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Abstract. We present syntactic characterizations of learnability of some class-

es of structures under various criteria on the information source and the con-
vergence behavior of the learner.

1. Introduction

The syntactic characterization of computability-theoretic properties of structures
has been a long-standing theme in computability theory. Since Post’s theorem re-
lating definability in the arithmetical hierarchy with computability from finite jump
iterations [25], various notions have been characterized syntactically. In computable
structure theory, the characterizations of relative computable categoricity or of rel-
ative intrinsically c.e. relations in structures [4, 11] are such examples. In this
paper, we characterize several notions of classes of structures that are “learnable
with mind changes”.

Our general setting is the following. Suppose we are given an at most countable
class of countable structures K. Suppose further that we receive step by step finitely
much information about one of the structures A from K. Our goal is to correctly
identify, after finitely many steps, which structure we are observing. Depending on
the way the structure is revealed and on the criteria of correct identification of the
structure, we may get different versions of the task. We formalize the setting using
the notions of algorithmic learning theory applied to computable structure theory.

Classical algorithmic learning theory goes back to the work of Putnam [26] and
Gold [17]. A learner M receives step by step more and more data (a finite amount
at each step) on an object X to be learned, and M outputs a sequence of hypotheses
that converges to a finitary description of X. The main body of work in algorith-
mic learning theory has been done for (classes of) formal languages or recursive
functions, see the monograph [20].

Within the framework of computable structure theory, the work of Glymour
and Martin and Osherson [16, 23, 22] initiated the study of learnable classes of
structures. Later on, Stephan and Ventsov [27] investigated the learnability for
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classes of substructures of a given computable structure S. This approach was
further developed, e.g., in the papers [18, 15].

Fokina, Kötzing, and San Mauro [13] reworked and generalized the approach
from [16, 23]. They studied learnability of various classes K of computable equiva-
lence relations. For these K, they considered learnability from informant (or InfEx-
learnability) and learnability from text (TxtEx-learnability) for equivalence struc-
tures, to be formally defined in Section 2. Further work [9] extended the notion
of InfEx-learnability to arbitrary countable families of computable structures and
resulted in a model-theoretic characterization of InfEx-learnability. Details will
follow in Section 2. An analogous result for TxtEx-learnability recently appeared
in [7]. Some of the results from [13, 9, 7] already appeared in [16, 23, 22], how-
ever, the authors of [13, 9, 7] rediscovered and reproved the results using modern
computability-theoretic terminology and new methods that allowed to deduce new
corollaries. More related results can be found, e.g., in [5, 6].

In this paper, we consider several new notions of learning of structures where we
allow mind changes. As the main results of the paper, we give syntactic character-
izations of the notions of learning arising in various ways.

2. Terminology and set-up

Our structures are countable in a fixed relational at most countable signature L.
We denote by Mod(L) the set of all L-structures A with dom(A) ⊆ ω. We consider
at most countable classes K ⊆ Mod(L) of structures and, unless stated otherwise,
assume these classes are closed under isomorphism.

Let Atm denote the set of (the Gödel numbers) of all positive and negative
atomic sentences in the signature L ∪ ω (in other words, positive and negative
atomic facts about possible L-structures on the domain ω). The restriction of Atm
to only positive atomic sentences is denoted by Atm+. For a structure A with
dom(A) ⊆ ω, we denote by D(A) the atomic diagram of A, i.e., a subset of Atm
of L ∪ ω-sentences true in A, and by D+(A) the positive atomic diagram of A.

We now introduce the components of our learning framework. Let K ⊆ Mod(L)
contain precisely κ isomorphism types, where κ ≤ ω, and denote the types of L-
structures as Ai, i ∈ κ.

• The learning domain (LD) is the collection of all copies S of the structures
from K such that dom(S) ⊆ ω, i.e.,

LD(K) =
⋃
i∈κ
{S ∈ Mod(L) : S ∼= Ai}.

• The hypothesis space (HS) contains the indices i for Ai ∈ K (an index is
viewed as a conjecture about the isomorphism type of an input structure S)
and a question mark symbol:

HS(K) = κ ∪ {?}.
• A learner L is a function from the set (Atm)<ω (i.e., the set of all finite

tuples of atomic facts) into HS(K). That is, L receives as input some atomic
facts about a given structure from LD(K) and is required to output conjec-
tures from HS(K) about the observed structure. Notice here that we do not
require any effectiveness of the learning function. For this reason we also
do not impose any computability-theoretic restrictions on the complexity
of the enumeration {Ai}i∈κ of structures from K.



LEARNABILITY OF STRUCTURES WITH MIND CHANGES 3

Depending on the way the atomic facts are revealed to the learner and on the
criteria of what it means to correctly learn the class, we obtain different notions
of learning of structures. In classical algorithmic learning theory, two main sources
of information are informant and text (e.g., [17, 2, 19]). Adapted to the case of
structures, the definitions appear as follows.

• For an L-structure S, an informant I for S is an arbitrary sequence {ψi}i∈ω
containing elements from Atm and satisfying

D(S) = {ψi : i ∈ ω}.
• For an L-structure S, a text T for S is an arbitrary sequence {ψi}i∈ω

containing elements from Atm+ and satisfying

D+(S) = {ψi : i ∈ ω}.
• For k ∈ ω, by I � k (or T � k, respectively), we denote the corresponding

sequence {ψi}i<k.

The two notions of learning used most frequently are the following.

Definition 2.1 ([10]). We say that the family K is InfEx-learnable if there exists
a learner L such that for any structure S ∈ LD(K) and any informant IS for S,
the learner eventually stabilizes to a correct conjecture about the isomorphism type
of S. More formally, there exists a limit

lim
n→ω

L(IS � n) = i

belonging to ω, and Ai is isomorphic to S.

Definition 2.2 ([7]). We say that the family K is TxtEx-learnable if there exists a
learner L such that for any structure S ∈ LD(K) and any text TS for S, the learner
eventually stabilizes to a correct conjecture about the isomorphism type of S. More
formally, there exists a limit

lim
n→ω

L(TS � n) = i

belonging to ω, and Ai is isomorphic to S.

The prefix “Ex” in the above definitions stands for “explanatory” learning,
meaning syntactic convergence of the learner in the limit. In Section 4 we will
require a different convergence behavior from the learner.

Definition 2.3. A function F : 2<ω → Ordinals is an ordinal mind change counter
function if for all σ ∈ 2<ω, F (σ) ≤ F (σ−). We say that a learner L, with associated
ordinal mind change counter function F , α-learns a family K from informant if the
following three conditions hold:

(1) L InfEx-learns K;
(2) F (λ) = α, where λ is the empty string;
(3) for every S ∈ LD(K), for every informant IS for S and for every n ∈ ω, if

? 6= L(IS � n) 6= L(IS � n+ 1), we have

F (IS � n) > F (IS � n+ 1).

The family K is α-learnable if there exists a learner L that α-learns it.

The papers [10] and [7] give syntactic characterizations of InfEx- and TxtEx-
learning in terms of infinitary formulas or, respectively, positive infinitary formulas,
as defined in [3, 8].



4 FOKINA AND LEMPP

Theorem 2.4 ([10, 7]). Let K = {Ai : i ∈ ω} be a family of structures such that
Ai 6∼= Aj for i 6= j. Then K is InfEx-learnable (or TxtEx-learnable, respectively) if
and only if there exists a family of infinitary (or positive infinitary, respectively) Σ2-
sentences {ψi : i ∈ ω} such that for each i, Ai is the only member of K satisfying ψi.

In this paper we modify the allowed information sources and the convergence
behavior of the learner. In Section 3, we allow the information to be given in a ∆0

2-
way. For each atomic sentence from the diagram, we allow a change of mind finitely
many times, but we require that from some point on, the correct fact is revealed to
the learner correctly. In Section 4, we syntactically characterize n-learning, that is,
learning from informant with fixed finite number of answers given by the learner in
the attempt to learn the structure.

3. ∆0
2-learning and d.c.e.-learning

Before we give new definitions, we introduce some notations. Let p ∈ 2ω be a
path in Cantor space, let {ψi}i∈ω be a fixed sequence of first-order L∪ω-formulas,
usually intended to be elements of Atm or Atm+, and let A be a structure. We say
that p correctly codes the fact whether A |= ψi if we have that A |= ψi iff p(i) = 1.
Having fixed a sequence of formulas {ψi}i∈ω and a path p ∈ 2ω, we write L(p � n)

for L(ψ
p(0)
0 , ψ

p(1)
1 , . . . , ψ

p(n−1)
n−1 ). Here, for a formula ψ, we set ψ1 = ψ and ψ0 = ¬ψ.

Under this convention we consider learners to be functions from 2<ω to ω ∪ {?}.
We are now ready to formally define the notion of ∆0

2-learnability:

Definition 3.1. Fix an infinite sequence (ϕi)i∈ω of all elements from Atm such that
each Atm-formula appears on the list infinitely often. Call a family K = {Ai | i < k}
(for k ≤ ω) ∆0

2-learnable if there is a learner L with the following property: For any
path p ∈ 2ω, if there is a model Ai such that for all j with Ai |= ϕj , we have that
for cofinitely many instances of ϕj , p correctly codes this fact, then for cofinitely
many n, L(p � n) = i.

The intuition behind the above definition is that the path p does not reveal
the atomic diagram of a model outright, but only in the limit: For each atomic
formula, it may give the wrong answer finitely often before settling on the correct
answer forever. Still, the learner must be able to guess the intended model after
only finitely many wrong guesses.

Perhaps surprisingly, this version of learnability has a very simple syntactic char-
acterization:

Theorem 3.2. A family K = {Ai | i < k} (for k ≤ ω) is ∆0
2-learnable iff there is

a sequence {ψi}i∈ω of (finite) existential L-sentences such that Ai |= ψj iff i = j.

Proof. Suppose first there is such a sequence {ψi}i∈ω of (finite) existential L-
sentences. Then we can define a learner function L which, on input σ, checks
for the least k < |σ| such that ϕk is one of the formulas ψi and such that for all
instances ϕk′ of ϕk with k′ ≥ k occurring along σ, σ correctly evaluates (after re-
placing the constants from ω by existential quantifiers) the sentences ϕk′ according
to Ai.

Conversely, suppose that L is a ∆0
2-learner function but for the sake of a con-

tradiction also that for some model Ai, there is no such sentence ψi. Then we can
construct a model B ∈ K, coded by a path p ∈ 2ω, as follows: Start by building a
copy of Ai until we reach an initial segment σ of p with L(σ) = i. Since there is
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no ψi, there must be some j 6= i such that we can now continue from σ by building
a copy of Aj until we reach an initial segment τ of p with L(τ) = j. There is
one fine point: When we extend the fragment σ to the fragment τ , we will first
complete σ (mentioning elements x̄, say) to the full atomic (L � |x̄|)-diagram σ′

of x̄, which is finite, and only then start extending to a fragment of Aj to ensure
that we do not change any atomic information about x̄ in the language L � |x̄| in τ ;
in fact, this will ensure that not only is the information along the path p given
in a ∆0

2-way but actually in a d.c.e. way (in fact, in a weakly d.c.e. way per the
definition in Epstein/Haas/Kramer [12]): We change our mind about the truth of
an atomic formula at most once (from negative to positive or vice versa), when
switching from building a Aj to building Ai.

Once we see L(τ) = j, we revert to σ, or rather σ′, declaring all the atomic
sentences in τ but not σ′ to be possibly false, and continue again with building a
copy of Ai, etc. So in the limit, we will either always build a copy of Ai, or a copy of
some Aj from some point on, while the learner does not output the correct index.
Or we switch infinitely often between building a copy of Ai and a copy of some
other Aj , all along truly building a copy of Ai, and the learner does not converge
to an index. �

Remark 3.3. As noted in the proof above, for Theorem 3.2, we actually show that
the conditions are also equivalent to what one might call “weakly d.c.e.-learning
from positive and negative information”, namely, the learner is given the informa-
tion about each atomic sentence infinitely often but along any path p, the guess
about the truth or falsity changes at most once, from “false” to “true”, or from
“true” to “false”.

We next explore more restrictive kinds of learning but only from positive infor-
mation:

Definition 3.4. Adopt the notation of Definition 3.1 but restrict the sentences ϕi
considered to elements of Atm+, i.e., only positive atomic sentences.

(1) Call a family K = {Ai | i < k} (for k ≤ ω) c.e.-learnable if there is a
learner L with the following property: For any path p ∈ 2ω, if there is a
model Ai such that for all k with Ai |= ϕk, we have that for cofinitely many
instances of ϕk, p correctly codes this fact, and once p codes that Ai |= ϕk is
true, it will never change its mind later along p, then for cofinitely many n,
L(p � n) = i.

(2) Call a family K = {Ai | i < k} (for k ≤ ω) d.c.e.-learnable if there is a
learner L with the following property: For any path p ∈ 2ω, if there is a
model Ai such that for all k with Ai |= ϕk, we have that for cofinitely
many instances of ϕk, p correctly codes this fact, and once p codes that
Ai |= ϕk is true, it will change its mind along p at most once more, then
for cofinitely many n, L(p � n) = i.

Interestingly, these two notions of learnability behave quite differently:

Theorem 3.5. A family K = {Ai | i < k} (for k ≤ ω) is c.e.-learnable iff there is
a sequence {ψi}i∈ω of positive infinitary Σ2-sentences in L such that Ai |= ψj iff
i = j, i.e., iff it is TxtEx-learnable.

Proof. From [9], we know that K is TxtEx-learnable iff there is a sequence {ψi}i∈ω
of positive infinitary Σ2-sentences in L such that Ai |= ψj iff i = j. Now clearly,
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if K is c.e.-learnable, then it is TxtEx-learnable. Conversely, suppose K is TxtEx-
learnable, and suppose we are given a labeled tree coding positive information
about the structures Ai in the sense of c.e.-learning. Now convert a regular learner
function L from text into a learner function L̂ from positive information given in
a c.e. way in the sense of Definition 3.4 as follows: Given σ ∈ 2<ω coding positive
information in a c.e. way, let Tσ be the collection of all positive facts about the
structure that σ has given. Then T =

⋃
|σ|→∞ Tσ will be a text which, as σ ⊂ p

increases along a path coding a model in K, represents true positive information
about the structure. So L̂ uses L(Tσ) for longer and longer sequences σ to compute
the correct index i of the structure Ai coded by p in the limit. �

Unfortunately, the situation for d.c.e.-learnability is quite involved, and we do not
have a complete syntactic characterization of it. Just to demonstrate the difficulties,
we will start by giving a complete characterization in a very special case only, the
language of one unary predicate U :

Proposition 3.6. A family K = {Ai | i < k} (for k ≤ ω) in the language L = {U}
is d.c.e.-learnable iff k ≤ 2; and if k = 2, then UA0 is finite in A0 and UA1 is
cofinite in A1 or vice versa.

Proof. The result is trivial if k ≤ 1, so assume k ≥ 2.
We will consider three cases, each assuming the existence of models A0 and A1

in the class K, which will exhaust all possibilities up to symmetry:

Case 1: UA0 is finite in A0, UA1 is coinfinite in A1, and |UA0 | < |UA1 |: We will
need to show that K is not d.c.e.-learnable. Toward a contradiction, we assume the
existence of a d.c.e. learner L and show that it can fail: Build a model A (which
will be either A0 or A1) as follows, letting m = |UA0 |: Declare the first m elements
of ω to satisfy U once and for all but no others for now, waiting for the learner
to guess that A = A0 at a stage s0, say. From now on, declare every other new
element to be in U until we reach |UA1 | many (if this number is finite) and wait
for the learner to guess that A = A1 at a stage s1, say. Then declare these new
elements of UA (excluding the first m many) to not satisfy U after all, and wait
again for the learner to guess that A = A0, etc. So either, the learner eventually
fails to make a guess and we build one of A0 or A1; or the learner does not converge
in its guesses and we actually build A0.

Case 2: UA0 is cofinite in A0, UA1 is infinite in A1, and |A0−UA0 | < |A1−UA1 |:
The argument is similar to Case 1 but not symmetric due to the asymmetry about
positive information: Again, toward a contradiction, we assume the existence of a
d.c.e. learner L and show that it can fail: Build a model A (which will be either A0

or A1) as follows, letting m = |A0 − UA0 |: Commit to never declare the first m
elements of ω to satisfy U and then declare each new element to satisfy U until
the learner guesses that A = A0. Now, for new elements, declare only every other
element to satisfy U until we reach |A1 − UA1 | many elements in A − UA (if this
number is finite) and wait for the learner to guess that A = A1. Then declare
these new elements of A− UA (excluding the first m many) to satisfy U after all,
and wait again for the learner to guess that A = A0, etc. So either, the learner
eventually fails to make a guess and we build one of A0 or A1; or the learner does
not converge in its guesses and we actually build A0.
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Case 3: UA0 is finite in A0, UA1 is cofinite in A1, and k = 2: In this case, we need
to show that K = {A0,A1} is d.c.e.-learnable, so let m = |UA0 | and n = |A1−UA1 |.
Given a path p describing a model A in K, the informant has to approximate for
each element of ω whether it is in UA or not. So the learner keeps track of the
numerically smallest element x ∈ ω such that either there are m+ 1 many elements
≤ x currently in UA; or such that there are currently n + 1 many elements ≤ x
not in UA. In the first case, the learner guesses that A = A1, in the latter that
A = A0. �

We conjecture that our technique from Proposition 3.6 can be used to character-
ize classes of models in the language of finitely many unary relation symbols, and
also classes of models on which there is one equivalence relation. For the latter,
we have the following partial result, completely characterizing the d.c.e.-learnable
classes of equivalence structures of size 2, which suggests that even for equivalence
structures, a full characterization is nontrivial:

Proposition 3.7. Let K = {A0, A1} be a class of two non-isomorphic equivalence
structures on ω with equivalence relations E0 and E1, respectively. Then K is d.c.e.-
learnable iff neither of the following two conditions holds.

(1) For i ≤ 1, there is an injection h : ω/Ei → ω/E1−i such that for all
Ei-equivalence classes [x]Ei , we have |[x]Ei | ≤ |h([x]E1−i)|.

(2) At least one of E0 or E1 has equivalence classes of unbounded finite size.

Proof. First assume that (1) holds (by symmetry with i = 0), and, for the sake of a
contradiction, assume there is d.c.e. learner L. We build an equivalence structure A
on ω as follows: We start copying A0 into A until the learner guesses A0 at a
stage s0, say. Then, for each E0-equivalence class C built or partially built by us
for now, we copy C into h(C) (which is possible by our condition on h) and start
copying A1 into A consistent with what we have built so far. Now wait for the
learner to guess A1. Then we let each element created after stage s0 be in a new
distinct equivalence class (using the fact that A is given only in a d.c.e. way) if E0

has infinitely many equivalence classes, or into one infinite E0-equivalence class
(otherwise, since then E0 has an infinite equivalence class) and again copy more
of A0 into A. We now repeat this process, changing strategy each time the learner
seems to have a new correct guess.

There are now two possibilities: If the learner eventually fails to guess the struc-
ture we have started building from some point on, then we clearly win. On the
other hand, if the learner changes his mind infinitely often, he loses by divergence
but we end up building a copy of A0.

Now assume that (2) holds (by symmetry for E0). The proof is essentially the
same, except that when we switch from copying A0 into A to copying A1 into A,
we dynamically define a partial function h from the finitely many finite (parts of)
E0-equivalence classes already built to E1-equivalence classes of larger size, which
is possible by assumption.

Now suppose that both (1) and (2) fail; so both E0 and E1 can have at most
finitely many infinite equivalence classes, and there is a fixed bound on the finite
equivalence classes in each. So for the equivalence relation E0, we now define a
“reverse size sequence” {κj}j<k (for k ≤ ω) such that, listing the equivalence classes
of E0 is non-increasing size, the sequence lists the first k many. (Here, k < ω only
if E0 has only finitely many equivalence classes; if k = ω, then κ = limj κj < ∞
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exists, and the κj need not exhaust all finite sizes of E0-equivalence classes, namely,
those of size < κ.) We define a similar sequence {λj}j<l for E1, and we call these
sequences “compatible” if for all j < k, κj ≤ λj , or for all j < l, λj ≤ κj . One
can now easily check that if the sequences are compatible, then one can build a
function h as in (1). So there are now two cases:

Case 1: k = l: Then there must j < l with κj < λj , and also j′ < l with λj′ < κj′ .
By symmetry, assume that j < j′. Fix m ∈ ω greater than the size of any finite E0-
or E1-equivalence class and replace all values of ∞ in each sequence by m. Now
we can define positive existential formulas saying “There are equivalence classes
C0, C1, . . . , Cj of size at least κi for each i ≤ j”, and “There are equivalence classes
D0, D1, . . . , Dj′ of size at least λi for each i ≤ j′”, separating A0 and A1 as required
for c.e.-learnability.

Case 2: k 6= l, and so by symmetry k < l: Then there must j < k with κj < λj .
Again, fix m ∈ ω greater than the size of any finite E0- or E1-equivalence class
and replace all values of ∞ in each sequence by m. Then the learner, given an
equivalence structure B, will simply look for the least parameters x̄ ∈ ω satisfying
(1) |x̄| = (j + 1) · κj and x̄ consists of j + 1 many subsets of equivalence classes of
size κj such that the subsets are pairwise inequivalent, or (2) |x̄| = k + 1 and all
coordinates of x̄ are pairwise inequivalent. At least one of these must eventually
happen, and if both, the learner chooses the least such x̄ and guesses A0 in case (1),
and A1 in case (2).

�

4. n-learning

We now take a closer look at mind changes made by the learner. Recall Defi-
nition 2.3: we consider n-learning, which is explanatory learning from informant,
where we fix a bound n on how many times the learner changes its mind and out-
puts a new hypothesis. For learning of sets this convergence behavior of the learner
was studied, e.g., in [1, 14, 21]. For classes of structures, some earlier results ap-
peared in [24]. A descriptive set-theoretic interpretation of n-learning of structures
recently appeared in [5], following the ideas from [6].

As in previous sections, we identify sequences p ∈ 2ω with atomic diagrams of
structures via a fixed sequence of sentences from Atm. Under this convention, we
extend the definition of n-learning to arbitrary families of infinite binary strings to
allow our proof of the syntactic characterization of n-learning to proceed smoothly
by induction:

Definition 4.1. Fix a family K = {Ai | i < k} (for k ≤ ω), and let P ⊆ 2ω be a
family of strings coding atomic diagrams of copies of models in K. (Note that for
technical reasons, we only require here that P codes models in K but not that P
codes all models of K, nor that P is closed under isomorphism.)

We then define P to be n-learnable if there is a learner L : 2<ω → ω ∪ {?} with
the property that for any p ∈ P :

• L(λ) = ? for the empty string λ;
• for any l, L(p � l) = ? implies L(p � l′) = ? for any l′ < l;
• there are at most n many σ ⊂ p with L(σ) 6= L(σ−) and L(σ−) 6= ?; and
• L(σ) = i for the model Ai coded by p and all sufficiently long σ ⊂ p.
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We note that if P is the set of all codes of atomic diagrams of a family K, then
the above definition coincides with Definition 2.3 for finite n.

For our syntactic characterization of n-learning, we define special families of
L-sentences:

Definition 4.2. We define two classes of L-sentences (allowing constants from ω
for elements of L-models):

• An S0-sentence is an infinitary Σ1-sentence in L.
• An S1-sentence is an (infinitary) L-sentence of the form∨

l

(ϕl ∧
∧
m

¬χl,m),

where each ϕl, and each χl,m, is an S0-sentence.

We first make some comments that will simplify the proof of Theorem 4.3: First
of all, let L =

⋃
n Ln be an increasing union of finite languages Ln. (This will be

irrelevant for finite L but makes the argument more uniform for infinite L.) Next,
we call a (finitary) existential sentence complete if it mentions precisely the variables
x0, . . . , xn for some n, is an Ln-sentence, and its matrix completely specifies the
atomic Ln-diagram of x0, . . . , xn.

Now, in the definition of an S0-sentence
∨
l ϕl, after possibly further expanding

the disjunction, we may assume that each ϕl is a (finitary) complete existential
sentence, and also (by dropping sentences with “longer” matrices) that the matrices
of ϕl and ϕm (for l 6= m) are pairwise incompatible.

Similarly, in the definition of an S1-sentence
∨
l(ϕl∧

∧
m ¬χl,m), we may assume

that all ϕl are as above, and that, fixing l, the S0-sentences χl,m also satisfy the
above (fixing l and letting m vary), and furthermore, that the matrix of each χl,m
properly extends the matrix of ϕl (since otherwise, if the matrices of ϕl and χl,m
are contradictory, then the latter can be dropped, and if the matrix of χl,m is a
subformula of the matrix of ϕl, then ϕl ∧ ¬χl,m would be contradictory).

We are now ready to state our first result.

Theorem 4.3. • A family K = {Ai | i < k} (for k ≤ ω) is 0-learnable iff
there is a sequence {ψi}i∈ω of S0-sentences such that Ai |= ψj iff i = j.
• If a family K = {Ai | i < k} (for k ≤ ω) is n-learnable (for some n > 0)

then there is a sequence {ψi}i∈ω of S1-sentences such that Ai |= ψj iff
i = j.

Proof. As alluded to above, we will actually, and tacitly, prove the result for all
sets P ⊆ 2ω coding atomic diagrams of models in K in order for the inductive step
to work correctly (i.e., not necessarily only for sets P coding all atomic diagrams
of K).

For 0-learnability, suppose first that a family K is 0-learnable. So fix a 0-learner
L : 2<ω → ω ∪ {?}. Then L(σ) 6= ? and σ ⊂ τ implies L(σ) = L(τ). For each i,
let Mi be the set of minimal σ with L(σ) = i, and let ψi be the (possibly infinite)
disjunction of the atomic sentences coded by all σ ∈ Mi, written as existential
sentences ψσ to replace the parameter constants for elements of ω. (Recall that
we restrict ourselves here to complete S0-sentences!) Then Mi ∩Mj = ∅ for i 6= j,
and

⋃
iMi forms an antichain. For the sake of a contradiction, suppose now that

Ai |= ψj for i 6= j. So, in particular, Ai |= ψσ for some σ with L(σ) = j, which
would contradict that L 0-learns Ai.
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Conversely, suppose there is such a sequence {ψi}i∈ω of S0-sentences. Then we
can define a 0-learner for K by setting L(σ) = i for each disjunct ψσ (i.e., σ codes
the corresponding finite fragment of an atomic diagram) of ψi. We then extend L
to a total function by setting L(τ) = L(σ) if L(σ) is already defined for some σ ⊂ τ ,
and L(τ) = ? otherwise. The conditions on our sequence {ψi}i∈ω now ensure that L
is a 0-learner for K, since if σ and τ are comparable and ψσ and ψτ are defined,
then they characterize the same model in K.

For n-learning for n > 0, suppose that L : 2<ω → ω ∪ {?} is an n-learner
function for K and the set P of paths coding the atomic diagram of a model in K.
Let Mi = {σ | L(σ) = i and L(σ−) 6= i}. Now define ψi as the disjunction of all
S1-formulas of the form ψσ∧

∧
τ ¬ψτ where σ ∈Mi and the τ range over all minimal

τ ⊃ σ with L(τ) 6= i. First of all, clearly Ai |= ψi since for any path p coding Ai,
there is a longest σ ⊂ p such that L(τ) = i for all τ with σ ⊆ τ ⊂ p. Conversely, if
Ai |= ψj and p is any path coding Ai, then L(τ) = j for all sufficiently long τ ⊂ p,
so by our assumption on L, we must have i = j. �

In order to prove a full syntactic characterization of n-learning, we need a still
finer classification of definability by S1-sentences; it will no longer be enough to
look at the complexity of the individual sentences ψi but to consider them all at
once:

Definition 4.4. Given a sequence {ψi}i∈ω of S1-sentences of the form ϕi∧
∧
l ¬χi,l,

corresponding to nodes σi (for ϕi) and τi,l ⊃ σi (for χi,l, respectively), we define
the depth of the sequence {ψi}i∈ω as the supremum of the length n of a sequence
ρ0 ⊂ ρ1 ⊂ · · · ⊂ ρn, where the ρm are any of the nodes σi and τi,l. (This supremum
can be infinite; in the cases of interest to us, it will always be finite. Note that our
conventions force, for n = 0, the sequence to only consist of S0-sentences since all
nodes ρ involved will then form an antichain.)

We are now in a position to state the complete syntactic characterization of
n-learning:

Theorem 4.5. For n > 0, a family K = {Ai | i < k} (for k ≤ ω) is n-learnable iff
there is a sequence {ψi}i∈ω of S1-sentences of depth at most n such that Ai |= ψj
iff i = j.

Proof. The proof requires a more careful analysis of the above proof of Theorem 4.3.
Suppose first that K is n-learnable. Define the formulas ψi as in the last para-

graph of the proof of Theorem 4.3; the fact that L is an n-learner function then
clearly implies that the depth of the sequence {ψi}i∈ω is at most n.

Conversely, suppose that we have a sequence {ψi}i∈ω of S1-sentences of depth at
most n; say, each ψi is of the form

∧
l(ϕi,l∧

∧
m ¬χi,l,m), corresponding to nodes σi,l

(for ϕi,l) and τi,l,m ⊃ σi,l (for χi,l,m, respectively). Without affecting the conditions
on the sentences ψi, we can modify them as follows, by induction on the length of the
nodes ρ = σi,l or ρ = τi,l,m: If we encounter a node σj,l′ ⊃ σi,l without a node τi,l,m
with σi,l ⊂ τi,l,m ⊂ σj,l′ , then for any path p ⊃ σj,l′ corresponding to a model in K,
we know that there must be some ρ = τi,l,m or some ρ = τj,l′,m′ with σj,l′ ⊂ ρ ⊂ p.
We now change ψj to, in place of σj,l′ , refer to all such (minimal) τi,l,m; this is fine
since ψj can only start applying once such τi,l,m makes ψi no longer apply, and
cannot apply at all as soon as we encounter some τj,l′,m′ . On the other hand, if we
encounter τi,l,m which is not of the form σj,l′ at the same time, then for any path
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p ⊃ τi,l,m corresponding to a model in K, we know that there must be some σj,l′

with τi,l,m ⊂ σj,l′ ⊂ p. We now change ψi to, in place of τi,l,m, refer to all such
(minimal) σj,l′ ; this is fine since some ψj must apply once such τi,l,m makes ψi no
longer apply.

We now define a learner function L : 2<ω → ω as follows: Given σ ∈ 2<ω, find
the longest ρ ⊆ σ of the form σi,l. If there is none, then set L(σ) = ?. If ρ is of the
form σi,l, then set L(σ) = i.

We first note that the assumption of the depth being at most n implies that L
is an n-learner function. Now fix a path p ∈ 2ω for the atomic diagram of a model
A ∈ K. Let ρ ⊂ p be the longest string of the form σi,l. (Such ρ must exist by our
assumption on the ψi and on the depth being finite.) Then A |= ϕi,l for this l but
A 6|= χi,l,m for any m, so A |= ψi and thus A ∼= Ai. �
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