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Abstrat. Szpilrajn's Theorem states that any partial order P = hS;<

P

i has a lin-

ear extension L = hS;<

L

i. This is a entral result in the theory of partial orderings,

allowing one to de�ne, for instane, the dimension of a partial ordering. It is now

natural to ask questions like \Does a well-partial ordering always have a well-ordered

linear extension?" Variations of Szpilrajn's Theorem state, for various (but not for

all) linear order types � , that if P does not ontain a subhain of order type � , then

we an hoose L so that L also does not ontain a subhain of order type � . In

partiular, a well-partial ordering always has a well-ordered extension.

We show that several e�etive versions of variations of Szpilrajn's Theorem fail,

and use this to narrow down their proof-theoreti strength in the spirit of reverse

mathematis.

1. Introdution

The results of the present paper ome from a fruitful interation of ombinatoris

and logi. The ontext of the investigations is the attempt to understand the

e�etive ontent and proof-theoretial ontent of lassial mathematis. Before we

disuss our results and their rami�ations in detail, we give a brief outline of these

two programs.

The study of the e�etive ontent of mathematis is that part of the work of

mathematial logi that seeks to understand and lassify the underlying algorith-

mis inherent in mathematis. Up until the beginning of the 20th entury, vir-

tually all mathematis was algorithmi, in the sense that if one laimed that a

ertain objet existed, one gave a omputable proedure to generate the objet.

It was Hilbert in his famous twenty-three problems who asked, essentially, if one
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2 COMPUTABILITY- AND PROOF-THEORETIC ASPECTS OF ORDERINGS

ould build a mahine to generate all the theorems of, for example, Peano arith-

meti. This onsideration gave rise to G�odel's powerful inompleteness theorems

and, indiretly, to omputer siene through the work of Turing, von Neumann,

and others. Another lassial example of suh questions was Dehn's [De12℄ word,

onjugay, and isomorphism problems in �nitely presented group theory, whih led

to the formation of the subjet of ombinatorial group theory.

In suh studies one asks questions like \If one is (omputably) given a stru-

ture A, does this guarantee that one an e�etively generate a related struture B

of a partiular kind?" A pretty example an be obtained from the work of Rabin,

Fr�ohlih and Shepherdson, and Metakides and Nerode. Rabin [Ra60℄ demonstrated

that if one is omputably given a �eld hF;�;+;

�1

; 0; 1i (so that F is a omputable

set oded by the natural numbers, upon whih the normal �eld operations are

omputable) then one an e�etively �nd a omputable algebrai losure. Fr�ohlih

and Shepherdson [FS56℄ showed that one an be given two omputable algebrai

losures of the same omputable �eld whih are not omputably the same. This is

interesting beause the usual method of generating algebrai losures is to adjoin

roots, and this neessarily spei�es a unique omputable losure. So, in partiu-

lar, Rabin's theorem must use a di�erent method of onstruting algebrai losures.

Metakides and Nerode [MN79℄ explained the phenomenon by proving that a om-

putable �eld has a omputably unique omputable algebrai losure iff it has a

(separable) splitting algorithm, whih means, roughly speaking, that a omputable

�eld has a omputably unique omputable algebrai losure iff one an deide if

a given polynomial over the �eld is irreduible, and hene perform the usual root

adjoining proess omputably.

What does all this tell us? Firstly, we see that there is a demonstrably di�erent

way of onstruting algebrai losures. This is typial: Clarifying levels of e�e-

tiveness involves far greater algebrai or analyti understanding of the strutures

under onsideration. Seondly, we obtain a preise algorithmi equivalene between

two proesses: adjoining roots and onstruting isomorphisms. So, aside from the

intrinsi logial interest, we obtain signi�ant insight into the lassial algebra. We

refer the reader to the Handbook of Reursive Mathematis [EGNR98℄ for more

details.

Hand in hand with the above line of researh is the attempt to understand the

proof-theoretial strength of theorems of lassial mathematis. One program here

is the \reverse mathematis" of Friedman and Simpson. The idea is to ask whether,

given a theorem, one an prove its equivalene to some axiomati system, with the

aim of determining what proof-theoretial resoures are neessary for the theorems

of mathematis. (A very old example of this line of investigation is Eulid's question

of the neessity of the parallel axiom.)

One modern inarnation of this type of analysis omes from the fragment of

mathematis living in seond-order arithmeti. Seond-order arithmeti is a sys-

tem strong enough to enompass most of lassial mathematis. Its underlying

language is a two-sorted one with variables for numbers (x; y; z; :::) and for sets of

numbers (X;Y; :::) with the usual logial onnetives and quanti�ers, together with

the normal Peano axioms for number variables (e.g. n+ 1 = m+ 1 ! m = n), the
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indution sheme

(0 2 X ^ 8x(x 2 X ! x+ 1 2 X)) ! 8n(n 2 X);

plus what are alled omprehension shemes, whih assert, roughly speaking, that

if we speify an objet X by a formula ' of a partiular type, with X not ourring

freely in ', then the objet exists. More formally, a omprehension sheme for a

lass of formulas is the olletion of axioms stating that

9X8n(n 2 X $ '(n))

for eah formula ' in the given lass suh that X does not our freely in '.

The fundamental idea of reverse mathematis is to alibrate the proof-theoretial

strength of a lassial theorem by lassifying how muh omprehension is needed to

establish the existene of the strutures needed to prove the theorem. That is, we

\reverse" the theorem to derive some sort of omprehension sheme. The alibrating

measure is that of the allowable \logial omplexity" of the ''s. Typially, this

omplexity might be the allowable quanti�er depth and type of de�nition of '

when de�ned over some quanti�er-free formula, although other measures are used

as we will see below.

More preisely, a formula ' is alled �

0

0

, or �

0

0

, if it has no unbounded quanti�ers.

For example, the formula asserting the fat that \x is prime", i. e.,

Prime(x) � 8y � x8z � x(y � z = x! y = 1 _ z = 1);

is an example of a �

0

0

formula. We now adjoin unbounded quanti�ers and measure

the omplexity aording to the number of alternations of quanti�ers: we say that a

formula ' is �

0

n+1

iff there is a �

0

n

formula  suh that '(x) holds iff 9y (x; y) and

similarly we de�ne �

0

n+1

with the roles of � and � reversed. Finally, a formula that

is both �

0

n

and �

0

n

is alled �

0

n

. The supersript \0" refers to the fat that there

are no set quanti�ers. Saying that a funtion is ontinuous is �

0

3

with the normal

�-Æ de�nition. If a formula is �

0

n

or �

0

n

for some n we say that it is arithmetial.

We obtain a similar hierarhy if we allow set quanti�ation by putting a supersript

\1" and measuring the number of alternations of set quanti�ers over an arithmeti-

al matrix. Thus, for instane, a formula ' of the form 9X8Y  (X;Y; n) with  

arithmetial is said to be �

1

2

, sine it begins existentially and has one alternation

of set quanti�ers.

After all these de�nitions we an formulate the reverse mathematis program

initiated by H. Friedman and Simpson. The goal of this program is to �nd the min-

imal \set-theoretial" axioms needed to prove theorems in \ordinary mathematis"

by �nding \set-theoretial" axioms in seond-order arithmeti whih not only prove

the theorem in \ordinary mathematis" but suh that the theorem an also prove

the axioms (over some weaker axiom system, typially the axiom system RCA

0

of

reursive (i. e., �

0

1

-)omprehension, together with the basi axioms of a disretely

ordered semiring, as above, and �

0

1

-indution, as we de�ne below.) In his address

to the International Congress of Mathematiians, Friedman [Fr74℄ identi�ed �ve
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systems of seond-order arithmeti spei�ed by starting with the basi axioms of a

disretely ordered semiring and the �

0

1

-indution sheme

('(0) ^ 8x('(x) ! '(x+ 1))) ! 8n('(n))

where ' is �

0

1

, and then lassifying the types of allowable omprehension. The

base system is alled RCA

0

and allows only �

0

1

omprehension. The next system,

WKL

0

, inludes the base system plus the omprehension sheme whih says that

every in�nite binary tree has an in�nite branh. The third system, ACA

0

, allows

for omprehension of sets desribed by arithmeti formulas. The fourth, ATR

0

, is

slightly tehnial to state, but is equivalent to the statement that any two ountable

well-orderings are omparable. And, �nally, there is the system alled �

1

1

-CA

0

whih allows omprehension over �

1

1

formulas. (Naturally, there are other possible

systems suh as �

1

2

-CA

0

, whih will, in fat, be relevant to our studies here.)

An important fat is that virtually all of lassial \non-set-theoretial" math-

ematis an be arried out in �

1

1

-CA

0

. It is a remarkable fat that almost all of

the lassial theorems of mathematis are equivalent to one of the �ve omprehen-

sion shemes above. Pursuing our �eld example, we note that Friedman, Simp-

son, and Smith [FSS83℄ re-interpreted and extended the omputability results of

Rabin-Fr�ohlih-Shepherdson-Metakides-Nerode mentioned above to show that the

statement \Every ountable �eld has an algebrai losure" is provable in RCA

0

,

whereas the uniqueness of the losure is equivalent to WKL

0

.

The existene of a prime ideal in a ountable ommutative ring with 1 is equiv-

alent to WKL

0

, whereas the existene of a maximal ideal is equivalent to ACA

0

(again meaning that another onstrution of the prime ideal needs to be used than

the usual one, whih �rst uses Zorn's Lemma to onstrut a maximal ideal and then

argues that it is prime). Finally, the existene of an Ulm resolution for a redued

abelian p-group is equivalent to ATR

0

, and the existene of a deomposition of a

ountable abelian group into a maximal divisible subgroup and a redued group is

equivalent to �

1

1

-CA

0

. We refer the reader to Simpson [Si99℄ for more details.

Again we an ask \What is the point of all this?" At one level, we an men-

tion the greater insight one obtains from alibrating the preise resoures needed

to prove a theorem. We an, in some sense, quantify the intuition that some

theorems are \harder" then others. A beautiful example of this is the work on

\fast growing Ramsey funtions". One result in this area is the elebrated Paris-

Harrington version of the �nite Ramsey Theorem [PH77℄, whih is not provable

in Peano Arithmeti. Here one shows that the theorem is equivalent to ACA

0

,

and hene although the theorem is onerned only with �nite sets, any proof must

nevertheless use in�nite sets. An even more striking example of this phenomenon

is the work of Friedman, Robertson, and Seymour [FRS87℄, who proved that the

Graph Minor Theorem (even for graphs of bounded tree-width) is not provable in

�

1

1

-CA

0

and hene the very ompliated iterated minimal bad sequene arguments

are, in some sense, neessary. (Atually, we remark that the original proof of the

Graph Minor Theorem for graphs of bounded tree-width used Friedman's version

of Kruskal's theorem with the \gap ondition", whih was spei�ally designed

to onstrut stronger inompletenesses in Peano Arithmeti as part of the reverse
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mathematial program, so that the metamathematial onsiderations had a huge

lassial spin-o�!)

Another use of reverse mathematis for lassial mathematis is in showing that

reasonable lassi�ations are not possible, or at least determining the level that any

lassi�ation must have. To make this more preise, let us turn to the area of this

paper, in whih we will be analyzing extensions of partial orderings to linear ones.

Already, we know that this area should be full of metamathematial omplexities

beause of the work of Slaman and Woodin [SW98℄. They answered a question of

 Lo�s, who had asked for a lassi�ation of those partial orderings with a dense linear

extension. They showed that the olletion is not Borel, that is, not �

1

1

, and hene

admits no reasonable lassi�ation.

For the logiian, we remark that from a model-theoreti point of view, partial and

linear orderings are badly behaved: The existene of an in�nite hain neessarily

implies instability of the �rst-order theory. From a omputability-theoreti point

of view, however, partial and linear orderings are very interesting as they allow a

wide variety of odings (see, e. g., Downey [Do98℄).

In this paper, we prove some omputability-theoreti results, as well as some

orollaries for reverse mathematis, on partial and linear orderings.

The starting point of our investigations is

Szpilrajn's Theorem (Szpilrajn [Sz30℄). Any partial order P = hS;<

P

i has a

linear extension L = hS;<

L

i.

We note that Szpilrajn's Theorem is easily seen to be e�etive (see Downey

[Do98, Observation 6.1℄).

Given a property P of partial orderings, it is natural to ask whether P satisfying

property P implies that L an be hosen to satisfy property P as well. Call a linear

order type � extendible

1

if any partial order P = hS;<

P

i whih does not ontain

a subhain of order type � has a linear extension L = hS;<

L

i whih also does not

ontain a subhain of order type � .

The extendibility of various linear order types was studied extensively by Bonnet,

Corominas, Fra��ss�e, Jullien, and Pouzet in Frane, as well as independently by

Galvin, Kostinsky, and MKenzie in the United States. A omplete haraterization

of the ountable extendible linear order types was obtained by Bonnet [Bo69℄.

In his thesis [Ju69℄, Jullien obtained a haraterization of all ountable weakly

extendible linear order types � (i. e., those � suh that any ountable partial ordering

P = hS;<

P

i not ontaining a hain of order type � an be extended to a linear

ordering L = hS;<

L

i not ontaining a hain of order type �). (Interestingly enough,

there are indeed ountable linear order types whih are weakly extendible but not

extendible, e. g., ! + 1.)

The easiest example of an in�nite extendible linear order type is !

�

(i. e., the

order type of ! under the reverse ordering). This is simply to say that any well-

founded partial ordering an be extended to a well-ordering. (Of ourse, by sym-

metry, this is equivalent to saying that ! is extendible.)

1

In the literature, this is sometimes referred to as \enforeable". Perhaps a better name might

be \omittable".
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By Bonnet [Bo69℄, and independently by Galvin and MKenzie (unpublished),

the ountable dense linear order type without endpoints, �, is also extendible: If we

all a partial ordering without a densely ordered linear hain sattered, then \� is

extendible" simply means that any sattered partial ordering an be extended to a

sattered linear ordering. (We refer the reader to the survey papers by Bonnet and

Pouzet [BP82℄ and by Downey [Do98℄ for more bakground on linear extensions

of partial orderings, and on omputability-theoreti aspets of linear orderings,

respetively.)

In the present paper, we analyze the extendibility of the order types !

�

, �, and

� (the order type of the integers) in omputability-theoreti and proof-theoreti

terms. In partiular, we study the extendibility of these three order types along the

lines of the program of reverse mathematis as outlined above. The axiom systems

we will use here are WKL

0

, ACA

0

, ATR

0

, and �

1

2

-CA

0

.

We note that there is a strong onnetion between results in reverse mathematis

and e�etive versions of lassial theorems. E. g., loosely speaking, a lassial

theorem is provable in RCA

0

alone iff the lassial theorem holds e�etively. Sine,

in the below, we show that the extendibility of the three linear order types !

�

,

�, and � fails e�etively in a very strong sense, we establish lower bounds for the

proof-theoreti strength of their extendibility.

Consider �rst the extendibility of !

�

, i. e., the fat that, lassially, any well-

founded partial ordering has a well-ordered linear extension. Surprisingly, this re-

sult holds e�etively if the partial ordering is assumed to be lassially well-founded

(i. e., there is no in�nite desending sequene) by Rosenstein and Kierstead, but

not if the partial ordering is only assumed to be omputably well-founded (i. e.,

there is no omputable in�nite desending sequene) by Rosenstein and Statman.

On the other hand, by Rosenstein, any omputable, omputably well-founded par-

tial ordering has a omputably well-ordered linear extension whih is omputable

in 0

0

, the Turing degree of the halting problem. (See Rosenstein [Ro84℄ for all these

results, and Rosenstein [Ro82℄ for more bakground.)

We sharpen these results as follows:

Theorem 1. (1) \!

�

is extendible" is provable in ACA

0

.

(2) \!

�

is extendible" proves WKL

0

over RCA

0

.

(3) \!

�

is extendible" is not provable in WKL

0

.

The exat proof-theoreti strength of the extendibility of !

�

thus remains open.

We remark that the partiular proof of the extendibility of !

�

from ACA

0

whih

we present below reverses to ACA

0

.

Consider next the extendibility of �, i. e., the fat that, lassially, any sattered

partial ordering has a sattered linear extension. By Rosenstein [Ro82, Ro84℄, any

omputable, omputably sattered partial ordering has a omputably sattered

linear extension whih is omputable in 0

0

.

Theorem 2. (1) \� is extendible" is provable in �

1

2

-CA

0

.

2

2

Upon hearing of our result, Howard Beker (personal ommuniation) has found a proof of

\� is extendible" from �

1

1

-CA

0

. We show below how our proof an be modi�ed to give Beker's

result.
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(2) \� is extendible" is not provable in WKL

0

.

In partiular, our proof of Theorem 2 answers long-standing open questions from

Rosenstein [Ro84℄ by the following

Theorem 2A. There is a lassially sattered, omputable partial ordering suh

that every omputable linear extension has a omputable densely ordered subhain.

However, the exat proof-theoreti strength of the extendibility of � remains

open.

We �nally lassify preisely the proof-theoreti strength of the extendibility of �,

and add to the small olletion of lassial theorems equivalent to ATR

0

over RCA

0

:

Theorem 3. \� is extendible" is equivalent to ATR

0

over RCA

0

.

The rest of the paper is devoted to the proofs of these theorems. Heneforth,

we assume that the reader is familiar with the rudiments of reverse mathematis,

referring to Simpson [Si99℄ where neessary, and assume that the reader is familiar

with the rudiments of omputability theory, as found in an initial segment of Soare

[So86℄ or Rogers [Ro67℄.

2. The proof of Theorem 1

To prove part (1) of Theorem 1, simply observe that the proof of Kierstead and

Rosenstein [Ro84℄ (see also [Do98, p. 909℄) an be used: Fix a partial ordering

P = hN;<

P

i. (Note here that we may assume without loss of generality that the

universe of P is N , the set of integers in the sense of the model N of ACA

0

.) We

de�ne a linear extension L = hN;<

L

i by approximations L

s

= L � [0; s℄ as follows:

At stage 0, set L

0

= f0g. At stage s+ 1, �x the <

L

-least element a 2 L

s

suh that

s+1 <

P

a and let s+1 be the immediate L

s+1

-predeessor of a. (If a fails to exist,

make s + 1 the greatest element of L

s+1

. So the idea is to insert s + 1 into L

s

at

the rightmost plae onsistent with <

P

.)

Now suppose fa

s

g

s2N

is a <

L

-desending sequene (oded in the model N ). By

Ramsey's Theorem, we may assume without loss of generality that fa

s

j s 2 Ng

is a <

P

-antihain. (Note that by Jokush [Jo72℄, Ramsey's Theorem an be used

inside the model N .) We may also assume that fa

s

g

s2N

is <-inreasing (in the

usual ordering of N). We an now onstrut (inside the model N ) a subsequene

fa

j

t

g

t2N

and a <

P

-desending sequene fb

t

g

t2N

with a

j

t+1

<

P

b

t

< a

j

t

for all t

as follows: Set a

j

0

= a

0

. Given t, and sine the a's form a <

P

-antihain, for eah

s > j

t

there is a (<-least) element d

s

with a

s

<

P

d

s

<

L

a

j

t

. By the onstrution

(sine we always plae elements \rightmost" in L), we have d

s

< a

j

t

. Among these

d

s

, �x the d <-least suh that d = d

s

for N -in�nitely many s, and thin out the

sequene of a's to only ontain a

s

with d

s

= d for the de�nition of b

t

0

(t

0

> t). We

then set b

t

= d and a

j

t+1

= some a

s

<

P

d. Using the minimality in the hoie of

d, we an then argue that fb

t

g

t2N

is a <

P

-desending sequene, ontraditing the

wellfoundedness of P.

To prove part (2) of Theorem 1, note that the proof of Rosenstein and Statman

[Ro84℄ (see also [Do98, p. 910℄) an be adapted: Fix an in�nite tree T � 2

<!

(oded
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in the model N of RCA

0

+ \!

�

is extendible"), and view it as partially ordered by

reverse inlusion (whih we denote by <

P

). It now suÆes to show that any linear

extension <

L

of <

P

has an in�nite <

L

-desending hain, sine then \!

�

extendible"

implies that T has an in�nite <

P

-desending hain, i. e., an in�nite path.

So �x an arbitrary linear extension <

L

of <

P

. We de�ne an in�nite <

L

-

desending sequene f

s

g

s2N

as follows: Let 

0

be the root of T . Given s, let

C

s

= f

0

; : : : ; 

s

g, and let D

s

be the set of immediate T -suessors (i. e., immediate

<

P

-predeessors) of elements of C

s

. Then we let 

s+1

be the <

L

-maximal element

of D

s

� C

s

. It is now easy to hek that the maximality ondition in the hoie of



s

ensures that they form a <

L

-desending sequene as desired.

To prove part (3) of Theorem 1, we will show that, given a sequene X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets, there is a omputable partial

ordering P = hS;<

P

i suh that, for any in�nite <

P

-desending sequene f

n

g

n2N

,

there is some i suh that X

i

�f

n

g

n2N

an ompute the halting set K; and suh that

for any i, any X

i

-omputable linear extension <

L

of <

P

ontains an in�nite <

L

-

desending hain Turing omputable in <

L

. Sine, by Jokush and Soare [JS72℄

and Simpson [Si99, Theorem VIII.2℄, there is a model of WKL

0

whose seond-order

part onsists of all sets in the Turing ideal generated by a sequene X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets (whih thus in partiular does not ontain

the halting set K), this implies that WKL

0

does not imply the extendibility of !

�

.

The onstrution of P is a �nite-injury priority argument. We onstrut P as

the disjoint union of sub-partial orderings P

i;e

(for e; i 2 !) suh that eah P

i;e

is

a onneted omponent of P (when viewed as a direted graph). Eah P

i;e

will be

devoted to showing that if the eth binary X

i

-omputable relation L

i;e

= L

X

i

e

is a

linear extension of <

P

then it has an in�nite desending sequene inside P

i;e

(the

domain of P

i;e

) whih is omputable in L

i;e

. At the same time, we have to show

that any in�nite <

P

-desending sequene inside P

i;e

an ompute the halting set K.

(Note here that any <

P

-desending sequene in P must be ompletely ontained

in a single P

i;e

.)

We an thus �x indies i and e and onentrate on the onstrution of the

subordering P

i;e

. (The onstrutions for the various i and e an be �t together

using a omputable partition of !. Sine if L

i;e

is not a linear extension of <

P

on P

i;e

, P

i;e

may turn out to be �nite, this omputable partition annot be �xed

beforehand but must be onstruted simultaneously with the omponents P

i;e

.)

Remark. Sine we are assuming that X

i

is low (uniformly in i), we may assume

that L

X

i

e

is either total (and thus an be approximated e�etively �a la Shoen�eld's

Limit Lemma), or else L

X

i

e

is �nite. For simpliity, we will suppress the details of

this approximation.

We will now onstrut a partial ordering P suh that

(1) if L

i;e

� P

i;e

is a linear extension <

L

of <

P

on P

i;e

, then we have an in�nite

L

i;e

-omputable <

L

-desending sequene f

n

g

n2N

of elements of P

i;e

, and

(2) from the join of X

i

with any in�nite set of elements of P

i;e

, eah of whih

has in�nitely many elements <

P

-below it, we an ompute K.

We �rst illustrate our onstrution by showing how to ode whether 0 2 K into
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any in�nite <

P

-desending hain in P

i;e

while at the same time, omputably in

<

L

, �xing an element 

0

>

P

in�nitely many elements of P

i;e

. We start with seven

elements a; a

1

; a

2

; : : : ; a

6

, delaring

a

3

<

P

a

2

<

P

a

1

<

P

a and a

6

<

P

a

5

<

P

a

4

<

P

a

with no other omparabilities. We all a

2

and a

5

the 0-ritial elements and wait

for L

i;e

to deide whether or not a

2

>

L

a

5

. If a

2

>

L

a

5

then we let a

1

be the �rst

element 

0

of our <

L

-desending hain, and we build the rest of P

i;e

in the <

P

-

interval (a

2

; a

1

) until 0 enters K; when 0 enters K then we swith to building the

rest of P

i;e

in the <

P

-interval (a

6

; a

5

). Symmetrially, if a

5

>

L

a

2

then we let a

4

be

the �rst element 

0

of our <

L

-desending hain, and we build the rest of P

i;e

in the

<

P

-interval (a

5

; a

4

) until 0 enters K; when 0 enters K then we swith to building

the rest of P

i;e

in the <

P

-interval (a

3

; a

2

). If <

L

eventually deides whether or not

a

2

>

L

a

5

, then, sine, if 0 2 K, we will eventually see 0 enter K, only one of the four

<

P

-intervals [a

2

; a

1

), [a

3

; a

2

), [a

5

; a

4

), and [a

6

; a

5

) will be in�nite (we will all this

<

P

-interval the 0-ative interval), and we will have put only elements <

L

-above

this <

P

-interval in our <

L

-desending hain. (If L

i;e

does not onverge on whether

or not a

2

>

L

a

5

then P

i;e

will be �nite.) Note that from <

L

we an ompute the

�rst element 

0

of our <

L

-desending hain. And any in�nite <

P

-desending hain

must ontain either elements �

P

a

1

or elements �

P

a

4

(but not both), and so

from this and the <

L

-ordering of the 0-ritial elements, we an ompute whether

0 2 K. (We note here that the de�nition of the speial element 

0

does not hange

when 0 enters K, but the de�nition of the 0-ritial interval does. The same will

be true in the full onstrution in the next paragraph, and there the de�nition of

the n-ritial elements will also hange depending on what elements < n enter K.)

The full onstrution simply nests the above: The previous paragraph desribes

the de�nition of the 0-ative interval. Given the n-ative interval [b; ), we reate

six new elements b

1

; : : : ; b

6

in it, delaring

b

3

<

P

b

2

<

P

b

1

<

P

b and b

6

<

P

b

5

<

P

b

4

<

P

b

with no other omparabilities in the <

P

-interval [b; ). We all b

2

and b

5

the (n+1)-

ritial elements and wait for L

e;i

to deide whether or not b

2

>

L

b

5

. If b

2

>

L

b

5

then we let b

1

be the element 

n+1

of our <

L

-desending hain, and we build the

rest of the <

P

-interval [b; ) in the <

P

-interval (b

2

; b

1

) until n+ 1 enters K; when

n + 1 enters K then we swith to building the rest of the <

P

-interval [b; ) in the

<

P

-interval (b

6

; b

5

). Symmetrially, if b

5

>

L

b

2

then we let b

4

be the element 

n+1

of our <

L

-desending hain, and we build the rest of the <

P

-interval [b; ) in the

<

P

-interval (b

5

; b

4

) until n + 1 enters K; when n + 1 enters K then we swith to

building the rest of the<

P

-interval [b; ) in the<

P

-interval (b

3

; b

2

). If<

L

eventually

deides whether or not b

2

>

L

b

5

, then, sine, if n + 1 2 K, we will eventually see

n+1 enter K, only one of the four <

P

-intervals [b

2

; b

1

), [b

3

; b

2

), [b

5

; b

4

), and [b

6

; b

5

)

will be in�nite (we will all this <

P

-interval the (n + 1)-ative interval), and we

will have put only elements <

L

-above this <

P

-interval in our <

L

-desending hain.

(If L

i;e

does not onverge on whether b

2

>

L

b

5

then P

i;e

will be �nite.) Note again
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that from <

L

we an ompute the element 

n+1

of our <

L

-desending hain. And

any in�nite <

P

-desending hain must ontain either elements �

P

b

1

or elements

�

P

b

4

(but not both), and so from this and the <

L

-ordering of the (n+ 1)-ritial

elements, we an ompute whether n+ 1 2 K.

As mentioned in the Remark above, the above nested onstrution for eah n

is ontrolled by our omputable approximation of how <

L

orders the n-ritial

elements. If <

L

does not deide the ordering of the n-ritial elements, then P

i;e

will be �nite; otherwise, P

i;e

will be in�nite, and for eah n, we will eventually

settle on the orret n-ative interval (while making �nitely many mistakes before

then). In the latter ase, it is not hard to hek that we are building an in�nite <

L

-

omputable <

L

-desending hain f

n

g

n2N

; and that any in�nite subset of elements

of P

i;e

, eah of whih has in�nitely many elements <

P

-below it, an ompute K

with an additional orale for <

L

, and thus a fortiori with an additional orale for

X

i

.

This onludes the proof of part (3) of Theorem 1.

3. The proof of Theorems 2 and 2A

To prove part (1)

3

of Theorem 2, simply observe that the proof of Bonnet and

Pouzet [BP69℄ (see also [BP82, p. 140℄) an be adapted here: Given a partial

ordering P = hP;<

P

i, we say an element a of P is <

P

-good if hP (�

P

a); <

P

i has

a sattered linear extension; and >

P

-good if hP (�

P

a); <

P

i has a sattered linear

extension. De�ne the �-kernel K(P) of P to be the set of all elements of P whih

are neither <

P

-good nor >

P

-good. (Here P (�

P

a) and P (�

P

a) are the sets of

elements of P below or above a, respetively.) It is now easy to hek that

K(P) = fa 2 P j

8 linear extension � of hP (� a); <

P

i 9 �-hain S (S is densely ordered)

and

8 linear extension � of hP (� a); <

P

i 9 �-hain S (S is densely ordered)g:

So K(P) is �

1

2

-de�nable, and thus the �-kernel of any partial ordering P in our

model N of �

1

2

-CA

0

also exists in N .

We now observe that the olletion of <

P

-good elements, and the olletion of

>

P

-good elements, form an initial segment, or a �nal segment, of P, respetively.

We laim that �

1

2

-CA

0

proves P has a sattered linear extension iff K(P) = ;.

First, if P has a sattered linear extension, then by restrition, it is lear that every

one in P has a sattered linear extension. Therefore, K(P) = ;. To establish the

other diretion, suppose that K(P) = ;. Then, for every a 2 P , either P (�

P

a) or

P (�

P

a) has a sattered linear extension. Partition P into

X = fa 2 P j P (�

P

a) has a sattered linear extensiong

3

At the end of the proof, we show how this proof an be modi�ed to give Beker's stronger

result that �

1

1

-CA

0

is suÆient to prove the extendibility of �.



R. G. DOWNEY, D. R. HIRSCHFELDT, S. LEMPP, D. R. SOLOMON 11

and P nX. We use this deomposition to build a sattered linear extension of P.

First, we build a sattered linear extension of (X;�

P

) by arithmetial reursion

over N . Let x

0

; x

1

; : : : be a list of the elements of X in <

N

-inreasing order. By

�

1

2

-hoie (whih is provable in �

1

2

-CA

0

, see [Si99, Setion VII.6℄), we an �x a

sattered linear extension for eah one P (�

P

x

s

), s 2 N . Let X

s

= fp 2 P j p �

P

x

0

or � � � or p �

P

x

s

g � X. We de�ne L

0

to be the �xed sattered linear extension

of X

0

. Assume that we have a sattered linear extension L

s

of X

s

. If x

s+1

2 X

s

,

then let L

s+1

= L

s

. Otherwise, let Z = P (�

P

x

s+1

)nX

s

, and �x a sattered linear

extension L

Z

of Z by restriting the sattered extension of P (�

P

x

s+1

). Let L

s+1

be the linear extension of X

s+1

whih agrees with L

s

on X

s

, agrees with L

Z

on

Z, and plaes elements in Z above everything from X

s

. L

s+1

is a sattered linear

extension of X

s+1

whih is an end-extension of L

s

. Combining these orders, [L

s

is a sattered linear extension of X.

It remains to handle P n X. We list these elements as y

0

; y

1

; : : : and let Y

s

=

fp 2 P j y

0

�

p

p or � � � or y

s

�

P

pg. We use a similar onstrution to the one

above to build linear extensions L

0

s

of Y

s

suh that L

0

s+1

extends L

0

s

downwards.

We ombine [L

s

with [L

0

s

by plaing all elements of P nX above all elements of

X. This gives a sattered linear extension of P , and �nishes the laim that P has

a sattered linear extension if and only if K(P) = ;.

We an now prove the extendibility of � from �

1

2

-CA

0

as follows: Fix a partial

ordering P and assume that it does not have a sattered linear extension. Add to

P a new least and a new greatest element, x

0

and x

1

, respetively. Let D = f

m

2

n

j

0 � m � 2

n

and n 2 !g be the set of dyadi rationals in [0; 1℄. By indution, we

will now onstrut a subset X = fx

d

j d 2 D \ (0; 1)g of P suh that x

d

<

P

x

e

iff

d < e; so X is a dense subset of P as desired. Suppose x

d

has been de�ned for all

indies with denominator < 2

n

, and �x d =

m

2

n

2 D with m odd. By indution,

the P-interval [x

m�1

2

n

; x

m+1

2

n

℄ has no sattered linear extension, so we an hoose

an element x

d

in its �-kernel K([x

m�1

2

n

; x

m+1

2

n

℄). By the de�nition of �-kernel, the

intervals [x

m�1

2

n

; x

d

℄ and [x

d

; x

m+1

2

n

℄ have no sattered linear extension, and so the

indution an ontinue.

4

4

Beker's proof modi�es ours as follows: Note that our proof has two parts: (i) Any partial

ordering P has a sattered linear extension if and only if the �-kernel of P is nonempty. (ii) If

the kernel is nonempty then P is not sattered. Now (i) an atually be shown within ATR

0

in the following version: (i

0

) Any partial ordering P has a sattered linear extension whih is

hyperarithmetial in P i� there is no a 2 P whih is neither <

P

-good nor >

P

-good, where now

an element a is <

P

-good (or >

P

-good, respetively) if hP (�

P

a); <

P

i (or hP (�

P

a); <

P

i) has

a sattered linear extension hyperarithmetial in P. Then the sets of <

P

-good (or >

P

-good,

respetively) elements are �

1

1

-de�nable in P, and our set X above an be hosen �

1

1

in P by

�

1

1

-Separation (or more preisely, by �

1

1

-Redution, see Simpson [Si99, V.5.1℄) and suh that

X is downward losed and ontains only <

P

-good elements, whereas P � X ontains only >

P

-

good elements. By the Kreisel Seletion Theorem (see [Si99, VIII.4.7℄), there are now funtions

f : X ! N and g : P �X ! N (whih are �

1

1

in P) suh that for all a 2 X, f(a) is the index

of a sattered linear extension of hP (�

P

a); <

P

i hyperarithmetial in P, and for all a 2 P �X,

g(a) is the index of a sattered linear extension of hP (�

P

a); <

P

i hyperarithmetial in P. Now

proeed as in our proof above to obtain the linear extension hyperarithmetial in P using X, f

and g. Part (ii) an be shown within �

1

1

-CA

0

as in our original proof.
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To prove part (2) of Theorem 2 as well as Theorem 2A, we will show that,

given a sequene X

0

�

T

X

1

�

T

: : : of uniformly low, uniformly �

0

2

-sets, there is a

omputable partial ordering P = hS;<

P

i whih is lassially sattered (i. e., there

is no densely ordered <

P

-subhain of any omplexity) suh that for any i, any

X

i

-omputable linear extension <

L

of <

P

ontains a densely ordered <

L

-subhain

Turing omputable in <

L

. Again, sine, by Jokush and Soare [JS72℄ and Simpson

[Si99, VIII.2℄, there is a model of WKL

0

whose seond-order part onsists of all sets

in the Turing ideal generated by a sequene X

0

�

T

X

1

�

T

: : : of uniformly low,

uniformly �

0

2

-sets, this implies that WKL

0

does not imply the extendibility of �.

The onstrution of P is again a �nite-injury priority argument. We onstrut P

as the disjoint union of sub-partial orderings P

i;e

(for e; i 2 !) suh that eah P

i;e

is a onneted omponent of P (when viewed as a direted graph). Eah P

i;e

will

be devoted to showing that if the eth binary X

i

-omputable relation L

i;e

= L

X

i

e

is

a linear extension <

L

of <

P

then it has a densely ordered <

L

-subhain inside P

i;e

whih is omputable in L

i;e

. At the same time, we have to show that there is no

densely ordered <

P

-subhain inside P

i;e

. (Note here that any <

P

-subhain in P

must be ompletely ontained in a single P

i;e

.)

We an thus �x indies i and e and onentrate on the onstrution of the

subordering P

i;e

. (The onstrutions for the various i and e an be �t together

using a omputable partition of !. Sine if L

i;e

is not a linear extension of <

P

on P

i;e

, P

i;e

may turn out to be �nite, this omputable partition annot be �xed

beforehand but must be onstruted simultaneously with the omponents P

i;e

.)

The Remark in the proof of part (3) of Theorem 1 also applies here verbatim.

We will now onstrut a partial ordering P suh that

(1) if L

i;e

� P

i;e

is a linear extension <

L

of <

P

on P

i;e

, then we have an L

i;e

-

omputable densely ordered <

L

-subhain C in P

i;e

, and

(2) for any element x of P

i;e

, there are either only �nitely many elements >

P

x,

or only �nitely many elements <

P

x.

We �rst illustrate our onstrution by showing how to perform a single step:

We start with three <

P

-inomparable elements a

0

, a

1

and a

2

, alling them the

0-ritial elements, and wait for L

i;e

to deide the <

L

-ordering on these three

elements. Possibly relabeling them, we will assume a

0

<

L

a

1

<

L

a

2

. We then

plae a

1

into C and all the interval (�1; a

0

) and the interval (a

2

;1) the 0-ative

intervals. (If L

i;e

does not onverge on the ordering of a

0

, a

1

, and a

2

then P

i;e

will

be �nite.) Note that from <

L

we an ompute the �rst element of C. And among

the elements a

0

, a

1

, and a

2

, at most one is <

P

-omparable to any element of the

0-ative intervals.

The full onstrution simply nests the above: The previous paragraph desribes

the de�nition of the 0-ative intervals. Given an n-ative <

P

-interval (b; ), we

reate three new pairwise inomparable elements b

0

, b

1

, and b

2

in (b; ), alling

them the (n+ 1)-ritial elements, and wait for L

e;i

to deide the <

L

-ordering on

these three elements. Possibly relabeling them, we will assume b

0

<

L

b

1

<

L

b

2

. We

then plae b

1

into C and all the interval (b; b

0

) and the interval (b

2

; ) (n+1)-ative

intervals. (If L

i;e

does not onverge on the ordering of b

0

, b

1

, and b

2

then P

i;e

will

be �nite.) Note that from <

L

we an ompute the �rst element of C in the interval
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(b; ). And among the elements b

0

, b

1

, and b

2

, at most one is <

P

-omparable to

any element of the (n+ 1)-ative intervals.

As mentioned in the Remark above, the above nested onstrution for eah n

is ontrolled by our omputable approximation of how <

L

orders the n-ritial

elements. If <

L

does not deide the ordering of the n-ritial elements, then P

i;e

will be �nite; otherwise, P

i;e

will be in�nite, and for eah n, we will eventually settle

on the orret n-ative intervals (while making �nitely many mistakes before then).

In the latter ase, it is not hard to hek that we are building a <

L

-omputable

densely <

L

-ordered hain; and that for any element x of P

i;e

, there are either only

�nitely many elements >

P

x, or only �nitely many elements <

P

x.

This onludes the proof of part (2) of Theorem 2.

4. The proof of Theorem 3

To prove that ATR

0

implies the extendibility of �, observe that the proof of

Jullien [Ju69℄ (see also [BP82, p. 141℄, note a typo there: !+!

�

should be !

�

+!,

i. e., �) an be adapted here: Fix a partial ordering P = hS;<

P

i without any

subhain (in our model N of ATR

0

) of order type �. Call an element a of P

<

P

-good if hP (�

P

a); <

P

i ontains no subhain of order type !

�

; and >

P

-good if

hP (�

P

a); <

P

i ontains no subhain of order type !. By our assumption on P, any

element of P is either <

P

-good or >

P

-good. Sine <

P

-goodness and >

P

-goodness

are both �

1

1

-de�nable, our model N of ATR

0

ontains a set S by �

1

1

-separation

suh that any element of S is <

P

-good, and any element of P �S is >

P

-good. (We

use here that ATR

0

is equivalent to �

1

1

-separation (see Simpson [Si99, Theorem

V.5.1℄).)

Sine the set of <

P

-good elements is downward losed in P, we may assume that

S is downward losed in P. Now, by part (1) of Theorem 1, ACA

0

(and thus a

fortiori ATR

0

) proves the extendibility of ! and !

�

; so we an �x linear extensions

<

L

1

and <

L

2

of S and P � S, respetively, whih have no subhains of order type

!

�

and !, respetively. We an now path <

L

1

and <

L

2

together (by plaing the

elements of S left of the elements of P � S) to obtain a linear extension <

L

of P

without a subhain of order type �.

We now establish the other diretion of the proof of Theorem 3 by two laims:

Claim 1. RCA

0

and the extendibility of � imply ACA

0

.

Claim 2. ACA

0

and the extendibility of � imply ATR

0

.

Proof of Claim 1. Fix a model N of RCA

0

+ \� is extendible" and an injetive

funtion f : N ! N in this model. In order to establish ACA

0

, we must show

that the range of f is in this model (see Simpson [Si99, Lemma III.1.3℄). Construt

a partial ordering P in N with distinguished elements a

n

and b

n

(for n 2 N) as

follows: If n is not in the range of f then a

n

is the �rst element of an !-hain,

and b

n

is the last element of an !

�

-hain in P. If n = f(m) then a

n

is the mth

element from the end of an !

�

-hain, and b

n

is the mth element of an !-hain in

P. Sine all a

n

and b

n

are in di�erent onneted omponents of P (when viewed

as a direted graph), P ontains no �-hain, so we an �x a linear extension <

L
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without a �-hain. But then n is in the range of f iff b

n

<

L

a

n

, the range of f is in

the model N as desired.

Proof of Claim 2. We use again that ATR

0

is equivalent to �

1

1

-separation. Fix

a model N of ACA

0

+ \� is extendible" and two disjoint sets S

0

; S

1

� N whih

are �

1

1

-de�nable over this model. We will separate S

0

and S

1

as follows: Fix two

sequenes of trees L

0

n

and L

1

n

suh that for all i < 2 and n 2 N , n 2 S

i

iff L

i

n

is not well-founded. (Suh sequenes exist within N ; see Simpson [Si99, Theorem

V.1.8℄.) Construt a partial ordering P in N with distinguished elements a

n

and

b

n

(for n 2 N) as follows:

(1) P(<

P

a

n

) is isomorphi to L

0

n

,

(2) P(>

P

a

n

) is isomorphi to (L

1

n

)

�

,

(3) P(<

P

b

n

) is isomorphi to L

1

n

, and

(4) P(>

P

b

n

) is isomorphi to (L

0

n

)

�

,

(where L

�

denotes L under the reverse ordering). Sine all a

n

and b

n

are in di�erent

onneted omponents of P (when viewed as a direted graph) and sine for eah n,

at most one of L

0

n

and L

1

n

is not well-founded, we have that P ontains no �-hain;

so we an �x a linear extension <

L

without a �-hain. But then fn 2 N j b

n

<

L

a

n

g

is in the model N and separates S

0

and S

1

as desired.
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