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Abstract. Recently, several authors have explored the connections between NP-complete

problems for �nite objects and the complexity of their analogs for in�nite objects. In this

paper, we will categorize in�nite versions of several problems arising from �nite complexity

theory in terms of their recursion theoretic complexity and proof theoretic strength. These

in�nite analogs can behave in a variety of unexpected ways.

Startling parallels exist between the computational complexity of certain graph theoretic

problems and the recursion theoretic complexity and proof theoretic strength of their in�-

nite analogs. For example, the problem of deciding which �nite graphs have an Euler path

is known to be P-time computable [9], and Beigel and Gasarch [4] have shown that the

problem of deciding which in�nite recursive graphs have an Euler path is arithmetical. By

contrast, the problem of deciding which �nite graphs have Hamilton paths is NP-complete

[8], and Harel [6] has shown that the problem of deciding which in�nite recursive graphs

have a Hamilton graph is �

1

1

complete. Thus, the possibly greater computational complex-

ity is paralleled by a demonstrable increase in recursion theoretic complexity. This pattern

can also be seen through an application of the techniques of reverse mathematics. The

existence of a function that decides which graphs have Euler paths is provably equivalent
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to ACA

0

, while the existence of a similar function for Hamilton paths is equivalent to the

much stronger axiom system �

1

1

�CA

0

.

Unfortunately, other graph theoretic problems do not demonstrate this parallelism. We

have selected some examples to illustrate two general themes. First, di�erent in�nite state-

ments related to a �xed �nite problem can have di�erent recursion theoretic complexities.

This would seem to indicate that the use of a preferred in�nite formulation might lead to

natural parallels between �nite complexity and recursion theoretic complexity. However,

the behavior of in�nite analogs is not so easily tamed. Indeed, similar formulations of

in�nite versions of problems with di�erent �nite complexities may have the same recursion

theoretic complexity.

Variability among graph coloring problems.

This section contains examples illustrating our �rst theme. The problem of determining

which �nite graphs are 3-chromatic is NP-complete [8]. Extrapolating from the problem of

�nding Hamilton paths, we would expect in�nite analogs of the 3-coloring problem to be �

1

1

complete. However, the actual recursion theoretic complexity depends on the formulation

of the in�nite analog, as demonstrated by the following three theorems. Our notation is

patterned after that of Soare [12].

The following theorem shows that the set of indices of 3-chromatic recursive graphs

is arithmetical, and so is much simpler than the �

1

1

complete set we are seeking. This

result is implicit in the work of Beigel and Gasarch [1]. By formulating their results in

terms of partial recursive functions rather than index sets, Beigel and Gasarch isolate

the recursion theoretic complexity contributed by questions of chromaticity from that

contributed by the coding of the graphs. To maintain uniformity with later results, we

have chosen to use index sets here.

Theorem 1. The set of indices of 3-chromatic recursive graphs is �

0

2

de�nable.

Proof. Let G

1

denote the set of indices of 3-chromatic recursive graphs. Note that x 2 G

1

if and only if every �nite subgraph of the graph with index x is 3-chromatic. Thus, G

1

is
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�

0

1

de�nable, using the set of indices of all recursive graphs as a parameter. Since the set

of indices of recursive graphs is �

0

2

de�nable, G

1

is also �

0

2

de�nable. �

In order to �nd an in�nite analog of the 3-coloring problem with a complicated associated

index set, we examine natural supersets of the 3-chromatic graphs. One candidate is the

collection of �nitely colorable graphs. The set of indices of the �nitely colorable graphs

is de�nable by the conjunction of a �

0

2

and a �

0

2

formula, and so is �

0

3

de�nable. (See

Beigel and Gasarch [1]). By expanding our superset again to the collection of graphs

with �nitely colorable connected components, we gain some complexity in the index set.

Theorem 2. The set of indices of recursive graphs with �nitely colorable connected com-

ponents is �

0

3

complete.

Proof. Let G

1

denote the set of indices of recursive graphs with �nitely colorable connected

components. Suppose that x is the index of a graph G. Then x 2 G

1

if and only if for

every vertex v of G, there is an integer k such that every �nite connected subgraph of

G containing v is k-chromatic. Thus, G

1

is a �

0

3

de�nable subset of the set of indices of

recursive graphs.

To show that G

1

is �

0

3

complete, let G

0

denote the set of indices of those recursive graphs

which have connected components that are not �nitely colorable. It su�ces to show that

(Cof; Cof) �

1

(G

0

;G

1

). Here, Cof = fe :W

e

is co�niteg.

For each e 2 !, de�ne the graph G

e

as follows. G

e

will contain vertices labeled v

m;n

for each m and n in !, and some additional unlabeled vertices. For each m, the vertex

v

m;0

will be included in a complete graph on m+ 1 vertices. For every m and j all edges

of the form (v

m;j

; v

m;j+1

) will be included in G

e

. Finally, the edge (v

m;j

; v

m+1;j

) will be

included in G

e

if and only if feg(m) halts by stage j. For every e, G

e

is recursive. By the

s-m-n Theorem, there is a 1-1 recursive function f such that for every e, f(e) is an index

for G

e

.

Note that if e 2 Cof , then there is a j such that the vertices fv

m;n

: m > jg are all in the

same connected component. Consequently, arbitrarily large complete �nite subgraphs are
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contained in this component, and it is not �nitely colorable. Thus, if e 2 Cof , f(e) 2 G

0

.

Now suppose that e 2 Cof and C is a connected component of G

e

. C must contain a

vertex of the form v

m;0

. Since e 2 Cof , there is a least j greater than m such that feg(j)

never halts. Consequently, C cannot contain any vertex v

n;k

such that n > j. This ensures

that C is j + 1-chromatic, so f(e) 2 G

1

. Thus, f witnesses that (Cof; Cof) �

1

(G

0

;G

1

),

as desired. �

For the next proof, we will need the following notation for �nite sequences of natural

numbers. Assuming a recursive bijection between ! and !

<!

, we will use a Greek letter

(usually � or �) to denote both a sequence and its integer code. The formula � � � means

that � is a (not necessarily proper) initial segment of � . Thus, T is a tree if whenever

� 2 T and � � � , then � 2 T .

Given an arbitrary index e, feg may or may not be the characteristic function for a

recursive tree. To streamline our discussion, consider the following auxiliary function.

De�nition 3. For e 2 !, the partial recursive function �

e

is de�ned by:

�

e

(�) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1 if 8� � � (feg(�) = 1);

0 if feg(�) = 0 ^ [8� � � (feg(�) = 0 _ feg(�) = 1)]

^[8� � � 8� � � (feg(�) = 0! feg(�) = 0)];

" otherwise.

Na��vely, �

e

approximates the characteristic function of a tree. In particular, �

e

is total

if and only if e is the index of a recursive tree. Note that by the s-m-n Theorem, there is

a 1-1 recursive function which maps each e to an index for �

e

.

So far, we have examined sets of graphs that can be colored with a set of colors that

is \small" in some sense. In �nite graphs, coloring with a small number of colors forces

repeated use of some color. Thus, it seems reasonable to consider graphs with colorings

that use one color in�nitely often. Note that this set of graphs is a superset of the graphs

with �nitely colorable connected components.
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Theorem 4. (Tirza Hirst and Harel [7]) The set of indices of recursive graphs with

colorings which use one color in�nitely often is �

1

1

complete.

Proof. Let G denote the set of indices of recursive graphs with colorings that use one color

in�nitely often. Note that x 2 G if and only if there is a function � mapping the vertices of

the graph with index x into !, such that � maps neighboring vertices to di�erent values,

and 0 appears in�nitely often in the range of �. This statement can be formalized using a

single existential set quanti�er followed by an arithmetical formula, so G is �

1

1

de�nable.

To show that G is �

1

1

complete, we will show that T �

1

G, where T denotes the set

of indices of recursive trees which are not well-founded. With each e 2 !, we associate a

partial recursive graph, G

e

. The vertex set for G

e

consists of (codes for) elements of !

<!

.

For every �; � 2 !

<!

, the characteristic function for the edge set of G

e

is de�ned by

E

e

(�; �) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if �

e

(�) = 1 ^ �

e

(�) = 1 ^ (� � � _ � � �);

1 if �

e

(�) = 1 ^ �

e

(�) = 1 ^ :(� � � _ � � �);

1 if �

e

(�) # ^�

e

(�) # ^(�

e

(�) = 0 _ �

e

(�) = 0);

" otherwise.

Roughly, we connect � and � by an edge if they are incomparable nodes on the tree or if

one of them is not in the tree, ignoring those nodes whose status is suspect. By the s-m-n

Theorem, there is a 1-1 recursive function f such that for every e, f(e) is an index for G

e

.

If e 2 T , then e is the index of a recursive tree containing an in�nite path P . Con-

sequently, f(e) is the index of a recursive graph. We can color this graph by mapping

every node of P to 0, and mapping all other nodes to their integer codes. Since 0 is used

in�nitely often in this coloring, f(e) 2 G.

Now suppose e =2 T . If e is not the index of a recursive tree, then f(e) is not the index

of a recursive graph, so f(e) =2 G. If we suppose that e is the index of a recursive tree

T , then T is well-founded. Suppose, by way of contradiction, that there is a coloring of

the associated recursive graph G

e

that uses 0 in�nitely often. All the nodes of G

e

that

5



are colored 0 correspond to comparable nodes of T , contradicting the claim that T is

well-founded. Again, we have f(e) =2 G, completing the proof that T �

1

G. �

The techniques of reverse mathematics can be used to draw a distinction between

the �rst two of our in�nite analogs and the third. The following two results make use

of the axiom systems RCA

0

(Recursive Comprehension Axiom), ACA

0

(Arithmetical

Comprehension Axiom), and �

1

1

�CA

0

(�

1

1

Comprehension Axiom). For a brief overview

of reverse mathematics, see Simpson [11]

Theorem 5 (RCA

0

). The following are equivalent:

(1) ACA

0

.

(2) For any sequence of graphs hG

i

: i 2 !i, there is a function s : ! ! 2 such that

s(i) = 1 if and only if G

i

is 3-chromatic.

(3) For any sequence of graphs hG

i

: i 2 !i, there is a function s : ! ! 2 such that

s(i) = 1 if and only if every connected component of G

i

is �nitely colorable.

Proof. To prove (1)!(2) and (1)!(3), it su�ces to show that the function s is arithmeti-

cally de�nable in hG

i

: i 2 !i. For (2), a �

0

1

de�ning formula for s can be extracted from

the proof of Theorem 1. Similarly, for (3), imitating the proof of Theorem 2 yields a �

0

3

de�ning formula.

By Lemma 2.7 of [10], to prove that (2)!(1) and (3)!(1), it su�ces to show thatRCA

0

can prove that for any injection g : ! ! !, there is a sequence of graphs hG

i

: i 2 !i such

that the range of g is �

0

1

de�nable in the associated function s. Fix g and assume RCA

0

.

We will de�ne a sequence of graphs that works for both (2) and (3). Let G

n

have ! as its

vertex set. For every j 2 !, include the edge (j; j + 1) in G

n

. For j < k, add the edge

(j; k) to G

n

if and only if 9t � j (g(t) = n). The sequence hG

i

: i 2 !i is �

0

1

de�nable in

g, so RCA

0

proves it exists. Let s be as in (2) or (3). Then s(n) = 1 if and only if n is

not in the range of g. Thus, the range of g is �

0

1

de�nable in s, as desired. �

The proceeding proof still holds if 3-chromatic is replaced by 2-chromatic in the state-

6



ment of (2). Thus, these in�nite analogs of the 2-coloring and 3-coloring problems are

provably equivalent.

Theorem 6 (RCA

0

). The following are equivalent:

(1) �

1

1

�CA

0

.

(2) For any sequence of graphs hG

i

: i 2 !i, there is a function s : ! ! 2 such that

s(i) = 1 if and only if G

i

has a coloring in which one color is used in�nitely often.

Proof. To prove that (1)!(2), it su�ces to note that the function s is �

1

1

de�nable in

hG

i

: i 2 !i, and so exists by �

1

1

�CA

0

. To prove the converse, we will use the fact that

�

1

1

�CA

0

is equivalent to the existence of a function that decides which members of a

sequence of trees are well founded. (This is an easy consequence of Lemma 6.1 in [3].)

Assume RCA

0

, and suppose that hT

i

: i 2 !i is a sequence of trees. With each tree

T

n

, we associate a graph G

n

as follows. The vertices of G

n

are the nodes of T

n

, and two

vertices of G

n

are connected if and only if the associated nodes are incomparable in the

tree ordering. The sequence hG

i

: i 2 !i is �

0

1

de�nable in hT

i

: i 2 !i, and so exists by

RCA

0

. Let s be as in (2). Then s(i) = 1 if and only if G

i

contains an in�nite collection

of pairwise disconnected vertices, which occurs if and only if T

i

is not well founded. Thus

(2) implies �

1

1

�CA

0

, completing the proof. �

Variability among graph isomorphism problems.

From the results in the preceding section, it is clear that the recursion theoretic strength

of in�nite analogs depends in part on their formulation. As shown by Harel and Tirza

Hirst [7], adoption of a standardized translation yields interesting parallels between �nite

complexity and recursion theoretic complexity for restricted classes of problems. However,

for broader classes of problems, the parallels break down. In this section, we will consider

three problems of diverse �nite complexity that all have �

1

1

complete in�nite analogs, thus

illustrating our second theme.

Consider the following three variants of the subgraph isomorphism problem:

7



P1. Given a pair of �nite graphs, H and G, determine if H is isomorphic to a subgraph

of G.

P2. For a �xed �nite graph H, given a �nite graph G, determine if H is isomorphic to a

subgraph of G.

P3. For a �xed �nite graph G, given a �nite graph H, determine if H is isomorphic to a

subgraph of G.

P1 is the familiar form of the subgraph isomorphism problem, and is known to be NP

complete [2]. One algorithm for solving P2 and P3 consists of enumerating all functions

from H into G, and checking each one to see if it is the desired isomorphism. The number

of functions to check is bounded by jGj

jHj

, where jGj denotes the number of vertices of

G. Since H is �xed in P2, the number of functions to check is a constant power of jGj.

Furthermore, the number of steps required to check each function is bounded by a constant

based on the �xed value jHj. Thus, P2 can be solved in a number of steps which is bounded

by a polynomial in jGj. In P3, G is �xed, and we can discard any graphs H such that

jHj > jGj, so the number of steps required to solve an instance of P3 is bounded by a

constant based on the �xed value jGj. Summarizing, the complexity of three problems

ranges from NP complete to constant time computable.

Compared to the coloring problem in x1, these subgraph isomorphism problems have

very straightforward in�nite analogs. Despite the variation in the computational complex-

ity of the �nite problems, their in�nite analogs are all �

1

1

complete, as is shown in the

following three theorems.

Theorem 7. (Tirza Hirst andHarel [7]) The set of indices of ordered pairs of recursive

graphs, (H;G), such that H is isomorphic to a subgraph of G is �

1

1

complete.

Proof. Let G be the set of indices of ordered pairs of recursive graphs such that the �rst

graph is isomorphic to a subgraph of the second. Since x 2 G if and only if an appropriate

isomorphism exists, it is easy to see that G is �

1

1

de�nable.
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To prove that G is �

1

1

complete, we will show that T �

1

G, where T denotes the set

of indices of recursive trees which are not well founded. With each e 2 !, we associate a

pair of partial recursive graphs, H

e

and G

e

. H

e

is a countably in�nite linear graph with

a triangle attached at one end. To be precise, the vertex set of H

e

is fv

n

: n 2 !g and

the edge set is f(v

0

; v

2

)g [ f(v

n

; v

n+1

) : n 2 !g. If e is the index of a recursive tree T ,

then G

e

consists of a copy of T with a triangle attached to the root, and a collection of

disconnected vertices. In general, the vertex set for G

e

consists of fv

0

; v

1

; v

2

g and (codes

for) the elements of !

<!

. Let �

0

denote the code for the empty sequence. The edge (v

0

; �

0

)

and the three edges of the form (v

i

; v

j

) where i 6= j are included in G

e

. For every � and �

in !

<!

, the edge (�; �) is included in G

e

if and only if

�

e

(�) = �

e

(�) = 1 ^ � � � ^ :9�(� ( � ( �);

where �

e

is the function de�ned in x1. By the s-m-n theorem, there is a recursive 1-1

function f such that for every e, f(e) is an index for the pair (H

e

; G

e

).

If e 2 T , then e is the index of a recursive tree containing an in�nite path P . In this

case, H

e

is isomorphic to the subgraph of G

e

consisting of the base triangle and a copy of

P . Thus f(e) 2 G.

Now suppose that e =2 T . If e is not the index of a recursive tree, then G

e

is not a

recursive graph, so f

e

=2 G. If e is the index of a recursive tree T , then T is well founded.

The graph G

e

is a copy of T with a triangle attached to its base. Any isomorphism mapping

H

e

into G

e

must map the triangle in H

e

into the triangle in G

e

, and the linear portion

of H

e

to an in�nite path in the copy of T . Since T is well founded, no such isomorphism

exists. Thus f(e) =2 G, completing the proof that T �

1

G. �

Theorem 8. There is a recursive graph H, such that the set of indices of recursive graphs

containing a subgraph isomorphic to H is �

1

1

complete.

Proof. In the proof of Theorem 7, H

e

is a �xed recursive graph de�ned without reference

to e. Any recursive 1-1 function mapping e to an index for the graph G

e

(de�ned as in the

9



proof of Theorem 7) witnesses the desired 1-reduction. �

Theorem 9. There is a recursive graph G, such that the set of indices of recursive graphs

that are isomorphic to a subgraph of G is �

1

1

complete.

Proof. We begin the proof by constructing the recursive graph G. This graph will consist

of a countable collection of subgraphs hG

e

: e 2 !i, where each G

e

consists of a tree-like

substructure together with some spurious disconnected subgraphs.

For each e 2 !, G

e

will be constructed from cycles labeled C(e; �; k) for each non-empty

� 2 !

<!

and each k 2 !. The cycle C(e; �; k) consists of 2(e + 1) + 2 vertices joined to

make a circular graph. We designate two vertices of C(e; �; k) as v

0

e;�;k

and v

1

e;�;k

, and

require that the paths joining them contain e + 2 edges. To give a concrete example,

C(1; �; k) looks like a hexagon, with the bottom vertex labeled v

0

1;�;k

and the top vertex

labeled v

1

1;�;k

.

The tree-like substructure of G

e

consists of a triangular base with a vertex labeled t

0

,

and branches consisting of linked cycles. We say that a cycle C(e; �; k) is exact if k is the

least integer such that 1) �

e

(�) # by stage k for every � which is an initial subsequence of �

or has a code less than �, and 2) �

e

(�) = 1. (Here �

e

is the function de�ned in x1.) Edges

are added to G

e

by the following two rules. Connect v

0

e;�;k

to t

0

if and only if C(e; �; k)

is an exact cycle and � is a sequence of length 1. Connect v

1

e;�;k

to v

0

e;�;j

if and only if

C(e; �; k) and C(e; �; j) are exact cycles and � = � �hmi for some m 2 !. Cycles which are

not exact are spurious; they are included in G

e

, but are never connected to the tree-like

substructure.

Let G be the union of all the G

e

's. G is recursive, since the rules for adding edges involve

only bounded computations. Furthermore, if e is the code of a recursive tree T , then the

tree-like substructure of G

e

can be mapped homomorphically onto T by identifying exact

cycles with corresponding nodes. Viewing the cycles as nodes, the substructure is well

founded if and only if T is a well founded tree. If e is not the code of a recursive tree, �

e

is not total, and the tree-like substructure of G

e

is �nite.

10



Let G be the set of indices of recursive graphs that are isomorphic to a subgraph of G.

Since x 2 G if and only if an isomorphism exists, it is easy to see that G is �

1

1

de�nable. To

prove that G is �

1

1

complete, we will show that T �

1

G, where T denotes the set of indices

of recursive trees which are not well founded. With each e 2 !, we associate a recursive

graph H

e

consisting of a countable linear graph with each node replaced by a 2(e+ 1)+ 2

cycle and with a triangle attached at one end. More precisely, H

e

contains a triangle with

one vertex labeled t

0

, and (copies of) the cycles C(e; h0i; k) for each k 2 !. To the edges

already speci�ed, we add the edge (t

0

; v

0

e;h0i;k

) and the edges (v

1

e;h0i;k

; v

0

e;h0i;k+1

) for each

k 2 !. By the s-m-n Theorem, there is a recursive 1-1 function f such that for every e,

f(e) is an index for H

e

.

If e 2 T , then e is the index of a recursive tree containing an in�nite path P . In this

case, H

e

is isomorphic to the subgraph of G

e

consisting of the base triangle and a copy of

P with nodes replaced by cycles. Thus f(e) 2 G.

Now suppose that e =2 T . Note that because the size of the cycles varies with e, if

H

e

is isomorphic to a subgraph of G, then H

e

is isomorphic to a subgraph of G

e

. Since

e =2 T , G

e

consists of disconnected cycles and a well founded tree-like substructure. If H

e

is isomorphic to a subgraph of G

e

, then the tree-like substructure of G

e

contains an in�nite

path, yielding a contradiction. Thus f(e) =2 G completing the proof that T �

1

G. �

Using the reverse mathematics framework, the preceding three theorems can be lumped

together into a single equivalence result.

Theorem 10 (RCA

0

). The following are equivalent:

(1) �

1

1

�CA

0

.

(2) For any sequence of ordered pairs of graphs, h(H

i

; G

i

) : i 2 !i, there is a function

s : ! ! 2 such that s(i) = 1 if and only if H

i

is isomorphic to a subgraph of G

i

.

(3) For any graph H, and any sequence of graphs hG

i

: i 2 !i, there is a function

s : ! ! 2 such that s(i) = 1 if and only if H is isomorphic to a subgraph of G

i

.

(4) For any graph G, and any sequence of graphs hH

i

: i 2 !i, there is a function

11



s : ! ! 2 such that s(i) = 1 if and only if H

i

is isomorphic to a subgraph of G.

Proof. To prove that (1) implies (2), (3), or (4), it su�ces to note that the function s

is �

1

1

de�nable in the appropriate sequence of graphs. Since (3) is a special case of (2),

we need only show that (3)!(1) and (4)!(1) to complete the proof. As in the proof of

Theorem 6, we will determine which members of a sequence of trees are well founded. For

the remainder of the proof, assume RCA

0

and let hT

i

: i 2 !i be a sequence of trees.

To prove that (3)!(1), we use a simpli�ed version of the construction in the proof of

Theorem 8. As in that proof, let H be a countable linear graph with a triangle attached

to one end. For each n 2 !, let G

n

be a copy of T

n

, with a triangle attached to the root.

The graph H and the sequence hG

i

: i 2 !i are �

0

1

de�nable in hT

i

: i 2 !i, so RCA

0

proves that they exist. Let s be as in (3). Then s(i) = 1 if and only if H is isomorphic

to a subgraph of G

i

, which occurs if and only if T

i

has an in�nite path. Thus (3) implies

�

1

1

�CA

0

.

To prove that (4)!(1), we use a simpli�ed version of the proof of Theorem 9. As in

that proof, let H

n

consist of a linear graph with each node replaced by a 2(n+1)+2 cycle,

and with a triangle attached to one end. The graph G consists of subgraphs G

n

for each

n 2 !, where each G

n

is a copy of T

n

with non-base nodes replaced by 2(n+1)+2 cycles,

and a triangle attached to the base node. The graph G and the sequence hH

i

: i 2 !i

are �

0

1

de�nable in hT

i

: i 2 !i, so RCA

0

proves that they exist. If s is as in (4), then

s(i) = 1 if and only if H

i

is isomorphic to a subgraph of G, which occurs if and only if H

i

is isomorphic to a subgraph of G

i

. Finally, H

i

is isomorphic to a subgraph of G

i

if and

only if T

i

is not well founded, so (4) implies �

1

1

�CA

0

, completing the proof. �

Although in�nite analogs are useful for studying restricted classes of problems, the

preceding examples indicate that, in a general setting, their behavior does not necessarily

parallel that of the associated �nite problems. However, examination of results in �nite

complexity can provide motivation for appealing results in recursion theory and reverse

mathematics.
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