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Abstract

In this paper, we investigate the Lindenbaum algebra L(Tfin) of the the-
ory Tfin = Th(Mfin) of the class Mfin of all finite models of a finite
rich signature. We prove that this algebra is an atomic Boolean algebra
while its Gödel numeration γ is a Π0

1-numeration. Moreover, the quotient
algebra

(

L(Tfin)/F , γ/F
)

modulo the Fréchet ideal F is a Σ0
2-algebra,

which is universal over the class of all Σ0
2 Boolean algebras. These con-

ditions characterize uniquely the algebra L(Tfin); moreover, these con-
ditions characterize up to recursive isomorphism the numerated Boolean
quotient algebra

(

L(Tfin)/F , γ/F
)

.
These results extend the work of Trakhtenbrot [17] and Vaught [18]

on the first order theory of the class of all finite models of a finite rich
signature.

We consider theories in first-order predicate logic with equality and use
general concepts of model theory, computability theory, Boolean algebras and
constructive models found in Chang and Keisler [1], Soare [16], Goncharov and
Ershov [4] and Goncharov [3].

In the description of a signature, the superscripts specify the arities of the
appropriate symbols. A finite signature is called rich if it contains either an
n-ary predicate or function symbol for n > 1, or two unary function symbols.
SL(σ) denotes the set of all sentences of signature σ. The Lindenbaum algebra
of the sentences of a theory T is denoted by L(T ) (in fact, it is a Boolean
algebra). Mfin(σ) denotes the class of all finite models of signature σ. By
CardX , we denote the number of elements of a finite set X .
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If Φ is a sentence and σ is the signature consisting of the symbols which occur
in Φ, then [Φ] denotes the theory of signature σ generated by Φ as an axiom,
Mod(Φ) denotes the class of all models M of signature σ such that M |= Φ,
while ModFin(Φ) = Mod(Φ) ∩ Mfin(σ). We often write L(Φ) instead of L([Φ]),
and L(M) instead of L(Th(M)) when M is a class of models.

If Φ is a formula and α ∈ {0, 1}, then Φα denotes Φ for α = 1 and qΦ for
α = 0. If b is an element of a Boolean algebra and α ∈ {0, 1}, then bα denotes
b for α = 1 and −b for α = 0.

The following technical facts hold:

Lemma 0.1. Let B be a Boolean algebra. Then

(a) for any a, b ∈ B, we have a = b if and only if aα ∩ bβ = 0 for all pairs
(α, β) ∈ {(1, 0), (0, 1)}.

(b) for any a, b, c ∈ B, we have a ∩ b = c if and only if aα ∩ bβ ∩ cγ = 0 for
all triples (α, β, γ) ∈ {(1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)}.

(c) for any a, b ∈ B, we have −a = b if and only if aα ∩ bβ = 0 for all pairs
(α, β) ∈ {(0, 0), (1, 1)}.

Proof. By direct calculation. 2

A numeration or numbering of a finite or countable Boolean algebra B is a

surjective mapping ν : N
onto
−−−→ |B|. An isomorphism λ : B1 → B2 is called a con-

structive isomorphism or a recursive isomorphism between numerated Boolean
algebras (B1, ν1) and (B2, ν2) if there are recursive functions g1(x) and g2(x)
such that λ(ν1(x)) = ν2(g1(x)) and ν2(x) = λ(ν1(g2(x))) for all x ∈ N, i.e., the
following diagram is commutative:

(0.1)

We write (B1, ν1) ∼= (B2, ν2) if these numerated Boolean algebras are isomorphic.

A numerated Boolean algebra (B, ν) is called a Σ0
n algebra if all Boolean

operations in B are representable by general recursive functions on numbers,
while the equality relation is Σ0

n with respect to the numeration ν. Similar
notions apply to the hierarchies Π0

n and ∆0
n.

1 The main results

In this paper, we consider the class Mfin = Mfin(σ) of all finite models of
a fixed finite rich signature σ. We study the theory Tfin = Th(Mfin) of this
class of models. The main result is a characterization of the Lindenbaum algebra
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(

L(Tfin), γ
)

, viewed as a numerated algebra together with its Gödel numeration
γ. Note that a Gödel numeration always exists for the set SL(σ) and therefore
for the Lindenbaum algebra L(Tfin). For this reason, Gödel numerations are
always assumed even when not mentioned explicitly.

The characterization of the Lindenbaum algebra is given by the following
list of theorems.

Theorem 1.1. The Lindenbaum algebra (L(Tfin), γ) is a Π0
1-algebra (i.e.,

it is a negatively numerated Boolean algebra).

Proof. For sentences Φ, Ψ ∈ SL(σ), the formula Φ↔ Ψ is provable in Tfin

if and only if it is true in all finite models. This gives the Π0
1 form for equality

in the Boolean algebra L(Tfin) under the numeration γ. 2

Theorem 1.2. There exists a numeration ν∗ such that (L(Tfin), ν∗) is a
constructive Boolean algebra.

Proof. By Odintsov and Selivanov [9], if a Boolean algebra has a negative
numeration, i.e., Π0

1-numeration, then it has a constructive one. Theorem 1.2
directly follows from this fact. 2

Theorem 1.3. The algebra L(Tfin) is a countable atomic Boolean algebra.

Proof. If Φ ∈ SL(σ) and [Φ]Tfin
6= 0, then Φ has a finite model M. Consider

a sentence Ψ of the form (∃x)
[

AD(x) & (∀y)(y ∈ x)
]

where AD(x) describes the
complete atomic diagram of the model M. In the Boolean algebra L(Tfin), we
have that [Ψ ]Tfin

6 [Φ]Tfin
and [Ψ ]Tfin

is an atom. 2

Let F denote the Fréchet ideal of the algebra L(Tfin), i.e., the ideal gener-
ated by its atoms. Throughout this paper, F will be used to denote the Fréchet
ideal. For a numerated Boolean algebra (B, ν), the numerated quotient algebra
(B/F(B), ν/F(B)) modulo F(B) is defined as follows: B/F(B) is the ordinary quo-
tient algebra, and ν/F(B) is a numeration of this quotient algebra generated by
the numbering ν.

The following properties hold for the quotient algebra modulo the Fréchet
ideal.

Theorem 1.4. The algebra (L(Tfin)/F , γ/F) is a Σ0
2 Boolean algebra.

Proof. One can easily see that all Boolean operations are represented by
recursive functions on numbers. Furthermore, we have for the equality relation
that

γ/F(m) = γ/F(n) ⇔

(∃k)
[

γ(m) ↔ γ(n) is true in all finite models of size > k
]

,

which yields a quantifier prefix of the form ∃∀. 2

The main theorem of this article is given by the following statement.

Theorem 1.5. [Main Theorem] Let (B, ν) be an arbitrary Σ0
2 Boolean al-
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gebra. Then there exists a formula Ω of a the finite rich signature σ0 such that
there is a recursive isomorphism of the form

(B, ν) ∼= (L(ModFin(Ω))/F , γ/F).

Thus, any Σ0
2 Boolean algebra can be realized as the quotient algebra of the

Lindenbaum algebra (modulo the Fréchet ideal) of the theory of the class of
all finite models of a sentence Ω of a finite rich signature σ0. We prove this
statement in the remainder of this paper, starting in Section 2.

In [13], a signature reduction procedure Reduct is described which satisfies
the properties listed below. Let Θ′ be a sentence of a signature σ′, and σ′′

be any finite rich signature. Given Θ′ and σ′′, the procedure Reduct yields a
sentence Θ′′ =Reduct(Θ′, σ′′) of the signature σ′′ and a recursive isomorphism
µ : L(Θ′)→L(Θ′′) between Lindenbaum algebras of theories generated by these
sentences such that µ preserves the model-theoretic property

p = “there exists a finite model,”

as well as a lot of other properties that are not of interest in this paper. The
preservation of property p means that for any complete extension T ′ of theory
[Θ′], and corresponding complete extension T ′′ of theory [Θ′′], if T ′′ = µ(T ′),
then the theory T ′′ has a finite model if and only if the theory T ′ has a finite
model.

The signature reduction procedure Reduct makes the statement of Theorem
1.5 valid for any finite rich signature, in particular for the signature σ which we
are considering:

Theorem 1.6. Let (B, ν) be an arbitrary Σ0
2 Boolean algebra. Then there

exists a formula Θ of a given finite rich signature σ such that there is a recursive
isomorphism of the form (B, ν) ∼=

(

L(ModFin(Θ))/F , γ/F
)

.

Proof. Fix a numerated Σ0
2 Boolean algebra (B, ν). By Theorem 1.5, there

is a sentence Ω of a finite rich signature σ0 satisfying

(B, ν) ∼=
(

L(ModFin(Ω))/F , γ/F

)

.

Consider the sentence Θ = Reduct(Ω, σ) of the signature σ. The procedure
Reduct provides a recursive isomorphism between the Lindenbaum algebras of
the theories generated by these sentences, µ : L(Ω) → L(Θ), which preserves
the property p (the existence of a finite model). From this, one can show
that µ is a recursive isomorphism between Lindenbaum algebras L

(

ModFin(Ω)
)

and L
(

ModFin(Θ)
)

. Furthermore, µ is a recursive isomorphism between their
quotients modulo the Fréchet ideals. Thus, we have

(B, ν) ∼=
(

L(ModFin(Θ))/F , γ/F

)
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for a sentence Θ of signature σ, so we obtain exactly the property we need. 2

Let B be a Boolean algebra and a an element of B. B[a] will denote the
Boolean algebra of elements below a. Formally, B[a] is defined on the set [0, a] =
{x | 0 ⊆ x ⊆ a}, inherits ∪, ∩ and 0 from B, uses a as the unit element, and takes
the relative complement in the interval [0, a] of B as the complement operation
(i.e., the complement in B[a] is defined by the rule −x = arx). One can easily
check that this structure is a Boolean algebra. It is called the restriction of B
to the element a.

Now let (B, ν) be a numerated Boolean algebra and a = ν(n0) be an element
of B. We let (B, ν)[a] denote the numerated Boolean algebra (B′, ν′) such that
B′ = B[a] and ν′ is a numeration of the Boolean algebra B[a] which is induced
from the numeration ν by the rule ν ′(n) = ν(n) ∧ ν(n0). We denote this
numeration ν′ by ν[a]. So the introduced operation has the form (B, ν)[a] =
(B[a], ν[a]).

Theorem 1.7. For any Σ0
2 Boolean algebra (B, ν) there is an element a ∈

L(Tfin)/F and a recursive isomorphism (B, ν) ∼= (L(Tfin)/F , γ/F)[a].

Proof. Immediate by Theorem 1.6 since

(

L(Tfin)/F , γ/F

)

[

[Φ]F
]

∼=
(

L(ModFin(Φ))/F , γ/F

)

. 2

Selivanov has proved in [14] and [15] that Σ0
n-universal Boolean algebras

exist for all classes Σ0
n of the arithmetical hierarchy; moreover, they are defined

uniquely up to constructive isomorphism. By Selivanov’s method, we prove
below that the Σ0

2-universal Boolean algebra exists and is defined uniquely up
to constructive isomorphism.

Let (B, µ) be a countable constructive atomless Boolean algebra and let
W ′

n, n ∈ N, be a Post enumeration of all sets of integers which are recursively
enumerable in the oracle ∅

′. Denote by F ′
m the ideal of B generated by the set

{µ(k)|k ∈W ′
m}.

Theorem 1.8. The following assertions hold:

(a) For any m ∈ N, F ′
m is a Σ0

2-ideal and
(

B/F ′
m
, µ/F ′

m

)

is a Σ0
2 Boolean

algebra.

(b) For any Σ0
2 Boolean algebra (B, ν) there is m ∈ N such that the following

constructive isomorphism holds: (B, ν) ∼= (B/F ′
m
, µ/F ′

m
).

(c) The direct product of the numerated Boolean algebras

(B∗, µ∗) =
⊗

m∈N

(B/F ′
m
, µ/F ′

m
)

is a Σ0
2 Boolean algebra.
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Proof. By inspection of the standard definitions. 2

Theorem 1.9. The following representation of the Lindenbaum algebra of
the theory Tfin of the class of all finite models modulo the Fréchet ideal holds :

(

L(Tfin)/F , γ/F

)

∼= (B∗, µ∗) ∼=
⊗

m∈N

(

B/F ′
m
, µ/F ′

m

)

.

Proof. (due to V.L. Selivanov) By Theorem 1.8, (B∗, µ∗) is a Σ0
2 Boolean

algebra, and therefore, by Theorem 1.7, there exists an element a ∈ L(Tfin)/F
such that (L(Tfin)/F , γ/F)[a] ∼= (B∗, µ∗). On the other hand, we have the
following natural decomposition of the Boolean algebra by an element and its
complement:

(L(Tfin)/F , γ/F) ∼= (L(Tfin)/F , γ/F)[−a] ⊗ (L(Tfin)/F , γ/F)[a].

In this expression, (L(Tfin)/F , γ/F)[−a] is a Σ0
2 Boolean algebra; therefore, there

exists k ∈ N such that this algebra is isomorphic to (B/F ′
k
, µ/F ′

k
). From this, we

obtain the following decomposition:

(L(Tfin)/F , γ/F) ∼= (B/F ′
k
, µ/F ′

k
) ⊗

⊗

m∈N

(B/F ′
m
, µ/F ′

m
).

One can see that by the Padding Lemma [16], the numeration W ′
n, n ∈ N, is

an effective cylinder. Therefore, we can construct a general recursive function
p : N → N such that p is a permutation of N, p(0) = k, and W ′

p(n+1) = W ′
n for

all n ∈ N. We can now infer

(B∗, µ∗) ∼=
⊗

m∈N
(B/F ′

m
, µ/F ′

m
) ∼=

⊗

m∈N
(B/F ′

p(m)
, µ/F ′

p(m)
) ∼=

(B/F ′
p(0)

, µ/F ′
p(0)

) ⊗
⊗

m∈N
(B/F ′

p(m+1)
, µ/F ′

p(m+1)
) ∼=

(B/F ′
k
, µ/F ′

k
) ⊗

⊗

m∈N
(B/F ′

m
, µ/F ′

m
) ∼=

(L(Tfin)/F , γ/F)

as desired. 2

In [10] it was proved that for any two countable atomic Boolean algebras
B1 and B2, if their quotient algebras modulo the Fréchet ideal, B1/F(B1) and
B2/F(B2), are isomorphic, then the original algebras are isomorphic: B1

∼= B2.
Thus, Theorems 1.3 and 1.9 characterize the abstract isomorphism type of
the algebra L(Tfin). As for the characterization of the isomorphism type of
(L(Tfin), γ) considered as a numerated algebra, this question remains open.

Now we start the proof of Theorem 1.5, to which the remainder of this paper
is devoted.
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2 Two numerations of tuples

The canonical (Gödel) index of the finite tuple ε = 〈ε0, ε1, . . . , εm−1〉, with
εi ∈ {0, 1}, is the number

Nom(ε) = 2m + ε02
m−1 + ε12

m−2 + . . .+ εm−1 − 1

= (1ε0ε1...εm−1)2 − 1,

(2.1)

where the subindex 2 means that 1ε0ε1...εm−1 is a number defined in the binary
representation. It is easy to see that the function Nom thus defined represents a
one-to-one correspondence between the set 2<ω of all finite tuples of zeros and
ones and the set N of all natural numbers. We will use the notation 〈〉 for the
empty string.

The following recursive relation for the function Nom

Nom〈〉 = 0,

Nom〈ε0, ε1, ..., εm〉=2·Nom〈ε0, ε1, ..., εm−1〉+εm+1, m>0, (2.2)

follows directly from equation (2.1). In fact, the recursive relation (2.2) could
be used as the basic definition, with the relation (2.1) then being its corollary.

The following properties of the numeration function Nom

m62m−1 6Nom 〈ε0, ε1, ..., εm−1〉62m+1−2, for all m∈N, εi∈{0, 1}, (2.3)

Nom(ε)<Nom(ε′), for all ε, ε′∈2<ω such that |ε|< |ε′|, (2.4)

can be deduced from Definition (2.1). As for (2.3), we have for the sequences
of length m with all zeros or ones

Nom〈0, 0, ..., 0〉 = 2m−1, Nom〈1, 1, ..., 1〉 = 2m+1−2,

while numbers of other sequences of length m must be between these values.

The particular function Nom introduced above is used in the construction of
finitely axiomatizable theories as a numeration function for the set of all tuples
of zeros and ones of finite length.

We use the standard pairing function defined by

c(x, y) =
x2 + 2xy + y2 + 3x + y

2
.

One can check that the function c(x, y) satisfies the following properties

(x, y)=(u, v) ⇔ c(x, y)=c(u, v) ⇔ c2(x, y)=c2(u, v), (2.5)

for all x, y, u, v>0,

c(x, y) > |x|+|y|, for all x, y>0. (2.6)
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3 Computations unfolded in time on a Turing

machine

In this section, we describe the type of Turing machines used in the con-
struction of a finitely axiomatizable theory.

A machine M has a finite set {ai | i < d} of tape symbols and a finite set
{qj | j < e} of state symbols. The program of the machine consists of a finite
set of commands of the form

aiqj → amqtL, (3.1)

aiqj → amqtR. (3.2)

The tape of the machine is two-way infinite and is divided into cells. At each
stage, the head of the machine scans one cell of the tape. Each cell contains
exactly one symbol from {ai | i < d} (Fig. 3.1). At each stage the machine is
in one of the states from {qj | j < e}. The machine starts in state q0. The
command (3.1) means that if at some stage the machine is in state qj and reads
symbol ai in the current cell, then the machine writes am in the current cell,
goes into state qt and moves its head to the adjacent cell on the left. The
command (3.2) is similar except that the machine moves its head to the right.
We say that this command applies to the situation aiqj . We require that in
any situation no more than one command applies. The machine stops when no
command applies. Thus, the operation of a machine is uniquely determined by
its program and the information on the tape at the initial stage.

We have not specified the output of the Turing machine because for our pur-
poses, only the process of the operation of the Turing machine will be relevant,
and not the output. In some cases, the program of some other Turing machines
is used as a subprogram. In such cases, the form of the input and the output
of the subprogram is to be defined by additional specifications.

Let STd denote the set of all possible initial configurations of a machine
with d tape symbols. Since the tape cells have the same order type as the
integers, since each cell contains one of the symbols a0, a1, . . . , ad−1, and since
the machine always starts in state q0, if we associate the starting position of the
head with the position 0 ∈ Z, we obtain that each configuration S ∈ STd can be
represented by a map S : Z → {0, 1, . . . , d− 1}. If S has this form, then S(k),
k ∈ Z, denotes the index of the symbol on the tape in the k-th cell, counting
from the initial position of the head. If S ∈ STd then an S-computation on the
machine M will be the operation of M starting from S.
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We call the set of all Turing machines described above with a fixed parameter
d and arbitrary e the class of Turing machines with d tape symbols. As for
the number d, it is well known that any algorithm can be realized on Turing
machines with d = 2, using a sufficient number of state symbols and with
appropriate coding for inputs and outputs. As the number of tape symbols
does not at all influence the properties of the theory we are going to describe,
we shall not aspire to limit ourselves to this minimum value of d = 2. Rather,
Turing machines with d = 5 will be used for implementing our algorithms.
For greater clarity, these five tape symbols a0, a1, a2, a3, a4 will be denoted,
respectively, by 0, 1, B, 0′, 1′.

In the paper, we use some special class SpecST ⊆ ST5 of starting situations
which includes all situations of the form shown in Fig. 3.2. Such a situation

includes an information field in the form of a finite sequence of 0’s and 1’s, while
the other tape cells to the left and right of the field should be filled with blanks.
The very right symbol of the information field must be 0, and the starting
position of head must be the blank symbol just to the right of the rightmost
symbol of the information field.

One more important comment applies to halting. In the case when the
configuration aiqj does not correspond to any command of M, we say that
this machine has a quasi-command of the form aiqj → stop, and the action
of this quasi-command is to enter the halting configuration. We shall consider
M as the set of its commands and quasi-commands. For definiteness, we write
〈i, j,m, t, L〉 ∈ M if the command aiqj → amqtL belongs to M, we write
〈i, j,m, t, R〉 ∈ M if the command aiqj → amqtR belongs to M, and we write
〈i, j, stop〉 ∈ M if the quasi-command aiqj → stop belongs to M. Thus, for any
i < d and j < e, a machine should have exactly one command or quasi-command
which is applicable to the situation aiqj .

Let M be a Turing machine as described above, and fix some initial config-
uration S ∈ ST5. To illustrate these concepts, we consider as an example the
following list of commands:

1q0 → 1q0L
Bq0 → 0q1R
1q1 → 1q1R
Bq1 → 0q2L
1q2 → stop

and we take the initial configuration as shown in Fig. 3.3 (a). It can be verified
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that after starting, the machine works a finite number of steps before halting
in the configuration shown in Fig. 3.3 (b).

Now we construct the following natural model which will represent a com-
putation on M beginning from S. We consider the upper half of the real plane
R×R, on which we shall draw some infinite figures. First we draw the sequence
of starting cells of the tape as a horizontal row in which adjacent cells are con-
nected by line segments (see the bottom row in Fig. 3.4). We write in each cell
the corresponding tape symbol from the initial configuration S.

In the cell initially scanned by the head, we write the initial state of the
machine (which under our conventions is q0). We call this row the zero row.
Above the zero row, we draw the first row, arranging its cells strictly above the
cells in the zero row. We continue this process to construct the second row and
so on. Vertically adjacent cells are connected by line segments, and as a result
we obtain the picture shown in Fig. 3.4.

Each row of cells represents the tape of a Turing machine at one stage of a
computation, and vertically adjacent cells represent the same cell at consecutive
stages. Now we begin filling the tape cells with information. The cell in which
the current state is written also indicates the position of the head. We fill in the
first row as follows. Each cell not directly above the cell scanned by the head
is marked with the symbol that was present in the cell below. The cell directly
above the state symbol q0 is filled according to the action of the appropriate
command of the Turing machine. The same command defines the position of
the head and the corresponding state of the machine. In our example, the
configuration 1q0 appears in the zero row, therefore the command 1q0 → 1q0R
applies. The cell in the first row directly above this position is marked with the
symbol 1 and the movement of the head is indicated by marking the cell to the
right with the state q0. We continue to label the rows in this manner. When all
the rows are filled, the figure is complete. For clarity, the position of the head
is marked by a dashed line.

We must also consider the case when a halting configuration is reached (of
course, this situation does not arise in all computations). In the case of a halting
configuration, as in the sixth row of Fig. 3.4, we discontinue the head sequence,
and in subsequent rows, the position of head and state of the machine are not
underlined. The last row in a computation containing the head represents the
configuration on the tape after the machine has stopped (see Fig. 3.4.). We
could extract the output of the Turing machine (for example, the number of
ones on the tape) from this row.

10



In summary, we obtain a figure on which the initial configuration of the
machine as well as all intermediate configurations and the halting configuration
(if it exists) are represented. To make the figure more informative, to the right
of each row we note the command which is applicable to the situation indicated
on the tape, see Fig. 3.4. The command aiqj → stop (noted at most once)
specifies the halting stage of the machine.

It is possible to abstract from the inessential details of the description above
and to give a strictly formal definition for a computation unfolded in time on a
Turing machine. It is natural to present the picture described above as a model
N of the following signature

σ = {S2, N2, O, J, A0, A1, . . . , Ad−1, Q,Q0, Q1, . . . , Qe−1} (3.3)

where d and e are parameters denoting the number of tape symbols and the
number of states of the machine.

The universe of the model is |N| = Z×N. The elements of this set represent
integer grid points on the upper half of the plane. The element (0, 0) ∈ N

corresponds to the cell scanned by the head at the initial stage. The predicates
of the signature are defined as follows:

S(x, y) ⇔ y is the right neighbor of x,

N(x, y) ⇔ y is directly above x,

Ai(x) ⇔ the symbol ai is in cell x,

Q(x) ⇔ the head scans cell x,

Qj(x) ⇔ Q(x) & (the machine is in state qj),

J(x) ⇔ x is in the bottom row,

O(x) ⇔ J(x) &Q(x).

(3.4)
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It is possible to give a strictly formal (analytical) definition of the model N,
determined by the initial configuration and the program of the machine M.

The model N of signature σ defined above is called a computation unfolded
in time of the machine M beginning from the initial configuration S. More
briefly, we call this an S-computation on M and denote it by

N = Compu(M,S).

This model will be as in Figure 3.4, using the terms as marked.

Consider a computation unfolded in time on a Turing machine starting from
the initial configuration S. We assume that the S-computation on M halts at
point h. Label by t the point located one row above h. Drawing two diagonal
lines l0 and l1 from t, we obtain a triangle with the top corner t, two sides l0
and l1, and a segment of the zero row as its base. We “clip” this triangle from
the semiplane and consider it separately. It is called the triangular clipping of
the computation or, more briefly, the triangle of computation.

The triangle of computation does not exist (is undefined) if the Turing ma-
chine does not halt. Applied to Fig. 3.4, this procedure yields the triangle shown
in Fig. 3.5.

4 Design of a finitely axiomatizable theory

In this section, we represent the overall schema of the proof of our Main
Theorem 1.5, showing all the steps of the proof in their logical sequence. Some
of these steps are proved here, while others are just quoted and proved in the
later sections of the paper.
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We suppose that some fixed Σ0
2 Boolean algebra (B, ν) is given. Our main

goal is to construct a sentence Ω = Ω(B, ν) of a finite rich signature σ0 (which
includes the symbols in (3.3) and is formally defined in Section 6) satisfying the
condition

(B, ν) ∼=
(

L∗
(

ModFin(Ω)
)

, γ
)

, (4.1)

where L∗(H) for a theory H denotes the quotient algebra L(H)/F(L(H)) modulo
the Fréchet ideal F(L(H)), while γ is a fixed Gödel enumeration of SL(σ0).

Hereafter, we use the notation T for the finitely axiomatizable theory gen-
erated by the sentence Ω as an axiom, i.e., this theory is defined by T =[Ω].

Without loss of generality, we will assume the algebra B to be nontrivial, i.e.,
with 0 6=1. We can also suppose that its numeration ν satisfies the conditions:

ν−1(0) is infinite, and ν−1(1) is infinite. (4.2)

There are recursive functions u(x, y), v(x, y), w(x) and a recursive relation
P (y, z, t) which represent the given Σ0

2 Boolean algebra, i.e., satisfying, for the
operations, the conditions

ν(k) ∪ ν(n) = ν(u(k, n)),

ν(k) ∩ ν(n) = ν(v(k, n)),

−ν(k) = ν(w(k)),

(4.3)

as well as, for the recursive relation P (y, z, t), the condition

ν(0)ε0∩ν(1)ε1∩ ... ∩ν(m−1)εm−1=0 ⇔

(∃y)(∀z)P (y, z,Nom〈ε0, ε1, ..., εm−1〉), (4.4)

for any k, n,m ∈ N and ε0, ε1, . . . , εm−1 ∈ {0, 1}. Here Nom 〈ε0, ε1, . . . , εm−1〉
denotes the Gödel number of the sequence 〈ε0, ε1, . . . , εm−1〉 as defined in Sec-
tion 2. The case m=0 is allowed as well, so the tuple in (4.4) can be empty. In
this case, we have ∀y∃z¬P (y, z,Nom〈〉).

The finitely axiomatizable theory T includes the computation of some Turing
machine M subject to the description given in Section 3. We use a machine M
with 5 tape symbols denoted by 0, 1, B, 0′, 1′. The machine M starts from the
tape position depicted in Fig. 4.1, where 〈ε0, ε1, . . . , εm−1〉 is a finite sequence
of zeros and ones. For simplicity, this sequence is pictured (from now on) as a
sequence with m = 4, i.e., as 〈ε0, ε1, ε2, ε3〉.

13



The starting information is defined by a finite sequence of zeros and ones,
ε = 〈ε0, ε1, . . . , εm−1〉 with the bit cells εi separated by increasing intervals
of zeros. The information field INPUT〈ε0, ε1, . . . , εm−1〉 ends with a sequence
of zeros followed by blanks. Also, the entire right side of the tape is filled
with blanks, including the cell scanned by the head. For the information field
INPUT〈ε0, ε1, . . . , εm−1〉, we denote by weight(INPUT) the number m of bit
information cells εi contained in the field.

INPUT〈ε0, ε1, . . . , εm−1〉 will be used not only to refer to an information field
of the tape but also to refer to the starting situation as a whole on the tape as
shown in Fig. 4.1. (The context will make clear which notation is meant.)

To establish a plan for the finitely axiomatizable theory T , we first give a
general description of the algorithm used for this theory. This will allow us to
give a brief sketch of the theory as a whole, while the exact algorithm itself will
be constructed later.

The algorithm is described by the following program (realized later as the
computation on a Turing machine M):

Begin the Program PRG;

Start with a state of tape interpreted as INPUT 〈ε0, ε1, ε2, . . .〉;
n:= 0;
while n6 length(INPUT) do

BEGIN

Check the condition

(∀x6n)(∀y6n) (∃z) qP
(

y, z,Nom〈ε0, ε1, . . . , εx−1〉
)

; (U)

End of check;

n:=n+1;
Shift a pointer to next cell εi to use it later in (U);

END;

Computation stops;

During the computation, loop forever if the form of the

input field is found to be other than INPUT 〈ε0, ε1, ε2, . . .〉,
or if the Σ0

1-condition (U) above fails to hold for some

n6 length(INPUT));
End of Program.

The PRG instruction to ”loop forever if the form of input information is found
to be other than INPUT 〈ε0, ε1, ε2, ...〉” is formally specified by the condition:

(

∀S ∈ SpecST
)[

S does not have form INPUT〈ε〉 for some ε∈2<ω

⇒ S-computation on machine M does not stop
]

.

(4.5)

In addition, the conditions under which PRG reaches a halt state if started with
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correct information, are formalized by the condition

(∀m ∈ N)(∀ε0, ..., εm−1 ∈ {0,1})
[

INPUT〈ε0, ..., εm−1〉-computation reaches a halt state

⇔ (∀n6m)(∀x6n)(∀y6n)(∃z)qP (y, z,Nom〈ε0, ..., εx−1〉)
]

.

(4.6)

The description of PRG is finished.

According to the specification of the algorithm PRG, the machine gradually
reads the input information on the tape, checking that the starting information
has the form INPUT 〈ε0, ε1, . . . , εn−1, . . .〉, that is, has the correct number of
zeros between its bit cells εi, while in the (real) bit cells, any of the symbols
0, 1, and B may occur. When a symbol read in a cell (where the next bit
εi should be taken) turns to be the blank symbol B, then the field INPUT is
assumed to be finished, and this (and only this) situation leads to the final part
of computation and then to the halting state of the algorithm. Note that to
reach such a blank symbol, it is necessary that all conditions enumerated in the
cycle for different values of n, x and y hold (if the ∃ block of the condition fails,
it will lead to a computation which “non-stops”, and therefore we will not leave
this block at all).

A detailed description of the Turing machine M implementing the algorithm
PRG is presented in Section 5.

For the Turing machine M, we denote by Hlt(M) the set of all sequences
〈ε0, ε1, . . . , εm−1〉 ∈ 2<ω such that the machine M stops after it begins its work
from the start condition INPUT〈ε0, ε1, . . . , εm−1〉. That is,

Hlt(M)=
{

〈ε0, ..., εm−1〉 | M stops when started with INPUT 〈ε0, ..., εm−1〉
}

.

From the description (4.6) of the algorithm PRG, we have

Hlt(M) =
{

〈ε0, ε1, ..., εm−1〉 | (∀x6m)(∀y6m)(∃z)qP (y, z,Nom〈ε0, ..., εx−1〉)
}

,

(4.7)

and as a simple consequence of (4.7), we obtain the property:

(∀ε, ε′ ∈ 2<ω)
[

ε 4 ε′ & ε′ ∈ Hlt(M) ⇒ ε ∈ Hlt(M)
]

. (4.8)

Denote by Cons the set of sequences 〈ε0, ε1, . . . , εm−1〉 ∈ 2<ω for which the
negation of the left-hand side of condition (4.4) is true. In particular, we have

Cons =
{

〈ε0, ε1, ..., εm−1〉 | ν(0)ε0∩ν(1)ε1∩ ... ∩ν(k)εm−1 6=0
}

(4.9)

=
{

〈ε0, ε1, ..., εm−1〉 | (∀y)(∃z)qP (y, z,Nom〈ε0, ε1, ..., εm−1〉)
}

. (4.10)
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Using the conditions 0 6= 1, (4.7), (4.9) and (4.10), we obtain that the following
properties hold:

〈〉∈Cons, (4.11)

(∀ε)
[

ε∈Cons ⇔ ε0∈Cons ∨ ε1∈Cons
]

, (4.12)

(∀ε, ε′ ∈ 2<ω)
[

ε 4 ε′ & ε′ ∈ Cons ⇒ ε ∈ Cons
]

, (4.13)

Cons⊆Hlt(M), (4.14)

(∀ε)
[

ε /∈Cons ⇔ (∃k)(∀ε′�ε)
(

|ε′|> |ε|+k ⇒ ε′ /∈Hlt(M)
) ]

, (4.15)

(∀ε∗∈2ω)
{

(∀ε≺ε∗)
[

ε∈Cons
]

⇔ (∀ε≺ε∗)
[

ε∈Hlt(M)
]}

. (4.16)

In Section 6 (after the Turing machine M is described), we construct a
finitely axiomatizable theory T = [Ω] of a finite signature σ0 including the
predicates (3.3) (and a few others), whose models represent the computations
of machine M in the sense described in Section 3. By our construction, for
each finite sequence 〈ε0, ε1, . . . , εm−1〉 ∈ Hlt(M), the theory T will have a finite
model M〈ε0, ε1, . . . , εm−1〉 representing the triangle of computation beginning
with the starting condition INPUT〈ε0, ε1, . . . , εm−1〉. Our construction will en-
sure that the models of the theory T satisfy the following key condition:

ModFin(T ) = Mod(T ) ∩Mfin =
{

M 〈ε〉 | ε∈Hlt(M)
}

. (4.17)

After the algorithm M is completely described and the theory T is con-
structed for which the condition (4.17) is established, we turn to the final (tech-
nically complicated) part of the proof, in which it is shown that the obtained
theory T satisfies the needed property (4.1).

The final part of the proof consists of the following main steps.

An infinite sequence of zeros and ones ε = 〈ε0, ε1, ε2, ...〉 is called consistent
if for any m > 0, the model M〈ε0, ε1, ..., εm−1〉 exists. By Cons∗ we denote the
set of all infinite consistent sequences of zeros and ones, i.e.,

Cons∗ =
{

ε ∈ 2ω | (∀k ∈ N)
[

ε�k ∈ Hlt(M)
]}

. (4.18)

By virtue of the property (4.16), we also have the following representation

ε ∈ Cons∗ ⇔ ε∈2ω & (∀k ∈ N)[ε�k ∈ Cons]. (4.19)

In particular, we have Cons∗ 6= ∅ as a simple consequence of (4.19) together
with (4.11) and (4.12).

We will need the following technical statement in Section 9.
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Lemma 4.1. There is a function f : N → N which satisfies the following
conditions:

f(x) is an increasing function (not necessarily strictly), (4.20)

limn→∞ f(n) = ∞, (4.21)

(∀ε∈Cons∗)(∀n)
[

Card
{

i | i < n & εi = 0
}

> f(n)
]

, (4.22)

(∀ε∈Cons∗)(∀n)
[

Card
{

i | i < n & εi = 1
}

> f(n)
]

. (4.23)

Proof. Consider the function f(x) defined by the following rule

f(n) = min{f0(n), f1(n)}, where (4.24)

f0(n) = minε∈Cons∗ Card{i | i < n& εi = 0},

f1(n) = minε∈Cons∗ Card{i | i < n& εi = 1}.

It follows directly from the definitions of f0(n) and f1(n) that both are increas-
ing (possibly not strictly). Therefore, the function f(n) defined by (4.24) is
increasing as well. The condition (4.2) together with (4.9) and (4.19) provide
that limn→∞ f0(n) = ∞ and limn→∞ f1(n) = ∞. Therefore, the three condi-
tions (4.21)–(4.23) directly follow from the definition (4.24) of function f(n).
2

For models M and N, we write M ≡s N if they are equivalent with respect
to sentences with 6 s quantifiers (in Skolem normal form). In Sections 7–11

we prove that the models of the theory T satisfy the following condition:

(∀s>0)(∀ε∗∈Cons∗)(∃k>0)
(

∀ε′, ε′′ ∈ Hlt(M)
) [

ε∗�k 4 ε′ & ε∗�k 4 ε′′ ⇒ M〈ε′〉 ≡s M〈ε′′〉
]

. (4.25)

From this, we can prove the following stronger statement.

Lemma 4.2. The following assertion holds:

(∀s>0)(∃k>0)(∀ε∗∈Cons∗)
(

∀ε′, ε′′ ∈ Hlt(M)
) [

ε∗�k 4 ε′ & ε∗�k 4 ε′′ ⇒ M〈ε′〉 ≡s M〈ε′′〉
]

. (4.26)

Proof. We deduce (4.26) as a consequence of (4.25). Let a value of s > 0
be given. Consider the set D of all tuples ε ∈ 2<ω satisfying the condition

(∃ε′, ε′′ ∈ Hlt(M))[ε 4 ε′ & ε 4 ε′′ & M〈ε′〉 6≡s M〈ε′′〉].

Obviously, we have (∀ε, ε1∈ 2<ω)
[

ε 4 ε1 & ε1 ∈ D ⇒ ε ∈ D
]

, i.e., the set D
is a subtree of binary branching tree 2<ω. Therefore, it cannot be infinite,
because otherwise a tuple ε∗ of length ω could be found such that each of its
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initial segments belongs to D. But obviously this sequence contradicts statement
(4.25). Thus, the set D is finite. Therefore it is possible to find a natural number
k which exceeds the lengths of all tuples from D. This value of k establishes
(4.26). 2

Consider the following series of sentences of the theory T , which are express-
ible via predicates (3.3) of the signature σ0 from (3.4) :

∆k =df

[

the 1
2 (k+1)(k+4)-th S-predecessor of O satisfies A1(x)

]

,

Θk =df

[

the 1
2 (k+1)(k+4)-th S-predecessor of O satisfies A0(x)∨A1(x)

]

.

These sentences speak about the starting information of the Turing machine.
Namely, ∆k says that the input sequence ε = 〈ε0, ε1, . . .〉 satisfies εk = 1, while
Θk says that εk ∈ {0, 1}, i.e., the length of the input sequence is k+1 or more
(there is no blank symbol B in the corresponding cell of the input sequence).
In particular, we have Θj →Θj−1 for all j > 0 in all finite models of T . One
can see that both sentences ∆k and Θk can be constructed effectively in k ∈ N.

Now, we prove the following important property:

Lemma 4.3. The set of sentences ∆i, Θi, i ∈ N, is a generating set for the
Lindenbaum algebra L

(

ModFin(T )
)

.

Proof. Let Φ be a sentence of the theory T , and let s be the number of
quantifiers of Φ after it is reduced to Skolem normal form. In particular, for the
sentence Φ and for any models M, N of signature σ0, we have:

M ≡s N ⇒ M |= Φ ⇔ N |= Φ.

Take k > 0 which makes the statement (4.26) true for this s. Consider the
following two sets of tuples:

LΦ = {ε ∈ Hlt(M) | |ε| < k & M〈ε〉 |= Φ},

MΦ = {ε ∈ Hlt(M) | |ε| = k & M〈ε〉 |= Φ}.

For a sequence ε ∈ 2<ω, ε = 〈ε0, ε1, ..., εj−1〉, we denote by IN ∗〈ε〉 and IN 〈ε〉
the following formulas of the signature σ0:

IN ∗〈ε〉 = ∆ε0

0 &∆ε1

1 & ...&∆
εj−1

j−1 &Θj−1 & qΘj ,

IN 〈ε〉 = ∆ε0

0 &∆ε1

1 & ...&∆
εj−1

j−1 &Θj−1.

One can see, IN 〈ε〉 is true in all models M〈ε′〉 satisfying ε 4 ε′, while IN ∗〈ε〉
is true only in the finite model M〈ε〉 of the class (4.17).

Consider the following sentence of the signature σ0:

Ψ =
∨

ε∈LΦ

IN ∗〈ε〉 ∨
∨

ε∈MΦ

IN 〈ε〉. (4.27)
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Using the properties (4.17) and (4.26) for the given s and k, and the fact that
the truth value of Φ is preserved under ≡s on models, one can check that
the sentence Φ ↔ Ψ is true in each finite model M of the theory T . This
completes the proof of Lemma 4.3 because the formula (4.27) is obviously a
Boolean expression over formulas ∆i and Θi, i ∈ N. 2

Now, we turn to the quotient modulo the Fréchet ideal.

Lemma 4.4. The set of sentences ∆i, i ∈ N, is a generating set for the
quotient of the Lindenbaum algebra

L∗
(

ModFin(T )
)

= L
(

ModFin(T )
)

/F

modulo the Fréchet ideal.

Proof. By Lemma 4.3, the set of sentences ∆i, Θi, i ∈ N, is a generating
set for Lindenbaum algebra L

(

ModFin(T )
)

, and therefore it is a generating set
for its quotient modulo the Fréchet ideal. But, any formula Θi is equal to 1
modulo the ideal F , because qΘi is obviously true in a finite number of finite
models of the class (4.17). Therefore, the set ∆i, i∈N, is a generating set for
the quotient. 2

Now, we are in a position to prove our main statement (4.1).

Let u(x, y), v(x, y), and w(x) be general recursive functions which satisfy
(4.3). If Φ is a sentence of signature σ0, we let [Φ]∗ denote the equivalence class
which is generated by this formula in the quotient algebra L(ModFin(T ))/F
modulo the Fréchet ideal F .

We define the mapping λ from B into L(ModFin(T ))/F by the following rule:

λ(ν(n)) = [∆n]∗, n ∈ N. (4.28)

The fact that this map achieves our goal is verified in the next lemma.

Lemma 4.5. The map λ is a constructive isomorphism between the numer-
ated Boolean algebras (B, ν) and (L(ModFin(T ))/F , γ/F).

Proof. By (4.28), the mapping λ is defined on all elements of B.

We first check that λ is well defined.

Let m,n be such that ν(n) = ν(m), and let p=max{m,n}+1. Then for any
sequence ε = 〈ε0, ε1, ...〉, for which

ε ∈ 2<ω, |ε| > p, and (εm, εn) ∈ {(1, 0), (0, 1)}, (4.29)

we have ε 6∈ Cons by (4.9). There are only finitely many sequences ε of the
form (4.29) with |ε| = p, while all other sequences of the class (4.29) are their
extensions. Then, by (4.15), we obtain that there are only finitely many se-
quences ε ∈ Hlt(M) for which condition (4.29) holds. Also, there can be only
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finitely many sequences ε ∈ Hlt(M) satisfying |ε| < p. Therefore, for any α, β
satisfying

(α, β) ∈ {(0, 1), (1, 0)}, (4.30)

the sentence ∆α
m &∆β

n is true in only a finite number of models of the class
(4.17). So, for all tuples (α, β) satisfying (4.30) we have [∆α

m &∆β
n]∗ = 0 in the

quotient modulo the Fréchet ideal. From this, we get [∆m]∗ = [∆n]∗ by Lemma
0.1 (a), which shows that λ(ν(m)) = λ(ν(n)).

We now check that λ is an isomorphism.

(a) λ preserves ∩ : Let a and b be arbitrary elements of B, and m,n, k be
such that a = ν(m), b = ν(n), k = v(m,n). Then we have ν(m) ∩ ν(n) = ν(k).
Let p=max{m,n, k}+1. Then, for any sequence ε = 〈ε0, ε1, ...〉 for which

ε ∈ 2<ω, |ε|>p, and (εm, εn, εk)∈{(1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)}, (4.31)

we have ε 6∈ Cons by (4.9). There are only finitely many sequences ε of the
form (4.31) with |ε| = p, while all other sequences of the class (4.31) are their
extensions. Then by (4.15) we obtain that there are only finitely many sequences
ε ∈ Hlt(M) for which condition (4.31) holds. Also, there can be only finitely
many sequences ε ∈ Hlt(M) satisfying |ε| < p. Therefore, for any α, β, γ
satisfying

(α, β, γ) ∈ {(1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)}, (4.32)

the sentence ∆α
m &∆β

n &∆γ
k is true in only a finite number of models of the class

(4.17). So, for all tuples (α, β, γ) satisfying (4.32) we have [∆α
m &∆β

n &∆γ
k ]∗ = 0

in the quotient modulo the Fréchet ideal. From this, we get [∆m]∗ ∩ [∆n]∗ =
[∆k]∗ by Lemma 0.1 (b), which shows that λ(ν(m)) ∩ λ(ν(n)) = λ(ν(k)).

Finally, we have

λ(a ∩ b) = λ(ν(m) ∩ ν(n)) = λ(ν(k)) = λ(ν(m)) ∩ λ(ν(n)) = λ(a) ∩ λ(b),

which means that λ preserves the Boolean operation ∩.

(b) λ preserves the operation − : Let a be an arbitrary element of B, and
m,n be such that a = ν(m), n = w(m). Then we have −ν(m) = ν(n). Let
p=max{m,n}+1. Then, for any sequence ε = 〈ε0, ε1, ...〉, for which

ε ∈ 2<ω, |ε| > p, and (εm, εn) ∈ {(0, 0), (1, 1)}, (4.33)

we have ε 6∈ Cons by (4.9). There are only finitely many sequences ε of the
form (4.33) with |ε| = p, while all other sequences of the class (4.33) are their
extensions. Then by (4.15) we obtain that there are only finitely many sequences
ε ∈ Hlt(M) for which condition (4.33) holds. Also, there can be only finitely
many sequences ε ∈ Hlt(M) satisfying |ε| < p. Therefore, for any α, β satisfying

(α, β) ∈ {(0, 0), (1, 1)}, (4.34)
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the sentence ∆α
m &∆β

n is true in only a finite number of models of the class
(4.17). So, for all tuples (α, β) satisfying (4.34) we have [∆α

m &∆β
n]∗ = 0 in

the quotient modulo the Fréchet ideal. From this, we get −[∆m]∗ = [∆n]∗ by
Lemma 0.1 (c), which shows that −λ(ν(m)) = λ(ν(n)).

Finally, we have

λ(−a) = λ(−ν(m)) = λ(ν(n)) = −λ(ν(m)) = −λ(a),

which means that λ preserves the Boolean operation −.

(c) λ preserves ∪, 0 and 1: We have by direct calculations: λ(a ∪ b) =
λ(−(−a ∩ −b)) = −(−λ(a) ∩ −λ(b)) = λ(a) ∪ λ(b), λ(0) = λ(0 ∩ −0) =
λ(0) ∩ −λ(0) = 0, and λ(1) = λ(1 ∪ −1) = λ(1) ∪ −λ(1) = 1.

(d) λ(a) 6=0 for a 6=0. Let a be an element of B such that a 6=0. Choose n such
that a=ν(n). Since ν(n) 6=0, one can find a sequence ε=〈ε0, ε1, ..., εn−1〉 ∈ 2<ω

such that
ν(0)ε0 ∩ ν(1)ε1 ∩ .. ∩ ν(n−1)εn−1 ∩ ν(n) 6= 0.

Thus, by definition (4.9), ε ∈ Cons; moreover, ε1 ∈ Cons. Then, by prop-
erties (4.12) and (4.19), there exists an infinite sequence of zeros and ones
ε∗ = 〈ε0, ε1, ε2, . . .〉 ∈ Cons∗ whose initial subsequence of length n+1 is equal
to ε1. From this, it follows by (4.18) that the formula ∆n is true in infinitely
many finite models of T , for example, in all models of the form M〈ε0, ε1, ..., εk〉,
k > n. Thus [∆n]∗ 6= 0, establishing that a 6= 0 implies λ(a) 6= 0.

(e) λ is “onto”. This directly follows from Lemma 4.4 and the definition of
λ.

From properties (a)–(e), it follows that the map

λ : B → L(ModFin(T ))/F

is an isomorphism of Boolean algebras. The existence of general recursive func-
tions g1(x) and g2(x) shown in Diagram (0.1) which represent the isomorphism
λ is obvious. Thus the mapping λ is a constructive isomorphism between the
numerated algebras (B, ν) and (L(ModFin(T ))/F , γ/F).

So the constructive isomorphism (4.1) exists, and Theorem 1.5 is proven. 2

The scheme of the proof is completed.

Thus, to prove Theorem 1.5, we consider an arbitrary Σ0
2 Boolean algebra

(B, ν) which satisfies the conditions 0 6= 1 and (4.2), and for (B, ν), we have to
construct a Turing machine M satisfying the PRG specification and to embed
it in some finitely axiomatizable theory T such that for the class of its finite
models ModFin(T ), the model-theoretic properties (4.17) and (4.25) are true.

We now make some more informal comments about the details of the con-
struction.
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The reason for using extra zeros between the bit cells εi is that they help
prove statement (4.25). The special form of the set Hlt(M) forces the Linden-
baum algebra of the class of all finite models of the theory T to satisfy (4.1).
One can see that the set Hlt(M) formed by the machine is, in some sense,
an approximation to the set Cons, defined by the numerated Boolean algebra
(B, ν). By (4.8), (4.13) and (4.14) both of them are trees and Cons⊆Hlt(M).
Note that exact equality between these sets Cons = Hlt(M) is impossible in
view of their different algorithmic complexity. However, the conditions (4.15)
and (4.16) imply that the approximation of the set Cons by the set Hlt(M) is
correct in some limiting sense, which is sufficient for proving the isomorphism
(4.1), ignoring any finite joins of atoms in the Lindenbaum algebra considered.

The general description of the main goals of the construction is completed,
and now we turn to the concrete details of the theory T .

5 Programming technique

A number cell with value k is a sequence of k + 1 ones on a tape which is
bounded by blanks on both sides. A bit cell is a single tape cell which can be
used in the program for the storage of Boolean information, represented by the
symbols 0 or 1.

Fig. 5.1 shows a flow chart of the algorithm, Fig. 5.2 and Fig 5.3 show all
basic numeric and bit cells used during the computation of the Turing machine,
and Fig. 5.4 represents the algorithm itself realized as a program of a Turing
machine. Note that Fig. 5.3 has stages (a)–(g), which are marked in both Figure
5.1 and Figure 5.4. They help us analyze the process of the algorithm, and also
allow us to identify groups of instructions of the Turing machine which performs
the operations in the flow chart.

The program consists of four main parts (which can be analyzed separately),
namely: initial part, main cycle (e)–(b), local cycle with a subroutine (c)–(d),
and final part. One can check that the program in Fig. 5.4 exactly corresponds
to the flow-chart, and the extra information in Fig. 5.2 and Fig. 5.3 properly
describes the algorithm.

We now make some more detailed comments.

To the left of the starting point, some complex Boolean information INPUT

is located which consists of bit cells ε0, ε1, ... and intervening sequences of zeros
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of increasing length between them. There is a special numerical parameter t
acting in this field. The value of this parameter t is represented by the position
of a special symbol 0′ in the field INPUT. This symbol marks how far we have
scanned the field INPUT up to the current stage of the algorithm. To the right
side of the initial position of the head, we have the numerical cells n, x, and
e. The cell n is initialized at the beginning of the computation, and it remains
active during the entire computation, while the cell x is periodically erased,
initialized and run over an increasing sequence of values. For each new value of
x, the cell e is computed to represent the value of Nom 〈ε0, ε1, . . . , εx−1〉.

Note that in the program there are four special commands controlling the
information in the position of pointer t in field INPUT. They are displayed in
Fig. 5.4 by the use of arrows of the form 7→ (which are used only to show these
special commands). These four commands ensure that the
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computation nonstops in the case when the left-hand side of the implication in
(4.5) is true.

One can verify that every call of the subroutine (c)–(d) uses an initial seg-
ment of the field INPUT, which is located to the right of the current position
of the pointer t, i.e., any computation of the subroutine uses a part of the bit
information field which have already been checked in the computation.

During the computation, the symbol 0 in a tape cell can temporarily be
replaced by the symbol 0′, and later, the previous symbol 0 will be restored
in this cell. The same applies to the symbol 1′. Thus, the information in the
field INPUT can be queried by the head of machine again and again; however,
the information content of this field is not changed during the computation. As
for cells n, x and e, we perform both cell operations and cell-aided operations
over them. A cell operation changes its value. A cell-aided operation does not
change its value, but is performed to change some other cell, or to compare
values of two cells.

The operations, represented in the flow chart, are organized in the form of
back-and-forth movements of the machine head, using the symbols 0′ and 1′.
In a sequence of back-and-forth movements of the head, the same routine is
executed again and again while the amplitude of head movements is gradually
increased (or decreased). For this reason, we call such computations quasi-
periodic computations.

In addition to the quasi-periodic computations, there are entries into the
so-called universal block, in which the following condition is checked for the
current tape stage,

U(n, e) = (∀y6n)(∃z)qP (y, z, e), (5.1)

where n is the base cell of global cycle, while the current value of the cell
e represents the number of the sequence Nom 〈ε0, ε1, . . . , εx−1〉. So, condition
(5.1) depends just on the parameters n and e. The words “to check the condition
U(n, e)” mean that if the condition is false, the computation inside U(n, e)
never finishes its work (and so the computation as a whole does not stop).
Otherwise, if the condition turns to be true, the computation finishes its work in
a finite number of steps and then passes to further quasi-periodic computations
according to the flow-chart.

The computations in the universal block can, of course, be programmed
because the predicate P (y, z, t) is recursive. But, for our construction, we have
to use some particular form of the program of the universal block according to
the flow-chart shown in Fig 5.5. It provides a quasi-monotonicity property of
the computation that will be discussed in Section 10.

We now give some explanations of the details.
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One can see in Fig 5.5 that at the entry into the universal block, a subpro-
gram called “Polynomial quasi-periodic subroutine” computes the value c2(n, e)
(where c(x, y) is the Cantor pairing function), and writes it in a special working
cell KEY to the right of cell e. Then other parts of the universal block start to
work, which we will discuss later. We call the subroutine of the computation
c2(n, e) the polynomial part of the computation in the universal block. It is
assumed that this subroutine is programmed as (quite complex) quasi-periodic
computation, whose properties were discussed earlier.
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Consider the following new relation

U ′(n, e) ⇔ U(n, e) is true and a call U(n, e) can occur in
a computation in a model of the class (4.17).

Obviously, U ′(n, e)⇒U(n, e) for all n, e ∈ N. Moreover, we have the following
direct representation for the relation U ′(n, e) :

U ′(n, e) ⇔

e=Nom〈ε0, ..., εx−1〉 & (x6n) & (∀j6x)U
(

n,Nom〈ε0, ..., εj−1〉
)

.

(5.2)

Note two technical facts.

Lemma 5.1. For all n, n1, e ∈ N, if n > n1 and U ′(n, e) is true, then
U ′(n1, e) is true.

Proof. Immediately from (5.1) and (5.2). 2

Lemma 5.2. Let ε ∈ Cons be given, and e = Nom〈ε〉. Then U ′(n, e) is true
for all n ∈ N.

Proof. Directly from (4.10), (5.1) and (5.2). 2

Consider the following auxiliary sequence of integers:

V =
{

k ·(k+1) | k>0
}

. (5.3)

Note that no elements in V are pure squares because n2<n ·(n+1)< (n+1)2

for all n>0.

By definitions (5.1) and (5.2), the set

W =
{

(n, e) | U ′(n, e)
}

(5.4)

is recursively enumerable. By (4.11) and (4.14), we have (0, 0)∈W . Further-
more, by (4.11) we have 〈〉 ∈ Cons, and therefore by Lemma 5.2, we have (n, 0)
for all n ∈ N. In particular, the set W is infinite. Let w0(x) and w1(x) be two
general recursive functions such that w0(0)=w1(0)=0 and

W =
{(

w0(j), w1(j)
)

| j ∈ N
}

(5.5)

is an effective enumeration of the set W without repetitions.

Consider a general recursive function q(x) such that

{

q(j) | j ∈ N
}

=
{

c2(n, e) | (n, e)∈W
}

∪ V ′ (5.6)

is an enumeration of the set c2(W )∪ V ′ for some subset V ′ ⊆ V (possibly with
repetitions), where the function q(x) is constructed by the method described
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below and is such that the following properties hold:

(∀x)
[

q(x)6x
]

, (5.7)

(∀y)(∃z)(∀x>z)
[

q(x)>y
]

. (5.8)

The function q(x) is defined in steps s = 0, 1, 2, ... as follows.

Step s = 0. We set q(0) = 0.

Assume step s of the construction is completed and q(x) is defined on the
interval [0, ks].

Step s+1. Let (n, e) be the (s+1)-th pair in the enumeration (5.5) of the
set W , i.e., (n, e) =

(

w0(s+1), w1(s+1)
)

. Let e = Nom〈ε0, ε1, ..., εx−1〉 with
x ≥ 1. Obviously, by (5.2), we have n> 0. Consider the following sequence of
numbers:

e0 = Nom〈〉,

e1 = Nom〈ε0〉,

e2 = Nom〈ε0, ε1〉,

. . .

ex−1 = Nom〈ε0, ε1, ..., εx−1〉.

We want to define the values of q(x) for x > ks so as to cover all the elements
of the following sequence in the order that they appear.

c−(n, e0), c
+(n, e0), c

2(n, e0), c
−(n, e1), c

+(n, e1), c
2(n, e1), . . .

. . . , c−(n, ex−1), c
+(n, ex−1), c

2(n, ex−1).

(5.9)

Here, we use functions

c−(n, e) =
[

c(n, e)−1
]

·c(n, e),

c+(n, e) = c(n, e)·
[

c(n, e)+1
]

,

c2(n, e) = c(n, e)·c(n, e).

Because of the restriction (5.7), we may not be able to insert each element from
this sequence immediately as a value of q(x). Therefore, suppose that q(x) is
already defined for all x < k, and we are trying to define q(k) to include the
next value c from the sequence (5.9) (for example, c= c2(n, e1)). If c 6 k, we
simply set

q(k) = c.

Otherwise, if c > k, we set
(

∀x∈ [k, c−1]
)[

q(x) = (max b6x)(∃y<x)[ q(y)=b ]
]

,

and

q(c) = c.

(5.10)
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This completes the construction of q(x).

Notice that we set q(k)= c if c is not too large. Otherwise, if c>k, we add
some additional values of q(x) for x in interval [k, c−1] to avoid contradicting
(5.7), and finally we set q(c)= c. As a result, we have added c to the values of
the function q such that (5.7) remains satisfied. At the same time, the entire
construction of q(x) will satisfy condition (5.8) because the enumeration (5.5)
does not have any repetitions, and we choose as additional values of q(x) in the
interval [k, c−1] of (5.10) elements b as large as possible which occurred earlier.
So, conditions (5.7) and (5.8) are both satisfied by the construction of q.

Note that the elements c2(n, e0), c
2(n, e1), ..., c

2(n, ex−1) of (5.9) must be-
long to the set c2(W ) by Lemma 5.1 since we have (n, e) = (n, ex−1) ∈ W . All
other elements in (5.9) are included in the set V since we have 2 6 c(n, e0)<
c(n, e1)<... in our case with n>0.

The idea of the program U(n, x) shown in Fig. 5.5 is quite obvious. After the
cell KEY is computed as discussed above, the program initializes and then runs
a cycle over a numeric cell STEP for STEP = 0, 1, 2, . . .. At each stage STEP
of the cycle, we call a special subroutine to compute q(x) at the argument
x = STEP, and the result is written into a special cell K. This part of the
universal block is called the kernel part of the universal block. Since q(x) is a
general recursive function, any call of the kernel part finishes its work in a finite
number of steps and yields some result. Then a special subroutine starts, which
checks if

KEY =K (5.11)

holds. If (5.11) is true, we exit the universal block (previously clearing all used
working fields), otherwise, the same computation is executed for the next value
of the cycle cell STEP, etc.

The following fact holds:

Lemma 5.3. Let the universal block be programmed as in the flow-chart
shown in Fig. 5.5. If U(n, e) is called during the computation of the machine
M with parameters n and e in a model of the class (4.17), then it finishes its
work if and only if condition (5.1) is true for given values of n and e.

Proof. First suppose that U(n, e) is true. Then this pair (n, e) is included
in the set (5.4)–(5.5) and therefore c2(n, e) is included in the set (5.6). Thus,
for an appropriate value of cell STEP, equation (5.11) is true, which causes the
exit out of the universal block. Now, suppose that U(n, e) is false and therefore
U ′(n, e) is false as well. This means that the pair (n, e) does not belong to
the set (5.5), and therefore, the number c2(n, e) cannot belong to the set (5.6)
by property (2.5). So, the computation by the scheme given in Fig. 5.5 never
finishes its work because the truth of (5.11) fails at every instance of the STEP-
cycle. 2
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Thus, the routine we have in Fig 5.5 satisfies condition (5.1).

Lemma 5.4. For any n and e, the computation U(n, e) loops through its
internal STEP cycle at least n times.

Proof. Immediate from the flow-chart shown in Fig 5.5, using the inequal-
ities (2.6) and (5.7). 2

The computations in the universal block can be programmed because the
function q(x) is recursive. For our construction, it is assumed that all the cell
and cell-aided operations used in Fig. 5.5 over cells n, x, e, KEY , STEP and K
are programmed as quasi-periodic computations. This part of the program of
the universal block looks simple enough, and therefore its details (i.e., Turing
machine instructions) are omitted here. As for the subprogram in the kernel

of the universal block, its particular form is irrelevant for our construction. It
is important for us only that this part can be programmed.

The description of the details of the universal block is finished.

There are three general requirements on the program for the universal block:

a computation in the universal block should act on the right side (5.12)
of the tape, and it should not pass its head farther than
the left bound of the cell n ;

the kernel computation in the universal block should not pass its (5.13)
head farther than the left bound of the cell STEP ;

there should be a subroutine at the exit of the universal block which (5.14)
clears the working field and restores the values of n, x and e that they
had at the entry of the block (see the form of exit stage in Fig. 5.3 (e)).

So the universal block must work on the right side of the tape; moreover, all
input parameters needed for its work are presented with current cells n, x and
e, which are accessible to the block by (5.12). When the computation U(n, x)
is finished, the program should clear its working field just before the exit of the
block.

Now, we consider what the program computes as a whole when the input
information is correct, i.e., it has the form of INPUT〈ε0, ..., εm−1〉 for a sequence
〈ε0, ..., εm−1〉 ∈ Hlt(M).

According to the flow chart shown in Fig 5.1, at its start, the machine
initializes the position of the pointer t and the value of the cell n and then some
cycle with base cell n is started which we call a global cycle. In each instance of
this global cycle (except for the 0th instance), the value of n is increased by 1
while n6weight(INPUT). For each new value of n, we arrange for a special local
cycle which uses the cell x with values from 0 to n and which makes entries into
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the universal block. The cell e is initialized when the value of x is initialized,
and for each new value of x, we set e to be the Gödel number of the tuple
〈ε0, ε1, . . . , εx−1〉 as calculated by the inductive rule (2.2). As a result of the
execution of the cycle with n and the cycles with x, we will have checked the
sequence of conditions

U(n, e), 06n6m, 06x6n, e = Nom〈ε0, ..., εx−1〉,

where m=weight(INPUT).

(5.15)

When the pointer t reaches a blank symbol (where a bit cell εi should be), the
main cycle is finished, and the final part of computation is performed. This
part erases the field INPUT and the cell n, and finally stops in the state shown
in Fig. 5.3 (g). So one can see that if at least one of the conditions (5.15) turns
out to be false, the computation can never reach a halt state; otherwise, if all
of them are true, the computation must reach a halt state.

Now, we prove a few lemmas concerning the algorithm.

Lemma 5.5. Let the machine M start with a tape situation S ∈ SpecST
different from the form INPUT〈ε0, ε1, ..., εm−1〉 with finite m. Then M will not
reach a halt state in this computation.

Proof. The machine M cannot reach a halting state in such an S-compu-
tation because it checks the input information. If the input turns out to be
wrong in a cell inside a separating field of 0’s, a special command marked with
7→ will apply, resulting in an infinite cycle. 2

Lemma 5.6. Let the machine M start with S= INPUT〈ε0, ..., εm−1〉. Then
M reaches a halt state in the S-computation if and only if the following condi-
tion holds: (∀n6m)(∀x6n)(∀y6n)(∃z)qP (y, z,Nom〈ε0, ..., εx−1〉).

Proof. Since the input information is correct in this case, the special com-
mands marked with 7→ never apply. Therefore, the S-computation will reach
a halt state if and only if all of the conditions (5.15) are true. This is exactly
equivalent to the truth of the expression in Lemma 5.6. 2

Lemma 5.7 The machine M meets all requirements of the specification
PRG.

Proof. One can see that the flow-chart of the machine M given in Fig. 5.1
makes an adequate representation of the specification PRG. Moreover, require-
ments (4.5) and (4.6) are guaranteed by Lemma 5.5 and Lemma 5.6. 2

So, with the Turing machine M constructed above, all properties (4.5)–
(4.16), (4.18)–(4.23), including Lemma 4.1, are true because they are all deduced
in Section 4 from the statements (4.2)–(4.6). As for (4.17), this property will
be discussed later after the theory T is completely described.

The gist of the program M consists of properly arranged quasi-periodic
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computations (with very simple tape configurations) preparing cells n, x, e,
KEY , STEP, and K as needed, and entries to the kernel subroutine of the
universal block. As a result, it will be possible to completely classify all types
of local areas in models of the theory T . This will ensure the necessary model-
theoretic properties of the resulting theory.

A more detailed analysis of the operation of the algorithm and its effect
on the properties of the theory will be considered later, after the exact formal
representation of the theory T has been given in the following section.

6 Axiomatic and base properties of models

Let M be the Turing machine constructed in the previous section, and let
d and e be the corresponding parameters denoting the number of tape symbols
and the number of states (here, d = 5). We describe a finitely axiomatizable
theory T = F (B, ν), which, as will be shown later, has all the properties required
by Theorem 1.5. The signature of the theory T is

σ0 =
{

D2, H2, S2, N2, O, J,B,BL,BR,CT,CL,CR, A0, ..., Ad−1, Q,Q0, ..., Qe−1

}

.

Here, the superscripts denote the arities of the predicate symbols and the sym-
bols without superscripts are unary predicate symbols. Note that σ0 includes
all the predicates in (3.3).

The axioms of T are the following sentences, grouped according to their
meaning in the theory.

Axioms of the frame base: H is an equivalence relation giving the hori-
zontal rows, D links each row to the row above:

1◦. (∀x)H(x, x)

2◦. (∀x)(∀y)
[

H(x, y) → H(y, x)
]

3◦. (∀x)(∀y)(∀z)
[

H(x, y) &H(y, z) → H(x, z)
]

4◦. (∀x)(∀y)(∀u)(∀v)
[

H(x, u) &H(y, v) →
(

D(x, y) ↔ D(u, v)
) ]

5◦. (∀x)(∀y)(∀u)(∀v)
[

D(x, y) &D(u, v) →
(

H(x, u) ↔ H(y, v)
) ]

6◦. (∀x)
[

qD(x, x)
]

Axioms of endpoints: CT gives the top corner of the triangle, and J the
bottom row:

7◦. (∀x)
[

CT(x) ↔ q(∃y)D(x, y)
]

8◦. (∀x)(∀y)
[

CT(x) &CT(y) → (x = y)
]

9◦. (∀x)
[

J(x) ↔ q(∃y)D(y, x)
]
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10◦. (∀x)(∀y)
[

J(x) & J(y) → H(x, y)
]

Axioms of the central point: O gives the center of the bottom row:

11◦. (∃x)
[

J(x) &O(x)
]

12◦. (∀x)(∀y)
[

O(x) &O(y) → (x = y)
]

Axioms of the skeleton: S and N link a point to its neighbor to the right
or above, respectively:

13◦. (∀x)
[

qS(x, x)
]

14◦. (∀x)(∀y)(∀u)(∀v)
[

S(x, y) &S(u, v) →
(

(x = u) ↔ (y = v)
) ]

15◦. (∀x)(∀y)(∀u)(∀v)
[

N(x, y) &N(u, v) →
(

(x = u) ↔ (y = v)
) ]

16◦. (∀x)(∀y)(∀u)(∀v)
[

N(x, y) &N(u, v) →
(

S(x, u) ↔ S(y, v)
) ]

17◦. (∀x)(∀y)
[

S(x, y) → H(x, y)
]

18◦. (∀x)(∀y)
[

N(x, y) → D(x, y)
]

Axioms of the boundaries: B gives both upper boundaries of the triangle,
with BL and BR forming the left and right diagonal boundaries of the triangle:

19◦. (∀x)
[

B(x) ↔ q(∃y)N(x, y)
]

20◦. (∀x)
[

B(x) ↔ BL(x) ∨ BR(x)
]

21◦. (∀x)
[

BL(x) ↔ q(∃y)S(y, x)
]

22◦. (∀x)
[

BR(x) ↔ q(∃y)S(x, y)
]

23◦. (∀x)(∀y)(∀z)
[

S(x, y) &N(y, z) →
(

BL(x) ↔ BL(z)
) ]

24◦. (∀x)(∀y)(∀z)
[

S(x, y) &N(x, z) →
(

BR(y) ↔ BR(z)
) ]

25◦. (∀x)(∀y)
[

BL(x) &BR(y) → qS(x, y)
]

26◦. (∀x)(∃y)
[

H(x, y) &BL(y)
]

27◦. (∀x)(∃y)
[

H(x, y) &BR(y)
]

28◦. (∀x)(∀y)
[

H(x, y) &BL(x) &BL(y) → (x = y)
]

29◦. (∀x)(∀y)
[

H(x, y) &BR(x) &BR(y) → (x = y)
]

30◦. (∀x)
[

J(x) ↔ q(∃y)N(y, x)
]

Axioms of the corners and boundaries: We now relate corners and
boundaries:

31◦. (∀x)
[

CT(x) ↔ BL(x) &BR(x)
]

32◦. (∀x)
[

CL(x) ↔ BL(x) & J(x)
]

33◦. (∀x)
[

CR(x) ↔ BR(x) & J(x)
]

Axioms of the possible forms of information: Ai and Qj denote that
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a point bears symbol ai or is in state qj , respectively; and Q denotes that a
point is scanned by the head (i.e., is in at least one state):

34◦. (∀x)
[

A0(x) ∨ A1(x) ∨ . . . ∨ Ad−1(x)
]

35◦. (∀x)
[

qAi(x) ∨ qAj(x)
]

, 0 6 i < j < d

36◦. (∀x)
[

Q(x) ↔ Q0(x) ∨Q1(x) ∨ . . . ∨Qe−1(x)
]

37◦. (∀x)
[

qQi(x) ∨ qQj(x)
]

, 0 6 i < j < e

Axioms of the starting position: We start in the bottom row in state
q0 and place restrictions on the symbols ai that can appear in the bottom row:

38◦. (∀x)
[

O(x) → Q0(x)
]

39◦. (∀x)
[

J(x) → A0(x) ∨ A1(x) ∨ A2(x)
]

40◦. (∀x)(∀y)
[

S(x, y) &O(y) → A0(x) &A2(y)
]

41◦. (∀x)(∀y)
[

S(x, y) & J(y) &A2(y) & qO(y) → A2(x)
]

42◦. (∀x)
[

CL(x) → A2(x)
]

43◦. (∀x)
[

CR(x) → A2(x)
]

Head location axiom: Each row contains a unique point being scanned
by the head, which is not on a diagonal boundary:

44◦. (∀x)(∀y)
[

H(x, y) & Q(x) &Q(y) → (x = y)
]

45◦. (∀x)
[

Q(x) → qB(x)
]

Axiom of preserving a tape symbol: Only a point that is scanned can
bear a different symbol in the row above:

46◦. (∀x)(∀y)
[

qQ(x) &Ai(x) &N(x, y) → Ai(y)
]

, 0 6 i < d

Axioms of the Turing machine instructions: Each non-bottom row is
determined from the row below by a Turing machine instruction:

47◦. (∀u)
[

Ai(u)&Qj(u) → (∃x)(∃y)N(u, y)&S(x, y) &As(y)&Qt(x)
]

,
for all commands 〈i, j, s, t, L〉 ∈ M

48◦. (∀u)
[

Ai(u)&Qj(u) → (∃x)(∃y)N(u, x)&S(x, y) &As(x)&Qt(y)
]

,
for all commands 〈i, j, s, t, R〉 ∈ M

Axiom of the halting configuration: We halt when no Turing machine
instruction applies:

49◦. (∀x)
[

Ai(x) &Qj(x) → (∃y)
(

N(x, y) &CT(y)
) ]

,
for all i, j such that 〈i, j, stop〉 ∈ M

Corollaries

C50◦. (∀x)(∀y)(∀u)(∀v)
[

S(x, y) &S(u, v) →
(

N(x, u) ↔ N(y, v)
) ]
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C51◦. (∀x)(∀y)
[

S(x, y) → qN(x, y) & qN(y, x)
]

C52◦. (∀x)
[

qN(x, x)
]

C53◦. (∀x)
[

(∃y)N(x, y) ↔ (∃z)S(z, x)
]

C54◦. (∀x)
[

(∃y)N(x, y) ↔ (∃z)S(x, z)
]

C55◦. (∀x)
[

CT(x) → qQ(x)
]

C56◦. (∀x)(∀y)
[

CT(x) &N(y, x) → Q(y)
]

C57◦. (∀u)(∀x y z)
[

Q(u) &N(y, u) &S(x, y) &S(y, z) → Q(x) ∨Q(z)
]

C58◦. (∀x)
[

B(x) & qCT(x) → A2(x)
]

C59◦. (∃x)CT(x)

C60◦. (∃x)CL(x)

C61◦. (∃x)CR(x)

C62◦. (∀x)(∀y)
[

CL(x) &CL(y) → (x = y)
]

C63◦. (∀x)(∀y)
[

CR(x) &CR(y) → (x = y)
]

C64◦. (∀x)
[

qCT(x) ∨ qCL(x)
]

C65◦. (∀x)
[

qCT(x) ∨ qCR(x)
]

C66◦. (∀x)
[

qCL(x) ∨ qCR(x)
]

C67◦. (∀x)(∀y)
[

H(x, y) →
(

J(x) ↔ J(y)
) ]

C68◦. (∀x)(∀y)
[

S(x, y) →
(

J(x) ↔ J(y)
) ]

C69◦. (∀x)
[

O(x) ↔ J(x) &Q(x)
]

C70◦. (∀x)
[

O(x) → qB(x)
]

It is possible to consider the corollaries as additional axioms which help to
better explain the theory. However, all of them can be deduced (though not
always obviously) from the axioms, taking into account that we only consider
finite models.

As defined above, let INPUT〈ε0, ε1, . . . , εm−1〉, εi ∈ {0, 1}, denote the initial
tape configuration of M as in Fig. 4.1, where the bit cells εi on the tape are from
the sequence 〈ε0, ε1, . . . , εm−1〉. We say that a finite model M of the theory T
represents a starting state of type INPUT〈ε0, ε1, ..., εm−1〉 if its J-class represents
some interval from the infinite tape of the form INPUT〈ε0, ε1, ..., εm−1〉. In this
interval, the field

INPUT〈ε0, ε1, ..., εm−1〉

must be included in its entirety; moreover, it should be surrounded by at least
one blank cell on both the left and the right.
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Some properties of models of the theory T constructed from M are described
by the following statement.

Lemma 6.1. Let ε = 〈ε0, ε1, . . . , εm−1〉, εi ∈ {0, 1}, i < m, be a sequence
such that starting from the tape INPUT〈ε0, ε1, . . . , εm−1〉, the machine M enters
a halt-state. Then the theory T has a finite model M in the form of a triangle
shown in Fig. 3.5, whose class J represents the field INPUT〈ε0, ε1, . . . , εm−1〉.

Proof. Consider the computation unfolded in time on the Turing machine
M which starts from a tape of the form S = INPUT〈ε0, ε1, . . . , εm−1〉. It follows
from our hypotheses that there is a halting point h in this computation. Let
t be the N -successor of the point h; we clip the model Compu(M,S) relative
to this point t in the form of a triangle as shown in Fig. 3.5. In this way, we
obtain a finite model M. All predicates (3.3) of the signature of the model
Compu(M, INPUT〈ε0, ε1, . . . , εm−1〉) are already defined in M by rule (3.4).
The other predicates of the signature σ0 are defined in M as follows:

H(x, y) ⇔ x, y are in the same row,

D(x, y) ⇔ row [y]H is the successor of row [x]H ,

BL(x) ⇔ x lies on the left upper boundary of the triangle,

BR(x) ⇔ x lies on the right upper boundary of the triangle,

B(x) ⇔BL(x) ∨ BR(x),

CT(x) ⇔ x is the top corner of the triangle,

CL(x) ⇔ x is the left lower corner of the triangle,

CR(x) ⇔ x is the right lower corner of the triangle.

One can easily check that all the axioms of the theory T are true in our model
M. Some difficulty is connected with checking the truth of Axiom 42◦. For this
purpose, notice that the machine can halt only after the head reaches a blank
on the left boundary of the field INPUT. This guarantees the truth of Axiom
42◦ in our model M. 2

Now our goal is to prove that this theory cannot have finite models other
than those indicated in Lemma 6.1. For this purpose, we prove a sequence of
properties of arbitrary finite models of the theory T .

Lemma 6.2. Let M be a finite model of the theory T . Then its set J(M)
represents a single S-chain segment, bounded on the left by the element CL, and
on the right by the element CR.

Proof. Since the model M is finite, its class J(M) is also finite. By
Axioms 9◦ and 10◦, the class J represents a unique H-class. By Axioms 21◦,
22◦, 26◦ and 27◦ (existence of S-endpoints), Axioms 32◦ and 33◦ (connection),
and Axioms 28◦ and 29◦(restriction), we have that the class J must consist of
a unique S-chain segment with endpoints CL and CR, and a finite number of
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S-cycles. The statement of Lemma 6.2 will be established if we can show that
S-cycles in the class J are impossible.

So, for the sake of a contradiction, assume there is an S-cycle C in J . This
cycle will have length k>2 by virtue of Axiom 13◦. By virtue of Axioms 21◦ and
22◦, there can be neither BL-elements nor BR-elements in C. Then, by virtue
of Axioms 19◦ and 20◦, each element a of C must have an N -successor. By
virtue of Axiom 16◦, the set C ′ of the N -successors of elements of C will again
yield an S-cycle of the same length k. Since all elements in C ′ have S-successors
and S-predecessors, by virtue of Axioms 21◦ and 22◦, there can be neither BL-
elements nor BR-elements in C ′. Thus, the N -successors of the elements of C ′

will again yield an S-cycle C ′′ of the same length k, and this process continues.
By our construction, if C ⊆ J , then by Axiom 30◦, no elements of C have N -
predecessors, and thus the sequence of cycles C, C ′, C ′′ . . . yields an infinite
set of distinct elements, contradicting the finiteness of the model M. Thus, for
the class J(M), there can be only one S-chain segment. The endpoints of this
segment will satisfy the predicates CL and CR by virtue of Axioms 21◦, 22◦,
32◦, 33◦. 2

Lemma 6.3. Let M be a finite model of the theory T . Then M includes in
its structure the triangle ∆(M) of the form shown in Fig. 3.4, containing points
O, CL, CR, and CT.

Proof. By Lemma 6.2, the class J(M) represents a finite S-chain segment,
bounded on both sides by elements CL and CR, and by Axioms 32◦ and 33◦,
these endpoints also satisfy the predicates BL and BR. Thus, in a given model
M there is an S-chain segment of the form

BL(a0), a0Sa1Sa2S . . . San−1San, BR(an),

J(ai), 06 i6n.

(6.1)

In the class J of the model M which includes only elements (6.1) by Lemma
6.2, there is an element O, which, by Axioms 38◦ and 36◦, satisfies Q(x), and
by Axioms 45◦ and 20◦, O cannot be the left or right endpoint of the chain
(6.1). Thus, we obtain n > 2.

By Axioms 19◦ and 20◦, all elements of the chain (6.1), except for its two
endpoint elements, must have N -successors, which, by Axiom 16◦, again will
form an S-chain. Thus, there are elements b1, . . . , bn−1 such that

BL(b1), b1Sb2S . . . Sbn−1, BR(bn−1),

N(ai, bi), 16 i6n−1,

(6.2)

holds, where BL(b1) and BR(bn−1) are guaranteed by Axioms 23◦ and 24◦. If
b1 = bn−1, the required triangle ∆(M) is completed. If b1 6= bn−1, then the case
S(b1, bn−1) is eliminated by Axiom 25◦, and consequently in this situation we
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have n > 4. So in this case, the elements bi, 2 6 i 6 n−2, have N -successors ci,
which by Axiom 16◦ again will yield an S-chain. Thus, for the new elements cj
we are in a situation similar to (6.2), but with the length of the chain reduced
by 2. If c2 = cn−2, then the triangle ∆(M) is completed; otherwise, the process
continues. Since the chain (6.1) is finite and the lengths of the successive chains
decrease, this process will terminate, and the element, obtained at the last step
of the process (which is the unique element in this S-chain) will be the top of
the triangle, that is, it will satisfy CT(x) by Axiom 31◦.

In the triangle thus obtained, the left corner satisfies the predicate CL, the
right corner satisfies CR, the upper corner satisfies CT, the bottom row satisfies
J , the left-hand boundary satisfies BL, and the right-hand boundary satisfies
BR. The dotted line for the machine head is determined by the predicate Q(x),
starting from the point O of the class J , and by Axioms 47◦–49◦, it can only end
at the halting point of the machine M, which is necessarily the N -predecessor
of the upper corner CT of the triangle ∆(M).

Thus, as a result, in a given finite model M of the theory T , a triangle ∆ of
the form shown in Fig. 3.4 can be found. 2

Lemma 6.4. Let M be a finite model of the theory T . Then M consists
only of a single triangle ∆(M) of the form shown in Fig. 3.4.

Proof. We remark first that the triangle ∆(M), from the point of view
of the successor function D on H-classes, represents a D-chain segment of the
form

J(d0), [d0]HD[d1]HD[d2]HD . . .D[dn−1]HD[dn]H , CT(dn), (6.3)

where the endpoint elements d0 and dn are defined by Axioms 7◦ and 9◦. Now
we consider an arbitrary element a ∈ M and the H-class [a]H generated by a.

We will first show that the given class [a]H coincides with an H-class of the
chain (6.3). By Axioms 26◦ and 27◦, the H-class [a]H contains elements b and c
such that BL(b) and BR(c) hold. By Axioms 21◦ and 22◦, the element b has no
S-predecessor, and c has no S-successor. By Axioms 28◦ and 29◦, elements of
type BL and BR are unique in each H-class, therefore, all other elements in [a]H
have S-predecessors and S-successors. From this, we obtain that the elements
b and c must be connected by a finite S-chain of the form

BL(e0), b=e0Se1Se2S . . . Sen−1Sen =c, BR(en), (6.4)

since otherwise, the class [a]H , and therefore the whole model M, would contain
an infinite set of distinct elements, contradicting the finiteness of the model.
Now it is necessary to perform standard manipulations with the chain (6.4). If
n = 0, then b = c, and consequently the element b will satisfy CT(x) by Axiom
31◦; therefore, the H-class [a]H will coincide with [dn]H by the uniqueness of the
element CT. Now we consider the case n > 0. The case n = 1 is impossible by
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Axiom 25◦, therefore we have n > 2. We consider the N -successors e′1, . . . , e
′
n−1

of the elements e1, . . . , en−1, which exist by Axioms 19◦ and 20◦. By Axiom
16◦, we have that these elements again form an S-chain of the form

BL(e′1), e
′
1Se

′
2S . . . Se

′
n−1, BR(e′n−1), (6.5)

where the truth of the predicates BL and BR at the endpoints e′1 and e′n−1

is guaranteed by Axioms 23◦ and 24◦. On the one hand, we have obtained a
chain (6.5) of length 2 less than the length of the chain (6.4), and on the other
hand, in view of Axiom 18◦, the elements of the chain (6.5) are contained in an
H-class, which is the D-successor of the class [a]H , where our initial chain (6.4)
was formed. Repeating this process, we will eventually reach a chain consisting
of a single element, which by Axiom 31◦ will satisfy the predicate CT. Since
such an element is unique by Axiom 8◦, by virtue of (6.3), it must coincide with
dn. Thus, the class [a]H is at a finite distance (with respect to the successor
function D on H-chains) from the class [dn]H in chain (6.3), therefore, the class
[a]H must coincide with one of the H-classes of the chain (6.3).

Next, we show that a ∈ ∆(M). For this, we consider the sequence of N -
predecessors of the element a of the form

N(a1, a), N(a2, a1), . . . , N(ak, ak−1), . . . . (6.6)

Since, by Axiom 18◦, passing to an N -predecessor means passing to the D-
preceding H-class in the chain (6.3), the class [d0]H will eventually be reached
in finitely many steps. By Axiom 9◦, it does not have a D-predecessor, and
consequently the corresponding element ak ∈ [d0]H in the chain (6.6) will not
have an N -predecessor. It remains to note that J(ak) must hold, and conse-
quently, by Lemma 6.2, the element ak must be located on the S-chain segment
representing the bottom row of the triangle ∆(M). By the construction, the
element a is connected with ak by an N -chain, and ∆(M) is closed with respect
to N -successors. So, we have a ∈ ∆(M) as required. 2

Lemma 6.5. Let M be a finite model of the theory T . Then its class
J represents some starting situation S ∈ SpecST whose information field is
included in it entirely; moreover, it is surrounded by at least one blank cell on
both the left and the right.

Proof. This property is immediately guaranteed by axioms 38◦–43◦. 2

Lemma 6.6. Let M be a finite model of the theory T . Then its class J
represents some starting situation INPUT〈ε0, ε1, . . . , εm−1〉 with m finite such
that M has a halting point starting from INPUT〈ε0, ε1, . . . , εm−1〉.

Proof. Since M is a model of T , its class J should represent a start-
ing situation S ∈ SpecST by Lemma 6.5. If S had a form different from
the form INPUT〈ε0, ε1, . . . , εm−1〉 for a finite sequence ε = 〈ε0, ε1, . . . , εm−1〉,
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then M could not have a halting point by requirement (4.5), which contra-
dicts the finiteness of the model since its top corner CT(x) is directly con-
nected to a halting state by Axioms 47◦–49◦. Finally we obtain that the class
J of M must represent a starting situation INPUT〈ε0, ε1, ..., εm−1〉 such that
〈ε0, ε1, ..., εm−1〉 ∈ Hlt(M). 2

Lemma 6.7. Let ε = 〈ε0, ε1, . . . , εm−1〉 be a finite sequence of zeros and
ones such that M halts when starting from INPUT〈ε0, ε1, . . . , εm−1〉. Then
the model M of the theory T whose class J represents this starting situation
INPUT〈ε0, ε1, . . . , εm−1〉 is determined uniquely up to isomorphism.

Proof. The computation of M is uniquely determined by its program
(which is fixed) and by its starting situation. This shows that the triangle clip-
ping ∆ from the computation Compu(M, INPUT〈ε0, ε1, . . . , εm−1〉) is defined
uniquely, and by Lemmas 6.1 and 6.4, this triangle must occur in the finite model
M of the theory T ; moreover, this model must be of the form M = ∆(M). 2

We let M〈ε0, ε1, . . . , εm−1〉, εi ∈ {0, 1}, denote the finite model of T repre-
senting the starting situation INPUT〈ε0, ε1, . . . , εm−1〉. By the lemmas above,
if this model exists, it is determined uniquely up to isomorphism by a set of
input parameters ε = 〈ε0, ε1, ..., εm−1〉; moreover, this model exists if and only
if the computation unfolded in time

Compu(M, INPUT〈ε0, ε1, ..., εm−1〉)

has a halting point. We call m the weight of M = M〈ε0, ε1, ..., εm−1〉, and
denote it by weight(M).

In summary, we obtain the following description of the class of all finite
models of the theory T , establishing our requirement (4.17):

Lemma 6.8. ModFin(T ) = Mod(T ) ∩Mfin = {M〈ε〉 | ε∈Hlt(M)}.

Proof. Immediate by the above Lemmas 6.1–6.7. 2

7 Geometric properties of models

According to our construction, the models of the theory T look like a flat net,
generated by the successor relations S and N . Also, in the model, there exists
the successor function D on the H-classes. Thus we can define in a natural
way a distance function inside models of the theory, considering them as metric
spaces.

Using the relations S and N given in a model M, we define (first-order defin-
able) binary relations Ni(x, y), Sj(x, y), SiNj(x, y), and Di(x, y), for arbitrary
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integer indices i, j ∈ Z, as follows:

S0(x, y) ↔ (x = y),

S1(x, y) ↔ S(x, y),

S−1(x, y) ↔ S(y, x),

Sk(x, y) ↔ (∃z1...zk−1)
[

S(x, z1)&S(z1, z2)&...&S(zk−1, y)
]

, k > 1,

S−k(x, y) ↔ (∃z1...zk−1)
[

S(y, z1)&S(z1, z2)&...&S(zk−1, x)
]

, k > 1,

N0(x, y) ↔ (x = y),

N1(x, y) ↔ N(x, y),

N−1(x, y) ↔ N(y, x),

Nk(x, y) ↔ (∃z1...zk−1)
[

N(x, z1)&N(z1, z2)&...&N(zk−1, y)
]

, k > 1,

N−k(x, y) ↔ (∃z1...zk−1)
[

N(y, z1)&N(z1, z2)&...&N(zk−1, x)
]

, k > 1,

SiNj(x, y) ↔ (∃z)
[

Si(x, z) &Nj(z, y)
]

∨ (∃w)
[

Nj(x,w) &Si(w, y)
]

,

D0(x, y) ↔ H(x, y),

D1(x, y) ↔ D(x, y),

D−1(x, y) ↔ D(y, x),

Dk(x, y) ↔ (∃z1...zk−1)
[

D(x, z1)&D(z1, z2)&...&D(zk−1, y)
]

, k > 1,

D−k(x, y) ↔ (∃z1...zk−1)
[

D(y, z1)&D(z1, z2)&...&D(zk−1, x)
]

, k > 1.

If Sk(x, y) is true, we say that the element y is the k-th S-successor of the
element x, and the element x is the k-th S-predecessor of the element y. The
term k-th N -successor with k ∈ Z for the relation N(x, y) is defined similarly.

Let M be an arbitrary model of the theory T . If a, b ∈ M and Dk(a, b) holds
for some k ∈ Z, then we say that the distance inside the D-chain from a to b is
equal to |k|, and denote this by

ρ∗(a, b) = |k|.

This function satisfies the following requirements:

ρ∗(a, b) > 0,

ρ∗(a, b) = 0 ⇔ H(a, b),

ρ∗(a, b) 6 ρ∗(a, c) + ρ∗(c, b). (7.1)

A finite model M together with the function ρ∗ forms a metric space on its
H-classes (not on its elements). We will therefore call ρ∗ a quasi-distance.

Let M be an arbitrary model of the theory T . If a, b ∈ M, and we have
SiNj(a, b), i, j ∈ Z, one can define a distance function between these two ele-
ments by the rule

ρ(a, b) = |i| + |j|.
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In each finite model M of the theory T , this distance ρ(x, y) satisfies the fol-
lowing natural conditions for any a, b, c:

ρ(a, b) > 0,

ρ(a, b) = 0 ⇔ a = b,

ρ(a, b) 6 ρ(a, c) + ρ(c, b). (7.2)

Thus, a finite model M together with the distance function ρ gives a metric
space. The relation

ρ∗(a, b) 6 ρ(a, b) (7.3)

between the distance and the quasi-distance functions can be verified immedi-
ately.

The distance between two sets X,Y ⊆ M is defined by

ρ(X,Y ) = min{ρ(a, b)|a ∈ X, b ∈ Y }.

In the case of a one-element set X , we write ρ(a, Y ) instead of ρ({a}, Y ).

Define the concept of a sphere of radius r > 0 with center a ∈ M by

Sp(a, r) = {x ∈ M|ρ(a, x) 6 r}.

One can show that | Sp(a, r)|62r(r+1)+1.

For a ∈ M and r ∈ N, we denote by τ(a, r) the isomorphism type of the
model Sp∗(a, r) = M� Sp(a, r). Thus, τ(a, r) = τ(b, r) means that the spheres
Sp∗(a, r) and Sp∗(b, r) considered together with the structure inherited from
the model M are isomorphic. It is obvious that if Sp∗(a, r) and Sp∗(b, r) are
isomorphic, then the isomorphism µ between these submodels of M is unique,
and we have µ(a) = b.

We call a set X ⊆ M connected if for any elements a, b ∈ X , there is finite
chain a = c0, c1, . . . , cn = b such that ci ∈ X , and ρ(ci, ci+1) = 1 for all i < n.
An elementary example of a connected set is a sphere of radius r with center a.

For X ⊆ M, a set Y ⊆ X is called a connected component of X if Y is a
maximal connected subset in X . It is obvious that any set X can be uniquely
represented as the union of its connected components X = Y1 ∪ Y2 ∪ . . . ∪ Yk;
moreover, ρ(Yi, Yj) > 1 for all i, j with i 6= j, and the above decomposition is
unique for a given X .

Lemma 7.1. Let M and N be models of the theory T , X ⊆ M, Y ⊆ N,
and let X = X1 ∪ X2 ∪ . . . ∪ Xn, Y = Y1 ∪ Y2 ∪ . . . ∪ Yn be decompositions of
these sets into their connected components (the number of connected components
being the same for X and Y ). Also assume we are given bijective mappings
fi : Xi → Yi, i = 1, 2, ..., n. Then if the mappings fi are isomorphisms, and
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their union f = f1 ∪ f2 ∪ . . . ∪ fk preserves both H(x, y) and D(x, y), then f is
an isomorphism between M�X and N�Y .

Proof. In this situation, f preserves all unary predicates of the signature
σ as well as the predicates S and N on the connected components. It remains
to note that both binary predicates S and N fail on pairs of elements from
different components, and consequently the map f will be an isomorphism on
the submodels of M and N given above. 2

Lemma 7.2. [Property of spheres of radius powers of 3] Let a and b be any
elements of a model M of the theory T . Then for arbitrary k ∈ N, we have

Sp(a, 3k) ∩ Sp(b, 3k) 6= ∅ ⇔ Sp(a, 3k) ⊆ Sp(b, 3k+1).

Proof. By direct calculation of the distances, using the triangle inequality
for the distance function ρ(x, y). 2

The form of the spheres of radius powers of 3 for elements which are far
from the boundaries of a model is shown in Fig. 7.1. The spheres of such radii
will play a special role in the proof of our basic combinatorial statement.

Consider some simple but useful properties of the distance functions for a
model M of the theory T . We are interested in the distance to the left side BL
and the right side BR of the triangle of this model. We say that two elements a
and b are on the same horizontal line if we have Sn(a, b) for some n ∈ Z. Also
we say that a and b are on the same vertical line, if we have Nn(a, b) for some
n ∈ Z.

Lemma 7.3. Let a, b ∈ M be on the same horizontal line; moreover, let a
be located to left of b. Then the following relations must hold:

ρ(b,BL) = ρ(a,BL) + ρ(a, b),

ρ(a,BR) = ρ(b,BR) + ρ(a, b).

Proof. Obvious. 2
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Lemma 7.4. Let a, b ∈ M be on the same vertical line, and let b be located
above a. Then the following relations must hold:

ρ(a,BL) = ρ(b,BL) + ρ(a, b),

ρ(a,BR) = ρ(b,BR) + ρ(a, b).

Proof. Obvious. 2

Recall that the Q-line is the line traced by the motion of the head during
the Turing machine computation.

Lemma 7.5. Let a ∈ M be on the Q-line. Then, for arbitrary n ∈ N, the
following statements hold:

(a) if, after point a in M (including a itself), there are n (or more) points
at which the machine head moves left, then ρ(a,BL) > 2n+ 1.

(b) if, after point a in M (including a itself), there are n (or more) points
at which the machine head moves right, then ρ(a,BR) > 2n+ 1.

Proof. Obvious. 2

8 General form of a model

Now we pass to a more detailed investigation of the structure of the models
of the theory T . We are mainly interested in the finite models of the theory
T , which, as proved above, look like M〈ε〉 for ε ∈ Hlt(M). Fig. 8.1, shows
both the general motion of the head of the Turing machine M in a finite model
(without the details of tape symbols and conditions), and also the computation
areas inside the universal block.

According to the flow chart, a computation of the machine M, represented
in the model M〈ε〉, proceeds as follows. In the initial phase, in the interval
from (a) to the first entry into the universal block at point (d), it performs
initialization, which installs the pointer t at the beginning of the field INPUT,
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and also forms numerical cells n, x and e with their initial zero values. Then a
global cycle begins during which we enter into the universal block for computa-
tions of the form U(n, x). Note that Figure 8.1 shows stages (c) indicating the
points where the program enters into the subroutine (c)–(d) before entering the
universal block; they are marked just as circles on the Q-line. One can check
that during the computation, from point (e) to point (c), the value of cell x is
increased by 1, while the cell e stays of the same value but is shifted by one cell
to the right. According to the algorithm, in the model M of the theory T with
weight(M)=m, during the execution of the global cycle, the following series of
calls of the universal block occurs

U(0, e0), U(1, e0), U(1, e1), ..., U(m, e0), U(m, e1), ..., U(m, em),

where ex = Nom〈ε0, ε1, ..., εx−1〉,

(8.1)

exactly in this order (see Fig. 8.1), where we use the abbreviation (5.1).

When, at the next increase of the pointer t, a blank indicating the bound of
the field INPUT is reached, control is passed to the completion procedure (i.e.,

47



the final part of the computation), which erases all tape information and finally
enters the halt situation in the same cell at which the machine started. Thus
the triangle of computation in a finite model M of the theory T is a symmetric
figure relative to the vertical line through the starting point of the machine (i.e.,
the triangle is isosceles). Two examples of models at some particular points of
their computations are depicted in Fig. 8.2. They can be used to demonstrate
the concept of quasi-periodic computations as considered in Section 5.

Lemma 8.1. Let m ∈ N be given, and ε ∈ Hlt(M) be such that |ε| > m.
Then all calls of the universal block of the form

U(n, e), n6m, e=Nom〈ε0, ε1, ..., εx−1〉, 06x6n,

are made in the model M.

Proof. Immediately from the properties of the algorithm M considered
earlier in (5.12) and (8.1). 2

Consider the structure of the models at the beginning of a computation in
a neighborhood of the starting point O.

Lemma 8.2. Let ε, ε′ ∈ 2<ω, ε ≺ ε′, and fix the models M〈ε〉 and M〈ε′〉.
Consider in the model M〈ε〉 the area T = Trpz(M〈ε〉), a region in the form of a
trapezoid which is bounded below by the line J , from above by the horizontal line
immediately preceding the moment of detection of the end of the field INPUT〈ε〉
by the command Bq23 → Bq72R, on the left by the last zero cell in the field
INPUT〈ε〉, and on the right by the boundary BR of the triangle of the model
M〈ε〉, except for this line itself. Then there is an isomorphic embedding µ :
M〈ε〉 � T → M〈ε′〉.

Proof. The statement follows from the fact that the computations, be-
ginning with the start situations INPUT〈ε〉 and INPUT〈ε′〉 for ε ≺ ε′, proceed
completely identically while the information read from the field INPUT is identi-
cal. The only tricky part of the proof consists in showing that, for the embedding
µ, the right side of the trapezoid T will not be outside the right boundary of
the model M〈ε′〉. This follows by comparing the distances from the left upper
corner a of the trapezoid T (located on the Q-line, according to the construc-
tion) to the right boundary BR of our model. The distance r in M〈ε〉 from a
to the boundary BR equals

2
(

|INPUT〈ε〉|+m+3
)

+1, where m=weightM〈ε〉,

since erasing the area INPUT and the cell n in the final part of the computations
(the value of cell n is equal to weightM〈ε〉 at this stage) requires exactly this
number of steps to the right (without the factor 2), and after that, the head
only moves to the left before reaching the halt-state. On the other hand, in
M〈ε′〉, the distance r′, i.e., the distance from the element µ(a) to the right
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boundary BR, exceeds r because, by Lemma 7.5 (b), in the model M〈ε′〉, when
the computation passes into its final part, the fields INPUT and n will be of
larger lengths than they were in M〈ε〉, and the head must move to the right
past all of them. 2

The following technical fact holds:

Lemma 8.3. Let M be an arbitrary finite model of the theory T . Then, in
M, we have (∀x)

[

B(x) & qCT(x) → A2(x)
]

.

Proof. In other words, Lemma 8.3 states that the tape symbols on the two
boundaries of the triangle must be blanks. This holds because in the triangular
clipping in Fig. 3.5, there can only be blanks on both sides of the point where
the head halts since, by the specification of the algorithm, when the machine
halts, the tape contains only blanks, except for the stopping point itself, which
is marked with zero (see Fig. 5.3 (g)). 2

9 Description of the regions of a model

The main purpose of the next three sections is to prove Statement (4.25).
For this, we will first study and classify types of areas of models of the theory
T , then classify “finite” 1-types realized in these models, and finally establish
that there is an Ehrenfeucht property for these models which yields (4.25).

First of all, we fix some integer value

s > 1 (9.1)

(the number of steps in the Ehrenfeucht method), and we also fix some infinite
sequence of zeros and ones

ε∗ = 〈ε0, ε1, . . . , εi, . . .〉 ∈ Cons∗, εi ∈ {0, 1}, i ∈ ω. (9.2)

Recall that we can use any of properties (4.2)–(4.23) because they were estab-
lished in Sections 5–8. Our goal is to find, for the given s and ε∗, an integer
bound w∗ = w∗(s, ε∗) such that

M〈ε′〉 ≡s M〈ε′′〉, for all ε′, ε′′∈Hlt(M) with ε′, ε′′<ε∗� w∗. (9.3)

This will give us exactly the property (4.25) we need to prove.

We consider the class of all models of the following form, for a fixed w > 0 :

M〈ε〉, ε∗�w4ε, ε∈Hlt(M). (9.4)

The class of models (9.4) is infinite because all models of the form M〈ε∗ � n〉,
n>w exist by virtue of (4.18). We will enlarge the value of w so that all the
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models of this class become more and more similar, until we reach some finite
value of w for which they are all ≡s-equivalent. As a result, we obtain the
desired property (9.3).

All the work in the next three sections depends on the values of s and ε∗

chosen in (9.1) and (9.2). For the sake of brevity, we often suppress these
parameters, assuming them to be given by context.

Starting with s from above, we define the following auxiliary parameters

s+ = 2·3s−1,

s∗ = s·2·3s−1 = s·s++1.

(9.5)

These parameters will play an important role in the later combinatorial com-
putations. The parameter s+ describes the maximum possible space covered by
a sphere of radius 3s−1 on a single H-class. Notice that s+ > 2 and s∗ > 3 by
(9.1).

The basic property of s∗ is as follows.

Lemma 9.1 [ Lemma on s∗-saturation] Fix s and let s∗ be defined from s by
(9.5). Consider a finite model M of the theory T . Then we have the following
properties:

(a) If a ∈ M, Z ⊆ [a]H , |Z| > s∗, then for any s elements a1, a2, . . . , as of
the model M, we have

Z 6⊆ Sp(a1, 3
s−1) ∪ Sp(a2, 3

s−1) ∪ . . . ∪ Sp(as, 3
s−1).

(b) If Z ⊆ M, (∀x, y ∈ Z)
[

(x 6= y) → qH(x, y)
]

, |Z| > s∗, then for any
s elements a1, a2, . . . , as of the model M, there is an element b ∈ Z such that
ρ∗(ai, b) > 3s−1 for all i ∈ {1, 2, ..., s}.

Proof. (a) Each of the sets Sp(ai, 3
s−1) can contain no more than s+

elements from Z. Since there are only s such sets, they can cover no more than
s·s+ =s∗−1 elements of Z. But Z contains s∗ or more elements, yielding (a) as
desired.

(b) The proof of this statement is similar, withH-classes and theD-successor
function defined on them, instead of separate elements. 2

To investigate elementary properties of models of the theory T , we need
a general description of various areas of an arbitrary model M of this theory,
which is schematically represented in Fig. 9.1. The vertical and horizontal lines
denote N -chains and S-chains, respectively, and all diagonal lines are assumed
to lie at a 45◦ degree angle with respect to the grid structure of the model.

By BL and BR we denote the left and right boundaries of the triangle ∆(M).
The letters L and R denote the left and right corners of the triangle, while H
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denotes the halting-point of the computation represented in the model. By our
design, the point H is located in a neighborhood of the top CT of the triangle
∆(M). By O we denote the start point of the Turing machine, which lies on
the base J of the triangle. The algorithm ensures that the cell scanned by
the machine when the machine halts coincides with the cell scanned when the
machine starts; therefore, the line OH is vertical, and it is an axis of symmetry
for the whole triangle.

By (f), a horizontal line is denoted representing the point at which the
machine detects the end of the field INPUT and passes to the final part of the
computation. The notation (f) is also used in the flow chart and in the program
of the machine M. The position of the head on the line (f) is denoted by Z,
while the point of intersection of the line (f) with the line OH is denoted by
P . The vertical line ZS is a boundary of the field INPUT. To the left of it,
including the line ZS itself, a field of only blanks is located. The line ZE–EH
represents the motion of the head in the final part of the computation. The
point C is the perpendicular projection of E onto the line (f), the line CD is
the diagonal line, passing through the point C parallel to the right boundary
BR of the triangle ∆(M).

By Zi, 16i 6 s+, we denote the sequence of points of a model which are
in state 0q19 as the Turing machine head approaches the left end of the field
INPUT (and moves the symbol 0′) during the quasi-periodic computation, while
by Z ′

i, 16i6 s+, we denote the points in state 1′q20 located on the right sides
of the same quasi-periodical computation. More precisely, the point Zi is the
point in state 0q19, at a distance i from the field of blanks at the left, while Z ′

i is
the point in state 1′q20, at a distance i to the right from the line OH . The point
Z will be denoted by Z0. For example, in Fig. 8.2, the form of the model in the
neighborhood of the points Z and Z2 is shown. The location of the points Zi
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in the model can be seen in Fig. 9.1 and the positions of the points Z ′
i are also

shown.

We denote by (f′) the horizontal line in a model passing through the point
Zc with c=s+, which is schematically shown in Fig. 9.1.

The areaOPZS represents the field INPUT in the model M from the start of
the algorithm until condition (f) is reached. Inside the limits of this rectangle,
we have the information εi as vertical strips (actually, the strips εi are in a larger
region OWZS), and in some parts of this area, we also have lines denoting the
movement of the head as it moves the pointer t and the marker 0′ as in the
subroutine (c)–(d) (see Section 5). Thus, we see that the area OPZS has a
rather simple form.

Consider the following integer-valued function

E(k) = 1
2 (k+1)(k+4), k ∈ N,

which was already applied in Section 4. For k < m, the vertical strip containing
the εk cell is located at a distance E(k) to the left of the line OP .

Recall the function f(x) from Lemma 4.1 which satisfied conditions (4.20)
through (4.23). We introduce the following three integer-valued parameters:

l0 =E(s+−2), l1 =E(p)−l0, (9.6)

w0 = max
{

p+1, 1.5·s∗+s+, 4s+
}

, (9.7)

where

p=(µt)
[

f(t)>s∗+s++6 and E(t)>l0
]

. (9.8)

Property (4.21) of the function f shows that the parameter p in (9.8) is well
defined. Obviously, we have l0>0 and l1>0. Moreover, the values of l0 and l1
depend just on the parameter s, but they do not depend on the choice of ε∗ in
(9.2).

By KI , we denote the vertical line at a distance l0 to the left of the line OP ,
while by AB, we denote the vertical line at a distance l0+l1 to the left of the line
OP , where the values of the parameters l0 and l1 are given in (9.6). The line
AB is considered as undefined if it is outside of the rectangle OPZS or coincides
with the line SZ.

Consider the following class of models

M〈ε〉, ε∗�w0 4ε, ε∈Hlt(M). (9.9)

Lemma 9.2. Both the line AB and the rectangle OPBA are defined in any
model of the class (9.9).

Proof. By (9.6), the line AB passes at a distance l0+l1 = E(p) of the line
OP , while we have weight(M)>w0>p for all models of the class (9.9). 2
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Thus, the scheme presented in Fig. 9.1 is applicable to any model M of the
class (9.9).

Lemma 9.3. In any model M of the class (9.9), the lines KI and AB pass
along some strips εu and εv.

Proof. By (9.6), we have l0 =E(s+−2) with s+ >2, and l0+l1 =E(p). So,
l0 and l1 + l0 are in the range of E. This gives the necessary property by the
definition of the function E(x). 2

Lemma 9.4. In the rectangle OPIK (including its left bound), there are
s+−1 strips of εi cells.

Proof. By inspection. 2

Lemma 9.5. The distance between any two neighboring strips εi+1 and εi

in the rectangle KIZS is more than s+.

Proof. By the choice of the parameter l0 in (9.6), all neighboring pairs of
strips located at a distance 6 s+ from each other are covered by the rectangle
OPIK. This gives the desired property. 2

Lemma 9.6. In the rectangle KIBA there are more than s∗+6 strips εi

having the value εi = 0, and more than s∗+6 strips εj having the value εj = 1.

Proof. We have l0+l1 =E(p) by the choice of parameters in (9.6), while
by virtue of properties (4.22) and (4.23), the value of p in (9.8) provides that
in the rectangle OPBA there are at least f(p) = s∗+s++6 strips εi with value
εi = 0 and at least f(p) strips εj with value εj = 1. But by Lemma 9.4, the
rectangle OPIK together with its bounds covers just s+−1 strips (of any kind).
This gives the statements of Lemma 9.6. 2

Lemma 9.7. In any model M of the class (9.9), the area LXZS of the model
consists of only blanks.

Proof. Since, by the specification of the algorithm, the head of the Turing
machine does not move to the left of the boundary of the field INPUT, except
for the point Z only, no other Q-points are present here. Therefore, the blanks
present at the start of the computation will all remain blanks due to Axiom
46◦.

Lemma 9.8. In any model M of the class (9.9), the area DCER consists of
only blanks.

Proof. At the stage (f), the head is at the point Z, so there cannot be
other Q-points, except for E, in the area DCER. Therefore all symbols here are
preserved by Axiom 46◦. Then, by Lemma 8.3, in the area DCER there cannot
be symbols other than blanks. 2

Lemma 9.9. In any model M of the class (9.9), the area ZEC represents
the information shown in Fig. 5.3 (f), which is erased as the head moves along
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the line ZE.

Proof. The area ZEC is generated by the situation Bq23 at the point Z
where we switch to the final part of computation. 2

Lemma 9.10. In any model M of the class (9.9), the area XZEH has the
following form: WH is a line marked by symbols 0, EH is the line of head move-
ment in a field of blanks (at a distance 1 from the boundary BR), all remaining
points of area XZEH are blanks.

Proof. The area XYH is generated by the situation Bq23 due to the com-
mand Bq23→Bq72R, and consequent passage to the final part of computation.
This computation determines the areas specified in the statement of Lemma
9.10. 2

Lemma 9.11. In any model M of the class (9.9) with weight(M)=m, we
have ρ(E,H)=2m+4, and ρ∗(E,H)=m+2.

Proof. Both the distance and quasidistance can be easily counted by the
scheme in Fig. 8.1, where the last head movement directly corresponds to the
points E and H as well as to the cell n which at this stage has the value
weight(M). One can use some details in Fig 3.5 as well. 2

Lemma 9.12. In any model M of the class (9.9) with weight(M)=m, we
have

ρ(Z,X)=ρ(ZE,BL) = ρ(E,H)+1 = 2m+5 > s∗+s+.

Proof. One can see that in a model, the two lines BL and ZE are in fact
parallel to each other. This gives all the equalities by virtue of Lemma 9.11.
The last inequality is provided by (9.7) and (9.9). 2

Lemma 9.13. In any model M of the class (9.9), we have

(a) ρ∗(W,E) > s∗+s+,

(b) ρ∗(E,H) > s∗+0.5·s++0.5·(s∗+s+).

Proof. By (9.7) and Lemma 9.11, for a model M of the class (9.9) with
weight(M) =m, we have ρ∗(W,E) = ρ∗(E,H) =m+2>w0 > 1.5s∗+s+. This
gives the necessary inequalities. 2

Lemma 9.14. In any model M of the class (9.9), we have

(a) ρ(b,BL) > s∗+s+, for all b∈ZS.

(b) ρ(c,BR) > s∗+s+, for all c∈CD.

Proof. Part (a) is a consequence of Lemma 9.12 and Lemma 7.4. As for
(b), we have ρ(C, Y )=ρ(C,E)+1>ρ∗(W,E)=ρ∗(E,H)=m+2>s∗+s+, where
m=weight(M) and the last inequality is provided by (9.7) and (9.9). 2

Lemma 9.15. Let c= s+ =2·3s−1. In any model M of the class (9.9), all
special points Z1, Z2, ..., Zc exist and are located in the region ABZS, while the
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points Z ′
1, Z

′
2, ..., Z

′
c exist and are located in the region OPCD of the model M.

Proof. Let M be a model of the class (9.9). Since weight(M)>w0>s
++1

by (9.7), we see that the distance between the line ZS and the strip εi in the
rectangle OPZS which is the closest to ZS is more than s+ + 1. Since the
points Zi and Z ′

i are the bounding points of a quasi-periodic computation (see
Fig. 8.1), this means that the horizontal components of distances between Zi

and Zi+1 as well as between Z ′
i and Z ′

i+1 are equal to 1. This immediately gives
the property stated in Lemma 9.15. 2

Lemma 9.16. For any i ∈ {s+, ..., 2, 1}, the movement of the head from Zi

to Z ′
i and the movement of the head from Z ′

i to Zi−1 in the rectangle KIZS pass
through at least s∗+2 strips εi with the value εi =0, and through at least s∗+2
strips εj with the value εj =1.

Proof. This follows directly from Lemma 9.6. 2

For a model M of the class (9.9), we denote by K(M) the submodel of M

restricted to the area SZCD, excluding its boundary lines SZ and ZC. We call
K(M) the kernel of the model M. According to our construction, the kernel
of the model can contain some complicated fragments (taking into account the
arbitrary program of the kernel part of the universal block); however, the parts
surrounding the kernel are rather simple as described in Lemmas 9.2–9.10. This
fact provides the technical tools for showing that Statement (4.25) holds.

We study some properties of the kernel.

Lemma 9.17. Let M〈ε′〉 and M〈ε′′〉 be two models of the theory T such
that ε′′ < ε′ < ε∗�w0. Then there is an isomorphic embedding µ : K(M〈ε′〉) →
K(M〈ε′′〉), and this embedding is unique.

Proof. This lemma follows from Lemma 8.2 about monotonicity, which
gives an isomorphic embedding for a larger area than is required. The unique-
ness of the embedding follows directly from the uniqueness of the point O, and
the rigidity of the frame, formed by the two successor relations S and N . 2

Now we consider in more detail the relative position of K(M〈ε′′〉) and the
image of K(M〈ε′〉). Let the triangle in Fig. 9.1 represent M〈ε′′〉. In the following
lemma and in later sections, we will refer to the trapezoid AB ′C ′D′ as repre-
senting the image of K(M〈ε′〉) without reference to l0 or l1. By this we mean
to ignore the labels of l0 and l1 in Fig. 9.1 and view AB′C ′D′ as an arbitrary
trapezoid inside the model which happens to be the image of K(M〈ε′〉).

Lemma 9.18. In any model M of the class (9.9), all calls of the universal
block are located in its kernel K(M) below stage (f’).

Proof. The point Z is the beginning of the final part of the computation.
Therefore, all calls of the universal block are located below stage (f). Further-
more, the part (f’)–(f) represents a number of head movements during the last
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operation t := t+n, which detects the end of field INPUT. So, all calls of the
universal block should be in the kernel below stage (f’). 2

Lemma 9.19. Whenever the universal block U(n, e) is called in a model
from the class (9.9) with input parameter 0 6 x 6 4s+, then we have e =
Nom〈ε0, ε1, ..., εx−1〉, where all bit cells εi used here are taken from the sequence
(9.2).

Proof. The value of the parameter w0 is large enough by (9.7) (namely,
w0 > 4s+), to ensure the truth of Lemma 9.19. 2

10 Combinatorics of local and horizontal types

In this section, we investigate the possible types of local areas of models of
the theory T . We remark that whenever we write M〈ε′〉 or M〈ε′′〉 here or in
the following, we tacitly assume that these finite models exist (i.e., that the
corresponding Turing machine computations halt).

We let τ(a, r), a ∈ M, denote the type of an element a within of a sphere
of radius r with center a. We call this type local. For τ(a, r), it is possible
to construct a formula θ(x) in one free variable x which represents the atomic
diagram of the r-neighborhood of this element a. Thus, in M, the formula
θ(a) is true, and for any element b from this or any other model, θ(b) is true if
and only if τ(a, r) = τ(b, r) holds. In this case, we say that the formula θ(x)
represents the type τ(a, r). By TY(r) we denote the set of all formulas of the
form θ(x), representing all possible local types of radius r for different models
of the theory T . It is obvious that the set TY(r) is finite for any r ∈ N.

Note that the type of a given radius uniquely determines the existence of all
elements in the neighborhood:

Lemma 10.1. Let i, j ∈ Z and r ∈ N be given such that |i| + |j| 6 r. Let
a∈M〈ε′〉 and b∈M〈ε′′〉 for ε′, ε′′ ∈ 2<ω. Then it follows from τ(a, r) = τ(b, r)
that (∃x)SiNj(a, x) ⇔ (∃y)SiNj(b, y).

Proof. Immediate by the definition of local type. 2

It is easy to see that the type of a given radius determines the type for any
smaller radius.

Lemma 10.2. Fix r′, r ∈ N such that r′ 6 r. Then for any two elements
a ∈ M〈ε′〉 and b ∈ M〈ε′′〉 for ε′, ε′′ ∈ 2<ω, τ(a, r) = τ(b, r) implies τ(a, r′) =
τ(b, r′).

Proof. By inspection. 2

A local type of a given radius uniquely determines the type of a smaller
radius not only of the same element, but also for some elements of its sphere.
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Lemma 10.3. Fix i, j ∈ Z and k ∈ N such that |i| + |j| 6 2 ·3k−2. Also
fix arbitrary elements a, a′ ∈ M〈ε′〉 and b, b′ ∈ M〈ε′′〉 for ε′, ε′′ ∈ 2<ω such
that SiNj(a, a

′) and SiNj(b, b
′) hold. Then τ(a, 3k−1) = τ(b, 3k−1) implies

τ(a′, 3k−2) = τ(b′, 3k−2).

Proof. Immediate by Lemma 7.2, given that the type declarations of a
and b contain the complete type declarations of a′ and b′ since the spheres of a
and b completely cover the spheres of a′ and b′, respectively. 2

Now we study types of H-classes of models of the theory T .

Let r ∈ N, t ∈ N, and fix an arbitrary function h : TY(r) → N. We construct
the following set of formulas in one free variable x:

Σ(x) =
{

(∃ky)
(

H(x, y) & θ(y)
)

| θ∈TY(r), h(θ)=k<t
}

∪
{

(∃>ty)
(

H(x, y) & θ(y)
)

| θ∈TY(r), h(θ)> t
}

.

We call the conjunction ϕ(x) of all formulas in Σ(x) the formula representing
the horizontal type of radius r and weight t, or simply (r, t)-type. We denote by
TYH(r, t) the set of all possible formulas ϕ(x) constructed for different functions
h for fixed r and t. For any element a of a model M ∈ ModFin(T ), there is some
formula ϕ(x) ∈ TYH(r, t) such that ϕ(a) is true. This formula ϕ(x) is called
the horizontal type of the element a in the model M. We write τH(a, r, t) =
τH(b, r, t) if there is a single formula ϕ(x) ∈ TYH(r, t) such that both statements
ϕ(a) and ϕ(b) are true. Here, a and b may be elements of the same or distinct
models of the theory T .

A type ϕ ∈ TYH(r, t) for t ∈ N is called a bounded horizontal type or simply
a horizontal type. Such a type ϕ(x) counts the number of points realizing local
types in an H-class up to the bound t or, if greater than or equal to t, it includes
the statement that “there exist >t many such points”. Notice that we could
also look at total horizontal types which count the exact number of points in
the H-class realizing each local type θ(x) ∈ TY(r). However, these total types
are too categorical for our purposes, so we restrict our attention to bounded
horizontal types.

To utilize the Ehrenfeucht back-and-forth method for some fixed number of
steps s, we need to select the number t sufficiently large (but finite) so that the
types TYH(r, t) contain enough information for the back-and-forth method to
work. Therefore, we shall consider only bounded horizontal types from now on.

We now study some properties of horizontal types.

Lemma 10.4. For any r, t ∈ N, the set of types TYH(r, t) is finite.

Proof. Obvious. 2

Lemma 10.5. Let a, b be arbitrary elements of a model M of the theory T .
For any r, t, if H(a, b) then τH(a, r, t) = τH(b, r, t).
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Proof. Immediate by definition. 2

Lemma 10.5 shows that horizontal types actually characterize H-classes in-
stead of individual elements. Therefore, when speaking of the number of real-
izations of a horizontal type, we will always mean the number of H-classes on
which elements of this type are realized.

A horizontal type of a given radius uniquely determines the existence of the
H-classes in its neighborhood:

Lemma 10.6. Let a ∈ M〈ε′〉 and b ∈ M〈ε′′〉 for ε′, ε′′ ∈ 2<ω. Also, let
t>0, i∈Z, and r∈N be such that |i|6r. Then τH(a, r, t) = τH(b, r, t) implies
(∃x)Di(a, x) ⇔ (∃y)Di(b, y).

Proof. Immediate by Lemma 10.1. 2

The following simple statement shows that a horizontal type with given
parameters comprises the complete description of a unique type with arbitrary
smaller parameters.

Lemma 10.7. Let numbers r′, r, t′, t ∈ N be given such that r′ 6 r and
t′ 6 t. Then for any elements a ∈ M〈ε′〉 and b ∈ M〈ε′′〉 with ε′, ε′′ ∈ 2<ω,
τH(a, r, t) = τH(b, r, t) implies τH(a, r′, t′) = τH(b, r′, t′).

Proof. By direct inspection. 2

For our purposes, the following two statements are important, namely, that a
horizontal type with given parameters uniquely determines a type with smaller
parameters not only for this H-class, but also for H-classes in its neighborhood.
We have to distinguish two cases here: how a horizontal type of an element
determines the horizontal types of the H-classes above it and how it determines
those below it.

The following statement is true for all models of the theory T without ex-
ception.

Lemma 10.8. Let k,m∈N be given such that 2 6 k6 s, 0 6m 6 2 ·3k−2.
Fix arbitrary elements a, a′∈M〈ε′〉 and b, b′∈M〈ε′′〉 for ε′, ε′′ ∈ 2<ω such that
Dm(a, a′) and Dm(b, b′) holds. Then τH(a, 3k−1, s∗) = τH(b, 3k−1, s∗) implies
τH(a′, 3k−2, s∗) = τH(b′, 3k−2, s∗).

Proof. Immediate by Lemma 7.2, given that the type declarations of the
elements a′ and b′ are completely contained in the type declarations of the
elements a and b since the spheres of the elements in the classes [a]H and
[b]H completely cover all spheres in the classes [a′]H and [b′]H because of the
restricted D-distance. 2

The following statement holds only for the models of the class (9.9), more-
over, it applies only with some exceptions.

Lemma 10.9. Let k,m∈N be given such that 2 6 k6 s, 0<m 6 2 ·3k−2.
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Fix arbitrary elements a, a′ ∈ M〈ε′〉 and b, b′ ∈M〈ε′′〉 for ε′, ε′′ < ε∗ �w0 such
that Dm(a′, a) and Dm(b′, b) holds. Then, if m 6∈ [3k−2 +1, 2 ·3k−2]; or m ∈
[3k−2+1, 2·3k−2] and one of two following conditions (10.1) or (10.2) holds:

(

∀ t∈ [0.5(3k−1+3),m+0.5(3k−2+1)]
) [

qDt(E, a) & qDt(E, b)
]

, (10.1)
(

∃ t∈ [0.5(3k−1+3),m+0.5(3k−2+1)]
) [

Dt(E, a) &Dt(E, b)
]

, (10.2)

then τH(a, 3k−1, s∗)=τH(b, 3k−1, s∗) implies τH(a′, 3k−2, s∗)=τH(b′, 3k−2, s∗).

Proof. As in the previous lemma, the type declarations of a and b contain
complete descriptions of the horizontal types of a′ and b′, except for the local
types in certain small areas near the boundaries BL and BR of the models
considered. These areas arise because as we move in the negative D-direction,
the triangle becomes wider. The spheres, as shown in Fig. 7.1, cannot make
up for this change in width in the required number of steps. It follows from
our description of these models, see Fig. 9.1 and Lemmas 9.7, 9.8, 9.10 and
9.14, that the areas near the side boundaries consist mostly of large stretches of
continuous blanks. Therefore, in large areas of the models, the types of a′ and
b′ simply cannot be different. The only exception is the case when the elements
a and b are located at certain distances above the point E. One can check that
for m 6 3k−2, any 3k−2-sphere of an element of [a′]H or [b′]H is completely
contained in the 3k−1-sphere of an element of [a]H or [b]H , respectively, so the
implication in Lemma 10.9 holds without restrictions. For the case 3k−2 < m 6

2·3k−2, the conditions (10.1) and (10.2) ensure that either a and b are sufficiently
D-far away from the point E, or that they both have the same D-distance to
E. 2

We now begin characterizing the local and horizontal types realized in mod-
els of the theory T . We will consider from now on only local types of classes
TY(3k−1) and horizontal types of classes TYH(3k−1, s∗) with k 6 s, where the
parameter s was fixed in (9.1) while the parameter s∗ was introduced in (9.5).
These restrictions will allow us to avoid complicated expressions later.

Now we introduce four important technical definitions.

Definition 1. A local type θ(x)∈TY(3k−1) is called limited in horizontal type
ϕ(x)∈TYH(3k−1, s∗) if there is a number r < s∗ such that in any finite model
M of theory T , the following formula is true :

(∀x)
(

ϕ(x) → (∃ rz)
[

H(x, z) & θ(z)
]

)

.

Definition 2. A local type θ(x)∈TY(3k−1) is called s∗-unlimited in horizontal
type ϕ(x) ∈ TYH(3k−1, s∗) if in any finite model M of theory T , the following
formula is true :

(∀x)
(

ϕ(x) → (∃>s∗

z)
[

H(x, z) & θ(z)
]

)

.
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Definition 3. Let w∈N be given. A horizontal type ϕ(x) ∈ TYH(3k−1, s∗) is
called limited in the class of models (9.4), if there is a number r<s∗ such that
in any model M of the class (9.4), the following formula is true :

(

∃x1x2...xr

)

(

∧

i6=j

qH(xi, xj) &

r
∧

i=1

ϕ(xi) & (∀x)
[

ϕ(x)→

r
∨

i=1

H(xi, x)
] )

.

Definition 4. Let w∈N be given. A horizontal type ϕ(x) ∈ TYH(3k−1, s∗) is
called s∗-unlimited in the class of models (9.4), if in any model M of the class
(9.4), the following formula is true :

(

∃x1x2...xs∗

)

(

∧

i6=j

qH(xi, xj) &
s∗

∧

i=1

ϕ(xi)
)

.

Note that, by the definitions introduced earlier in this section, for any k ∈
N, each local type θ(x) ∈ TY(3k−1) is either limited or s∗-unlimited in any
horizontal type ϕ(x) ∈ TYH(3k−1, s∗).

The following properties hold concerning Definitions 3 and 4.

Lemma 10.10. The following assertions hold :

(a) Let the type ϕ(x)∈TYH(3k−1, s∗) be limited in the class of models M〈ε′〉,
ε′ < ε∗�w. Then the type ϕ(x) is limited in the class of models M〈ε′〉, ε′ < ε∗�
w′, for any w′>w.

(b) Let the type ϕ(x)∈TYH(3k−1, s∗) be s∗-unlimited in the class of models
M〈ε′〉, ε′ < ε∗ �w. Then the type ϕ(x) is s∗-unlimited in the class of models
M〈ε′〉, ε′ < ε∗�w′, for any w′>w.

(c) Let r < k and let ϕ(x) ∈ TYH(3k−1, s∗) be s∗-unlimited in the class of
models M〈ε′〉, ε′ < ε∗ � w. We denote by ϕ′(x) ∈ TYH(3r−1, s∗) the natural
restriction of ϕ(x) to the smaller radius. Then ϕ′(x) is s∗-unlimited in the
same class of models M〈ε′〉, ε′ < ε∗�w.

Proof. Immediate from the definitions. 2

Our main purpose now is to establish that in all models M〈ε′〉 with ε′ <

ε∗�w for w sufficiently large, each horizontal type ϕ(x)∈TYH(3s−1, s∗) is either
limited or s∗-unlimited. With these properties, it will be possible to organize
the Ehrenfeucht back-and-forth method on s steps between any two models
M〈ε′〉 and M〈ε′′〉 with ε′, ε′′ < ε∗�w.

We consider only models of the class (9.9) from now on. Consider the fol-
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lowing four families of H-classes in these models:

X1 = the set of H-classes in the interval from W to CT,

X2 = the set of H-classes in the interval from (f) to W,

X3 = the set of H-classes in the interval from (f ′) to (f),

X4 = the set of H-classes in the interval from O to (f ′).

We assume that the boundary H-classes between these sets belong to the upper
of the two adjacent sets.

Now we consider the following sets of types for models of the class (9.9) and
any of its subclasses of the form (9.4) for w0 6 w:

Tk(M)= the set of TYH(3s−1, s∗)-types realized in zone Xk of the model M,

Tk(w) = ∪
{

Tk

(

M〈ε〉
)

| ε∗�w 4 ε, ε ∈ Hlt(M)
}

,

k = 1, 2, 3, 4,

T(w) = T1(w) ∪ T2(w) ∪ T3(w) ∪ T4(w).

First, we establish that these four sets of types are pairwise disjoint for the
class of models.

Lemma 10.11. Let w0 6w′ 6w′′. Then Tk(w′)⊇Tk(w′′) for k = 1, 2, 3, 4,
and T(w′)⊇T(w′′).

Proof. Obvious. 2

Lemma 10.12. The sets of horizontal types Tk(w0), k=1, 2, 3, 4, are pair-
wise disjoint.

Proof. First, to distinguish between the horizontal types in T1(w0) and
T2(w0), notice that in the area X1, the head only moves across blanks, while in
the area X2, the head moves across zeros and ones with an occasional isolated
blank. Second, the types in both T1(w0) and T2(w0) differ from the types in
T3(w0) and T4(w0) because of the state the machine is in. Finally, to distinguish
the types in T3(w0) and T4(w0), notice that everyH-class in T3(w0) has a point
whose local type of radius 3s−1 contains both a 0′ point and a blank located to
the left of the input field (as an example, see Fig. 8.2(b)), while no H-class in
T4(w0) contains such local types. 2

We now study properties of horizontal types by separately considering the
four classes Tn(w) for w > w0. Consider types occurring in the final part of the
computation.

Lemma 10.13. Let the type ϕ(x) ∈ TYH(3s−1, s∗) belong to T1(w0). Then
either ϕ(x) is limited in the class of models (9.9), or ϕ(x) is s∗-unlimited in
this class of models.
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Proof. Let M be a model of class (9.9). The types of the H-classes
near the top CT, for which the number of realizations of a local type, with its
neighborhood of all blanks, does not reach the bound s∗, are all limited in the
class of models (9.9). These are the H-classes within ρ∗-distance 60.5·(s∗+s+)
from the top of ∆(M). Also, the types of the H-classes located within ρ∗-
distance no more than 0.5s+ from the points W or E are limited in the class of
models (9.9). All other types of elements above W are obviously s∗-unlimited in
the class of models (9.9) by the description of these areas in Lemmas 9.8–9.10,
together with the inequalities (a) and (b) of Lemma 9.13. 2

Lemma 10.14. Let the type ϕ(x) ∈ TYH(3s−1, s∗) belong to T2(w0). Then
either ϕ(x) is limited in the class of models (9.9), or ϕ(x) is s∗-unlimited in
this class of models.

Proof. For this subclass of types, we note that the segment UW has the
same length 2(l0 + l1) in all models of the class (9.9), and thus, the set of
(3s−1, s∗)-types generated by the points in this segment, consisting of (l0+l1+1)
horizontal types, is exactly the same in all models of the class (9.9), so these
types do not affect the limitedness or s∗-unlimitedness of any horizontal type in
this area. As for the H-classes generated by the points in the segment ZU , the
types within quasidistance 6 0.5s+ of Z are all limited in the class of models
(9.9), while all the other types are s∗-unlimited in the class of models (9.9)
because of the choice of the parameters l0 and l1, and by Lemmas 9.7, 9.8, 9.15,
9.16, which describes this area. 2

Thus, both sets of types T1(w0) and T2(w0) consist only of types limited or
s∗-unlimited in the class of models (9.9).

Among the types intersecting the kernel SZCD, we first consider the types
occurring above the line (f ′).

Lemma 10.15. Let ϕ(x) ∈ TYH(3s−1, s∗) belong to T3(w0). Then either
ϕ(x) is limited in the class of models (9.9), or ϕ(x) is s∗-unlimited in this class
of models.

Proof. Remember that we denote the singular point Z by Z0 for simplicity
(as mentioned above). It can be checked directly that the types of the H-classes
of each point Zi, 06 i6s+, and all of its k-th D-successors for

k ∈ Z, 0 < |k| 6 min{3s−1, s+ − i}, (10.3)

are limited, since for the corresponding horizontal type from TYH(3s−1, s∗), one
of its local types will cover simultaneously both the blank to the left of the field
INPUT and the singular point Zi. In fact, all these horizontal types are realized
by a unique H-class in any model of the class (9.9).

There are also limited horizontal types in the class T3 near the singular
points Z ′

i, 16 i6s+. These types are the types of the points Z ′
i themselves, and
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the H-classes of their k-th D-successors for

k ∈ Z, 0 < |k| 6 i+ l0, (10.4)

since for the corresponding type from TYH(3s−1, s∗), one of its local types will
cover simultaneously both the blank to the left of the field INPUT and the
symbol 0′ near the left end of the field INPUT, while other local types will
cover the singular point Z ′

i or a head position together with the blank line OP ,
or a unique head position inside the rectangle OPIK (that is, a head position
together with two or more strips εi having values εi = 1). Note that the other
k-th successors of Z ′

i for k in (10.4) will be s∗-unlimited horizontal types in
models from the class (9.9).

Now we pass to the final part of the proof of Lemma 10.15. All H-classes
near the singular points Zi and Z ′

i, determined by the restrictions (10.3) and
(10.4) form a family of horizontal types which is exactly the same in any model
of the class (9.9); therefore, these types do not affect the limitedness or s∗-
unlimitedness of any horizontal type in this area on the class (9.9). As for the
other types of the region X3, realized in models of the class (9.9), they are
obviously s∗-unlimited, which immediately follows from Lemma 9.16 together
with Lemma 9.5, which establish the general form of a model in this area. Thus,
we have that each type in the family X3 is either limited or s∗-unlimited in the
class of models (9.9). 2

It remains to consider the most complicated case of the horizontal types
intersecting the kernel SZCD below the line (f ′). Because of the simplicity of
the structure of the three areas we considered above, we could directly describe
all types there and even evaluate the number of realizations of each type. Such
an analysis for T4(w0) is impossible because of the arbitrary computations in
the kernel of the universal block. Our goal is to show that, nevertheless, even in
this area, the types of the H-classes for models M = M〈ε′〉 with ε′ < ε∗�w for
sufficiently large w are either limited or s∗-unlimited. Since a direct description
is impossible, we must rely on arguments of a more combinatorial character.

Let M be one of the models satisfying (9.9). For k ∈ N, we denote by M[k]
the H-class of M which is the k-th D-successor of the lower boundary J of
∆(M) (that is, the k-th row of M). M[k] is undefined if k exceeds the height
of M. For k ∈ N, we let τH(M[k], 3s−1, s∗) denote the horizontal (3s−1, s∗)-
type of the H-class M[k] if this class belongs to the area X4 of M, i.e., if it is
located below (f ′) in this model M. Otherwise, the type τH(M[k], 3s−1, s∗) is
considered undefined.

The following statement is the most important property of the (3s−1, s∗)-
types realized in the area X4 of the models of the theory T . One could say that
this property is the key ingredient in the construction of the theory T .

Lemma 10.16. Let M〈ε′〉 and M〈ε〉 be two models of T . Let ε < ε′ < ε∗�w0
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be such that τH(M〈ε′〉[k], 3s−1, s∗) and τH(M〈ε〉[k], 3s−1, s∗) are defined. Then
we have

τH(M〈ε′〉[k], 3s−1, s∗) = τH(M〈ε〉[k], 3s−1, s∗).

Proof. Let Fig. 9.1 represent the model M〈ε〉. By Lemma 9.17, there is an
isomorphic embedding µ of the kernel K(M〈ε′〉) into the kernel K(M〈ε〉). Let
the trapezoid AB′C ′D′ in Fig. 9.1 represent the part of the image of K(M〈ε′〉)
under this embedding which lies inside ABCD. By our assumption on k, both
M〈ε′〉[k] and M〈ε〉[k] are located below the line (f ′) in the corresponding mod-
els. We consider an element a′ ∈ M〈ε′〉 which represents the class M〈ε′〉[k]
in M〈ε′〉, and an element a ∈ M〈ε〉 which represents the corresponding class
M〈ε〉[k] (see Fig. 9.1).

In Fig. 10.1, a general picture of the classes [a]H and [a′]H together with their
neighborhoods is presented. The clippings of the corresponding areas from the
models M〈ε′〉 and M〈ε〉 as trapezoids of height s+ are depicted, denoted in the
figure by H and H ′. In these trapezoids, all the information necessary for the
definition of the horizontal (3s−1, s∗)-types of the elements a and a′ is presented.
In the figure, an area is also shown where the isomorphism µ between H and
H ′ acts. Other properties of models in the area of the classes H ′ and H are
described in Lemmas 9.3, 9.5–9.8, 9.14.

The areas L0, L1, L
′
0, L

′
1 are areas of lengths l0 and l1, respectively, L

and L′ are the parts of the field INPUT to the left of the areas L1 +L0 and
L′

1 +L′
0, and by “anything”, we denote the areas to the right of the central

line OH , respectively, in which the current computations are represented. It is
necessary to note that the position of the machine head as well as the position
0′ of the pointer t in the field INPUT lie within the domain of the isomorphism
µ; therefore, the machine head as well as the pointer t in the area H will be the
µ-images of their locations in H ′. Also note that the heights of the areas H ′

and H are equal to s+, that is, less than the distances between the adjoining
lines εi and εi−1 in the areas L+L1 and L′+L′

1. Therefore, the line of the head
(if it appears within the bounds of L+L1 and L′+L′

1), can lie close to only one
of lines εi within the bounds of the areas H and H ′.

So, we see that the intervals with arbitrary information L′
0+anything ′ and

L0+anything are isomorphic, the areas L′+L′
1 and L+L1 are very simple (they
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may include a few special points where µ acts and more than s∗ simple isolated
strips with information εi = 1), while the left and the right end sides of the
classes consist of blanks only, which have length more than s∗+s+. Thus, we
have the coincidence of the horizontal types τH(a, 3s−1, s∗) = τH(a′, 3s−1, s∗),
and Lemma 10.16 is proved. 2

Lemma 10.17 For any models M〈ε〉 and M〈ε′〉 with ε′ < ε< ε∗ � w0, we
have T4(M〈ε〉)⊆T4(M〈ε′〉).

Proof. This lemma follows directly from Lemma 10.16 since the vertical
distance from J up to (f ′) in M〈ε〉 increases as |ε| increases. 2

Now, we turn to our main combinatorial statement:

Lemma 10.18. There is a number w∗>w0 such that any type ϕ(x)∈T4(w
∗)

is either limited in the class of models

M〈ε〉, ε∗�w∗4ε, ε∈Hlt(M), (10.5)

or ϕ(x) is s∗-unlimited in this class of models.

Proof. The proof of this statement is based on the special form of the
program of the universal block presented in Fig. 5.5. In some cases, we consider
the universal block without any references to its internal structure, in other
cases, its internal structure is considered. Though the program of the universal
block really uses only the parameters n and e (see Section 5), we will make
references to it with three parameters of the form

U(n, x, e),

that will allow us not only to refer to the parameters used by it, but also to
show the condition of the tape at the stage of the call of the block. There is the
relation e = Nom〈ε0, ε1, ..., εx−1〉 among the parameters x and e at the stage
when the universal block is called, where the values εi are taken from the bit
field INPUT.

Recall that we restrict ourselves only to models of the class (9.9).

According to the algorithm M, at each entry into the universal block and
then at the exit from it, the head of the machine passes the field of the cell n
by multiple executions of one of two following commands

1q75 → 1q75L, 1q6 → 1q6R. (10.6)

The corresponding movements of the head can be seen in Fig. 8.1. When n is
small, the description of a horizontal (3s−1, s∗)-type can encompass an area of
the universal block and simultaneously some fragments of surrounding quasi-
periodic computations, and it can even cover areas of two or more universal
blocks. In that case, we say that the horizontal types of the call of the universal
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block are not separated from the types of surrounding quasi-periodic compu-
tations. But, if n exceeds s+, then (3s−1, s∗)-types of H-classes intersecting
the work area of the universal block do not depend on the fragments of the
surrounding quasi-periodic computations since they are isolated from those by
long enough lines of head movements by commands (10.6). In this latter case,
we say that the horizontal types of the call of the universal block are separated
from the types of the surrounding quasi-periodic computations. Also, it is nec-
essary to note that the polynomial subroutine in the universal block is separated
similarly from the farther part of the program by the head movement over the
cell KEY , when its value is large enough.

Some concept of separability can be defined also for the kernel of the uni-
versal block in relation to the quasi-periodic computations inside the universal
block. One of the ideas of the flow-chart shown in Fig. 5.5 is that the working
cell STEP separates the kernel from the surrounding computations. In Fig. 5.5,
after erasing K, the algorithm adds one to STEP and then the head must move
across the string of 1 bits representing STEP before entering the kernel of the
universal block. Therefore, all H-classes located at a quasidistance > 3s−1 from
the areas of calls to the kernel in the universal block are called the surrounding
quasi-periodic computations. In the internal cycle for STEP= 0, 1, 2, . . ., while
STEP<s+, the type of the kernel in the universal block is not separated from the
types of the surrounding quasi-periodic computations, while when STEP> s+,
these types are separated from each other. Thus, at each call of the univer-
sal block, the computations of its kernel at first are not separated from the
surroundings, while after fixed number of stages of the internal cycle with cell
STEP, they become separated from the types of the surrounding quasi-periodic
computations.

Let U(n, x, e) be a call of the universal block in a model M of the class (9.9).
By TU(n, x, e), we denote the set of horizontal (3s−1, s∗)-types realized in the
area U(n, x, e) of model M. It is assumed that all horizontal types of H-classes
of the computation U(n, x, e), and also of allH-classes at a quasidistance 63s−1

from it, are included in TU(n, x, e). The types of H-classes at a quasidistance >
3s−1 from the areas of calls of the universal block are included in the surrounding
quasi-periodic computations.

Now, we prove a general fact about calls of the universal block.

Claim A. Let U(n, x, e) be a call of the universal block in a model M of
the class (9.9) such that n > s+, i.e., the computation U(n, x, e) is separated
from the surrounding quasi-periodic computations. Then the set TU(n, x, e) is
completely defined by the values of its input parameters n, x, and e.

Proof. By our construction, a call of the universal block starts at stage (d)
and the computation exits the block at stage (e) shown in Fig. 5.3. By (5.12),
the computation does not shift its head farther than the left end of cell n, so
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it is completely located in the trapezoid OPCD shown in Fig. 9.1. Moreover,
by Lemma 9.14 both blank areas SZXL and DCYR on either side are large
enough in models of the class (9.9). Therefore, the set of types TU(n, x, e) will
be the same in all models of the class (9.9) provided that the computation is
separated from the surrounding quasi-periodic computations, which holds under
our assumption n > s+. 2

From now on, we use the function q(x) as defined in (5.6). The next technical
statement is important for us:

Claim B. There are integer parameters t0>s
+ and n0>4s+ satisfying the

following properties:

(a) (∀s<t0)
[

q(s)<n0

]

,

(b) (∀s> t0)
[

q(s)>4s+
]

,

(c) for each call of the universal block U(n, x, e) with n>n0 in a model of
the class (9.9), its internal cycle by cell STEP takes >t0 stages.

Proof. First, we can choose t0>s
+ satisfying (b) by the requirement (5.8).

Then we choose n0 =max
{

4s++1, t0+1, q(0), q(1), ..., q(t0−1)
}

. As a result, we
have (a), while (c) holds by Lemma 5.4. 2

The parameters n0 and t0 chosen in Claim B will be used again in this
section. The fact that n0 > t0 will be used frequently without being explicitly
stated.

Now, we describe the regions where special computations are separated (in
some strong sense) from the quasi-periodic computations.

Claim C. Let, in a model of the class (9.9), a call of the universal block be
given of the form U(n, x, e) with n>n0. Then

(a) the computation U(n, x, e) is separated from the surrounding quasi-peri-
odic computations outside the universal block,

(b) the polynomial computation in U(n, x, e) is separated from the further
part of the computation inside the universal block,

(c) the internal cycle with cell STEP makes > t0 steps in the computation,

(d) after the stage of the computation when the cell STEP reaches the value
of t0, the calls of the kernel computation are separated from the surrounding
quasi-periodic computations inside the universal block.

Proof. By Lemma 5.4 and inequalities (2.6) and (5.7), together with the
properties of the parameters n0 and t0 stated in Claim B. 2

Now our main goal is to prove some properties of sets of types TU(n, x, e)
which are stronger than Claim A. Namely, we are going to prove that TU(n, x, e)
is uniquely determined just by x for small x and large enough n, and that this
set is independent of the values of the parameters n, x and e when both n and
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x are large enough.

To this end, we study sets of types generated by a call of the universal block.

Let a call U(n, x, e) of the universal block be given in a model M of the
class (9.9). Let STEP↓ denote the length of the internal cycle by cell STEP,
i.e., when STEP=STEP↓, the exit out of the universal block occurs. Consider
the following sets of horizontal (3s−1, s∗)-types generated separately by special
computations and quasi-periodic computations during the internal cycle (see
Fig. 5.5):

TU(n, x, e)pol is the set of types in the interval from the entry into (10.7)
the universal block up to stage (h) of the block,

TU(n, x, e)[0, t0] is the set of types in the interval from the stage (h) (10.8)
of the universal block up to stage (j) with STEP= t0,

TU(n, x, e)ker [STEP ] is the set of types in the interval from (j) to (k) (10.9)
at the instance STEP of the internal cycle,

TU(n, x, e)qua[STEP ] is the set of types in the interval from (k) to (10.10)
(j) at instance STEP of the internal cycle,

TU(n, x, e)qua[STEP↓ ] is the set of types in the interval from (k) to (10.11)
stage (e) at the last instance of the internal cycle.

From now on in this section, by “types” we mean horizontal (3s−1, s∗)-types.
It must be noted that (except for Claim K below) in (10.7)–(10.11), we consider
only the existence of the realized types, not the number of realizations of each
type. This makes the remaining proofs in this section simpler.

Note that stage (h) itself is included in the set of types (10.7), and simul-
taneously, it is excluded from the set of types (10.8). As usual, we include
in (10.9) the types of H-classes of the kernel computation itself as well as the
types of the H-classes at a quasidistance 6 3s−1 of it. At the same time, we
exclude from the sets of types (10.8), (10.10) and (10.11) those located at a
quasidistance 63s−1 from the kernel computation.

The following gives a decomposition of the set of types generated by a call
of the universal block into five parts:

TU(n, x, e) = TU(n, x, e)pol ∪ TU(n, x, e)[0, t0] (10.12)

∪
⋃

t06STEP6STEP↓
TU(n, x, e)ker [STEP ]

∪
⋃

t06STEP<STEP↓
TU(n, x, e)qua[STEP ]

∪ TU(n, x, e)qua[STEP↓].

Note that this formula is applicable when n>n0, where, by Claim C, the poly-
nomial part is separated from the subsequent computation, and the call of the
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universal block is separated from the surrounding quasi-periodic computations
after reaching STEP = t0; moreover, the range of the local cycle exceeds t0,
which makes all parts of the formula (10.12) defined.

Note [4s+]. From now on, we often use a parameter of the form 4s+, which
has the following meaning. Quasi-periodic operations over cells in the program
of the universal block may use one or two working pointers 1′. Namely, addition
operations may obviously be programmed with just one pointer 1′ in each cell,
while the computation of c(n, e) by the rule 1

2 (n+ e)(n+ e+1)+n may use
a temporary cell for n+e and two pointers 1′ in the cell simultaneously. To
compute the square of c(n, e), we can simply duplicate the cell and then use
just one pointer 1′ in each of these two cells. So, it is possible to have a situation
when two 1′ and the head are on a cell at a stage in the computation. Then, if the
value of the cell is less than 4s+, a description of a horizontal type may include
complete information about the exact value of the cell. Conversely, if the value
of a cell is larger than 4s+, independently of its real value, the description of a
horizontal type will be the same because it cannot encompass the four parts of
the cell as a whole. The same argument applies to the comparison operation over
cells KEY and K. Different small values of the difference d between the values
of KEY and K may generate different types, while in both cases KEY <K−4s+

and KEY −4s+>K>4s+, the comparison operation generates the same set of
types in either of these two cases. So we can say that the value 4s+ plays the
role of a real bound between small values of cells generating isolated types, and
large values of cells generating a type independent of the exact content of a cell
involved in the computation.

Consider the following sequence of cases for the value of the parameter x,
and relations between working cells KEY and K at an instance STEP of the
internal cycle:

(Xk) : x=k, k=0, 1, 2, ..., 4s+, (X∞) : 4s+<x6n, (10.13)

(L): KEY<K, (E): KEY=K, (G): KEY >K>4s+. (10.14)

We will use them in the analysis of the sets of realized types.

Now, we study some properties of sets of types presented in formula (10.12).

Claim D. Let n > n0 be given. Then the set TU(n, x, e)pol is completely
determined for each of the 4s++2 cases of the value of cell x given in (10.13).

Proof. This statement is actually an important (though obvious) property
of quasi-periodic computations, when a subroutine computes the value of a
rational polynomial, having positive integer values for positive integer values of
arguments. Moreover, by (2.6), the value of the polynomial is large for large
values of its parameters. As for the call U(n, x, e) with n > n0, in the case when
x is fixed such that 06x64s+, the set of types may depend on the parameter
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e which can have small value. But in this case, by Lemma 9.19, the value of e
is uniquely defined by x for the call U(n, x, e) in a model of the class (9.9). 2

The following property is provided by using of c2(n, e) in the universal block:

Claim E. Let a call of the universal block U(n, x, e) be given in a model of
the class (9.9) such that n > n0. Consider the value of the cell KEY in this
call, and the value of the cell K at a stage of the internal cycle with cell STEP.
Then we have

(a) KEY >K+4s+, if KEY >K,

(b) KEY <K−4s+, if KEY <K,

(c) K>4s+, if STEP> t0.

Proof. Since n>n0> 4s+ by virtue of Claim B, we have KEY = k2 with
k > 4s+ by inequality (2.6) as well as by flow-chart shown in Fig 5.5. On the
other hand, the value of K may be of the form either k2

1 or k1(k1+1) for some
k1 by the definition of function q(x). This immediately gives the properties (a)
and (b). Part (c) is a consequence of Claim B (b). 2

Claim F. Let n>n0 be given. Then the set TU(n, x, e)[0, t0] is completely
determined for each of the 4s++2 cases of the value of cell x given in (10.13).

Proof. Directly from the flow-chart given in Fig 5.5 and by Claim B
establishing the conditions of the parameters n0 and t0. By part (a) of Claim
B together with the inequality (2.6), we have KEY > K at all stages of the
internal cycle from 0 to t0. By Claim E we have KEY > K+4s+ at these
steps. Therefore, this part of the whole computation is independent of n and
completely determined by the input parameters x and e which have an effect
on the types of this part of a computation.

If one of the conditions Xk, 06k64s+ is true, by Lemma 9.19, the value of
e is uniquely defined by x, so the set TU(n, x, e)[0, t0] is completely determined
for this k. If X∞ is true, the value of e becomes large enough by (2.3). So, this
part of the computation will generate the same set of types as well. 2

Claim G. Let n > n0 be given. Then the set TU(n, x, e)ker[STEP ] with
t0 6 STEP 6 STEP↓ is completely determined by the value of the cell STEP,
and it is independent of any other parameters.

Proof. Directly from the flow-chart given in Fig 5.5 taking into account
that the requirement (5.13) on the kernel computation does not allow the pro-
gram to move its head further than the left end of the cell STEP (which in fact
is the only input parameter of the subroutine). Remember that, by Claim C,
the kernel computation here is separated form the surrounding quasi-periodic
computations inside the universal block. 2

Note. The statements of Claim G together with Lemma 5.4 represent
the so-called quasi-monotonicity property of the kernel computations inside the
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universal block. It is directly provided by the algorithm in Fig. 5.5.

Claim H. Let n > n0 be given. Then the set TU(n, x, e)qua[STEP ] with
t0 6STEP<STEP↓ is completely determined by which of the 4s++2 cases for
the value of cell x given in (10.13) holds, and which of the cases (L) or (G) of
(10.14) holds at the instance STEP.

Proof. Immediately from the flow-chart given in Fig 5.5 and the properties
of the parameters t0 and n0. Suppose that condition (G) is true. By Claim E
we have KEY −4s+ >K > 4s+ at the stage, therefore, this part of the whole
computation is completely determined by the input parameters x and e, whose
values can influence on the types. If one of the conditions (Xk), 0 6 k 6 4s+

is true, by Lemma 9.19, the value of e is uniquely defined by x, so the set
TU(n, x, e)qua[STEP ] is completely determined for this k. If (X∞) is true, the
value of e becomes large enough by (2.3). So, this part of the computation will
define the same set of types as well. Similar arguments can be applied to the
case when (L) is true. 2

Claim I. For any x∈N, there are infinitely many integers n>n0 such that
in the call of the universal block of the form

U(n, x, e), e=Nom〈ε0, ε1, ..., εx−1〉,

where bit cells εi are taken from the sequence (9.2), each of cases (L), (E) and
(G) of (10.14) occurs at least one time in the computation U(n, x, e) (at different
stages of its internal cycle).

Proof. Since the bit cells εi are taken from the sequence (9.2), and ε∗ ∈
Cons∗, by (4.19), we have that 〈ε0, ε1, ..., εx−1〉 ∈ Cons. Then, by Lemma 5.2,
the relation U ′(n, e) is true for all n ∈ N. By the construction of the function
q(x) described in Section 5, for every n>x, a sequence of values

. . . , c−(n, e), . . . , c+(n, e), . . . , c2(n, e), (10.15)

will be inserted as a row of values of the function q(x). Moreover, a sequence
(10.15) for given e will be inserted for different values of n infinitely many times
as some values of function q(x). For given n>x and e, consider the least integer
k = k(n, e) such that q(k) = c2(n, e) (it is these minimal values which cause
the exit out of the universal block). Then, obviously, for any fixed e, we have
k(n, e) → ∞ for n → ∞. This immediately gives the statement of Claim I.
Note an obvious fact, namely, that case (E) occurs at the last stage STEP↓ of
the internal cycle in the computation. 2

Claim J. Let n>n0 be given. Then the set TU(n, x, e)qua[STEP↓ ] is com-
pletely determined for each of the 4s++2 cases of the value of the cell x given
in (10.13).

Proof. Directly from the flow-chart given in Fig 5.5, showing that the
comparison operation (ending with the “yes” branch) as well as the further exit
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operations generate the same set of types because the input parameter n is
large, while x, and e are either small and fixed, in case (Xk), or both of them
are large enough, in case (X∞). 2

Now we prove the following four important technical statements.

The first one is:

Claim K. Let s′ be the stage in a computation in a model M of the class
(9.9) when the cell n reaches the value n0. Then the family of (3s−1, s∗)-types
realized in H-classes at a quasidistance 6 s′ from the starting class J (counting
the number of their realizations) is the same independently of what model M

was taken.

Proof. Immediate by Lemma 10.16, taking into account that the compu-
tations in the interval [0, s′] in all models of the class (9.9) are obviously the
same because they use the same initial segment of information from ε∗, which
in fact is included in ε∗�w0. 2

The second one:

Claim L0. There is an integer value w>w0 such that any (3s−1, s∗)-type
of quasi-periodic computations outside of the universal block in the zone X4 of
a model of the class (9.9), which is realized after the stage when cell n reaches
value n0, has >s∗ realizations in the model M〈ε∗�w〉.

Proof. Consider a stage s′ in the computation with INPUT〈ε∗ � w〉 with
large enough w, when the working cell n reaches the value n0. By virtue of Claim
C, the types of quasi-periodic computations outside of the universal block after
the stage s′ are separated from types generated by calls of the universal block.
It is obvious that the types of quasi-periodic fragments of computations in the
region after the stage s′ depend on the contents of the field INPUT as a whole
to some degree. In particular, they do not always depend on the order of the bit
values. In the area OPIK, where the bit values are close to each other, the types
of quasi-periodic computations may depend on the values of the cells εi. But
this dependence is the same for all models of the class (9.9) by virtue of Lemma
9.2. As for the saturation of types in the quasi-periodic computations in the
part of the field INPUT located to the left of the line IK, it is only important
that in the input bit sequence ε∗ �w there are a lot of zero cells εi and lot of
one cells εj . Their relative position is irrelevant. The necessary number of zeros
and ones in ε∗ �w can be obtained for large enough value of w >w0, since by
Lemma 4.1, in a sequence (9.2) there are infinitely many zeros and infinitely
many ones. Therefore, the requirement of Claim L0 will be true for a suitably
large value of w . 2

The third one:

Claim L1. Let x be fixed such that 0 6 x6 4s+ . Then there is a number
n′=n′(x) depending on x such that the set TU(n, x, e) is the same for all calls
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U(n, x, e) with n>n′ in all models M of the class (9.9)

Proof. The set TU(n, x, e) consists of five parts as presented in (10.12).
Both the first and the second part depend just on the value of x by Claims D
and F. By Claim G, the third part is monotonically increasing as the cell STEP
increases, and consequently it must stabilize by Lemma 5.4, since the set of
horizontal types is finite. Further, Claim H shows the fourth set depends only
on x, while Claim I ensures the saturation of the set with various types and
therefore its stabilization. The fifth set depends on the value of x by Claim J.
As a result, we have the necessary statement for the given x and large enough
value of n′. 2

The fourth one:

Claim L2. There is an integer n′′ > 0 such that for any two calls of the
universal block U(n1, x1, e1) and U(n2, x2, e2) with n1, n2 > n′′ and x1, x2 > 4s+

and in any two models of the class (9.9), TU(n1, x1, e1) = TU(n2, x2, e2).

Proof. The set TU(n, x, e) consists of five parts according to (10.12). The
first and second parts are the same for all calls of this form by virtue of Claims D
and F. By Claim G, the third part is monotonically increasing as the cell STEP
increases, and consequently it must stabilize by virtue of Lemma 5.4, since the
set of horizontal types is finite. Further, Claim H states the uniqueness of the
fourth part for cases (L) and (G) of (10.14), while Claim I ensures the saturation
of the set with various types, and therefore its stabilization. The fifth set is the
same for all calls of this form by Claim J. As a result, we obtain the necessary
statement for a large enough value of n′′. 2

Now we turn directly to the proof of Lemma 10.18.

The general technique of the proof is to give an analysis of all calls of the
universal block and the surrounding quasi-periodic operations in a computation
in a model of the class (9.9), and on this basis we describe the set of realized
types, which will imply Lemma 10.18.

We consider a computation of the algorithm M in a fixed model of the
theory T of the form

M〈ε∗�w〉, w>w0. (10.16)

Note that the finite model (10.16) exists for all w by virtue of properties (4.17),
(4.18) and (9.2), and for w > w0 it belongs to the class (9.9).

Denote by ϕ[k](x) the following horizontal type in X4:

ϕ[k](x)=M〈ε∗�v〉[k],

for v>w0 such that M〈ε∗�v〉[k] is defined, k∈N.

(10.17)

Since the vertical distance from J up to (f ′) in M〈ε〉 increases as |ε| increases,
the type (10.17) is defined for all k > 0. By Lemma 10.16, the type (10.17)
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is defined uniquely, independently of the choice of the temporary parameter v.
Obviously, any finite segment of the infinite sequence (10.17) can be realized in
a finite model of the form (10.16) for large enough w >w0. Furthermore, we
assume that w in (10.16) is chosen large enough so that all situations considered
below occur in the computation in the area X4 of the model M.

We now pass to the analysis of the types realized in X4.

Consider a stage s0 in the computation (10.16) (that is, the H-class of this
model) when the working cell n reaches the value n0. By Claim C, after stage
s0, the types of the quasi-periodic computations are separated from the types
generated by calls of the universal block, and the types of the polynomial part
are separated from the subsequent computation in the universal block. The
types realized in the interval [0, s0], by Lemma 10.16, are the same for all models
of the class (9.9), and therefore for all models of its subclass (10.5), they do not
present an obstacle to Lemma 10.18; we will therefore generally drop them from
our considerations.

Find a value of s1>s0 such that in the computation in the interval [s0, s1]
of the model (10.16), every type of a fragment of a quasi-periodic computation
which is available in some model of the class (9.9) after the stage s0 actually
occurs in the model (10.16), and moreover, each of these types has >s∗ realiza-
tions. Such a value s1 exists by Claim L0.

Consider the parameter

n∗ = max{n′(0), n′(1), ..., n′(4s+), n′′},

where n′(x) and n′′ are defined in Claim L1 and Claim L2. Then it is obvious
that both Claim L1 and Claim L2 are still valid if we take n′(i) = n∗ for i =
0, 1, ..., 4s+, and n′′ = n∗.

Now, we turn to types generated by areas of calls of the universal block. As
described earlier, we have to consider only the calls U(n, x, e) in the area after
the stage s0, where universal computations are separated from the surrounding
quasi-periodic computations. Divide all such calls of the universal block in the
following classes by the values of their input parameters:

(A) : U(n, x, e), n<n∗, x∈N,

(Bx) : U(n, x, e), n>n∗, x=0, 1, ..., 4s+, e= Nom〈ε0, ε1, ..., εx−1〉,

(C) : U(n, x, e), n>n∗, x>4s+.

There are at most (n∗+1)2 calls of the form (A) in any model, because the
inequality x6n is true for each call of the universal block in the computation
of the algorithm M, and there can be only one call U(n, x, e) with given n and
x in the entire computation. Consider a number s2 > s0, for which
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— all calls of the universal block of the form (A) occur before stage s2 in
the model (10.16).

Such a number s2 exists by Lemma 8.1.

Now we pass to the calls of the form (Bx) and (C). By Claim L1, the set of
types TU(n, x, e) is the same for all calls of the universal block of the form (Bx)
for each value x=0, 1, ..., 4s+, and by Claim L2, the set of types TU(n, x, e) is
the same for all calls of the universal block of the form (C).

Consider a number s3>s2 for which the following conditions hold:

— for every x = 0, 1, ..., 4s+, there are more than s∗ calls of the universal
block of the form (Bx) before the stage s3 in the model (10.16).

— there are more than s∗ calls of the universal block of the form (C) before
the stage s3 in the model (10.16).

One can see that such a number s3 exists by Lemma 8.1.

At last, we consider the value s4 = max{s1, s3}.

Then we take a number w∗ such that in the models of the class (10.5), the
computations in the area [0, s4] do not use the information of the field INPUT

except during the initial segment ε∗ � w∗ of the sequence (9.2). That is, the
work of the initial s4 stages in all models of the class (10.5) must proceed in
exactly the same manner. As for the computations after stage s4, the work of
the algorithm M can be different in different models of the class (10.5) since
the computation may be defined by the input information εi taken outside of
the limits of the segment ε∗�w∗.

By the choice of the parameter w∗ and the auxiliary parameters s0, s1, s2, s3
and s4, we obtain that in the minimal model M〈ε∗�w∗〉 of the class (10.5), all
special types in the area [0, s0], as well as the types of all special calls of the
form (A), are realized. At the same time, in the model M〈ε∗�w∗〉, all types of
quasi-periodic computations available in models of the class (9.9) are realized
>s∗ many times, as are all types of calls of the universal block of the form (Bx)
for x = 0, 1, ..., 4s+, as well as all types of calls of the form (C). Hence, our value
of w∗ satisfies the claim of our lemma.

Thus, the statement of Lemma 10.18 is completely proved. 2

This lemma completes the purely technical part of the combinatorics of our
construction. We now apply these results in order to prove our final statement
that condition (4.25) holds.
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11 The Ehrenfeucht property

Now we consider the class of models of the theory T of the following form

M〈ε′〉, ε′ < ε∗�w∗ (11.1)

where the bound w∗ is defined as in Lemma 10.18.

The following lemma summarizes the results of the last section about the
types occurring in models of the theory T from the class (11.1).

Lemma 11.1. The following assertions hold :

(a) Let a=E(M〈ε′〉) (i.e., the point E in the model M〈ε′〉) and b=E(M〈ε′′〉)
(i.e., the point E in the model M〈ε′′〉) for some ε′, ε′′ < ε∗�w∗. Then we have
τ(a, 3s−1)=τ(b, 3s−1), and τH(a, 3s−1, s∗)=τH(b, 3s−1, s∗).

(b) For any k∈N such that 0<k6 s, each local type θ∈TY(3k−1) is either
limited or s∗-unlimited in any horizontal type ϕ realized in the models of the
class of models (11.1).

(c) For any k∈N such that 0<k6s, each horizontal type ϕ∈TYH(3k−1, s∗)
is either limited or s∗-unlimited in the class of models (11.1).

Proof. Part (a) immediately follows by the description of the neighbor-
hoods of the point E in Lemmas 9.8–9.10 together with the inequalities (a)
and (b) of Lemma 9.13. And part (b) follows directly by the definition of the
horizontal types ϕ ∈ TYH(3k−1, s∗).

(c) Let a type ϕ∈TYH(3k−1, s∗) be given. Consider the set ψ1, ψ2, ..., ψn ∈
TYH(3s−1, s∗) of all horizontal types of larger radius 3s−1 satisfying the condi-
tion that ϕ is the restriction of some ψi, 1 6 i 6 n to the smaller radius 3k−1.
One can easily see that each H-class of any model of the class (11.1) which sat-
isfies ϕ must be of one of types ψ1, ψ2, ..., ψn. By Lemma 10.18, each of these
horizontal types is either limited or s∗-unlimited in the class of models (11.1).
In the case when at least one type ψj , 1 6 j 6 n, is s∗-unlimited, the type ϕ
will be s∗-unlimited in the class of models (11.1). In the case when all the types
ψ1, ψ2, ..., ψn are limited in the class of models (11.1), each of these types must
occur a fixed number of times. Whether the type ϕ is limited depends on the
sum of the number of occurrences of the types ψ1, ψ2, ..., ψn. 2

Now we turn directly to the Ehrenfeucht back-and-forth method. Suppose
we have a family of relations ≡k, 06k6s, between pairs of tuples of equal length
(a0, ..., an) and (b0, ..., bn) of the models M〈ε′〉 and M〈ε′′〉 with ai ∈ M〈ε′〉,
bj ∈ M〈ε′′〉, and n = s − k. We say that this family of relations satisfies the
Ehrenfeucht conditions on s steps if the following properties hold:

(E0) (∃a∈M〈ε′〉)(∃b∈M〈ε′′〉)
[

(a) ≡s (b)
]

;

(E1) if 0<k6s and n=s−k then
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(a0, a1, . . . , an) ≡k (b0, b1, . . . , bn) ⇒

(∀a ∈ M〈ε′〉)(∃b ∈ M〈ε′′〉)
[

(a0, a1, . . . , an, a) ≡k−1 (b0, b1, . . . , bn, b)
]

;

(E2) if 0<k6s and n=s−k then

(a0, a1, . . . , an) ≡k (b0, b1, . . . , bn) ⇒

(∀b ∈ M〈ε′′〉)(∃a ∈ M〈ε′〉)
[

(a0, a1, . . . , an, a) ≡k−1 (b0, b1, . . . , bn, b)
]

.

(E3) if (a0, a1, . . . , as) ≡0 (b0, b1, . . . , bs), then the map λ which is defined
by λ(ai) = bi is an isomorphism between the atomic diagrams AD(a0, a1, . . . as)
and AD(b0, b1, . . . bs) in M〈ε′〉 and M〈ε′′〉, respectively.

The following statement expresses the essence of the Ehrenfeucht back-and-
forth method.

Lemma 11.2. [Ehrenfeucht Lemma] Suppose that for the models M〈ε′〉 and
M〈ε′′〉, there is a family of relations ≡k, 06k6s, between tuples of these models
such that the Ehrenfeucht conditions (E0) – (E3) hold for a given s > 0. Then
M〈ε′〉 ≡s M〈ε′′〉 holds. (That is, M〈ε′〉 and M〈ε′′〉 satisfy the same sentences
of quantifier rank 6 s.)

Proof. By standard methods (see Hodges [8]). Note that the condition
(E0) is just auxiliary to start the back-and-forth process. The essential back-
and-forth steps are ensured by the conditions (E1) and (E2). 2

For any two models M〈ε′〉 and M〈ε′′〉 of the class (11.1), we define the
relations ≡k, 06 k6 s, between pairs of tuples of equal length (a0, ..., an) and
(b0, ..., bn) from M〈ε′〉 and M〈ε′′〉, n ∈ N, ai∈M〈ε′〉, bj ∈M〈ε′′〉, n = s− k, as
follows. We set

(a0, a1, . . . an) ≡0 (b0, b1, . . . bn), for n=s,

if the mapping λ(ai) = bi is an isomorphism between the atomic diagrams
AD(a0, a1, . . . an) and AD(b0, b1, . . . bn) in M〈ε′〉 and M〈ε′′〉, respectively. Also,
we set

(a0, a1, . . . an) ≡k (b0, b1, . . . bn), for 0<k6s, n=s−k,

if the following five conditions hold:

(A) a0 =E(M〈ε′〉), and b0 =E(M〈ε′′〉);

(B) τ(ai, 3
k−1) = τ(bi, 3

k−1), for i = 1, . . . , n;

(C) τH(ai, 3
k−1, s∗) = τH(bi, 3

k−1, s∗), for i = 1, . . . , n;

(D) SuNv(ai, aj) ↔ SuNv(bi, bj), for all i, j ∈ {0, 1, ..., n} and all u, v ∈ Z

such that |u|+|v|62·3k−1;

(E) Du(ai, aj) ↔ Du(bi, bj), for all i, j ∈{0, 1, ..., n} and all u∈Z such that
|u|62·3k−1.

The following lemma states some basic properties which follow immediately
from this definition.
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Lemma 11.3. Consider tuples (a0, a1, ..., an) and (b0, b1, ..., bn) in models
M〈ε′〉 and M〈ε′′〉, ε′, ε′′ < ε∗�w∗, for which the relation

(a0, a1, ..., an) ≡k (b0, b1, ..., bn)

defined above holds, where 0< k 6 s, n= s−k. Then the following assertions
hold:

(a) τ(ai, 3
k−1) = τ(bi, 3

k−1), for i = 0, 1, . . . , n.

(b) τH(ai, 3
k−1, s∗) = τH(bi, 3

k−1, s∗), for i = 0, 1, . . . , n.

(c) Suppose k> 2. Let m∈Z be such that |m| 6 2 ·3k−2, and let arbitrary
elements a∈M〈ε′〉 and b∈M〈ε′′〉 be given such that Dm(au, a) and Dm(bu, b)
hold for some u ∈ {0, 1, ..., n}. Then τH(a, 3k−2, s∗) = τH(b, 3k−2, s∗).

(d) Suppose k > 2. Let t ∈ Z be such that |t| 6 2 ·3k−2, and let arbitrary
elements a ∈ M〈ε′〉 and b ∈ M〈ε′′〉 be given such that Dt(au, a) and Dt(bu, b)
hold for some u ∈ {0, 1, ..., n}. Then, for any local type θ ∈ TY(3k−2), the
number of points realizing θ in the set

{

x |H(a, x) & ρ(x, {a0, a1, ..., an}) 6 2 ·

3k−2
}

of M〈ε′〉 is exactly equal to the number of points realizing θ in the set
{

z |H(b, z) & ρ
(

z, {b0, b1, ..., bn}
)

62·3k−2
}

of M〈ε′′〉.

(e) Suppose k > 2. For any horizontal type ϕ ∈ TYH(3k−2, s∗), the num-
ber of H-classes realizing ϕ in the set

{

x | ρ∗
(

x, {a0, a1, ..., an}
)

6 2 · 3k−2
}

of M〈ε′〉 is exactly equal to the number of H-classes realizing ϕ in the set
{

z | ρ∗
(

z, {b0, b1, ..., bn}
)

62·3k−2
}

of M〈ε′′〉.

Proof. (a), (b) The identity of the types of the elements a0 and b0 in the
case k = s follows directly from condition (A) together with Lemma 11.1 (a),
while in the case k < s, we also use Lemmas 10.2 and 10.7. The equality of
the types of the other pairs ai, bi, i > 0, is immediate by the definition of the
relations ≡k.

(c) First, we consider a simpler case, when both the conditions Dm(au, a)
and Dm(bu, b) hold for some m together with the condition 06m62·3k−2. Then
the equality of the types τH(a, 3k−2, s∗)=τH(b, 3k−2, s∗) follows by Lemma 10.8
and part (b) of this lemma.

In the other case, when both conditions Dm(a, au) and Dm(b, bu) hold for
a parameter m in the interval 0<m 6 2 ·3k−2, the following difficulty arises.
The horizontal types of the elements a and b should be defined by the type
ϕ = τH(au, 3

k−1, s∗) = τH(bu, 3
k−1, s∗), based on Lemma 10.9, because it is

applicable to some neighborhood below the places where the elements au and
bu are located, but only under the additional conditions stated there. If m 6∈
[3k−2+1, 2·3k−2] holds, or m∈ [3k−2+1, 2·3k−2] holds, and, at the same time at
least one of the conditions (10.1) or (10.2) is true with a=au and b=bu, then,
by Lemma 10.9, since the horizontal (3k−1, s∗)-types of the elements au and bu
are identical, they completely determine the (3k−2, s∗)-types of the elements a
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and b, which also will be identical. It remains to consider only the situation,
when the conditions of Lemma 10.9 are not applicable. In this case, we have
the following sequence of assertions:

m∈
[

3k−2+1, 2·3k−2
]

, (11.2)
(

∃ t∈ [0.5(3k−1+3),m+0.5(3k−2+1)]
) [

Dt(E, au) ∨Dt(E, bu)
]

, (11.3)

(10.2) is false with a=au, b=bu. (11.4)

One can see that (11.3) is just equivalent to the negation of condition (10.1)
with a= au and b= bu. According to requirement (A) for ≡k, the special one-
element region E in the models M〈ε′〉 and M〈ε′′〉 is represented by the elements
a0 and b0. Thus, (11.3) means that one of the following two conditions holds:

Dt(a0, au), for some t∈ [0.5(3k−1+3),m+0.5(3k−2+1)], (11.5)

Dt(b0, bu), for some t∈ [0.5(3k−1+3),m+0.5(3k−2+1)]. (11.6)

Suppose that (11.5) holds. Since the parameter t in (11.5) is a positive number
and does not exceed 2·3k−1, we have by condition (E) for ≡k that Dt(a0, au) ↔
Dt(b0, bu). From this, we obtain:

Dt(a0, au) &Dt(b0, bu), (11.7)

for some t∈ [0.5(3k−1+3),m+0.5(3k−2+1)].

In the other case, when condition (11.6) is true, one can give a symmetric
argument.

In this situation, the position of the elements a and b with respect to au

and bu is given, and also, bounds on the position of the elements a0 and b0
with respect to au and bu are given. Combining these conditions, we obtain the
following relations between a0, b0, and a, b:

Di(a0, a), Di(b0, b),

i= t−m,

−0.5(3k−2−3)6 i60.5(3k−2+1).

(11.8)

Thus, the elements a and b are located in some neighborhood of the elements
a0 and b0 at the same D-distance. Since the number i in (11.8) satisfies the
condition |i|62·3k−2, the horizontal (3k−2, s∗)-types of the elements a and b are
uniquely defined by the (3k−1, s∗)-types of the elements a0 and b0. If we have
i> 0, Lemma 10.8 can be used. In the other case i< 0, we have the following
situation with a new parameter j=−i:

Dj(a, a0), Dj(b, b0), 0<j60.5(3k−2−3).
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One can now see that j 6∈
[

3k−2+1, 2·3k−2
]

, and consequently, it is possible to
use Lemma 10.9 avoiding its area of exclusion. As a result, by applying one of
the Lemmas 10.8 and 10.9, we obtain that the horizontal (3k−2, s∗)-types of the
elements a and b must be identical.

Summarizing the proof of property (c), one can briefly say that if for some
u ∈ {1, ..., n}, the definition of the horizontal types of the new elements a
and b by the horizontal types of the elements au and bu puts us into the area of
exclusion of Lemma 10.9, it will be possible to define the types of these elements
a and b in some other way, namely, by the types of the elements a0 and b0, either
using Lemma 10.8, or using Lemma 10.9, avoiding its area of exclusion.

Part (d) follows from Lemma 7.2 and Lemma 10.3, taking into account that
the adjoining spheres of radius 3k−1 of the elements ai in the model M〈ε′〉 and
the elements bi in the model M〈ε′′〉 are rigidly linked in identical positions in
these two models because of condition (D) in the definition of ≡k.

Part (e) follows from Lemma 11.3 (c), taking into account that the adjoining
neighborhoods of ρ∗-radius 3k−1 of the elements ai in the model M〈ε′〉 and the
elements bi in the model M〈ε′′〉 are rigidly linked in identical positions in these
two models by condition (E) in the definition of ≡k. 2

We prove now the Main Statement that the family of relations ≡k, 06k6s,
satisfies the Ehrenfeucht conditions on s steps:

Lemma 11.4. For the family of relations ≡k, 06k6s, introduced between
tuples from models M〈ε′〉 and M〈ε′〉 with ε′, ε′′ < ε∗ � w∗, the requirements
(E0) – (E3) on s steps hold.

Proof. Let M〈ε′〉 and M〈ε′′〉 be two arbitrary models of the class of models
(11.1). The fact that condition (E0) holds follows directly by Lemma 11.1 (a)
and the fact that condition (E3) holds follows directly from the definition of ≡0.

For the conditions (E1) and (E2), it is enough to check only one of them by
symmetry. Without loss of generality, we consider condition (E1). We consider
any k, 0 < k 6 s, and arbitrary tuples (a0, a1, ..., an) and (b0, b1, ..., bn) with
n = s − k for which the condition (a0, a1, ..., an) ≡k (b0, b1, ..., bn) holds. That
is, conditions (A) – (E) above hold for this pair of tuples. Also, let a be an
arbitrary element of M〈ε′〉. We have to find an element b ∈ M〈ε′′〉 such that
(a0, a1, ..., an, a) ≡k−1 (b0, b1, ..., bn, b) holds.

We split the analysis into three cases depending on the relative position of
a with respect to the elements a0, a1, ..., an.

Case 1. ρ(au, a) 6 2 ·3k−2 holds for some u∈ {0, 1, ..., n}. In this case, we
find parameters i, j ∈ Z such that |i| + |j| = ρ(au, a) and SiNj(au, a) holds.
Given a ∈ M〈ε′〉, we choose an element b ∈ M〈ε′′〉 such that SiNj(bu, b) holds.
The existence of such an element b follows from Lemma 10.1. If there is more
than one index u with this condition ρ(au, a)62·3k−2, all such elements au will
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be rigidly “linked” to each other by conditions of the form (D) in the definition
≡k, because the distances between any two such elements au are limited by
the number 2·(2·3k−2) < 2·3k−1, due to the triangle inequality (7.2) with the
intermediate element a. Therefore, the choice of such an element b is unique,
i.e., it does not depend on the u above.

The following reasoning shows that we obtain

(a0, a1, ..., an, a) ≡k−1 (b0, b1, ..., bn, b).

Namely, condition (A) holds by induction, and both conditions (D) and (E) are
guaranteed by the construction. Condition (B) for ≡k−1 with the pair a and
b is ensured by Lemma 10.3, while for the other pairs ai and bi, 0 6 i6 n, it
is a consequence of the corresponding requirements for ≡k by virtue of Lemma
10.2. Now we proceed to condition (C), which we verify only for k > 2 (the
case k = 1 is considered later separately). For pairs ai and bi, 0 6 i 6 n,
condition (C) for ≡k−1 is a consequence of the corresponding requirement for ≡k

by Lemma 10.7. Now we consider condition (C) for the pair a and b. From the
relation (7.3) between the distance and quasidistance, we obtain that ρ∗(au, a)=
ρ∗(bu, b) 6 2 ·3k−2, namely, we have Dj(au, a) &Dj(bu, b) from the number j
chosen at the beginning of Case 1. Since |j| 6 2 ·3k−2 holds, it follows by
the equality of the horizontal (3k−1, s∗)-types of the elements au and bu that
τH(a, 3k−2, s∗)=τH(b, 3k−2, s∗) by Lemma 11.3 (c).

Case 2. ρ∗(au, a) 6 2 ·3k−2 holds for some u ∈ {0, 1, ..., n}, and ρ(av , a)>
2·3k−2 holds for all v∈{0, 1, ..., n}. In this case, we find a number i with |i| =
ρ∗(au, a) for which Di(au, a) holds. Given a ∈ M〈ε′〉, we first find an element
b′ ∈ M〈ε′′〉 such that Di(bu, b

′) holds. The existence of such a b′ immediately
follows from Lemma 10.6, taking into consideration that τH(au, 3

k−1, s∗) =
τH(bu, 3

k−1, s∗) by Lemma 11.3 (b). If there is more than one index u with the
condition ρ∗(au, a) 6 2 · 3k−2, all such elements au will be rigidly “linked” to
each other by the conditions (E) in the definition of ≡k because the distance
ρ∗ between any of two such elements au is limited within the number 2 · (2 ·
3k−2)< 2 · 3k−1 by the triangle inequality (7.1) with the intermediate element
a. Therefore, the choice of this element b′ is unique up to H-class, that is, the
class [b′]H does not depend on the u which meets the conditions above. The
horizontal (3k−1, s∗)-types of the elements au and bu are identical by Lemma
11.3 (b). Then, by Lemma 11.3 (c), the horizontal types τH(a, 3k−2, s∗) and
τH(b′, 3k−2, s∗) will be identical as well.

Once the choice of b′ is made, we choose an element b ∈ [b′]H satisfy-
ing the conditions τ(b, 3k−2) = τ(a, 3k−2), and ρ(bv, b) > 2 · 3k−2 for all v ∈
{0, 1, ..., n}. One can prove the existence of such an element b as follows. Let
ϕ = τH(a, 3k−2, s∗). If the local type θ=τ(a, 3k−2) is limited in the horizontal
type ϕ, then by definition it is realized by the same number of elements in every
H-class of this type ϕ in the models of the class (11.1). In this case, we appeal
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to Lemma 11.3 (d) for the choice of b∈ [b′]H . Namely, by this lemma, the two
sets

{

x |H(a, x) & ρ(x, {a0, a1, ..., an})62·3k−2
}

,
{

z |H(b′, z) & ρ(z, {b0, b1, ..., bn})62·3k−2
}

,

contain an equal number of realizations of the type θ; therefore, there will also
be an equal number of realizations of the type θ in the two sets

{

x |H(a, x) & ρ(x, {a0, a1, ..., an})>2·3k−2
}

, (11.9)
{

z |H(b′, z) & ρ(z, {b0, b1, ..., bn})>2·3k−2
}

. (11.10)

By assumption, our element a realizes the type θ; moreover, a belongs to the
set (11.9). From this it follows that a realization of the type θ must exist in the
set (11.10) as well, which guarantees the existence of the element b ∈ [b′]H with
the above conditions. In the other case, when the local type θ is s∗-unlimited
in the horizontal type ϕ, by definition, the number of realizations of this type
θ in every H-class of type ϕ in any model of the class (11.1) is not less than s∗.
Then a realization of type θ in the set (11.10) must exist by Lemma 9.1 (a).

Once the choice of an element b ∈ [b′]H is made, it is necessary to prove that
we will have (a0, a1, ..., an, a) ≡k−1 (b0, b1, ..., bn, b). Condition (A) for ≡k−1

holds by induction, conditions (D) and (E) are guaranteed immediately by the
choice of b and b′. Conditions (B) and (C) for a and b were considered above,
while for the other pairs ai and bi, 06 i6n, they are true by induction because
of Lemma 10.2 and Lemma 10.7.

Case 3. ρ∗(av , a) > 2 ·3k−2 holds for all v ∈ {0, 1, ..., n}. Then also the
condition ρ(av, a) > 2 ·3k−2 will hold for all v ∈ {0, 1, ..., n}. In this case, we
first find an element b′ ∈ M〈ε′′〉 such that τH(a, 3k−2, s∗) = τH(b′, 3k−2, s∗),
and ρ∗(bv, b

′) > 2 ·3k−2 for all v ∈ {0, 1, ..., n} holds. The existence of such an
element b′ can be proved by Lemma 11.1 (c) as follows. In the case when the
horizontal type ϕ = τH(a, 3k−2, s∗) is limited on the class of models (11.1),
it is realized by definition by the same number of the H-classes in any model
of the class (11.1). By Lemma 11.3 (e), in the neighborhood of the elements
a0, a1, ..., an and b0, b1, ..., bn at a distance ρ∗ not bigger than 2·3k−2 from these
elements, there is the same number of H-classes of the type ϕ in both models
M〈ε′〉 and M〈ε′′〉. Then there must also be an equal number of H-classes of
this type ϕ in the complements

{

x | ρ∗(x, {a0, a1, ..., an})>2·3k−2
}

, (11.11)
{

y | ρ∗(y, {b0, b1, ..., bn})>2·3k−2
}

. (11.12)

By the condition, the element a in the model M〈ε′〉 realizes the type ϕ in the
region (11.11), therefore, there must also be a realization of the type ϕ in the
area (11.12) of the model M〈ε′′〉, which guarantees the existence of an element
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b′ with the above conditions. In the other case, when the type ϕ is s∗-unlimited
on the class of models (11.1), the number of H-classes of type ϕ in each of these
models must be not less than s∗, and therefore the existence of such an element
b′ of type ϕ in the set (11.12) is ensured by Lemma 9.1 (b).

Once an element b′ is chosen, we proceed to the choice of an element b ∈
M〈ε′′〉 as follows. We choose an element b ∈ [b′]H with τ(b, 3k−2) = τ(a, 3k−2).
The existence of such an element b follows from the identity of the horizontal
(3k−2, s∗)-types of the elements a and b′, which guarantees the coincidence of the
local types contained inside them. As a result, we obtain (a0, a1, ..., an, a) ≡k−1

(b0, b1, ..., bn, b), which can be proved as follows. Condition (A) for ≡k−1 holds
by induction, and conditions (D) and (E) are guaranteed by the choice of b and
b′. Conditions (B) and (C) for a and b are ensured by the choice of b and b′ as
well, while for the other pairs ai and bi, 06 i6n, they are true by induction by
Lemma 10.2 and Lemma 10.7.

It remains to note that in the case k = 1, when the relation ≡k−1 is de-
fined by a simpler condition (namely, the identity of atomic diagrams) instead
of conditions (A) - (E), the above argument is not applicable any more. Nev-
ertheless, in this case, the truth of the back-and-forth condition (E1) can also
be established. For the proof, three cases must again be considered, similar to
those discussed above, by a similar but simpler reasoning. The choice of the
element b ∈ M〈ε′′〉, given a ∈ M〈ε′〉, is ensured as above (with some obvious
simplifications). Instead of conditions (A) - (E), we need to check the identity of
the atomic diagrams of the tuples (a0, a1, ..., an, a) and (b0, b1, ..., bn, b), which
is easy by Lemma 7.1.

Thus, Lemma 11.4 is completely proved. 2

Lemma 11.5 For models of the theory T , property (4.25) holds.

Proof. Immediate by Lemmas 11.2 and 11.4. 2

So the proof of Theorem 1.5 is completely finished.
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