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Abstract

We give an example of a subset of the recursively enumerable Turing degrees which
generates the recursively enumerable degrees using meet and join but does not
generate them using join alone.

1 Introduction

One of the recurrent themes in the area of the recursively enumerable (r.e.) degrees
has been the study of the meet operator. While, trivially, the partial ordering of the
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r.e. degrees is an upper semi-lattice, i.e., the join operator is total, the meet of two
incomparable r.e. degrees may or may not exist (Lachlan (1966), Yates (1966)). The
asymmetry between joins and meets is further illustrated by the fact that, by Sacks’
splitting theorem (Sacks (1963)), every nonzero r.e. degree is join-reducible, i.e., is
the join of two lesser degrees, whereas there are both, meet-reducible (branching)
and meet-irreducible (nonbranching), incomplete r.e. degrees (Lachlan (1966)).

The existence of meets and the failure of meets are densely distributed in the
partial ordering of the r.e. degrees. So Fejer (1983) showed that the nonbranching
degrees are dense while Slaman (1991) showed that the branching degrees are dense.
Similarly, every interval of the r.e. degrees contains an incomparable pair of degrees
without meet (Ambos-Spies (1984)) and an incomparable pair of degrees with meet
(Slaman (1991)). That, actually, the lack of meets is more common than the exis-
tence of meets has been demonstrated by Ambos-Spies (1984) and, independently,
by Harrington (unpublished) who showed that, for any nonzero, incomplete r.e.
degree a, there is an incomparable degree b such that the meet of a and b does not
exist, but also that there is such a degree a such that, for any incomparable degree
b, the meet of a and b does not exist. More evidence, that the failure of meets is
more typical than their existence, was given by Jockusch (1985) who showed that,
given r.e. degrees a, b and c such that a and b are incomparable and c is the meet
of a and b, none of these degrees is e-generic.

Another way to look at the join and meet operators in the r.e. degrees is to study
generating sets, i.e., sets of r.e. degrees which generate all the recursively enumerable
degrees under (finitely many applications of) join and meet. The question now arises
naturally whether both the join operation and the meet operation are needed here.
As observed in Ambos-Spies (1985), the above results on nonbranching degrees
easily imply that the join operation is indeed necessary, namely there is a subset
of the recursively enumerable degrees which generates all recursively enumerable
degrees using join and meet but not using meet alone. Ambos-Spies, however,
left open the question of whether the meet operation is necessary (see Ambos-
Spies (1985), Problem 1). The above mentioned negative results on meets by Fejer
(1983), Ambos-Spies (1984) and Jockusch (1985) may suggest a negative answer
to this question. More evidence in this direction has been obtained by Ambos-
Spies (1985) who showed that any generating set intersects any notrivial initial
segment of the r.e. degrees and, more recently, by Ambos-Spies, Ding and Fejer
(unpublished) who showed that any generating set generates the high r.e. degrees
using join alone. Despite this negative evidence, in this paper, we answer Ambos-
Spies’ question affirmatively by the following

Theorem 1.1 There exists a subset G of the recursively enumerable Turing degrees
which generates the recursively enumerable Turing degrees using meet and join but
does not generate them using join alone.

Proof. Our theorem follows by our technical result, Theorem 2.1, below, using a
nonconstructive definition of the set G. Fix the recursively enumerable degree a
from Theorem 2.1. Let {xn}n∈ω be a (noneffective) enumeration of all recursively
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enumerable degrees ≤ a. We now define a (noneffective) sequence of recursively
enumerable degrees 0 = y0 ≤ y1 ≤ y2 ≤ · · · < a as follows: Set y0 = 0. Given
yn < a, check whether yn ∪ xn = a. If not, then set yn+1 = yn ∪ xn. Otherwise,
let b be the recursively enumerable degree given by Theorem 2.1 using x = xn and
y = yn, and set yn+1 = yn ∪ b. Finally, we define

G = {x | x 6≤ a or ∃n (x ≤ yn)}.

By Theorem 2.1, the degree a is clearly not the join of any finite set of degrees
in G. On the other hand, fix any recursively enumerable degree x and assume
x /∈ G. Then x ≤ a, and so x = xn for some n ∈ ω. Since x /∈ G, we have
x 6≤ yn+1 and so x∪y = a for y = yn. Fix b, c, d, and e as in Theorem 2.1. Then
x = b ∪ (d ∩ e) where all of b, d, and e are in G since b ≤ yn+1 and d, e 6≤ a. �

2 The technical theorem and some intuition for its proof

Starting with this section, we will prove the technical theorem needed to establish
Theorem 1.1:

Theorem 2.1 There is a nonrecursive, recursively enumerable set A such that for
every pair of recursively enumerable sets X and Y , if X and Y are recursive in A
and A is recursive in XY then one of the following conditions holds.

1. A is recursive in Y .

2. There are recursively enumerable sets B, C, D, and E such that

(a) X has the same Turing degree as BC,

(b) D and E are not recursive in A and the degree of C is the infimum of
the degrees of DC and EC, and

(c) A is not recursive in BY .

2.1 Requirements and simple strategies

We disassemble the statement of Theorem 2.1 into requirements as follows. First,
A must be nonrecursive and so we must satisfy all the requirements Θ 6= A, where
Θ is a recursive function.

Second, for each X, Y , Λa,x, Λa,y, and Λxy,a, we associate the principal equa-
tions Λa,x(A) = X, Λa,y(A) = Y , and Λxy,a(XY ) = A. We can satisfy our re-
quirement on X, Y , Λa,x, Λa,y, and Λxy,a in any of several ways. If the principal
equations are not valid then our requirement is satisfied.

Anticipating that the principal equations actually are valid, we enumerate the
sets B,C,D, and E and recursive functionals Γx,b, Γx,c, and Γbc,x. We ensure that
Γx,b(X) = B, Γx,c(X) = C, and Γbc,x(BC) = X. Now, our requirement is satisfied
in one of two ways.
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For every recursive functional Θby, if Θby(BY ) = A then there is a ∆y,a, which
we enumerate during our construction, such that ∆y,a(Y ) = A. If there is a ∆y,a

such that ∆y,a(Y ) = A, then again our requirement is satisfied.
Otherwise, we ensure that every instance of the following family of requirements

is satisfied.

1. For all Θa, Θa(A) 6= D and Θa(A) 6= E.

2. For all Ψcd and Ψce, if Ψcd(CD) = Ψce(CE) then there is a Ξc such that
Ξc(C) = Ψcd(CD) = Ψce(CE).

2.2 Strategies

2.2.1 Making Θ 6= A: σ0(Θ)

We ensure that Θ 6= A by choosing a number n, keeping n out of A until seeing
Θ(n) = 0, and then enumerating n into A. This strategy σ0 is one of the standard
methods to satisfy requirements of this form.

2.2.2 Measuring whether the equations hold: σ1(X,Y,Λa,x,Λa,y,Λxy,a)

Now, we consider the more complicated requirements. Suppose that X, Y , Λa,x,
Λa,y, and Λxy,a are given.

Our strategy σ1(X,Y,Λa,x,Λa,y,Λxy,a) approximates if the principal equations
hold for X, Y , Λa,x, Λa,y, and Λxy,a. We will abbreviate by σ1 the strategy
σ1(X,Y,Λa,x,Λa,y,Λxy,a) and use similar conventions throughout this section. Es-
sentially, σ1 measures expansionary stages in the approximation to these equalities.
For technical reasons, explained below, σ1 waits for something more than simple ex-
pansion. In the following, a1 and a2 are variables of the strategy which enumerates
pairs (a1, a2) into a list of pairs of witnesses.

1. If a1 is undefined and it is possible to do so, choose a value for a1 that is
larger than λa,x(A, x)[s] for every x previously mentioned in the construction
during a σ1-expansionary stage. Let x1 be the smallest number x such that
λa,x(A, x)[s] is greater than a1. Suspend the enumeration of any functionals
associated with B, C, D or E. (We may assume that we have not enumerated
any computations from BC of X at arguments greater than or equal to x1.)
Wait until the first stage s such that (Λxy,a(XY ) � a1 + 1 = A � a1 + 1)[s],
and (Λa,x(A) = X)[s] and (Λa,y(A) = Y )[s] on all numbers less than or equal
to the maximum of λxy,a(XY )[s] � a1 + 1. At this stage, we let a2 equal the
supremum of (λa,x(A) = X)[s] and (λa,y(A) = Y )[s] on all numbers less
than or equal to the maximum of λxy,a(XY )[s] � a1 + 1. We enumerate the
pair (a1, a2) into our list and let the strategies of lower priority resume the
enumeration of any functionals associated with B, C, D or E. (The (a1, a2)
notation will be convenient below.) Go to Step 2.

2. At the next stage when σ1 is active, we say that a1 is undefined, and go to
Step 1.
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Consider the possibilities. The strategy σ1 could reach a limit in Step 1. In
this case, one of the principal equations fails and the requirement is satisfied.

If σ1 does not reach a limit in Step 1 then it enumerates infinitely many stable
pairs and has no other effect on the construction.

For the remainder of this section, we assume that σ1 does not reach a finite
limit and that all subsequent strategies act during the stages when σ1 enumerates
a new pair. We call such stages σ1-expansionary.

2.2.3 Computations between B, C, and X: σ2(X,Y,Λa,x,Λa,y,Λxy,a)

Our strategy σ2 builds functionals Γx,b and Γx,c and ensures that if the prin-
cipal equations are valid then for each n there are infinitely many s such that
(Γx,b(X,n) = B(n))[s] and (Γx,c(X,n) = C(n))[s]. This, combined with our pre-
serving A, B, and C, will be sufficient to conclude that B and C are recursive
in X.

We ensure their correctness by imposing the constraint on all lower priority
strategies τ that if Γx,b(X,n)[s] or Γx,c(X,n)[s] is defined while τ acts then τ
cannot enumerate n into B or C, respectively, during that stage.

Similarly, we ensure thatX is recursive in BC by enumerating a functional Γbc,x

and ensuring that if the principal equalities hold then for all n, Γbc,x(BC, n) = X(n)
during infinitely many stages of the construction.

We have complete freedom to define the uses of these functionals, but the
construction does not require a subtle decision. During σ1-expansionary stages,
we enumerate new computations into Γbc,x. If n enters X during stage s and
Γbc,x(BC, n) = 0[s] then we must enumerate a number less than or equal to
γbc,x(BC, n)[s] into either B or C. We set the uses of these functions to be larger
than any number previously used in the construction.

In the case of maintaining Γbc = X, we also have the freedom to decide which
of B and C to change when recording a change in X. The choice made is irrelevant
to σ2. In our construction, we will leave the decision to the highest priority strategy
for which it is relevant. See the discussion of the strategies of type σ6.

2.2.4 Making C the infimum of CD and CE: σ3(X,Y,Λa,x,Λa,y,Λxy,a,Ψcd,Ψce)

We will use the branching strategies from Fejer (1982) and attempt to make the
degree of C equal to the infimum of the degrees of CD and CE. Suppose that Ψcd

and Ψce are given and let σ3 denote our branching strategy associated with this
pair. Then, σ3 enumerates a functional Ξc. Say that s is σ3-expansionary if and
only if the least number n such that (Ψcd(CD,n) 6= Ψce(CE, n))[s] is larger than
at any earlier stage.

First, during stage s, if there is an n such that Ξc(C, n)[s] is defined and a
strategy of priority less than or equal to that of σ3 enumerates numbers into C, D,
or E so that neither (Ψcd(CD,n) = Ξc(C, n))[s] nor (Ψce(CE, n) = Ξc(C, n))[s],
then σ3 must enumerate a number less than or equal to ξc(C, n)[s] into C. (We will
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have to argue that this enumeration is compatible with C’s being recursive relative
to X.)

Second, if s is σ3-expansionary then for the least n such that ξc(C, n) is not
defined, we choose a value for ξc(C, n)[s] which is larger than any number previ-
ously mentioned in the construction and enumerate a computation into Ξc setting
Ξc(C[s], n) = Ψcd(CD[s], n) with use ξc(C, n)[s].

If Ψcd(CD) = Ψce(CE) then there will be infinitely many σ3-expansionary
stages. Since we will be preserving computations from CD and CE, the converse
will also be true. So, if Ψcd(CD) 6= Ψce(CE), then σ3 will act finitely often.
Otherwise, it produces a functional Ξc from C which is defined infinitely often
to agree with the common value of Ψcd(CD) and Ψce(CE). Again, since we are
preserving the sets that we construct, this will be sufficient to ensure that Ξc(C) is
equal to this common value.

We will assume that there are infinitely many σ3-expansionary stages and de-
scribe the appropriate strategies to follow. These strategies act only during σ3-
expansionary stages.

Instability in C and compatibility between σ2 and σ3. The strategies σ3 introduce
an instability to the initial segments of C. Namely, suppose that a strategy τ
enumerates a number c into C. Then, c enters both CD and CE and could change
the common value of Ψcd(CD, c1) and Ψce(CE, c1). In response, τ enumerates
ξc(C, c1) into C, possibly changing C at a number less than c, and the effect can
propagate. We call the set of numbers that enter C in this way the cascade initiated
by c.

When combined with the strategy to ensure that C is recursive in X, the
branching strategies make it difficult to enumerate any number at all into C. If
Γx,c(X,m) is defined then we cannot enumerate any c into C unless we can be sure
that the instability in C will not propagate to the point of requiring that m enter
C. We will use some of the ideas of Slaman (1991) to work within this constraint.

Definition 2.2 A number c is σ3-stable at stage s if for all m, if ξc(C,m)[s] < c then
either ψcd(CD,m) < c or ψce(CE,m) < c.

We note that if c is σ3-stable at stage s then any cascade initiated by a number
greater than or equal to c during stage s does not include any number less than
c. To prove this claim, consider the recursive propagation of a cascade initiated by
a number greater than or equal to c, and let m be the first number less than c to
appear in the cascade. Earlier in the propagation of the cascade, C would have to
change below the minimum of ψcd(CD,m)[s] and ψce(CE,m)[s]. By the stability
of c, this minimum is less than c and we have contradicted m’s being first.

Thus, if c is stable and Γx,c(X, c)[s] is not defined, then we can enumerate c into
C and respect both σ2 and σ3. We will design all the strategies to follow so that
they enumerate only stable numbers into C. Of course, there is no such constraint
on B, since B is not constructed to be branching.
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2.2.5 Making Θa(A) 6= D and Θa(A) 6= E: σ4(X,Y,Λa,x,Λa,y,Λxy,a,Θa) and
σ5(X,Y,Λa,x,Λa,y,Λxy,a,Θa)

We use a variation, σ4, on the basic Friedberg strategy to ensure that Θa(A) 6= D.
(The strategy σ5 for E is similar.) We choose n larger than any number previously
mentioned in the construction and constrain n from entering D. We wait for a stage
s such that (Θa(A,n) = 0)[s]. By our assumption, s will be σ1 and σ3-expansionary.

Then, we enumerate n into D and constrain any number less than s from
entering any set under construction other than D. We note that these actions are
consistent. Since we did not enumerate anything into A and A’s computation of
X exists on a longer interval than ever before, X cannot change at any number
m such that Γbc,x(BC,m)[s] is defined. So, σ2 will not require any change in B
or C. Since s is σ3-expansionary, both Ψcd(CD)[s] and Ψce(CE)[s] were defined
(before we changed D), agreed on a longer interval than ever before, and agreed
with Ξc(C)[s] where Ξc(C)[s] was defined. Since we did not change E, Ψce(CE)[s]
is still equal to Ξc(C)[s] where the latter is defined and σ3 does not require any
change in C.

2.2.6 If Θby(BY ) = A then ∆y,a(Y ) = A: σ6(X,Y,Λa,x,Λa,y,Λxy,a,Θby)

Now we come to the crux of the proof of Theorem 2.1. Our strategy σ6 must either
diagonalize Θby(BY ) against A, or it must determine that A is recursive in Y . Since
Y is an arbitrary set below A, both cases are possible.

In the context of the construction, σ6 can assume that every stage is σ1- and
σ2-expansionary. Now, this implies that if we enumerate a number a into A during
stage s, there is a later stage t during which A recomputes X and Y and either
X[s] 6= X[t] or Y [s] 6= Y [t] and the least m at which the inequality occurs is less
than λxy,a(XY, a)[s]. In other words, if we change A then one of X or Y must
change in order to correct Λxy,a(XY ).

To establish Θby(BY ) 6= A, at least once we would have to change A without
having to change B and without Y ’s having changed. This could happen, since the
change in A could be recorded in X and we could record the change in X (for the
sake of σ3) in C. If, on the other hand, this diagonalization is not possible then we
must conclude that A is recursive in Y . The conclusion is not unreasonable since
every change in A results in a change in Y . But, if even one change in A results in
a change in X, then we must be able to record that change in C.

We have reached the technical problem to be solved to prove the theorem. For
every A-change allowed by σ6, if it results in a change in X, then we must be able
to record that change in X and in C. Now remember that we are only able to
enumerate numbers into C which are σ3-stable during their stage of enumeration.
So we must ensure that changes in X can be recorded in C by the enumeration of
such numbers. This is the purpose in our strategy σ6.

Configurations. Consider a possible stage-s situation as depicted in Figure 1. In
this picture, we illustrate a number a1 which we intend to enumerate into A; x1
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is the least number x such that a1 is less than λa,x(A, x)[s] and hence the least
number which might enter X when a1 enters A; x2 is equal to λxy,a(XY, a1)[s]
and a1’s entering A would cause a change in XY below x2; a2 is the supremum
of λa,x(A, x2)[s] and λa,y(A, x2)[s], so our preserving A on numbers less than a2

will preserve the relationship between a1, x1, and x2; c is γbc,x(BC, x1)[s] and
so enumerating c into C would correct the computation of X from BC on every
argument at which X might change; we intend that c be σ3-stable at stage s and so,
for any m, if ξc(m) is less than c then one of ψcd(CD,m)[s] or ψce(CE,m)[s] is also
less than c; finally, x3 is γx,c(X, c), the use of X’s computation of C at argument c.
Note that we can preserve the relationships between these numbers by preserving
A up to a2, and B,C,D, and E up to c. (We can keep x3 above x2 by enumerating
our functions so that the uses of new computations are at least as great as the uses
of earlier computations at the same argument.)

Suppose that, in this situation, we were to enumerate a1 into A and Y did not
change below x2 to record that fact (for example, if Y 6≥ A). Then X would change
below x2, allowing us to enumerate the σ3-stable number c into C and thereby
correct BC’s computations for any change in X allowed by a1’s entering A.

We say that the situation depicted in Figure 1 is a σ1-configuration for a1.
Anticipating that Θby(BY ) = A, we must ensure that for all but a recursive set of
numbers a, if a enters A then it does so in the role of a1 with a configuration as
above.

Generating configurations. Though configurations seem artificial at first, they are
very common. In fact, a new configuration can be produced during every σ1-
expansionary stage.

Note that, by the constraint imposed by σ3, at the beginning of every stage t,
for every m, if Ξc(C,m)[t] is defined then one of Ψcd(CD,n)[t] and Ψce(CE, n)[t]
is also defined with the same value.

Now consider a σ1-expansionary stage s. Let c be the least strict upper bound
on the range of ξc(C)[s]. By the observation above, c is σ3-stable. Since s is σ1-
expansionary, σ1 enumerated a pair (a1, a2) related as in Figure 1. Further, by the
choice of a1 and a2, a1 is greater than λa,x(A, x)[s] for every x such that Γbc,x(BC, x)
has ever been defined. Consequently, there is no computation in Γbc,x[s] which
applies to the argument x1. Then, we can use σ2 to enumerate computations
into Γx,b, Γx,c, and Γbc,x so that γbc,x(BC, x1) > c, and γx,c(X, c) > λxy,a(X, a1).
In Figure 1, λxy,a(X, a1) would be x2 and γx,c(X, c) would be x3. In short, at the
beginning of each stage s, the whole of ξc[s] is stable and at a σ2-expansionary stage,
we can use the pair (a1, a2) enumerated by σ1 and enumerate new computations
into our functionals to extend ξc[s] to a configuration for a1.

Restricting to configured numbers. We satisfy the requirement

Θby(BY ) = A =⇒ ∆y,a(Y ) = A

as follows.
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1. If a is undefined and we are not preserving an inequality between Θby(BY )
and A, then choose a value for a such that a is larger than any value previously
chosen and such that there is a configuration for a. We restrain a from
entering A and preserve the configuration for a until we find a stage s such
that (Θby(BY, a) = 0)[s] and that Λa,y(A)[s] is equal to Y [s] on all numbers
less than or equal to θby(BY, a)[s]. At stage s, we go to Step 2.

2. Let a0 be the largest number that we have previously enumerated as allowed
to enter A with a certified configuration (or 0 if there is no such number).
For each number n between a0 and a, if n 6∈ A[s] then we restrain n from ever
entering A. We enumerate a into the set of numbers still allowed to enter
A and we say that the current configuration for a together with the current
computation (Θby(BY, a) = 0)[s] is the certified configuration associated with
a during stage s.
For all strategies τ of lower priority, require that if τ enumerates a into
A during stage t then the certified configuration associated with a during
stage s must also exist during stage t. That is, the initial segments of the
sets involved in the configuration for a and the computation from BY must
not have changed. Further, if during the next σ1-expansionary stage u it
happens that Y � θby(BY )[t] is equal to Y � θby(BY )[u] (i.e., Y did not
change) then the change in X is recorded in C and we preserve the inequality
Θby(BY, a) 6= A(a) by preserving the appropriate initial segments of the sets
under construction.
We say that a is now undefined and go to Step 1.

Clearly, if for every Θby we can conclude that Θby(BY ) 6= A then we have
satisfied our requirement. Further, each of the strategies will act at most finitely
often and cause little trouble to the rest of the construction.

Suppose this is not the case and consider the effects of the above strategy σ6

when Θby(BY ) = A. Assume that the strategy is never injured (or be willing
to accept finitely many exceptions). Then σ6 enumerates an infinite increasing
sequence of numbers a as still being allowed to enter A. Call this sequence the
σ6-stream of numbers. For each number n, if n is not an element of the σ6-stream
then n is an element of A if and only if n is enumerated into A before any number
greater than n is enumerated into the σ6-stream. Thus, the restriction of A to
the numbers not in the σ6-stream is recursive. Now, consider a number a which is
enumerated into the σ6-stream, say at stage sa.

By the action of σ6, for every number a in the σ6-stream, if a enters A during
a stage s greater than or equal to the one during which a was enumerated in the
sequence, then the configuration existent when a was enumerated into the stream
by σ6 is still available during stage s. Since Θby(BY ) = A and there are infinitely
many σ1-expansionary stages, it must be the case that during the interval from
stage t to the next σ1-expansionary stage after t, Y changed below λxy,a(XY, a)[s].
Thus, if a is an element of the σ6-stream and is enumerated into the stream at
stage s, then a enters A no later than the first stage u after stage s such that
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Y [u] � λxy,a(XY, a)[s] = Y � λxy,a(XY, a)[s]. It follows that A is recursive relative
to Y .

2.2.7 One sequence (X,Y,Λa,x,Λa,y,Λxy,a)

If we were to work only with one sequence (X,Y,Λa,x,Λa,y,Λxy,a) or equivalently
have only one strategy of type σ1, then our construction would be particularly
simple. We would start with the strategies of type σ1 and σ2 and follow them
with the strategies of type σ3, σ4, σ5, and σ6 (as well as nonrecursiveness strategies
σ0). In the simplest case, one of these strategies could have a finite outcome and
we could conclude that our requirement is satisfied. In the simplest case, the σ1-
strategy could have a finite outcome and we could conclude that our requirement is
satisfied. If not, then either each of the σ6-strategies would have a finite outcome
and we would have satisfied all the necessary requirements Θby(BY ) 6= A, or one
of our strategies would have an infinite outcome and we would conclude that our
requirement is satisfied by virtue of A’s being recursive relative to Y .

In this last case, how can we conclude that A is not recursive? The σ6-strategy
that generates an infinite stream associates with these numbers an infinite stream
of certified configurations. The strategy to ensure Θ 6= A chooses a number a,
preserves its configuration and preserves its certification by preserving B and pre-
serving enough of A to ensure that Y cannot change on any relevant number. If
at a later stage t it happens that Θ(a)[t] = 0 then the diagonalization strategy
enumerates a into A.

3 The global construction

In the previous section, we analyzed the combinations of the strategies associated
with a single sequence (X,Y,Λa,x,Λa,y,Λxy,a). We now combine the strategies for
all possible such sequences and thereby present a proof of Theorem 2.1.

3.1 Interactions between σ-strategies

In fact, there is very little interaction between the strategies associated with differ-
ent sequences. For the most part, their constraints apply to different B’s, C’s, D’s,
and E’s and so are mutually compatible. The only set that they have in common
is A and the only constraints that they put upon A are the finite ones associated
with successful diagonalization and the infinite one constraining the enumeration
of new elements of A to the conditions of a σ6-stream.

Consider a strategy τ constrained to work within an infinite σ6-stream. The
new constraint on τ is that at stage t, τ can enumerate element a into A if and
only if a was enumerated into the σ6-stream at a stage s < t and the configuration
associated with a during the stage s still exists during stage t.

If τ is associated with a σ0-strategy ensuring Θ 6= A then when τ chooses its
number with which to diagonalize, τ chooses that number a from the σ6-stream.
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While τ is waiting for Θ(a) = 0, τ preserves enough of A to preserve the σ6-
configuration associated with a. If Θ(a) is seen to be equal to 0 then τ can enu-
merate a into A consistently with the constraint of σ6.

By inspection of the strategies, this is the only way by which numbers enter A
and so we need not make many internal changes within our families of strategies.

3.2 The tree of strategies

We fix recursive enumerations (Θi : i ∈ ω) of all recursive functionals relative to
the empty set, ((Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a) : i ∈ ω) of all sequences as described in

σ1, and, for each i, (Ψi,j : j ∈ ω), (Θi,j
a : j ∈ ω), and (Θi,j

by : j ∈ ω) of all recursive
functionals with one set argument. Of course, the enumerations (Ψi,j : j ∈ ω),
(Θi,j

a : j ∈ ω), and (Θi,j
by : j ∈ ω) need not depend on i, but the notation will be

convenient below. Let ((i, j) : i, j ∈ ω) be a recursive ordering of ω × ω of order
type ω. We will assume that for all j, i is less than or equal to the position of (i, j)
in this ordering.

We define a tree T of sequences of pairs of strategies and outcomes using recur-
sion. We will also order the immediate extensions of each node from left to right.
Ordering by first difference, we have a left to right ordering for all incompatible
sequences in T . As usual, shorter nodes or nodes to the left will be assigned higher
priority than those below or to the right. For η ∈ T , we will speak of the extensions
of η as being below η in T . We start with the empty sequence as an element of T .

Suppose that η = ((τk, ok) : k < `) is an element of T .

Definition 3.1 Suppose k < ` and τk is of the form σ1(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a).

Then

1. τk is in effect at η if and only if ok is Π2, and

2. τk is unresolved at η if and only if for all j,

(σ6(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
by ),Π2) 6∈ η.

Definition 3.2 Suppose k < ` and τk is of the form σ6(X,Y,Λa,x,Λa,y,Λxy,a,Θby).
Then, τk is in effect at η if and only if ok is Π2.

Strategies below η in T are based on the assumption that there will be infinitely
many expansionary stages for the σ1- and σ6-strategies in effect at η. If τk is
unresolved at η then no strategy in η has determined that A is recursive relative
to Y .

Let imax be the largest i such that there is a k < ` such that τk is equal to
σ1(Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a). (If there is no such i, let imax = −1. )

Case 1. If there is a pair (i∗, j∗) among the first imax many such pairs such that

A. σ1(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a) is in effect at η, unresolved at η, and
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B. one of σ2(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a), σ3(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a,Ψ
i∗,j∗),

σ4(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a,Θ
i∗,j∗

a ), σ5(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a,Θ
i∗,j∗

a ),
or σ6(Xi∗ , Y i∗ ,Λi∗

a,x,Λ
i∗

a,y,Λ
i∗

xy,a,Θ
i∗,j∗

by ) does not appear in (the first coordi-
nate of an element of) η,

then let (i, j) be the least such (i∗, j∗). We determine the immediate successor of
η in T by the first of the following conditions which applies.

1. If σ2(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a) does not appear in η then

η_(σ2(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a),Π1) ∈ T.

2. If σ3(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Ψ

i,j) does not appear in η then

η_(σ3(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Ψ

i,j),Σ2) ∈ T,
η_(σ3(Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a,Ψ

i,j),Π2) ∈ T,

and the Σ2-extension of η is to the right of the Π2-extension.

3. If σ4(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ) does not appear in η then

η_(σ4(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ),Σ1) ∈ T,

η_(σ4(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ),Π1) ∈ T,

and the Π1-extension of η is to the right of the Σ1-extension.

4. If σ5(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ) does not appear in η then

η_(σ5(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ),Σ1) ∈ T,

η_(σ5(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
a ),Π1) ∈ T,

and the Π1-extension of η is to the right of the Σ1-extension.

5. If σ6(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
by ) does not appear in η then

η_(σ6(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
by ),Σ2) ∈ T,

η_(σ6(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a,Θ

i,j
by ),Π2) ∈ T,

and the Σ2-extension of η is to the right of the Π2-extension.

Case 2. If there is no such pair (i, j) as above then we set i = imax + 1 and
determine the immediate successor of η in T as follows.

1. If σ0(Θi) does not appear in η then

η_(σ0(Θi),Σ1) ∈ T,
η_(σ0(Θi),Π1) ∈ T,

and the Σ1-extension of η is to the left of the Π1-extension.
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2. Otherwise,

η_(σ1(X,Y,Λa,x,Λa,y,Λxy,a),Σ2) ∈ T,
η_(σ1(X,Y,Λa,x,Λa,y,Λxy,a),Π2) ∈ T,

and the Σ2-extension of η is to the right of the Π2-extension.

3.2.1 η-configurations

Notice that if η ∈ T then there is a unique strategy σ such that σ appears as the
first component in the last element of the immediate successors of η.

Definition 3.3 Suppose that η is an element of T .

1. Let

{σ1(Xij , Y ij ,Λij
a,x,Λ

ij
a,y,Λ

ij
xy,a) : j < `1}

be the sequence of σ1-strategies σ in effect at η. Then an η-configuration for
a1 is a finite initial segment A and the sets associated with these strate-
gies such that for each j < `1, there is a σ1(Xij , Y ij ,Λij

a,x,Λ
ij
a,y,Λ

ij
xy,a)-

configuration for a1 within this initial segment.

2. We say that an η-configuration is certified if in addition to the above, for every
σ6-strategy τk which is in effect at η, the computation setting Θby(BY, a) = 0
has not changed since the stage during which τk enumerated the configuration
for a as certified.

For example, if η has only one σ1-strategy σ1(X,Y,Λa,x,Λa,y,Λxy,a) with a Π2-
outcome, then an η-configuration for a1 is the same as a σ1(X,Y,Λa,x,Λa,y,Λxy,a)-
configuration for a1, as described in Figure 1. With n such strategies, an η-
configuration is described by n copies of Figure 1, one for each strategy and in-
volving the sets associated with that strategy, sharing a common value for a1.

The ijth component of an η-configuration for a1 is the initial segment of A, Bij ,
Cij , Dij , and Eij which makes up the σ1(Xij , Y ij ,Λij

a,x,Λ
ij
a,y,Λ

ij
xy,a)-configuration

for a1.

3.3 The construction

We organize our construction by stages s, where s is greater than or equal to 1.
Each stage s is divided into at most s many substages t, where t is also greater
than or equal to 1. We proceed as follows during stage s.

Let η[s, 0] equal the empty sequence.
Given η[s, t − 1] with t less than or equal to s, let σ be the strategy which

appears in the first component of the immediate successors of η[s, t − 1]. We may
assume that σ has been assigned a number a1 and an η[s, t−1]-configuration for a1

during an earlier stage and that no component of that configuration has changed
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since the stage during which it was assigned. (Otherwise, a strategy simply ends
the stage since by its hypothesis, it will eventually be assigned such a number a1

by a σ2- or σ5-strategy as described below.)
We follow the instructions of σ, which depend on its type as described below.

At the end of its action, either σ ends stage s and we go to stage s+ 1 with t = 0
or σ determines a value for η[s, t]. In the second case, if t is less than s then we
continue with substage t+ 1 of stage s.

We adapt the pure strategies described in the previous section to work within
the full construction as follows.

3.3.1 Adding an A-diagonalization strategy σ0

Suppose that σ is a diagonalization strategy σ0(Θi) to ensure that Θi 6= A.
If Θi(a1)[s] is not equal to 0 then we restrain any number from entering any

set involved in our η-configuration for a1. We let η[s, t] be η[s, t− 1]_(σ,Π1).
If Θi(a1)[s] is equal to 0 and a1 is not an element of A[s], then we enumerate

a1 into A and end stage s.
If Θi(a1)[s] is equal to 0 and we have already enumerated a1 into A, then we

let η[s, t] be η[s, t− 1]_(σ,Σ1).

3.3.2 Adding a σ1(X,Y,Λa,x,Λa,y,Λxy,a)

Suppose that σ is σ1(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a). We alter the pure σ1-strategy (de-

scribed in the previous section) in the following way.
First, we measure σ-expansions in terms of stages when η[s, t − 1] is active in

the construction. Second, while waiting for a σ-expansionary stage, we preserve
the η[s, t− 1]-configuration for a1.

If s is not σ-expansionary in the above sense then let η[s, t] be η[s, t−1]_(σ,Σ2).
Otherwise, we enumerate the pair (a1, a2) as in the pure σ1-strategy, we let

η[s, t] be η[s, t − 1]_(σ,Π2), and we cancel all strategies on nodes to the right
of η[s, t].

3.3.3 Adding a σ2(X,Y,Λa,x,Λa,y,Λxy,a)

Suppose that σ is σ2(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a). By the definition of T and the

previous paragraph, we may assume that the last strategy mentioned in η[s, t−1] is
of the form σ1(Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a) and that s is expansionary for that strategy

(i.e., the sequence η[s, t− 1] ends with the pair (σ1(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a),Π2)).

We let η[s, t] be η[s, t − 1]_(σ,Π1), and we alter the pure σ2-strategy in the
following way.

First, we may need to change BC to record a change in X. If during the
previous stage s′ during which σ2 acted, some strategy associated with an exten-
sion of η enumerated a number a into A, then let µ be the node in T associated
with that strategy. There are two cases to consider. In the first case, there is no
strategy σ6(Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a,Θby) above µ with Bi = B and Ci = C which

certified a. In this case, we record the change in X by changing B accordingly.
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Otherwise, if Y did not change below λi
xy,a(a) between stage s′ and the current

stage, then X must have changed there. This allows us to record all changes in X
by enumerating c into C, where c is the number depicted in Figure 1, and we do so
without changing B.

Next, let (a1, a2) be the pair just enumerated by σ1(Xi, Y i,Λi
a,x,Λ

i
a,y,Λ

i
xy,a).

We extend the definitions of the functionals Γx,b, Γx,c, and Γbc,x so that we have
a σ1(Xi, Y i,Λi

a,x,Λ
i
a,y,Λ

i
xy,a)-configuration for a1 and thus an η[s, t]-configuration

for a1. If there is a µ such that η[s, t] ⊆ µ, µ was active during a previous stage, the
set of strategies in effect at µ is equal to the set of strategies in effect at η[s, t], and
µ does not currently have an η[s, t]-configuration assigned to it, then we assign the
configuration for a1 to the leftmost and shortest such µ (that is, the one of highest
priority). We cancel all strategies to the right of µ and end stage s.

3.3.4 Adding a σ3(X,Y,Λa,x,Λa,y,Λxy,a,Ψcd,Ψce)

Our only alteration to the pure σ3-strategy is to make it measure expansion-
ary stages taking into account only those stages during which it is active. For
σ = σ3(X,Y,Λa,x,Λa,y,Λxy,a,Ψcd,Ψce) we let η[s, t] be η[s, t − 1]_(σ,Π2) if s is
σ-expansionary and η[s, t− 1]_(σ,Σ2) otherwise.

3.3.5 Adding a σ4(X,Y,Λa,x,Λa,y,Λxy,a,Θa) or a σ5(X,Y,Λa,x,Λa,y,Λxy,a,Θa)

We use the pure σ4- and σ5-strategies without change. For a σ4-strategy σ, we let
η[s, t] be η[s, t − 1]_(σ,Σ1) if the diagonalization witness n has been enumerated
into D and η[s, t−1]_(σ,Σ2) otherwise. (For a σ5-strategy σ, D is replaced by E.)

3.3.6 Adding a σ6(X,Y,Λa,x,Λa,y,Λxy,a,Θby)

We do not alter the first phase of the pure σ6-strategy. We start with a number a
for which we have a certified η[s, t−1]-configuration. We restrain a from entering A
and preserve its configuration. We wait for a stage s such that (Θby(BY, a) = 0)[s].
If the current s is not such a stage then, for σ = σ6(X,Y,Λa,x,Λa,y,Λxy,a,Θby) we
set

η[s, t] = η[s, t− 1]_(σ,Σ2).

Otherwise, we set

η[s, t] = η[s, t− 1]_(σ,Π2).

If there is an a such that we wait forever for an s such that (Θby(BY, a) = 0)[s],
then Θby 6= A and the requirement is satisfied. Otherwise, according to the pure
σ6-strategy, we should restrict the enumeration of numbers into A to those which
appear in the stream it generates.

We must describe how the numbers in that stream are distributed to the strate-
gies associated with nodes extending η[s, t] = η[s, t−1]_(σ,Π2). For this, we make
the same alteration which we made for the σ2-strategies.
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We can assume that σ has been assigned a certified η[s, t− 1]-configuration for
a number a1. When σ finds a computation setting Θby(BY, a1) = 0 and for which
there is are Λa,y(A) computations agreeing with Y below θby(BY, a1), then we say
that these computations certify the η[s, t − 1]-configuration for a1 with respect to
σ. Thus, a1 now has a certified η[s, t]-configuration.

If there is a µ such that η[s, t] ⊆ µ, µ was active during a previous stage, the
set of strategies in effect at µ is equal to the set of strategies in effect at η, and µ
does not currently have an η[s, t]-configuration assigned to it, then we assign the
configuration for a1 to the leftmost and shortest such µ (that is, the one of highest
priority). We cancel all strategies η′ to the right of µ and end stage s. If there is
no such µ then we cancel all strategies to the right of η[s, t].

3.4 Analyzing the construction

Let η∞ be the path through T such that

1. for infinitely stages s and infinitely many substages t, η[s, t] is a subsequence
of η∞, and

2. for at most finitely many stages s and substages t, η[s, t] is to the left of η∞.

Following convention, we say that η∞ is the true path of the construction.

Lemma 3.4 The true path η∞ is an infinite path in T .

Proof. Suppose that η is a finite initial segment of η∞. We will argue that there
is a proper extension of η which is also contained in η∞.

Note that T is a finite branching tree. Consequently, if there are infinitely
many s during which η acts and does not end the stage, then there is a leftmost
proper extension which acts infinitely often and the claim is proven.

There are four cases in which η peremptorily ends a stage during which it acts.
Firstly η might end with a strategy which ends the stage since it is not assigned
a number, which can happen at most finitely often in a row by the strategy’s
assumption on outcomes of strategies above it. Next, η might end with a strategy
for making Θ 6= A, in which case this strategy can end the stage at most once
without being initialized. Otherwise, either η ends with a σ2-strategy, or it ends
with a σ6-strategy, and, in both cases, η allocates an η-certified configuration to
a strategy below it. But, if µ is eligible to be assigned a configuration by η then
µ must have been active during an earlier stage of the construction. If η were
to end all but finitely many of the stages during which it finds a new certified η-
configuration, then there can only be finitely many such µ’s. Eventually, every such
µ will have a certified η-configuration assigned to it. But then the next time that
η finds a new certified η-configuration it will not end the stage and some proper
extension of η will be active.

Lemma 3.5 For each finite η ⊂ η∞, the following conditions hold.
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1. We cancel η during the last stage sη during which there is a t such that η[sη, t]
is to the left of η.

2. We let η act infinitely often.

3. During every stage greater than or equal to sη, we respect all of the constraints
imposed by η during any earlier stage.

Proof. Routine. �

Lemma 3.6 Our construction satisfies all of the requirements of Section 2.1.

Proof. This follows as in the analysis of the individual strategies in Section 2.2. �

Theorem 2.1 follows directly from Lemma 3.6.
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