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Abstract. We show that the top of any diamond with bottom 0 in the r.e. degrees is also the top of a

stack of n diamonds with bottom 0.

Let R be the upper semilattice of the recursively enumerable degrees.

A minimal pair consists of two incomparable r.e. degrees with in�mum equal to the recursive degree 0.

An r.e. degree is cappable if it is one half of a minimal pair. An r.e. degree a is the top of a diamond

(or 1-diamond ) if a is the join of a minimal pair. For any n > 1; a is the top of an n-diamond if there

is a nontrivial splitting a

0

and a

1

of a such that the in�mum of a

0

and a

1

exists and is the top of an

(n� 1)-diamond.

Lachlan [1966] and Yates [1966] proved that there is a minimal pair in R. Ambos-Spies, Jockusch, Shore

and Soare [1984] proved that M, the set of all cappable r.e. degrees, is an ideal in R, and R �M, which

coincides with the class of all promptly simple r.e. degrees, is a strong �lter in R. We mention some facts

about the distribution of the r.e. degrees which are tops of diamonds. Let T be the set of such degrees.

Then T has no maximal or minimal elements since M is not a principal ideal, and given any nonrecursive

r.e. degrees a

0

and a

1

there exist 0 < b

0

� a

0

and 0 < b

1

� a

1

such that b

0

[ b

1

< a

0

[ a

1

: Furthermore,

by a recent result of Downey, Lempp, and Shore [1993], there is a high

2

r.e. degree bounding only degrees

in T.

In this paper we shall modify Lachlan's construction (Lachlan [1980]) of splitting any nonrecursive

r.e. degree into two r.e. degrees with in�mum to show that every top of a diamond is the top of an n-

diamond for every n > 0.

Theorem 1. Given any nonrecursive r.e. sets A

0

and A

1

, there exist r.e. sets B

0

, B

1

, C, C

0

, and C

1

such

that A

0

�A

1

�

wtt

B

0

�B

1

>

wtt

C �

wtt

C

0

�C

1

; B

0

; B

1

6�

T

C; ; <

wtt

C

0

�

wtt

A

0

; ; <

wtt

C

1

�

wtt

A

1

; and

deg

T

(C) = deg

T

(C �B

0

) \ deg

T

(C �B

1

).

Corollary 2. Every top of a diamond is the top of a double diamond (i.e. a 2-diamond), and hence the top

of an n-diamond for any n � 1:

Proof. Let a = a

0

[ a

1

be the top of a diamond, where a

0

and a

1

form a minimal pair, and let A

0

and A

1

be sets of degree a

0

and a

1

, respectively. Let b

0

, b

1

, c, c

0

, and c

1

be the Turing degrees of the

sets in Theorem 1, respectively. Thus c = b

0

\ b

1

and a = b

0

[ b

1

: Since C �

wtt

A

0

� A

1

and by the

distributivity of R

wtt

; the upper semilattice of the r.e. wtt-degrees, there exist r.e. sets D

0

and D

1

such

that D

0

�

wtt

A

0

; D

1

�

wtt

A

1

, and D

0

�D

1

�

T

C. Clearly D

0

and D

1

are not recursive, else C would be

recursive in A

0

or A

1

. As a

0

\ a

1

= 0; deg

T

(D

0

)\ deg

T

(D

1

) = 0; and so a is the top of the double diamond

formed by a;b

0

;b

1

; c; deg

T

(D

0

); deg

T

(D

1

), and 0.

Proof of Theorem 1. Fix any r.e. sets A

0

and A

1

of degrees a

0

and a

1

; respectively, and set A = A

0

�A

1

. We

shall recursively enumerate sets B

0

, B

1

, C, C

0

, and C

1

such that C �

wtt

A

0

�A

1

. For every e; j 2 !; i = 0; 1
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the construction will satisfy the following requirements:

J

0

: A

0

�A

1

�

wtt

B

0

�B

1

;

J

1

: A

0

�

wtt

C

0

; A

1

�

wtt

C

1

;

R

e;i

: C

i

6= ! �W

e

;

J

2

: C �

wtt

C

0

� C

1

;

P

e;i

: B

i

6= �

e

(C �B

1�i

); and

N

j

: fjg

C�B

0

= fjg

C�B

1

= f

j

total! f

j

�

T

C:

We use a modi�ed Sacks splitting strategy to split A into B

0

and B

1

and satisfy J

0

and P

e;i

for every

e 2 !; i = 0; 1: At any stage s we de�ne the length of agreement and restraint functions

l(e; i; s) = maxfx : 8y < x(B

i;s

(y) = �

e;s

(C

s

�B

1�i;s

; y))g;

r(e; i; s) = maxfu(C

s

�B

1�i;s

; e; y; s) : y � l(e; i; s)g:

At any stage s; if n 2 A

s

�A

s�1

then we attempt to enumerate n into B

i

; where he; ii is the least pair such

that n < r(e; i; s):

We code C

0

� C

1

directly into C to satisfy J

2

:

To satisfy N

j

; at any stage s we de�ne the length of agreement and use functions

l(j; s) = maxfx : 8y < x(fjg

C

s

�B

0;s

s

(y) = fjg

C

s

�B

1;s

s

(y))g;

p

0

(j; x; s) = u(C

s

�B

0;s

; j; x; s); and

p

1

(j; x; s) = u(C

s

�B

1;s

; j; x; s):

At any stage s, if l(j; s) > x and there is an n < p

i

(j; x; s) enumerated into B

i

then, until the B

i

-side of

the computations at x recovers, say until stage t > s, we attempt to enumerate elements of A into the same

side B

i

: Since we must simultaneously satisfy requirements P

e;i

0

, there may be an element enumerated into

B

1�i

; which allows f

j;s

(x) 6= f

j;t

(x); in this case, we shall enumerate a certain element into C to trace such

a change of f

j

(x).

The priority tree is the complete binary tree. We assign N

j

to every node � of length j, and assign P

e;i

to � if j � j= 4e+ i; R

e;i

to � if j � j= 4e+ i+2: We de�ne the string �

s

(of length s) of nodes accessible at

stage s by

�

s

(j) = 0$ 8t < s(�

t

� �

s

dj ! l(j; t) < l(j; s)):

We say s is -expansionary if  0̂ � �

s

, and that s is a -stage if  � �

s

: We de�ne the length of

-agreement l(; s) and -restraint function r(; s) by

l(; s) =

�

l(j; s) if  0̂ � �

s

;

l(; s� 1) otherwise;

r(; s) =

�

maxfp

0

(j; y; s); p

1

(j; y; s) : y < l(j; s)g if  0̂ � �

s

;

r(; s� 1) otherwise,

where j  j= j: A strategy � is initialized at stage s by setting all of �'s parameters (followers for R) to 0.

We shall de�ne a restraint function K, an index function I and a trace marker function F on any �:

Let � be a strategy for some requirement P

e;i

: At any stage s; if � � �

s

; and K(�) is unde�ned or K(�)

is de�ned and maxfl(e; i; s); r(e; i; s)g > K(�) then de�ne K(�) to be great enough to preserve �

e;s

(C

s

�

B

1�i;s

)dl(e; i; s); fjg

C

s

�B

0;s

s

dl(j; s); and fjg

C

s

�B

1;s

s

dl(j; s) for every j � 4e+ i such that s is j-expansionary.

De�ne F (�) to be the least unused number > K(�); and I(�) = i:

Hence, at any stage s; let � = �

s

dj; and

f

j;s

dl(�; s) = fjg

C

s

�B

0;s

s

dl(�; s) = fjg

C

s

�B

1;s

s

dl(�; s);

2



then at stage s we de�ne or rede�ne K() for any  � � such that K() > r(�; s) to ensure that for any

t > s; and any x < l(�; s) either

fjg

C

t

�B

0;t

t

(x) = fjg

C

s

�B

0;s

s

(x)

or

fjg

C

t

�B

1;t

t

(x) = fjg

C

s

�B

1;s

s

(x)

or

9n < s

x

(n 2 C

t

� C

s

)

(where fs

x

g

x2!

is a C-recursive sequence). If there is an n < r(�; s) enumerated into A then let  be least

such that n < K(); enumerate n into B

I()

(where I() is as de�ned in the previous paragraph) and F ()

into C; and move F () to be an unused number. Until we go back to �; we shall enumerate the elements

n

0

< K() of A into the same side B

I()

if  is least such that K() > n

0

: Any n

0

< K(

0

) for some 

0

< 

enumerated into A at s

0

> s may be enumerated into the other side B

1�I()

; because it may be the case that

I() = 1�I(

0

): In this case, F

s

(

0

) is enumerated into C to trace the injuries to fjg

C

s

�B

0;s

s

(y); fjg

C

s

�B

1;s

s

(y)

for any y such that K(

0

) < n < p

I()

(j; y; s) and n

0

< K(

0

) < p

1�I()

(j; y; s):

To satisfy J

1

we use a direct permitting argument. To satisfy R

e;i

, for any e and i, let � be a strategy

for R

e;i

: At any stage s; if � � �

s

; R

e;i

is not satis�ed and there is no unrealized follower, i.e., x

0

2 W

e

for

every follower x

0

of R

e;i

; then �rstly we assign an unused number x to be a follower of �; and secondly we

de�ne K(�) such that K(�) > x and I(�) = i: x is canceled at any stage t > s only if � is initialized. We

shall show that if � is on the true path then � is initialized only �nitely often by showing that every positive

requirement requires attention only �nitely often if A

0

and A

1

are not recursive.

If there is an n 2 A

i;s

�A

i;s�1

and a realized follower x of � such that n < x, and � is least such that

n < K(�) then enumerate x into C

i

; n into B

I(�)

and F (�) into C; and R

e;i

is satis�ed. Hence, if � is on

the true path and R

e;i

is not satis�ed then there are in�nitely many uncanceled followers x of � such that

K(�) is reset in�nitely often and no element < K(�) is enumerated into A

i

after x is realized. Therefore,

either R

e;i

is eventually satis�ed or A

i

is recursive.

We say that � requires attention at s if � � �

s

; and

(1) � is a strategy for P

e;i

;; and K(�) is unde�ned, or it is de�ned and maxfr(e; i; s); l(e; i; s)g > K(�);

or

(2) � is a strategy for R

e;i

; every follower x of � is realized (i.e., x 2 W

e;s

), and R

e;i

is not satis�ed.

Construction:

Stage 0: Initialize every node �:

Stage s > 0: Find the least � � �

s

requiring attention. If � requires attention via (2) then assign an

unused number x > s to be a follower of �; set I(�) = i (as de�ned via the requirement requiring attention),

K(�) = maxfF (); x :  < �g;

and set F (�) > K(�) to be an unused number. Initialize every  > �:

If � requires attention via (1) then de�ne I(�) = i (again de�ned via the requirement requiring atten-

tion),

K(�) = maxfF (); s+ 1 :  < �g;

and set F (�) > K(�) to be an unused number. Initialize every  > �:

Let n 2 A

s

� A

s�1

: Let � be least such that n < K(�). (If � fails to exist then enumerate n into B

0

and initialize every  > �

s

.) Enumerate F (�) into C and n into B

I(�)

. If � is a strategy for some R

e;i

, x is

realized at s, n 2 A

i;s

� A

i;s�1

; and x > n; where x is currently the largest follower of �; then enumerate

x into C

i

and R

e;i

is satis�ed. Move F (�) equal to the �rst unused number > K(�); and initialize every

 > �:

This ends the description of the construction.

Let

� = lim inf

s

�

s

be the true path.
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Lemma 3. Assume that A

0

and A

1

are not recursive. Let � � �: Then (i) K(�) and F (�) are eventually

constant; (ii) the positive requirement assigned to � is satis�ed; (iii) � requires attention at most �nitely

often; and (iv) any  > � is initialized at most �nitely often.

Proof. Assume that the lemma holds for any  � �. Then � is initialized only �nitely often, and hence,

K(�) becomes de�ned eventually.

(i) If K(�) is reset in�nitely often then K(�) is reset at a stage s only if � is initialized at a stage s

0

< s;

or L(�; s) increases, where

L(�; s) =

�

maxfr(e; i; s); l(e; i; s)g if � is a strategy for some P

e;i

;

x otherwise,

where x is currently the largest follower of �: Hence, if K(�) is reset in�nitely often then L(�; s) tends to

in�nity, and so does K(�): Eventually any number < K(�) entering A is enumerated into B

I(�)

, and no

number < K(�) enumerated in B

1�I(�)

�C: Hence B

1�I(�)

�C is recursive. If � is a strategy for some R

e;i

then no number < L(�; s) enters A

I(�)

after L(�; s) is realized, hence A

I(�)

is recursive. If � is a strategy for

some P

e;i

then, by a similar argument, B

I(�)

is recursive, contradicting requirement J

0

, which is obviously

satis�ed.

(ii) (iii) Let s

0

be the least stage such that � � �

s

for all s > s

0

, and such that no  requires attention

and no set changes below K() for any  < �.

First assume that � is a strategy for some R

e;i

. At any stage s > s

0

; if s is an �-stage and any uncanceled

follower of � is realized then an unused number x is assigned to �, and K(�) is de�ned such that K(�) > x

and I(�) = i. � is initialized at any stage t > s only if �

t

< � or there is a  < � requiring attention at t.

By the choice of s

0

, neither case ever occurs. If R

e;i

is not satis�ed then there are in�nitely many �-stages

s such that an unused number x is assigned to R

e;i

, K(�) is reset at s such that K(�) > x, I(�) = i, and

there is no element < x to be enumerated into A

i

after x is realized, otherwise, x would be enumerated into

C

i

and R

e;i

is satis�ed. Since x tends to in�nity, A

i

is recursive, a contradiction. Hence, R

e;i

is satis�ed,

and � requires attention at most �nitely often.

Now assume that � is a strategy for some P

e;i

. If l(e; i; s) is unbounded for �-stages s then there

exists an �-stage s > s

0

at which � requires attention. By the choice of s

0

; K(�) is reset at any t > s

only if L(�; t) > L(�; s) and �

t

� �. Now I(�) = i, and K(�) is reset to preserve �

C�B

1�i

e

on elements

< r(e; i; t) � K(�) by directing elements into B

I(�)

. So if L(�; t) tends to in�nity then B

1�i

and C are

recursive, so is B

i

�

T

B

1�i

� C. Hence, A is recursive, a contradiction. And again � requires attention at

most �nitely often.

(iv) This is obvious since � requires attention at most �nitely often, so � initializes any  only �nitely

often and eventually no number < K(�) enters any set.

Lemma 4. Let � � �. Then N

j�j

is satis�ed.

Proof. Let � � � such that j�j = j: We assume that f

j

= fjg

C�B

0

= fjg

C�B

1

is total. Let s

�

be the

least stage after which no  � � requires attention and such that no F () for any  � � is reset at any

s > s

�

: To C-recursively compute f

j

(x) for any given x, �nd an �-expansionary stage s

x

> s

�

and a  > �

such that l(�; s

x

) > x, K

s

x

() is being de�ned or rede�ned at s

x

, no number � F () is ever enumerated

into C, and fjg

C�B

0

(x)[s

x

] = fjg

C�B

1

(x)[s

x

] are C-correct. We claim that f

j

(x) = f

j;s

x

(x):

We now claim that at any stage s > s

x

, at least one of the two computations holds. (This obviously

�nishes the argument.) Our proof very closely follows Lachlan's original argument [1980].

For the sake of a contradiction, suppose this fails at some least stage s > s

x

, say, via a number n entering

B

i

or C and destroying the remaining computation fjg

C�B

i

(x).

We distinguish cases as to how n enters C or B

i

:

Case 1: n enters C via an R

e;i

-strategy 

0

: Then n equals some witness, which by our hypothesis on s

x

must have been picked after stage s

x

. By the construction and cancellation of markers, we must have 

0

� 

and that n was picked at an �-expansionary stage s

0

> s

x

, say. But then n > s

0

> p

i

(j; x; s

0

), and the latter

use cannot have increased unless the witness n is canceled.

Case 2: n enters C as a marker F (

0

): Then some number n

0

< K(

0

) must enter A at the same stage.

Again by our hypothesis on s

x

, F (

0

) must have been picked after stage s

x

, and we reach a contradiction as

in Case 1.
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Case 3: n enters B

i

: Then n enters A at the same stage. By the arguments of Cases 1 and 2, the

computation fjg

C�B

1�i

(x) on the \other" side must have been destroyed by a number n

0

entering B

1�i

since the most recent �-expansionary stage s

0

, say. By the cancellation of markers, n < n

0

, and some number

< n

0

must enter C at stage s, leading to a contradiction as in Case 2.
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