A SURVEY OF RESULTS ON THE D.C.E. AND »n-C.E. DEGREES

STEFFEN LEMPP

1. EARLY HISTORY

This paper gives a brief survey of work on the d.c.e. and n-c.e. degrees done over
the past fifty years, with particular emphasis on work done by or in collaboration
with the Kazan logic group founded and headed by Arslanov.

1.1. Definitions. The history of the subject dates back almost fifty years to the
following

Definition 1.1 (Putnam [Pu65]). For n > 0, a set A C w is n-c.e. (or n-r.e.) if
there is a computable approximation {A;}se,, such that Ay = 0 and for all x,

A(z) = limg As(z), and
[{s | As(z) # Asi1(z)}| <.

So a 1-c.e. set is simply a c.e. set, and a 2-c.e. set is a difference of two c.e. sets
(also called a d.c.e. set).

Putnam actually called the n-c.e. sets “n-trial and error predicates” (and did
not require Ag = (). On the other hand, Gold [Go65], in a paper published in the
same volume of the journal, defined “n-r.e.” to mean X0 (and is sometimes falsely
credited with the above definition).

Ershov [Er68al, [Er68Db, [Ex70] expanded this definition into the transfinite, defining
the a-c.e. sets for every computable ordinal o. He proved many of the fundamental
results about this so-called Ershov hierarchy ¥ *.

For a > w, his notion depends on the ordinal notation for a. E.g., given any
fixed notation for any fixed computable «, Ershov showed that the a-c.e. sets do
not exhaust all the AJ-sets; on the other hand, varying over all notations for w?,
even the w?-c.e. sets exhaust all the AY-sets.

In this paper, we will concentrate on the Turing degrees of the a-c.e. sets for
a < w, and up to degree, one can define a set A to be w-c.e. by replacing the second
condition in the above definition by

{s | As(z) # Asr(2)}] < f(2)

for some computable strictly increasing function f.
A Turing degree is called a-c.e. if it contains an a-c.e. set.
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1.2. Questions and basic results. The main focus of this paper will be the
answers that have been obtained over the past fifty years to some of the following

Questions 1.2. e What is the structure of the d.c.e. degrees? Of the n-c.e.

degrees?

e Are they isomorphic, or at least elementarily equivalent, to the c.e. degrees?
To the AY-degrees? To each other?

e What is the structure of the c.e. degrees inside the d.c.e. degrees? Of the
m-c.e. degrees inside the n-c.e. degrees for m < n? In either case, does
the former form an elementary substructure in the latter? Or at least a
¥1-elementary substructure?

e Is the first-order theory of the d.c.e. degrees decidable? Of the n-c.e. de-
grees? If not, which fragments are decidable?

While Ershov’s work focused on the n-c.e. sets and their m-degrees, the first
result on their Turing degrees is probably the following

Theorem 1.3 (Lachlan (1968, unpublished)). Every nonzero d.c.e. degree d bounds
a nonzero c.e. degree a < d such that d is c.e. in a.

More generally, every nonzero (n + 1)-c.e. degree d bounds a nonzero n-c.e.
degree a < d such that d is c.e. in a.

So, in particular, the n-c.e. degrees are downward dense for all n, giving an
elementary, in fact a Yp-elementary, difference to the A9-degrees.

Proof (for n =1): Use the Sacks Density Theorem if d is c.e.
Otherwise, fix a d.ce. set D = E— F € d (for c.e. sets E and F) and let
A={(z,s) |3t (x e Es—F,)}. O

In his thesis, Cooper first separated the c.e. and d.c.e. Turing degrees:

Theorem 1.4 (Cooper [CoTl]). There is a properly d.c.e. degree, i.e., a non-c.e.
d.c.e. degree.

In fact, Cooper stated his theorem as “There is a set btt-reducible to K whose
degree is not recursively enumerable”.

1.3. Related results. We digress to highlight some connections between n-c.e.
degrees and relative enumerability:

Theorem 1.5 (Cooper and Yi [CYTI]). (1) There is an isolated d.c.e. degree
d, i.e., there is a c.e. degree a < d such that any c.e. degree b < d is
actually < a. (So, by Lachlan, d is c.e. in a.)

(2) There is a nonisolated d.c.e. degree d, i.e., one for which the c.e. degrees
< d have no mazrimal element.

This theorem was later strengthened as follows:

Theorem 1.6 (Ishmukhametov [Is99]). (1) Thereis a d.c.e. degree d for which
there is a unique c.e. degree a < d such that d is c.e. in a.
(2) There is a d.c.e. degree d for which there are c.e. degrees a < b < d such
that d is c.e. exactly in the c.e. degrees in the interval [a, D).

The following theorem gives an early hint at a difference between d.c.e. degrees
and n-c.e. degrees for n > 2:
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Theorem 1.7 (Arslanov, LaForte and Slaman [ALS9S§]). (1) Everyw-c.e. de-
gree d which is c.e. in a c.e. degree a < d is actually 2-c.e.
(2) On the other hand, there is a d.c.e. degree a such that for every n > 2,
there is a degree d > a c.e. in a which is (n + 1)-c.e. but not n-c.e.

2. A SURVEY OF RESULTS AND OPEN QUESTIONS

We now return to the main theme of this paper, answers and partial answers to
the questions posed above:

2.1. Elementary differences. The first elementary difference between the c.e.
and the d.c.e. Turing degrees was found by Arslanov:

Theorem 2.1 (Arslanov [Ar85 [Ar88]). Every nonzero d.c.e. degree d cups to 0/
in the d.c.e. degrees, i.e., there is an incomplete d.c.e. degree e such that dUe = 0.
(The same holds for the n-c.e. degrees for alln > 2.)

By Yates (1973, unpublished), the above fails for the c.e. degrees, so there is a
Y.3-elementary difference between the c.e. degrees on the one hand, and the n-c.e.
degrees (for n > 2) on the other hand. A sharper elementary difference was given
by Downey soon afterwards:

Theorem 2.2 (Downey [Do89]). There are nonzero d.c.e. degrees d and e such
thatdNe=0 anddUe=0".

Of course, the Lachlan Nondiamond Theorem shows that the above fails for the
c.e. degrees, which gives a ¥s-elementary difference between the c.e. degrees on the
one hand, and the n-c.e. degrees (for n > 2) on the other hand.

A third elementary difference was given by the following

D.C.E. Nondensity Theorem (Cooper, Harrington, Lachlan, Lempp and
Soare [CHLLS91]). There is a maximal incomplete d.c.e. degree d, so the d.c.e.
degrees are not dense.

(In fact, d is also maximal in the a-c.e. degrees for all « € [2,w], so the a-c.e.
degrees are not dense.)

This shows that the c.e. degrees on the one hand, and the a-c.e. degrees (for
a € [2,w]) on the other hand, are not Yo-elementarily equivalent, whereas they are
clearly ¥;-elementarily equivalent (since any finite partial order can be embedded
in any of them).

Downey [Do89] conjectured, more as a challenge to the research community
than as a firm belief, that the 2-c.e. degrees and the n-c.e. degrees are elementarily
equivalent for all n > 2. However:

“3-Bubble” Theorem (Arslanov, Kalimullin and Lempp [AKLI10]). The
following holds in the 3-c.e. degrees but not in the 2-c.e. degrees:

There are degrees ¢ > b > a > 0 such that any degree x < ¢ is comparable to
both a and b.

(The above statement is actually a slight improvement of the original statement
due to Wu and Yamaleev [WY12].)
This leaves open the following

Conjecture 2.3. For any distinct m,n > 2, the m-c.e. degrees and the n-c.e.
degrees are not elementarily equivalent.
(We suspect that an “n-Bubble” Theorem holds.)
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2.2. Non-elementary substructures. After studying elementary differences, we
next turn to the study of elementary substructures:

Theorem 2.4 (Slaman (1983, unpublished)). There is a Slaman triple, i.e., there
are c.e. degrees a, b, c such that

e there is a nonzero A9-degree x < a such that ¢ £ bUx, and
e there is mo such c.e. degree X.

By Lachlan’s result, this implies that the n-c.e. degrees do not form a -
elementary substructure of the AJ-degrees for any n.

Theorem 2.5 (Yang and Yu [YYO06] for n = 1; Cai, Shore and Slaman [CSS12]).
There are n-c.e. degrees a, b, c,e such that

e there is a nonzero (n+ 1)-c.e. degree x < a such that x £ e and ¢ £ bUx,
and
e there is no such n-c.e. degree X.

This implies that the m-c.e. degrees do not form a ¥;-elementary substructure
of the n-c.e. degrees whenever 1 < m < n. (For m = 2, this result was also claimed
by Arslanov and Yamaleev (unpublished).)

2.3. Undecidability. Finally, degree structures are very complicated from an al-
gebraic point of view, so it is natural to make this precise:

Theorem 2.6 (Cai, Shore, Slaman [CSS12]). Given n and a computable partial
order (w, X), there are c.e. degrees b, c and (uniformly) n-c.e. degrees a and d; (for
i € w) such that

e cach d; is mazimal in the n-c.e. degrees with the property that d; < Uje,d;
and c £ bUd;, and
o d; <djUaiffi=<j.
By Tuaitslin’s result [Ta62] that the theory of partial orders and the complement of
the theory of finite partial orders are effectively inseparable, this implies that the
first-order theory of the n-c.e. degrees is undecidable for all n.

Undecidability had been established before by Harrington and Shelah [HS82] for
the c.e. degrees, and by Epstein [Ep79] and Lerman [Le83] for the AJ-degrees.
This leads to the final

Conjecture 2.7. For all n, the first-order theory of the n-c.e. degrees is as com-
plicated as true first-order arithmetic.

The above was shown by Harrington, Slaman and Woodin (1980’s) for the c.e.
degrees, and by Shore (1981) for the AS-degrees.
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