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Abstra
t. Szpilrajn's Theorem states that any partial order P = hS;<

P

i has a lin-

ear extension L = hS;<

L

i. This is a 
entral result in the theory of partial orderings,

allowing one to de�ne, for instan
e, the dimension of a partial ordering. It is now

natural to ask questions like \Does a well-partial ordering always have a well-ordered

linear extension?" Variations of Szpilrajn's Theorem state, for various (but not for

all) linear order types � , that if P does not 
ontain a sub
hain of order type � , then

we 
an 
hoose L so that L also does not 
ontain a sub
hain of order type � . In

parti
ular, a well-partial ordering always has a well-ordered extension.

We show that several e�e
tive versions of variations of Szpilrajn's Theorem fail,

and use this to narrow down their proof-theoreti
 strength in the spirit of reverse

mathemati
s.

1. Introdu
tion

The results of the present paper 
ome from a fruitful intera
tion of 
ombinatori
s

and logi
. The 
ontext of the investigations is the attempt to understand the

e�e
tive 
ontent and proof-theoreti
al 
ontent of 
lassi
al mathemati
s. Before we

dis
uss our results and their rami�
ations in detail, we give a brief outline of these

two programs.

The study of the e�e
tive 
ontent of mathemati
s is that part of the work of

mathemati
al logi
 that seeks to understand and 
lassify the underlying algorith-

mi
s inherent in mathemati
s. Up until the beginning of the 20th 
entury, vir-

tually all mathemati
s was algorithmi
, in the sense that if one 
laimed that a


ertain obje
t existed, one gave a 
omputable pro
edure to generate the obje
t.

It was Hilbert in his famous twenty-three problems who asked, essentially, if one
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ould build a ma
hine to generate all the theorems of, for example, Peano arith-

meti
. This 
onsideration gave rise to G�odel's powerful in
ompleteness theorems

and, indire
tly, to 
omputer s
ien
e through the work of Turing, von Neumann,

and others. Another 
lassi
al example of su
h questions was Dehn's [De12℄ word,


onjuga
y, and isomorphism problems in �nitely presented group theory, whi
h led

to the formation of the subje
t of 
ombinatorial group theory.

In su
h studies one asks questions like \If one is (
omputably) given a stru
-

ture A, does this guarantee that one 
an e�e
tively generate a related stru
ture B

of a parti
ular kind?" A pretty example 
an be obtained from the work of Rabin,

Fr�ohli
h and Shepherdson, and Metakides and Nerode. Rabin [Ra60℄ demonstrated

that if one is 
omputably given a �eld hF;�;+;

�1

; 0; 1i (so that F is a 
omputable

set 
oded by the natural numbers, upon whi
h the normal �eld operations are


omputable) then one 
an e�e
tively �nd a 
omputable algebrai
 
losure. Fr�ohli
h

and Shepherdson [FS56℄ showed that one 
an be given two 
omputable algebrai



losures of the same 
omputable �eld whi
h are not 
omputably the same. This is

interesting be
ause the usual method of generating algebrai
 
losures is to adjoin

roots, and this ne
essarily spe
i�es a unique 
omputable 
losure. So, in parti
u-

lar, Rabin's theorem must use a di�erent method of 
onstru
ting algebrai
 
losures.

Metakides and Nerode [MN79℄ explained the phenomenon by proving that a 
om-

putable �eld has a 
omputably unique 
omputable algebrai
 
losure iff it has a

(separable) splitting algorithm, whi
h means, roughly speaking, that a 
omputable

�eld has a 
omputably unique 
omputable algebrai
 
losure iff one 
an de
ide if

a given polynomial over the �eld is irredu
ible, and hen
e perform the usual root

adjoining pro
ess 
omputably.

What does all this tell us? Firstly, we see that there is a demonstrably di�erent

way of 
onstru
ting algebrai
 
losures. This is typi
al: Clarifying levels of e�e
-

tiveness involves far greater algebrai
 or analyti
 understanding of the stru
tures

under 
onsideration. Se
ondly, we obtain a pre
ise algorithmi
 equivalen
e between

two pro
esses: adjoining roots and 
onstru
ting isomorphisms. So, aside from the

intrinsi
 logi
al interest, we obtain signi�
ant insight into the 
lassi
al algebra. We

refer the reader to the Handbook of Re
ursive Mathemati
s [EGNR98℄ for more

details.

Hand in hand with the above line of resear
h is the attempt to understand the

proof-theoreti
al strength of theorems of 
lassi
al mathemati
s. One program here

is the \reverse mathemati
s" of Friedman and Simpson. The idea is to ask whether,

given a theorem, one 
an prove its equivalen
e to some axiomati
 system, with the

aim of determining what proof-theoreti
al resour
es are ne
essary for the theorems

of mathemati
s. (A very old example of this line of investigation is Eu
lid's question

of the ne
essity of the parallel axiom.)

One modern in
arnation of this type of analysis 
omes from the fragment of

mathemati
s living in se
ond-order arithmeti
. Se
ond-order arithmeti
 is a sys-

tem strong enough to en
ompass most of 
lassi
al mathemati
s. Its underlying

language is a two-sorted one with variables for numbers (x; y; z; :::) and for sets of

numbers (X;Y; :::) with the usual logi
al 
onne
tives and quanti�ers, together with

the normal Peano axioms for number variables (e.g. n+ 1 = m+ 1 ! m = n), the
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indu
tion s
heme

(0 2 X ^ 8x(x 2 X ! x+ 1 2 X)) ! 8n(n 2 X);

plus what are 
alled 
omprehension s
hemes, whi
h assert, roughly speaking, that

if we spe
ify an obje
t X by a formula ' of a parti
ular type, with X not o

urring

freely in ', then the obje
t exists. More formally, a 
omprehension s
heme for a


lass of formulas is the 
olle
tion of axioms stating that

9X8n(n 2 X $ '(n))

for ea
h formula ' in the given 
lass su
h that X does not o

ur freely in '.

The fundamental idea of reverse mathemati
s is to 
alibrate the proof-theoreti
al

strength of a 
lassi
al theorem by 
lassifying how mu
h 
omprehension is needed to

establish the existen
e of the stru
tures needed to prove the theorem. That is, we

\reverse" the theorem to derive some sort of 
omprehension s
heme. The 
alibrating

measure is that of the allowable \logi
al 
omplexity" of the ''s. Typi
ally, this


omplexity might be the allowable quanti�er depth and type of de�nition of '

when de�ned over some quanti�er-free formula, although other measures are used

as we will see below.

More pre
isely, a formula ' is 
alled �

0

0

, or �

0

0

, if it has no unbounded quanti�ers.

For example, the formula asserting the fa
t that \x is prime", i. e.,

Prime(x) � 8y � x8z � x(y � z = x! y = 1 _ z = 1);

is an example of a �

0

0

formula. We now adjoin unbounded quanti�ers and measure

the 
omplexity a

ording to the number of alternations of quanti�ers: we say that a

formula ' is �

0

n+1

iff there is a �

0

n

formula  su
h that '(x) holds iff 9y (x; y) and

similarly we de�ne �

0

n+1

with the roles of � and � reversed. Finally, a formula that

is both �

0

n

and �

0

n

is 
alled �

0

n

. The supers
ript \0" refers to the fa
t that there

are no set quanti�ers. Saying that a fun
tion is 
ontinuous is �

0

3

with the normal

�-Æ de�nition. If a formula is �

0

n

or �

0

n

for some n we say that it is arithmeti
al.

We obtain a similar hierar
hy if we allow set quanti�
ation by putting a supers
ript

\1" and measuring the number of alternations of set quanti�ers over an arithmeti-


al matrix. Thus, for instan
e, a formula ' of the form 9X8Y  (X;Y; n) with  

arithmeti
al is said to be �

1

2

, sin
e it begins existentially and has one alternation

of set quanti�ers.

After all these de�nitions we 
an formulate the reverse mathemati
s program

initiated by H. Friedman and Simpson. The goal of this program is to �nd the min-

imal \set-theoreti
al" axioms needed to prove theorems in \ordinary mathemati
s"

by �nding \set-theoreti
al" axioms in se
ond-order arithmeti
 whi
h not only prove

the theorem in \ordinary mathemati
s" but su
h that the theorem 
an also prove

the axioms (over some weaker axiom system, typi
ally the axiom system RCA

0

of

re
ursive (i. e., �

0

1

-)
omprehension, together with the basi
 axioms of a dis
retely

ordered semiring, as above, and �

0

1

-indu
tion, as we de�ne below.) In his address

to the International Congress of Mathemati
ians, Friedman [Fr74℄ identi�ed �ve
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systems of se
ond-order arithmeti
 spe
i�ed by starting with the basi
 axioms of a

dis
retely ordered semiring and the �

0

1

-indu
tion s
heme

('(0) ^ 8x('(x) ! '(x+ 1))) ! 8n('(n))

where ' is �

0

1

, and then 
lassifying the types of allowable 
omprehension. The

base system is 
alled RCA

0

and allows only �

0

1


omprehension. The next system,

WKL

0

, in
ludes the base system plus the 
omprehension s
heme whi
h says that

every in�nite binary tree has an in�nite bran
h. The third system, ACA

0

, allows

for 
omprehension of sets des
ribed by arithmeti
 formulas. The fourth, ATR

0

, is

slightly te
hni
al to state, but is equivalent to the statement that any two 
ountable

well-orderings are 
omparable. And, �nally, there is the system 
alled �

1

1

-CA

0

whi
h allows 
omprehension over �

1

1

formulas. (Naturally, there are other possible

systems su
h as �

1

2

-CA

0

, whi
h will, in fa
t, be relevant to our studies here.)

An important fa
t is that virtually all of 
lassi
al \non-set-theoreti
al" math-

emati
s 
an be 
arried out in �

1

1

-CA

0

. It is a remarkable fa
t that almost all of

the 
lassi
al theorems of mathemati
s are equivalent to one of the �ve 
omprehen-

sion s
hemes above. Pursuing our �eld example, we note that Friedman, Simp-

son, and Smith [FSS83℄ re-interpreted and extended the 
omputability results of

Rabin-Fr�ohli
h-Shepherdson-Metakides-Nerode mentioned above to show that the

statement \Every 
ountable �eld has an algebrai
 
losure" is provable in RCA

0

,

whereas the uniqueness of the 
losure is equivalent to WKL

0

.

The existen
e of a prime ideal in a 
ountable 
ommutative ring with 1 is equiv-

alent to WKL

0

, whereas the existen
e of a maximal ideal is equivalent to ACA

0

(again meaning that another 
onstru
tion of the prime ideal needs to be used than

the usual one, whi
h �rst uses Zorn's Lemma to 
onstru
t a maximal ideal and then

argues that it is prime). Finally, the existen
e of an Ulm resolution for a redu
ed

abelian p-group is equivalent to ATR

0

, and the existen
e of a de
omposition of a


ountable abelian group into a maximal divisible subgroup and a redu
ed group is

equivalent to �

1

1

-CA

0

. We refer the reader to Simpson [Si99℄ for more details.

Again we 
an ask \What is the point of all this?" At one level, we 
an men-

tion the greater insight one obtains from 
alibrating the pre
ise resour
es needed

to prove a theorem. We 
an, in some sense, quantify the intuition that some

theorems are \harder" then others. A beautiful example of this is the work on

\fast growing Ramsey fun
tions". One result in this area is the 
elebrated Paris-

Harrington version of the �nite Ramsey Theorem [PH77℄, whi
h is not provable

in Peano Arithmeti
. Here one shows that the theorem is equivalent to ACA

0

,

and hen
e although the theorem is 
on
erned only with �nite sets, any proof must

nevertheless use in�nite sets. An even more striking example of this phenomenon

is the work of Friedman, Robertson, and Seymour [FRS87℄, who proved that the

Graph Minor Theorem (even for graphs of bounded tree-width) is not provable in

�

1

1

-CA

0

and hen
e the very 
ompli
ated iterated minimal bad sequen
e arguments

are, in some sense, ne
essary. (A
tually, we remark that the original proof of the

Graph Minor Theorem for graphs of bounded tree-width used Friedman's version

of Kruskal's theorem with the \gap 
ondition", whi
h was spe
i�
ally designed

to 
onstru
t stronger in
ompletenesses in Peano Arithmeti
 as part of the reverse
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mathemati
al program, so that the metamathemati
al 
onsiderations had a huge


lassi
al spin-o�!)

Another use of reverse mathemati
s for 
lassi
al mathemati
s is in showing that

reasonable 
lassi�
ations are not possible, or at least determining the level that any


lassi�
ation must have. To make this more pre
ise, let us turn to the area of this

paper, in whi
h we will be analyzing extensions of partial orderings to linear ones.

Already, we know that this area should be full of metamathemati
al 
omplexities

be
ause of the work of Slaman and Woodin [SW98℄. They answered a question of

 Lo�s, who had asked for a 
lassi�
ation of those partial orderings with a dense linear

extension. They showed that the 
olle
tion is not Borel, that is, not �

1

1

, and hen
e

admits no reasonable 
lassi�
ation.

For the logi
ian, we remark that from a model-theoreti
 point of view, partial and

linear orderings are badly behaved: The existen
e of an in�nite 
hain ne
essarily

implies instability of the �rst-order theory. From a 
omputability-theoreti
 point

of view, however, partial and linear orderings are very interesting as they allow a

wide variety of 
odings (see, e. g., Downey [Do98℄).

In this paper, we prove some 
omputability-theoreti
 results, as well as some


orollaries for reverse mathemati
s, on partial and linear orderings.

The starting point of our investigations is

Szpilrajn's Theorem (Szpilrajn [Sz30℄). Any partial order P = hS;<

P

i has a

linear extension L = hS;<

L

i.

We note that Szpilrajn's Theorem is easily seen to be e�e
tive (see Downey

[Do98, Observation 6.1℄).

Given a property P of partial orderings, it is natural to ask whether P satisfying

property P implies that L 
an be 
hosen to satisfy property P as well. Call a linear

order type � extendible

1

if any partial order P = hS;<

P

i whi
h does not 
ontain

a sub
hain of order type � has a linear extension L = hS;<

L

i whi
h also does not


ontain a sub
hain of order type � .

The extendibility of various linear order types was studied extensively by Bonnet,

Corominas, Fra��ss�e, Jullien, and Pouzet in Fran
e, as well as independently by

Galvin, Kostinsky, and M
Kenzie in the United States. A 
omplete 
hara
terization

of the 
ountable extendible linear order types was obtained by Bonnet [Bo69℄.

In his thesis [Ju69℄, Jullien obtained a 
hara
terization of all 
ountable weakly

extendible linear order types � (i. e., those � su
h that any 
ountable partial ordering

P = hS;<

P

i not 
ontaining a 
hain of order type � 
an be extended to a linear

ordering L = hS;<

L

i not 
ontaining a 
hain of order type �). (Interestingly enough,

there are indeed 
ountable linear order types whi
h are weakly extendible but not

extendible, e. g., ! + 1.)

The easiest example of an in�nite extendible linear order type is !

�

(i. e., the

order type of ! under the reverse ordering). This is simply to say that any well-

founded partial ordering 
an be extended to a well-ordering. (Of 
ourse, by sym-

metry, this is equivalent to saying that ! is extendible.)

1

In the literature, this is sometimes referred to as \enfor
eable". Perhaps a better name might

be \omittable".
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By Bonnet [Bo69℄, and independently by Galvin and M
Kenzie (unpublished),

the 
ountable dense linear order type without endpoints, �, is also extendible: If we


all a partial ordering without a densely ordered linear 
hain s
attered, then \� is

extendible" simply means that any s
attered partial ordering 
an be extended to a

s
attered linear ordering. (We refer the reader to the survey papers by Bonnet and

Pouzet [BP82℄ and by Downey [Do98℄ for more ba
kground on linear extensions

of partial orderings, and on 
omputability-theoreti
 aspe
ts of linear orderings,

respe
tively.)

In the present paper, we analyze the extendibility of the order types !

�

, �, and

� (the order type of the integers) in 
omputability-theoreti
 and proof-theoreti


terms. In parti
ular, we study the extendibility of these three order types along the

lines of the program of reverse mathemati
s as outlined above. The axiom systems

we will use here are WKL

0

, ACA

0

, ATR

0

, and �

1

2

-CA

0

.

We note that there is a strong 
onne
tion between results in reverse mathemati
s

and e�e
tive versions of 
lassi
al theorems. E. g., loosely speaking, a 
lassi
al

theorem is provable in RCA

0

alone iff the 
lassi
al theorem holds e�e
tively. Sin
e,

in the below, we show that the extendibility of the three linear order types !

�

,

�, and � fails e�e
tively in a very strong sense, we establish lower bounds for the

proof-theoreti
 strength of their extendibility.

Consider �rst the extendibility of !

�

, i. e., the fa
t that, 
lassi
ally, any well-

founded partial ordering has a well-ordered linear extension. Surprisingly, this re-

sult holds e�e
tively if the partial ordering is assumed to be 
lassi
ally well-founded

(i. e., there is no in�nite des
ending sequen
e) by Rosenstein and Kierstead, but

not if the partial ordering is only assumed to be 
omputably well-founded (i. e.,

there is no 
omputable in�nite des
ending sequen
e) by Rosenstein and Statman.

On the other hand, by Rosenstein, any 
omputable, 
omputably well-founded par-

tial ordering has a 
omputably well-ordered linear extension whi
h is 
omputable

in 0

0

, the Turing degree of the halting problem. (See Rosenstein [Ro84℄ for all these

results, and Rosenstein [Ro82℄ for more ba
kground.)

We sharpen these results as follows:

Theorem 1. (1) \!

�

is extendible" is provable in ACA

0

.

(2) \!

�

is extendible" proves WKL

0

over RCA

0

.

(3) \!

�

is extendible" is not provable in WKL

0

.

The exa
t proof-theoreti
 strength of the extendibility of !

�

thus remains open.

We remark that the parti
ular proof of the extendibility of !

�

from ACA

0

whi
h

we present below reverses to ACA

0

.

Consider next the extendibility of �, i. e., the fa
t that, 
lassi
ally, any s
attered

partial ordering has a s
attered linear extension. By Rosenstein [Ro82, Ro84℄, any


omputable, 
omputably s
attered partial ordering has a 
omputably s
attered

linear extension whi
h is 
omputable in 0

0

.

Theorem 2. (1) \� is extendible" is provable in �

1

2

-CA

0

.

2

2

Upon hearing of our result, Howard Be
ker (personal 
ommuni
ation) has found a proof of

\� is extendible" from �

1

1

-CA

0

. We show below how our proof 
an be modi�ed to give Be
ker's

result.
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(2) \� is extendible" is not provable in WKL

0

.

In parti
ular, our proof of Theorem 2 answers long-standing open questions from

Rosenstein [Ro84℄ by the following

Theorem 2A. There is a 
lassi
ally s
attered, 
omputable partial ordering su
h

that every 
omputable linear extension has a 
omputable densely ordered sub
hain.

However, the exa
t proof-theoreti
 strength of the extendibility of � remains

open.

We �nally 
lassify pre
isely the proof-theoreti
 strength of the extendibility of �,

and add to the small 
olle
tion of 
lassi
al theorems equivalent to ATR

0

over RCA

0

:

Theorem 3. \� is extendible" is equivalent to ATR

0

over RCA

0

.

The rest of the paper is devoted to the proofs of these theorems. Hen
eforth,

we assume that the reader is familiar with the rudiments of reverse mathemati
s,

referring to Simpson [Si99℄ where ne
essary, and assume that the reader is familiar

with the rudiments of 
omputability theory, as found in an initial segment of Soare

[So86℄ or Rogers [Ro67℄.

2. The proof of Theorem 1

To prove part (1) of Theorem 1, simply observe that the proof of Kierstead and

Rosenstein [Ro84℄ (see also [Do98, p. 909℄) 
an be used: Fix a partial ordering

P = hN;<

P

i. (Note here that we may assume without loss of generality that the

universe of P is N , the set of integers in the sense of the model N of ACA

0

.) We

de�ne a linear extension L = hN;<

L

i by approximations L

s

= L � [0; s℄ as follows:

At stage 0, set L

0

= f0g. At stage s+ 1, �x the <

L

-least element a 2 L

s

su
h that

s+1 <

P

a and let s+1 be the immediate L

s+1

-prede
essor of a. (If a fails to exist,

make s + 1 the greatest element of L

s+1

. So the idea is to insert s + 1 into L

s

at

the rightmost pla
e 
onsistent with <

P

.)

Now suppose fa

s

g

s2N

is a <

L

-des
ending sequen
e (
oded in the model N ). By

Ramsey's Theorem, we may assume without loss of generality that fa

s

j s 2 Ng

is a <

P

-anti
hain. (Note that by Jo
kus
h [Jo72℄, Ramsey's Theorem 
an be used

inside the model N .) We may also assume that fa

s

g

s2N

is <-in
reasing (in the

usual ordering of N). We 
an now 
onstru
t (inside the model N ) a subsequen
e

fa

j

t

g

t2N

and a <

P

-des
ending sequen
e fb

t

g

t2N

with a

j

t+1

<

P

b

t

< a

j

t

for all t

as follows: Set a

j

0

= a

0

. Given t, and sin
e the a's form a <

P

-anti
hain, for ea
h

s > j

t

there is a (<-least) element d

s

with a

s

<

P

d

s

<

L

a

j

t

. By the 
onstru
tion

(sin
e we always pla
e elements \rightmost" in L), we have d

s

< a

j

t

. Among these

d

s

, �x the d <-least su
h that d = d

s

for N -in�nitely many s, and thin out the

sequen
e of a's to only 
ontain a

s

with d

s

= d for the de�nition of b

t

0

(t

0

> t). We

then set b

t

= d and a

j

t+1

= some a

s

<

P

d. Using the minimality in the 
hoi
e of

d, we 
an then argue that fb

t

g

t2N

is a <

P

-des
ending sequen
e, 
ontradi
ting the

wellfoundedness of P.

To prove part (2) of Theorem 1, note that the proof of Rosenstein and Statman

[Ro84℄ (see also [Do98, p. 910℄) 
an be adapted: Fix an in�nite tree T � 2

<!

(
oded
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in the model N of RCA

0

+ \!

�

is extendible"), and view it as partially ordered by

reverse in
lusion (whi
h we denote by <

P

). It now suÆ
es to show that any linear

extension <

L

of <

P

has an in�nite <

L

-des
ending 
hain, sin
e then \!

�

extendible"

implies that T has an in�nite <

P

-des
ending 
hain, i. e., an in�nite path.

So �x an arbitrary linear extension <

L

of <

P

. We de�ne an in�nite <

L

-

des
ending sequen
e f


s

g

s2N

as follows: Let 


0

be the root of T . Given s, let

C

s

= f


0

; : : : ; 


s

g, and let D

s

be the set of immediate T -su

essors (i. e., immediate

<

P

-prede
essors) of elements of C

s

. Then we let 


s+1

be the <

L

-maximal element

of D

s

� C

s

. It is now easy to 
he
k that the maximality 
ondition in the 
hoi
e of




s

ensures that they form a <

L

-des
ending sequen
e as desired.

To prove part (3) of Theorem 1, we will show that, given a sequen
e X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets, there is a 
omputable partial

ordering P = hS;<

P

i su
h that, for any in�nite <

P

-des
ending sequen
e f


n

g

n2N

,

there is some i su
h that X

i

�f


n

g

n2N


an 
ompute the halting set K; and su
h that

for any i, any X

i

-
omputable linear extension <

L

of <

P


ontains an in�nite <

L

-

des
ending 
hain Turing 
omputable in <

L

. Sin
e, by Jo
kus
h and Soare [JS72℄

and Simpson [Si99, Theorem VIII.2℄, there is a model of WKL

0

whose se
ond-order

part 
onsists of all sets in the Turing ideal generated by a sequen
e X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets (whi
h thus in parti
ular does not 
ontain

the halting set K), this implies that WKL

0

does not imply the extendibility of !

�

.

The 
onstru
tion of P is a �nite-injury priority argument. We 
onstru
t P as

the disjoint union of sub-partial orderings P

i;e

(for e; i 2 !) su
h that ea
h P

i;e

is

a 
onne
ted 
omponent of P (when viewed as a dire
ted graph). Ea
h P

i;e

will be

devoted to showing that if the eth binary X

i

-
omputable relation L

i;e

= L

X

i

e

is a

linear extension of <

P

then it has an in�nite des
ending sequen
e inside P

i;e

(the

domain of P

i;e

) whi
h is 
omputable in L

i;e

. At the same time, we have to show

that any in�nite <

P

-des
ending sequen
e inside P

i;e


an 
ompute the halting set K.

(Note here that any <

P

-des
ending sequen
e in P must be 
ompletely 
ontained

in a single P

i;e

.)

We 
an thus �x indi
es i and e and 
on
entrate on the 
onstru
tion of the

subordering P

i;e

. (The 
onstru
tions for the various i and e 
an be �t together

using a 
omputable partition of !. Sin
e if L

i;e

is not a linear extension of <

P

on P

i;e

, P

i;e

may turn out to be �nite, this 
omputable partition 
annot be �xed

beforehand but must be 
onstru
ted simultaneously with the 
omponents P

i;e

.)

Remark. Sin
e we are assuming that X

i

is low (uniformly in i), we may assume

that L

X

i

e

is either total (and thus 
an be approximated e�e
tively �a la Shoen�eld's

Limit Lemma), or else L

X

i

e

is �nite. For simpli
ity, we will suppress the details of

this approximation.

We will now 
onstru
t a partial ordering P su
h that

(1) if L

i;e

� P

i;e

is a linear extension <

L

of <

P

on P

i;e

, then we have an in�nite

L

i;e

-
omputable <

L

-des
ending sequen
e f


n

g

n2N

of elements of P

i;e

, and

(2) from the join of X

i

with any in�nite set of elements of P

i;e

, ea
h of whi
h

has in�nitely many elements <

P

-below it, we 
an 
ompute K.

We �rst illustrate our 
onstru
tion by showing how to 
ode whether 0 2 K into



R. G. DOWNEY, D. R. HIRSCHFELDT, S. LEMPP, D. R. SOLOMON 9

any in�nite <

P

-des
ending 
hain in P

i;e

while at the same time, 
omputably in

<

L

, �xing an element 


0

>

P

in�nitely many elements of P

i;e

. We start with seven

elements a; a

1

; a

2

; : : : ; a

6

, de
laring

a

3

<

P

a

2

<

P

a

1

<

P

a and a

6

<

P

a

5

<

P

a

4

<

P

a

with no other 
omparabilities. We 
all a

2

and a

5

the 0-
riti
al elements and wait

for L

i;e

to de
ide whether or not a

2

>

L

a

5

. If a

2

>

L

a

5

then we let a

1

be the �rst

element 


0

of our <

L

-des
ending 
hain, and we build the rest of P

i;e

in the <

P

-

interval (a

2

; a

1

) until 0 enters K; when 0 enters K then we swit
h to building the

rest of P

i;e

in the <

P

-interval (a

6

; a

5

). Symmetri
ally, if a

5

>

L

a

2

then we let a

4

be

the �rst element 


0

of our <

L

-des
ending 
hain, and we build the rest of P

i;e

in the

<

P

-interval (a

5

; a

4

) until 0 enters K; when 0 enters K then we swit
h to building

the rest of P

i;e

in the <

P

-interval (a

3

; a

2

). If <

L

eventually de
ides whether or not

a

2

>

L

a

5

, then, sin
e, if 0 2 K, we will eventually see 0 enter K, only one of the four

<

P

-intervals [a

2

; a

1

), [a

3

; a

2

), [a

5

; a

4

), and [a

6

; a

5

) will be in�nite (we will 
all this

<

P

-interval the 0-a
tive interval), and we will have put only elements <

L

-above

this <

P

-interval in our <

L

-des
ending 
hain. (If L

i;e

does not 
onverge on whether

or not a

2

>

L

a

5

then P

i;e

will be �nite.) Note that from <

L

we 
an 
ompute the

�rst element 


0

of our <

L

-des
ending 
hain. And any in�nite <

P

-des
ending 
hain

must 
ontain either elements �

P

a

1

or elements �

P

a

4

(but not both), and so

from this and the <

L

-ordering of the 0-
riti
al elements, we 
an 
ompute whether

0 2 K. (We note here that the de�nition of the spe
ial element 


0

does not 
hange

when 0 enters K, but the de�nition of the 0-
riti
al interval does. The same will

be true in the full 
onstru
tion in the next paragraph, and there the de�nition of

the n-
riti
al elements will also 
hange depending on what elements < n enter K.)

The full 
onstru
tion simply nests the above: The previous paragraph des
ribes

the de�nition of the 0-a
tive interval. Given the n-a
tive interval [b; 
), we 
reate

six new elements b

1

; : : : ; b

6

in it, de
laring

b

3

<

P

b

2

<

P

b

1

<

P

b and b

6

<

P

b

5

<

P

b

4

<

P

b

with no other 
omparabilities in the <

P

-interval [b; 
). We 
all b

2

and b

5

the (n+1)-


riti
al elements and wait for L

e;i

to de
ide whether or not b

2

>

L

b

5

. If b

2

>

L

b

5

then we let b

1

be the element 


n+1

of our <

L

-des
ending 
hain, and we build the

rest of the <

P

-interval [b; 
) in the <

P

-interval (b

2

; b

1

) until n+ 1 enters K; when

n + 1 enters K then we swit
h to building the rest of the <

P

-interval [b; 
) in the

<

P

-interval (b

6

; b

5

). Symmetri
ally, if b

5

>

L

b

2

then we let b

4

be the element 


n+1

of our <

L

-des
ending 
hain, and we build the rest of the <

P

-interval [b; 
) in the

<

P

-interval (b

5

; b

4

) until n + 1 enters K; when n + 1 enters K then we swit
h to

building the rest of the<

P

-interval [b; 
) in the<

P

-interval (b

3

; b

2

). If<

L

eventually

de
ides whether or not b

2

>

L

b

5

, then, sin
e, if n + 1 2 K, we will eventually see

n+1 enter K, only one of the four <

P

-intervals [b

2

; b

1

), [b

3

; b

2

), [b

5

; b

4

), and [b

6

; b

5

)

will be in�nite (we will 
all this <

P

-interval the (n + 1)-a
tive interval), and we

will have put only elements <

L

-above this <

P

-interval in our <

L

-des
ending 
hain.

(If L

i;e

does not 
onverge on whether b

2

>

L

b

5

then P

i;e

will be �nite.) Note again
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that from <

L

we 
an 
ompute the element 


n+1

of our <

L

-des
ending 
hain. And

any in�nite <

P

-des
ending 
hain must 
ontain either elements �

P

b

1

or elements

�

P

b

4

(but not both), and so from this and the <

L

-ordering of the (n+ 1)-
riti
al

elements, we 
an 
ompute whether n+ 1 2 K.

As mentioned in the Remark above, the above nested 
onstru
tion for ea
h n

is 
ontrolled by our 
omputable approximation of how <

L

orders the n-
riti
al

elements. If <

L

does not de
ide the ordering of the n-
riti
al elements, then P

i;e

will be �nite; otherwise, P

i;e

will be in�nite, and for ea
h n, we will eventually

settle on the 
orre
t n-a
tive interval (while making �nitely many mistakes before

then). In the latter 
ase, it is not hard to 
he
k that we are building an in�nite <

L

-


omputable <

L

-des
ending 
hain f


n

g

n2N

; and that any in�nite subset of elements

of P

i;e

, ea
h of whi
h has in�nitely many elements <

P

-below it, 
an 
ompute K

with an additional ora
le for <

L

, and thus a fortiori with an additional ora
le for

X

i

.

This 
on
ludes the proof of part (3) of Theorem 1.

3. The proof of Theorems 2 and 2A

To prove part (1)

3

of Theorem 2, simply observe that the proof of Bonnet and

Pouzet [BP69℄ (see also [BP82, p. 140℄) 
an be adapted here: Given a partial

ordering P = hP;<

P

i, we say an element a of P is <

P

-good if hP (�

P

a); <

P

i has

a s
attered linear extension; and >

P

-good if hP (�

P

a); <

P

i has a s
attered linear

extension. De�ne the �-kernel K(P) of P to be the set of all elements of P whi
h

are neither <

P

-good nor >

P

-good. (Here P (�

P

a) and P (�

P

a) are the sets of

elements of P below or above a, respe
tively.) It is now easy to 
he
k that

K(P) = fa 2 P j

8 linear extension � of hP (� a); <

P

i 9 �-
hain S (S is densely ordered)

and

8 linear extension � of hP (� a); <

P

i 9 �-
hain S (S is densely ordered)g:

So K(P) is �

1

2

-de�nable, and thus the �-kernel of any partial ordering P in our

model N of �

1

2

-CA

0

also exists in N .

We now observe that the 
olle
tion of <

P

-good elements, and the 
olle
tion of

>

P

-good elements, form an initial segment, or a �nal segment, of P, respe
tively.

We 
laim that �

1

2

-CA

0

proves P has a s
attered linear extension iff K(P) = ;.

First, if P has a s
attered linear extension, then by restri
tion, it is 
lear that every


one in P has a s
attered linear extension. Therefore, K(P) = ;. To establish the

other dire
tion, suppose that K(P) = ;. Then, for every a 2 P , either P (�

P

a) or

P (�

P

a) has a s
attered linear extension. Partition P into

X = fa 2 P j P (�

P

a) has a s
attered linear extensiong

3

At the end of the proof, we show how this proof 
an be modi�ed to give Be
ker's stronger

result that �

1

1

-CA

0

is suÆ
ient to prove the extendibility of �.
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and P nX. We use this de
omposition to build a s
attered linear extension of P.

First, we build a s
attered linear extension of (X;�

P

) by arithmeti
al re
ursion

over N . Let x

0

; x

1

; : : : be a list of the elements of X in <

N

-in
reasing order. By

�

1

2

-
hoi
e (whi
h is provable in �

1

2

-CA

0

, see [Si99, Se
tion VII.6℄), we 
an �x a

s
attered linear extension for ea
h 
one P (�

P

x

s

), s 2 N . Let X

s

= fp 2 P j p �

P

x

0

or � � � or p �

P

x

s

g � X. We de�ne L

0

to be the �xed s
attered linear extension

of X

0

. Assume that we have a s
attered linear extension L

s

of X

s

. If x

s+1

2 X

s

,

then let L

s+1

= L

s

. Otherwise, let Z = P (�

P

x

s+1

)nX

s

, and �x a s
attered linear

extension L

Z

of Z by restri
ting the s
attered extension of P (�

P

x

s+1

). Let L

s+1

be the linear extension of X

s+1

whi
h agrees with L

s

on X

s

, agrees with L

Z

on

Z, and pla
es elements in Z above everything from X

s

. L

s+1

is a s
attered linear

extension of X

s+1

whi
h is an end-extension of L

s

. Combining these orders, [L

s

is a s
attered linear extension of X.

It remains to handle P n X. We list these elements as y

0

; y

1

; : : : and let Y

s

=

fp 2 P j y

0

�

p

p or � � � or y

s

�

P

pg. We use a similar 
onstru
tion to the one

above to build linear extensions L

0

s

of Y

s

su
h that L

0

s+1

extends L

0

s

downwards.

We 
ombine [L

s

with [L

0

s

by pla
ing all elements of P nX above all elements of

X. This gives a s
attered linear extension of P , and �nishes the 
laim that P has

a s
attered linear extension if and only if K(P) = ;.

We 
an now prove the extendibility of � from �

1

2

-CA

0

as follows: Fix a partial

ordering P and assume that it does not have a s
attered linear extension. Add to

P a new least and a new greatest element, x

0

and x

1

, respe
tively. Let D = f

m

2

n

j

0 � m � 2

n

and n 2 !g be the set of dyadi
 rationals in [0; 1℄. By indu
tion, we

will now 
onstru
t a subset X = fx

d

j d 2 D \ (0; 1)g of P su
h that x

d

<

P

x

e

iff

d < e; so X is a dense subset of P as desired. Suppose x

d

has been de�ned for all

indi
es with denominator < 2

n

, and �x d =

m

2

n

2 D with m odd. By indu
tion,

the P-interval [x

m�1

2

n

; x

m+1

2

n

℄ has no s
attered linear extension, so we 
an 
hoose

an element x

d

in its �-kernel K([x

m�1

2

n

; x

m+1

2

n

℄). By the de�nition of �-kernel, the

intervals [x

m�1

2

n

; x

d

℄ and [x

d

; x

m+1

2

n

℄ have no s
attered linear extension, and so the

indu
tion 
an 
ontinue.

4

4

Be
ker's proof modi�es ours as follows: Note that our proof has two parts: (i) Any partial

ordering P has a s
attered linear extension if and only if the �-kernel of P is nonempty. (ii) If

the kernel is nonempty then P is not s
attered. Now (i) 
an a
tually be shown within ATR

0

in the following version: (i

0

) Any partial ordering P has a s
attered linear extension whi
h is

hyperarithmeti
al in P i� there is no a 2 P whi
h is neither <

P

-good nor >

P

-good, where now

an element a is <

P

-good (or >

P

-good, respe
tively) if hP (�

P

a); <

P

i (or hP (�

P

a); <

P

i) has

a s
attered linear extension hyperarithmeti
al in P. Then the sets of <

P

-good (or >

P

-good,

respe
tively) elements are �

1

1

-de�nable in P, and our set X above 
an be 
hosen �

1

1

in P by

�

1

1

-Separation (or more pre
isely, by �

1

1

-Redu
tion, see Simpson [Si99, V.5.1℄) and su
h that

X is downward 
losed and 
ontains only <

P

-good elements, whereas P � X 
ontains only >

P

-

good elements. By the Kreisel Sele
tion Theorem (see [Si99, VIII.4.7℄), there are now fun
tions

f : X ! N and g : P �X ! N (whi
h are �

1

1

in P) su
h that for all a 2 X, f(a) is the index

of a s
attered linear extension of hP (�

P

a); <

P

i hyperarithmeti
al in P, and for all a 2 P �X,

g(a) is the index of a s
attered linear extension of hP (�

P

a); <

P

i hyperarithmeti
al in P. Now

pro
eed as in our proof above to obtain the linear extension hyperarithmeti
al in P using X, f

and g. Part (ii) 
an be shown within �

1

1

-CA

0

as in our original proof.
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To prove part (2) of Theorem 2 as well as Theorem 2A, we will show that,

given a sequen
e X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets, there is a


omputable partial ordering P = hS;<

P

i whi
h is 
lassi
ally s
attered (i. e., there

is no densely ordered <

P

-sub
hain of any 
omplexity) su
h that for any i, any

X

i

-
omputable linear extension <

L

of <

P


ontains a densely ordered <

L

-sub
hain

Turing 
omputable in <

L

. Again, sin
e, by Jo
kus
h and Soare [JS72℄ and Simpson

[Si99, VIII.2℄, there is a model of WKL

0

whose se
ond-order part 
onsists of all sets

in the Turing ideal generated by a sequen
e X

0

�

T

X

1

�

T

: : : of uniformly low,

uniformly �

0

2

-sets, this implies that WKL

0

does not imply the extendibility of �.

The 
onstru
tion of P is again a �nite-injury priority argument. We 
onstru
t P

as the disjoint union of sub-partial orderings P

i;e

(for e; i 2 !) su
h that ea
h P

i;e

is a 
onne
ted 
omponent of P (when viewed as a dire
ted graph). Ea
h P

i;e

will

be devoted to showing that if the eth binary X

i

-
omputable relation L

i;e

= L

X

i

e

is

a linear extension <

L

of <

P

then it has a densely ordered <

L

-sub
hain inside P

i;e

whi
h is 
omputable in L

i;e

. At the same time, we have to show that there is no

densely ordered <

P

-sub
hain inside P

i;e

. (Note here that any <

P

-sub
hain in P

must be 
ompletely 
ontained in a single P

i;e

.)

We 
an thus �x indi
es i and e and 
on
entrate on the 
onstru
tion of the

subordering P

i;e

. (The 
onstru
tions for the various i and e 
an be �t together

using a 
omputable partition of !. Sin
e if L

i;e

is not a linear extension of <

P

on P

i;e

, P

i;e

may turn out to be �nite, this 
omputable partition 
annot be �xed

beforehand but must be 
onstru
ted simultaneously with the 
omponents P

i;e

.)

The Remark in the proof of part (3) of Theorem 1 also applies here verbatim.

We will now 
onstru
t a partial ordering P su
h that

(1) if L

i;e

� P

i;e

is a linear extension <

L

of <

P

on P

i;e

, then we have an L

i;e

-


omputable densely ordered <

L

-sub
hain C in P

i;e

, and

(2) for any element x of P

i;e

, there are either only �nitely many elements >

P

x,

or only �nitely many elements <

P

x.

We �rst illustrate our 
onstru
tion by showing how to perform a single step:

We start with three <

P

-in
omparable elements a

0

, a

1

and a

2

, 
alling them the

0-
riti
al elements, and wait for L

i;e

to de
ide the <

L

-ordering on these three

elements. Possibly relabeling them, we will assume a

0

<

L

a

1

<

L

a

2

. We then

pla
e a

1

into C and 
all the interval (�1; a

0

) and the interval (a

2

;1) the 0-a
tive

intervals. (If L

i;e

does not 
onverge on the ordering of a

0

, a

1

, and a

2

then P

i;e

will

be �nite.) Note that from <

L

we 
an 
ompute the �rst element of C. And among

the elements a

0

, a

1

, and a

2

, at most one is <

P

-
omparable to any element of the

0-a
tive intervals.

The full 
onstru
tion simply nests the above: The previous paragraph des
ribes

the de�nition of the 0-a
tive intervals. Given an n-a
tive <

P

-interval (b; 
), we


reate three new pairwise in
omparable elements b

0

, b

1

, and b

2

in (b; 
), 
alling

them the (n+ 1)-
riti
al elements, and wait for L

e;i

to de
ide the <

L

-ordering on

these three elements. Possibly relabeling them, we will assume b

0

<

L

b

1

<

L

b

2

. We

then pla
e b

1

into C and 
all the interval (b; b

0

) and the interval (b

2

; 
) (n+1)-a
tive

intervals. (If L

i;e

does not 
onverge on the ordering of b

0

, b

1

, and b

2

then P

i;e

will

be �nite.) Note that from <

L

we 
an 
ompute the �rst element of C in the interval
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(b; 
). And among the elements b

0

, b

1

, and b

2

, at most one is <

P

-
omparable to

any element of the (n+ 1)-a
tive intervals.

As mentioned in the Remark above, the above nested 
onstru
tion for ea
h n

is 
ontrolled by our 
omputable approximation of how <

L

orders the n-
riti
al

elements. If <

L

does not de
ide the ordering of the n-
riti
al elements, then P

i;e

will be �nite; otherwise, P

i;e

will be in�nite, and for ea
h n, we will eventually settle

on the 
orre
t n-a
tive intervals (while making �nitely many mistakes before then).

In the latter 
ase, it is not hard to 
he
k that we are building a <

L

-
omputable

densely <

L

-ordered 
hain; and that for any element x of P

i;e

, there are either only

�nitely many elements >

P

x, or only �nitely many elements <

P

x.

This 
on
ludes the proof of part (2) of Theorem 2.

4. The proof of Theorem 3

To prove that ATR

0

implies the extendibility of �, observe that the proof of

Jullien [Ju69℄ (see also [BP82, p. 141℄, note a typo there: !+!

�

should be !

�

+!,

i. e., �) 
an be adapted here: Fix a partial ordering P = hS;<

P

i without any

sub
hain (in our model N of ATR

0

) of order type �. Call an element a of P

<

P

-good if hP (�

P

a); <

P

i 
ontains no sub
hain of order type !

�

; and >

P

-good if

hP (�

P

a); <

P

i 
ontains no sub
hain of order type !. By our assumption on P, any

element of P is either <

P

-good or >

P

-good. Sin
e <

P

-goodness and >

P

-goodness

are both �

1

1

-de�nable, our model N of ATR

0


ontains a set S by �

1

1

-separation

su
h that any element of S is <

P

-good, and any element of P �S is >

P

-good. (We

use here that ATR

0

is equivalent to �

1

1

-separation (see Simpson [Si99, Theorem

V.5.1℄).)

Sin
e the set of <

P

-good elements is downward 
losed in P, we may assume that

S is downward 
losed in P. Now, by part (1) of Theorem 1, ACA

0

(and thus a

fortiori ATR

0

) proves the extendibility of ! and !

�

; so we 
an �x linear extensions

<

L

1

and <

L

2

of S and P � S, respe
tively, whi
h have no sub
hains of order type

!

�

and !, respe
tively. We 
an now pat
h <

L

1

and <

L

2

together (by pla
ing the

elements of S left of the elements of P � S) to obtain a linear extension <

L

of P

without a sub
hain of order type �.

We now establish the other dire
tion of the proof of Theorem 3 by two 
laims:

Claim 1. RCA

0

and the extendibility of � imply ACA

0

.

Claim 2. ACA

0

and the extendibility of � imply ATR

0

.

Proof of Claim 1. Fix a model N of RCA

0

+ \� is extendible" and an inje
tive

fun
tion f : N ! N in this model. In order to establish ACA

0

, we must show

that the range of f is in this model (see Simpson [Si99, Lemma III.1.3℄). Constru
t

a partial ordering P in N with distinguished elements a

n

and b

n

(for n 2 N) as

follows: If n is not in the range of f then a

n

is the �rst element of an !-
hain,

and b

n

is the last element of an !

�

-
hain in P. If n = f(m) then a

n

is the mth

element from the end of an !

�

-
hain, and b

n

is the mth element of an !-
hain in

P. Sin
e all a

n

and b

n

are in di�erent 
onne
ted 
omponents of P (when viewed

as a dire
ted graph), P 
ontains no �-
hain, so we 
an �x a linear extension <

L
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without a �-
hain. But then n is in the range of f iff b

n

<

L

a

n

, the range of f is in

the model N as desired.

Proof of Claim 2. We use again that ATR

0

is equivalent to �

1

1

-separation. Fix

a model N of ACA

0

+ \� is extendible" and two disjoint sets S

0

; S

1

� N whi
h

are �

1

1

-de�nable over this model. We will separate S

0

and S

1

as follows: Fix two

sequen
es of trees L

0

n

and L

1

n

su
h that for all i < 2 and n 2 N , n 2 S

i

iff L

i

n

is not well-founded. (Su
h sequen
es exist within N ; see Simpson [Si99, Theorem

V.1.8℄.) Constru
t a partial ordering P in N with distinguished elements a

n

and

b

n

(for n 2 N) as follows:

(1) P(<

P

a

n

) is isomorphi
 to L

0

n

,

(2) P(>

P

a

n

) is isomorphi
 to (L

1

n

)

�

,

(3) P(<

P

b

n

) is isomorphi
 to L

1

n

, and

(4) P(>

P

b

n

) is isomorphi
 to (L

0

n

)

�

,

(where L

�

denotes L under the reverse ordering). Sin
e all a

n

and b

n

are in di�erent


onne
ted 
omponents of P (when viewed as a dire
ted graph) and sin
e for ea
h n,

at most one of L

0

n

and L

1

n

is not well-founded, we have that P 
ontains no �-
hain;

so we 
an �x a linear extension <

L

without a �-
hain. But then fn 2 N j b

n

<

L

a

n

g

is in the model N and separates S

0

and S

1

as desired.
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