An Extended Lachlan Splitting Theorem †

Steffen Lempp and Sui Yuefei

Department of Mathematics, University of Wisconsin-Madison Institute of Software, Academia Sinica

Abstract. We show that the top of any diamond with bottom $\mathbf{0}$ in the r.e. degrees is also the top of a stack of n diamonds with bottom $\mathbf{0}$.

Let **R** be the upper semilattice of the recursively enumerable degrees.

A minimal pair consists of two incomparable r.e. degrees with infimum equal to the recursive degree **0**. An r.e. degree is *cappable* if it is one half of a minimal pair. An r.e. degree **a** is the *top of a diamond* (or *1-diamond*) if **a** is the join of a minimal pair. For any n > 1, **a** is the *top of an n-diamond* if there is a nontrivial splitting \mathbf{a}_0 and \mathbf{a}_1 of **a** such that the infimum of \mathbf{a}_0 and \mathbf{a}_1 exists and is the top of an (n-1)-diamond.

Lachlan [1966] and Yates [1966] proved that there is a minimal pair in **R**. Ambos-Spies, Jockusch, Shore and Soare [1984] proved that **M**, the set of all cappable r.e. degrees, is an ideal in **R**, and **R** – **M**, which coincides with the class of all promptly simple r.e. degrees, is a strong filter in **R**. We mention some facts about the distribution of the r.e. degrees which are tops of diamonds. Let **T** be the set of such degrees. Then **T** has no maximal or minimal elements since **M** is not a principal ideal, and given any nonrecursive r.e. degrees \mathbf{a}_0 and \mathbf{a}_1 there exist $\mathbf{0} < \mathbf{b}_0 \leq \mathbf{a}_0$ and $\mathbf{0} < \mathbf{b}_1 \leq \mathbf{a}_1$ such that $\mathbf{b}_0 \cup \mathbf{b}_1 < \mathbf{a}_0 \cup \mathbf{a}_1$. Furthermore, by a recent result of Downey, Lempp, and Shore [1993], there is a high₂ r.e. degree bounding only degrees in **T**.

In this paper we shall modify Lachlan's construction (Lachlan [1980]) of splitting any nonrecursive r.e. degree into two r.e. degrees with infimum to show that every top of a diamond is the top of an *n*-diamond for every n > 0.

Theorem 1. Given any nonrecursive r.e. sets A_0 and A_1 , there exist r.e. sets B_0 , B_1 , C, C_0 , and C_1 such that $A_0 \oplus A_1 \equiv_{\text{wtt}} B_0 \oplus B_1 >_{\text{wtt}} C \ge_{\text{wtt}} C_0 \oplus C_1$; $B_0, B_1 \not\leq_{\text{T}} C$; $\emptyset <_{\text{wtt}} C_0 \le_{\text{wtt}} A_0$; $\emptyset <_{\text{wtt}} C_1 \le_{\text{wtt}} A_1$; and $\deg_{\text{T}}(C) = \deg_{\text{T}}(C \oplus B_0) \cap \deg_{\text{T}}(C \oplus B_1)$.

Corollary 2. Every top of a diamond is the top of a double diamond (i.e. a 2-diamond), and hence the top of an *n*-diamond for any $n \ge 1$.

Proof. Let $\mathbf{a} = \mathbf{a}_0 \cup \mathbf{a}_1$ be the top of a diamond, where \mathbf{a}_0 and \mathbf{a}_1 form a minimal pair, and let A_0 and A_1 be sets of degree \mathbf{a}_0 and \mathbf{a}_1 , respectively. Let \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{c} , \mathbf{c}_0 , and \mathbf{c}_1 be the Turing degrees of the sets in Theorem 1, respectively. Thus $\mathbf{c} = \mathbf{b}_0 \cap \mathbf{b}_1$ and $\mathbf{a} = \mathbf{b}_0 \cup \mathbf{b}_1$. Since $C \leq_{\text{wtt}} A_0 \oplus A_1$ and by the distributivity of \mathbf{R}_{wtt} , the upper semilattice of the r.e. wtt-degrees, there exist r.e. sets D_0 and D_1 such that $D_0 \leq_{\text{wtt}} A_0$, $D_1 \leq_{\text{wtt}} A_1$, and $D_0 \oplus D_1 \equiv_{\mathrm{T}} C$. Clearly D_0 and D_1 are not recursive, else C would be recursive in A_0 or A_1 . As $\mathbf{a}_0 \cap \mathbf{a}_1 = \mathbf{0}$, $\deg_{\mathrm{T}}(D_0) \cap \deg_{\mathrm{T}}(D_1) = \mathbf{0}$, and so \mathbf{a} is the top of the double diamond formed by \mathbf{a} , \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{c} , $\deg_{\mathrm{T}}(D_0)$, $\deg_{\mathrm{T}}(D_1)$, and $\mathbf{0}$.

Proof of Theorem 1. Fix any r.e. sets A_0 and A_1 of degrees \mathbf{a}_0 and \mathbf{a}_1 , respectively, and set $A = A_0 \oplus A_1$. We shall recursively enumerate sets B_0 , B_1 , C, C_0 , and C_1 such that $C \leq_{\text{wtt}} A_0 \oplus A_1$. For every $e, j \in \omega, i = 0, 1$

[†] The first author was supported by a NSF grant DMS-9100114. The second author was partially supported by the national NSF of China. The second author wishes to thank Richard A. Shore for his suggestions during the write-up.

the construction will satisfy the following requirements:

$$J_{0} : A_{0} \oplus A_{1} \equiv_{\text{wtt}} B_{0} \oplus B_{1},$$

$$J_{1} : A_{0} \geq_{\text{wtt}} C_{0}, A_{1} \geq_{\text{wtt}} C_{1},$$

$$R_{e,i} : C_{i} \neq \omega - W_{e},$$

$$J_{2} : C \geq_{\text{wtt}} C_{0} \oplus C_{1},$$

$$P_{e,i} : B_{i} \neq \Phi_{e}(C \oplus B_{1-i}), \text{ and}$$

$$N_{j} : \{j\}^{C \oplus B_{0}} = \{j\}^{C \oplus B_{1}} = f_{j} \text{ total} \rightarrow f_{j} \leq_{\mathrm{T}} C.$$

We use a modified Sacks splitting strategy to split A into B_0 and B_1 and satisfy J_0 and $P_{e,i}$ for every $e \in \omega, i = 0, 1$. At any stage s we define the length of agreement and restraint functions

$$l(e, i, s) = \max\{x : \forall y < x(B_{i,s}(y) = \Phi_{e,s}(C_s \oplus B_{1-i,s}; y))\},\$$

$$r(e, i, s) = \max\{u(C_s \oplus B_{1-i,s}; e, y, s) : y \le l(e, i, s)\}.$$

At any stage s, if $n \in A_s - A_{s-1}$ then we attempt to enumerate n into B_i , where $\langle e, i \rangle$ is the least pair such that n < r(e, i, s).

We code $C_0 \oplus C_1$ directly into C to satisfy J_2 .

To satisfy N_i , at any stage s we define the length of agreement and use functions

$$l(j,s) = \max\{x : \forall y < x(\{j\}_s^{C_s \oplus B_{0,s}}(y) = \{j\}_s^{C_s \oplus B_{1,s}}(y))\}$$

$$p_0(j,x,s) = u(C_s \oplus B_{0,s}; j,x,s), \text{ and }$$

$$p_1(j,x,s) = u(C_s \oplus B_{1,s}; j,x,s).$$

At any stage s, if l(j,s) > x and there is an $n < p_i(j,x,s)$ enumerated into B_i then, until the B_i -side of the computations at x recovers, say until stage t > s, we attempt to enumerate elements of A into the same side B_i . Since we must simultaneously satisfy requirements $P_{e,i'}$, there may be an element enumerated into B_{1-i} , which allows $f_{j,s}(x) \neq f_{j,t}(x)$; in this case, we shall enumerate a certain element into C to trace such a change of $f_i(x)$.

The priority tree is the complete binary tree. We assign N_j to every node α of length j, and assign $P_{e,i}$ to α if $| \alpha | = 4e + i$; $R_{e,i}$ to α if $| \alpha | = 4e + i + 2$. We define the string β_s (of length s) of nodes accessible at stage s by

$$\beta_s(j) = 0 \leftrightarrow \forall t < s(\beta_t \supseteq \beta_s[j \to l(j, t) < l(j, s)))$$

We say s is γ -expansionary if $\gamma^{\hat{}} 0 \subseteq \beta_s$, and that s is a γ -stage if $\gamma \subset \beta_s$. We define the length of γ -agreement $l(\gamma, s)$ and γ -restraint function $r(\gamma, s)$ by

$$\begin{split} l(\gamma, s) &= \begin{cases} l(j, s) & \text{if } \gamma^{\uparrow} 0 \subseteq \beta_s, \\ l(\gamma, s - 1) & \text{otherwise;} \end{cases} \\ r(\gamma, s) &= \begin{cases} \max\{p_0(j, y, s), p_1(j, y, s) : y < l(j, s)\} & \text{if } \gamma^{\uparrow} 0 \subseteq \beta_s, \\ r(\gamma, s - 1) & \text{otherwise,} \end{cases} \end{split}$$

where $|\gamma| = j$. A strategy ξ is *initialized at stage s* by setting all of ξ 's parameters (followers for R) to 0.

We shall define a restraint function K, an index function I and a trace marker function F on any α . Let α be a strategy for some requirement $P_{e,i}$. At any stage s, if $\alpha \subset \beta_s$, and $K(\alpha)$ is undefined or $K(\alpha)$ is defined and $\max\{l(e, i, s), r(e, i, s)\} > K(\alpha)$ then define $K(\alpha)$ to be great enough to preserve $\Phi_{e,s}(C_s \oplus B_{1-i,s})[l(e, i, s), \{j\}_s^{C_s \oplus B_{0,s}}[l(j, s), \text{ and } \{j\}_s^{C_s \oplus B_{1,s}}[l(j, s) \text{ for every } j \leq 4e + i \text{ such that } s \text{ is } j\text{-expansionary.}$ Define $F(\alpha)$ to be the least unused number $> K(\alpha)$, and $I(\alpha) = i$.

Hence, at any stage s, let $\alpha = \beta_s [j, and$

$$f_{j,s} \lceil l(\alpha, s) = \{j\}_{s}^{C_{s} \oplus B_{0,s}} \lceil l(\alpha, s) = \{j\}_{s}^{C_{s} \oplus B_{1,s}} \lceil l(\alpha, s),$$

then at stage s we define or redefine $K(\gamma)$ for any $\gamma \ge \alpha$ such that $K(\gamma) > r(\alpha, s)$ to ensure that for any t > s, and any $x < l(\alpha, s)$ either

 $\{j\}_{t}^{C_{t}\oplus B_{0,t}}(x) = \{j\}_{s}^{C_{s}\oplus B_{0,s}}(x)$

or

$$\{j\}_{t}^{C_{t}\oplus B_{1,t}}(x) = \{j\}_{s}^{C_{s}\oplus B_{1,s}}(x)$$

or
$$\exists n < s_x (n \in C_t - C_s)$$

(where $\{s_x\}_{x\in\omega}$ is a *C*-recursive sequence). If there is an $n < r(\alpha, s)$ enumerated into *A* then let γ be least such that $n < K(\gamma)$, enumerate *n* into $B_{I(\gamma)}$ (where $I(\gamma)$ is as defined in the previous paragraph) and $F(\gamma)$ into *C*, and move $F(\gamma)$ to be an unused number. Until we go back to α , we shall enumerate the elements $n' < K(\gamma)$ of *A* into the same side $B_{I(\gamma)}$ if γ is least such that $K(\gamma) > n'$. Any $n' < K(\gamma')$ for some $\gamma' < \gamma$ enumerated into *A* at s' > s may be enumerated into the other side $B_{1-I(\gamma)}$, because it may be the case that $I(\gamma) = 1 - I(\gamma')$. In this case, $F_s(\gamma')$ is enumerated into *C* to trace the injuries to $\{j\}_s^{C_s \oplus B_{0,s}}(y), \{j\}_s^{C_s \oplus B_{1,s}}(y)$ for any *y* such that $K(\gamma') < n < p_{I(\gamma)}(j, y, s)$ and $n' < K(\gamma') < p_{1-I(\gamma)}(j, y, s)$.

To satisfy J_1 we use a direct permitting argument. To satisfy $R_{e,i}$, for any e and i, let α be a strategy for $R_{e,i}$. At any stage s, if $\alpha \subset \beta_s$, $R_{e,i}$ is not satisfied and there is no unrealized follower, i.e., $x' \in W_e$ for every follower x' of $R_{e,i}$, then firstly we assign an unused number x to be a follower of α , and secondly we define $K(\alpha)$ such that $K(\alpha) > x$ and $I(\alpha) = i$. x is canceled at any stage t > s only if α is initialized. We shall show that if α is on the true path then α is initialized only finitely often by showing that every positive requirement requires attention only finitely often if A_0 and A_1 are not recursive.

If there is an $n \in A_{i,s} - A_{i,s-1}$ and a realized follower x of α such that n < x, and α is least such that $n < K(\alpha)$ then enumerate x into C_i , n into $B_{I(\alpha)}$ and $F(\alpha)$ into C, and $R_{e,i}$ is satisfied. Hence, if α is on the true path and $R_{e,i}$ is not satisfied then there are infinitely many uncanceled followers x of α such that $K(\alpha)$ is reset infinitely often and no element $< K(\alpha)$ is enumerated into A_i after x is realized. Therefore, either $R_{e,i}$ is eventually satisfied or A_i is recursive.

We say that α requires attention at s if $\alpha \subset \beta_s$, and

(1) α is a strategy for $P_{e,i}$; and $K(\alpha)$ is undefined, or it is defined and $\max\{r(e, i, s), l(e, i, s)\} > K(\alpha)$; or

(2) α is a strategy for $R_{e,i}$, every follower x of α is realized (i.e., $x \in W_{e,s}$), and $R_{e,i}$ is not satisfied.

Construction:

Stage 0: Initialize every node α .

Stage s > 0: Find the least $\alpha \subset \beta_s$ requiring attention. If α requires attention via (2) then assign an unused number x > s to be a follower of α , set $I(\alpha) = i$ (as defined via the requirement requiring attention),

$$K(\alpha) = \max\{F(\gamma), x : \gamma < \alpha\},\$$

and set $F(\alpha) > K(\alpha)$ to be an unused number. Initialize every $\gamma > \alpha$.

If α requires attention via (1) then define $I(\alpha) = i$ (again defined via the requirement requiring attention),

$$K(\alpha) = \max\{F(\gamma), s+1 : \gamma < \alpha\},\$$

and set $F(\alpha) > K(\alpha)$ to be an unused number. Initialize every $\gamma > \alpha$.

Let $n \in A_s - A_{s-1}$. Let α be least such that $n < K(\alpha)$. (If α fails to exist then enumerate n into B_0 and initialize every $\gamma > \beta_s$.) Enumerate $F(\alpha)$ into C and n into $B_{I(\alpha)}$. If α is a strategy for some $R_{e,i}$, x is realized at $s, n \in A_{i,s} - A_{i,s-1}$, and x > n, where x is currently the largest follower of α , then enumerate x into C_i and $R_{e,i}$ is satisfied. Move $F(\alpha)$ equal to the first unused number $> K(\alpha)$, and initialize every $\gamma > \alpha$.

This ends the description of the construction.

Let

$$\beta = \liminf_{s} \beta_s$$

be the true path.

Lemma 3. Assume that A_0 and A_1 are not recursive. Let $\alpha \subset \beta$. Then (i) $K(\alpha)$ and $F(\alpha)$ are eventually constant; (ii) the positive requirement assigned to α is satisfied; (iii) α requires attention at most finitely often; and (iv) any $\gamma > \alpha$ is initialized at most finitely often.

Proof. Assume that the lemma holds for any $\gamma \subset \alpha$. Then α is initialized only finitely often, and hence, $K(\alpha)$ becomes defined eventually.

(i) If $K(\alpha)$ is reset infinitely often then $K(\alpha)$ is reset at a stage s only if α is initialized at a stage s' < s, or $L(\alpha, s)$ increases, where

$$L(\alpha, s) = \begin{cases} \max\{r(e, i, s), l(e, i, s)\} & \text{if } \alpha \text{ is a strategy for some } P_{e,i}, \\ x & \text{otherwise,} \end{cases}$$

where x is currently the largest follower of α . Hence, if $K(\alpha)$ is reset infinitely often then $L(\alpha, s)$ tends to infinity, and so does $K(\alpha)$. Eventually any number $\langle K(\alpha)$ entering A is enumerated into $B_{I(\alpha)}$, and no number $\langle K(\alpha)$ enumerated in $B_{1-I(\alpha)} \oplus C$. Hence $B_{1-I(\alpha)} \oplus C$ is recursive. If α is a strategy for some $R_{e,i}$ then no number $\langle L(\alpha, s)$ enters $A_{I(\alpha)}$ after $L(\alpha, s)$ is realized, hence $A_{I(\alpha)}$ is recursive. If α is a strategy for some $P_{e,i}$ then, by a similar argument, $B_{I(\alpha)}$ is recursive, contradicting requirement J_0 , which is obviously satisfied.

(ii) (iii) Let s_0 be the least stage such that $\alpha \leq \beta_s$ for all $s > s_0$, and such that no γ requires attention and no set changes below $K(\gamma)$ for any $\gamma < \alpha$.

First assume that α is a strategy for some $R_{e,i}$. At any stage $s > s_0$, if s is an α -stage and any uncanceled follower of α is realized then an unused number x is assigned to α , and $K(\alpha)$ is defined such that $K(\alpha) > x$ and $I(\alpha) = i$. α is initialized at any stage t > s only if $\beta_t < \alpha$ or there is a $\gamma < \alpha$ requiring attention at t. By the choice of s_0 , neither case ever occurs. If $R_{e,i}$ is not satisfied then there are infinitely many α -stages s such that an unused number x is assigned to $R_{e,i}$, $K(\alpha)$ is reset at s such that $K(\alpha) > x$, $I(\alpha) = i$, and there is no element < x to be enumerated into A_i after x is realized, otherwise, x would be enumerated into C_i and $R_{e,i}$ is satisfied. Since x tends to infinity, A_i is recursive, a contradiction. Hence, $R_{e,i}$ is satisfied, and α requires attention at most finitely often.

Now assume that α is a strategy for some $P_{e,i}$. If l(e, i, s) is unbounded for α -stages s then there exists an α -stage $s > s_0$ at which α requires attention. By the choice of s_0 , $K(\alpha)$ is reset at any t > s only if $L(\alpha, t) > L(\alpha, s)$ and $\beta_t \supset \alpha$. Now $I(\alpha) = i$, and $K(\alpha)$ is reset to preserve $\Phi_e^{C \oplus B_{1-i}}$ on elements $< r(e, i, t) \leq K(\alpha)$ by directing elements into $B_{I(\alpha)}$. So if $L(\alpha, t)$ tends to infinity then B_{1-i} and C are recursive, so is $B_i \leq_{\mathrm{T}} B_{1-i} \oplus C$. Hence, A is recursive, a contradiction. And again α requires attention at most finitely often.

(iv) This is obvious since α requires attention at most finitely often, so α initializes any γ only finitely often and eventually no number $\langle K(\alpha)$ enters any set.

Lemma 4. Let $\alpha \subset \beta$. Then $N_{|\alpha|}$ is satisfied.

Proof. Let $\alpha \subset \beta$ such that $|\alpha| = j$. We assume that $f_j = \{j\}^{C \oplus B_0} = \{j\}^{C \oplus B_1}$ is total. Let s^* be the least stage after which no $\gamma \leq \alpha$ requires attention and such that no $F(\gamma)$ for any $\gamma \leq \alpha$ is reset at any $s > s^*$. To *C*-recursively compute $f_j(x)$ for any given x, find an α -expansionary stage $s_x > s^*$ and a $\gamma > \alpha$ such that $l(\alpha, s_x) > x$, $K_{s_x}(\gamma)$ is being defined or redefined at s_x , no number $\leq F(\gamma)$ is ever enumerated into C, and $\{j\}^{C \oplus B_0}(x)[s_x] = \{j\}^{C \oplus B_1}(x)[s_x]$ are *C*-correct. We claim that $f_j(x) = f_{j,s_x}(x)$.

We now claim that at any stage $s > s_x$, at least one of the two computations holds. (This obviously finishes the argument.) Our proof very closely follows Lachlan's original argument [1980].

For the sake of a contradiction, suppose this fails at some least stage $s > s_x$, say, via a number *n* entering B_i or *C* and destroying the remaining computation $\{j\}^{C \oplus B_i}(x)$.

We distinguish cases as to how n enters C or B_i :

Case 1: n enters C via an $R_{e,i}$ -strategy γ' : Then n equals some witness, which by our hypothesis on s_x must have been picked after stage s_x . By the construction and cancellation of markers, we must have $\gamma' \leq \gamma$ and that n was picked at an α -expansionary stage $s' > s_x$, say. But then $n > s' > p_i(j, x, s')$, and the latter use cannot have increased unless the witness n is canceled.

Case 2: n enters C as a marker $F(\gamma')$: Then some number $n' < K(\gamma')$ must enter A at the same stage. Again by our hypothesis on s_x , $F(\gamma')$ must have been picked after stage s_x , and we reach a contradiction as in Case 1. Case 3: n enters B_i : Then n enters A at the same stage. By the arguments of Cases 1 and 2, the computation $\{j\}^{C \oplus B_{1-i}}(x)$ on the "other" side must have been destroyed by a number n' entering B_{1-i} since the most recent α -expansionary stage s', say. By the cancellation of markers, n < n', and some number < n' must enter C at stage s, leading to a contradiction as in Case 2.

References:

- Ambos-Spies, K., Jockusch, C.G., Jr., Shore, R.A. and Soare, R.I., An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees, *Trans. Amer. Math. Soc.* 281 (1984), 109-128.
- [2] Downey, R.G., Lempp, S. and Shore, R.A., Highness and bounding in the r.e. degrees, Mathematical Logic Quarterly 39 (1993), 475-491.
- [3] Lachlan, A.H., Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. 16 (1966), 537-569.
- [4] Lachlan, A.H., Decomposition of recursively enumerable degrees, Proc. Amer. Math. Soc. 79 (1980), 629-634.
- [5] Ladner, R.E. and Sasso, L.P., The weak truth-table degrees of recursively enumerable sets, Ann. Math. Logic 4 (1975), 429-448.
- [6] Stob, M., Wtt-degrees and T-degrees of r.e. sets, J. Symbolic Logic 48 (1983), 921-930.
- [7] Yates, C. E. M., A minimal pair of recursively enumerable degrees, J. Symbolic Logic 31 (1966), 159-168.