree of T

j

2k+j;s

or a full subtree of T

j

2k+j;s

. Alternating

with these trees, we will have ones T

j

2k+j+2;s

(k � 0) which will be narrow subtrees

of some full subtree of T

j

2k+j+1;s

.

At stage s, we �rst �nd the least k such that T

j

2k+j+1

is not de�ned at �

2k+j+1;s

�

01, (j = 0; 1). If there is an i < k enumerated in ?

00

at s, we record this fact by

forcing A

1

o� the narrow subtree of T

1

2i;s

. We let n

s+1

= 2i + 1 and T

1

2i+1;s+1

=

Nar(Ext(T

1

2i

; �

2i;1;s

� 01)). No other trees are changed.

If no i < k is enumerated in ?

00

at stage s and 2k+j+1 � n

s

, we let n

s+1

= 2k+

j + 1 and set T

j

n

s+1

;s+1

= Ext(T

j

2k+j;s

; �) where T

j

2k+j;s

(�) = T

j

2k+j+1

(�

2k+j+1

� 0)

and T

1�j

n

s+1

;s+1

= Ext(T

1�j

2k+j;s

; �

2k+j;s

� 01). All trees with smaller indices remain as

at stage s. In this case, we satisfy the kth minimality requirement for A

j

as there

are no k{splittings on T

j

2k+j;s+1

above �

j;s+1

. We also record the fact in A

1�j

that

we switched from a k{splitting subtree by forcing �

1�j;s+1

o� the narrow subtree

of T

1�j

2k+j;s+1

.

If no i < k is enumerated and 2k + j + 1 = n

s

+ 1 we extend our sequences of

trees by setting n

s+1

= n

s

+ 1 and

T

j

n

s

+1

= Nar(T

j

n

s

)

T

1�j

n

s

+1

= Sp(T

1�j

n;s

; k):

Clearly the number of times a tree T

j

i;s

is changed is �nite and so we can argue

as usual that the A

j

are of minimal degrees. We claim that we can compute ?

00

and recover the sequence (of indices for) T

j

i

= limT

j

i;s

from A

0

0

� A

0

1

. Suppose we

have T

0

0

; : : : ; T

0

2i

and T

1

s

; : : : ; T

1

2i

and have computed ?

00

� i and a stage s

2i

by

which all of these have settled down. We ask A

0

1

if A

1

is on Nar(T

1

2i

). If so, i =2 ?

00

,

T

0

2i+1

= Sp(T

0

2i

), T

1

2i+1

= Nar(T

1

2i

) and all have settled down by s

2i+1

= s

2i

. If

not, we wait for a stage s at which we forced A

1

o� Nar(T

1

2i

). At stage s, we set

T

1

2i+1;s

= Nar(Ext(T

1

2i

; �)) for some � (possibly ?). We again ask A

0

1

if A

1

is on

T

1

2i+1;s

. If so, T

j

2i+1

has reached its limit for j = 0; 1 as has ?

00

(i). If not, we �nd

s

0

> s at which we force A

1

o� T

1

2i+1;s

. As we can do this at most twice, we then

have T

j

2i+1;s

0

= T

j

2i+1

and ?

00

(i) = ?

00

s

0

(i). We can now �nd T

j

2i+2

by asking of A

0

0

if A

0

is on Nar(T

0

2i+1

). If so, T

j

2i+2

are already �xed and if not they become �xed

when we force A

0

o� Nar(T

0

2i+1

). �

References

Cooper, S. B., Minimal degrees and the jump operator, J. Symbolic Logic 38 (1973), 249{271.

Epstein, R. L.,Minimal degrees of unsolvability and the full approximation construction, Memoirs

AMS 162 (1975).

Friedberg, R. M., A criterion for completeness of degrees of unsolvability, J. Symbolic Logic 22

(1957), 159{160.

Jockusch, C. G. Jr. and Posner, D. B., Double jumps of minimal degrees, J. Symbolic Logic 43

(1978), 715{724.

22

Lerman, M., Degrees of unsolvability, Springer-Verlag, Berlin, 1983.

Posner, D. B., A survey of non-r.e. degrees � 0

0

, Recursion Theory: Its Generalizations and

Applications (Proc. Logic Colloquium 1979, Leeds, August 1979) (F. R. Drake and S. S.

Wainer, eds.), London Math. Soc. LNS 45, Cambridge University Press, Cambridge, England,

1980.

Robinson, R.W., Interpolation and embedding in the recursively enumerable degrees, Ann. of Math

(2) 93 (1971), 586{596.

Sacks, G. E., A minimal degree below 0

0

, Bull. AMS (N.S.) 67 (1961), 416{419.

, Recursive enumerability and the jump operator, Trans. AMS 108 (1963), 223{239.

, On the degrees less than 0

0

, Ann. Math. (2) 77 (1963), 211{231.

Sasso, L., A minimal degree not realizing the least possible jump, J. Symbolic Logic 34 (1974),

571{573.

Shoen�eld, J. R., On degrees of unsolvability, Ann. Math. (2) 69 (1959), 644{653.

, A theorem on minimal degrees, J. Symbolic Logic 31 (1966), 539{544.

, Degrees of Unsolvability, Math. Studies 2, North-Holland, Amsterdam, 1971.

Simpson, S.G., Minimal covers and hyperdegrees, Trans. AMS 209 (1975), 45-64.

Soare, R. I., Recursively Enumerable Sets, Springer-Verlag, Berlin, 1987.

Spector, C., On degrees of recursive unsolvability, Ann. Math. (2) 64 (1956), 581-592.

Yates, C. E. M., Initial segments of the degrees of unsolvability, Part II: Minimal degrees, J.

Symbolic Logic 35 (1970), 243{266.

, Prioric games and minimal degrees below 0

0

, Fund. Math. 82 (1974), 217{237.

Department of Mathematics, Victoria University of Wellington, Wellington,

New Zealand; Department of Mathematics, University of Wisconsin, Madison, WI

53706-1388, USA; Department of Mathematics, Cornell University, Ithaca, NY 14853-

7901, USA

E-mail address: downey@math.vuw.ac.nz; lempp@math.wisc.edu; shore@math.cornell.edu

23

