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Abstract

We show the existence of a high r.e. degree bounding only joins of

minimal pairs and of a high

2

nonbounding r.e. degree.

0 Introduction

An important topic in the study of recursively enumerable sets and degrees

has been the interaction between the jump operator and the order theoretic

properties of an r. e. set A (in the lattice E of all r. e. sets) and of its degree a

in R, the upper semilattice of the r. e. degrees. An early theme in this area

was the idea that sets with \low" jumps should behave like the recursive sets

while those with \high" jumps should exhibit properties like the complete

sets. For example, in the lattice E

�

of r. e. sets modulo �nite sets, we know

from Soare[23] that if A is low, i. e. A

0

�

T

;

0

, then L

�

(A), the lattice of r. e.

supersets of A, is isomorphic to E

�

. In R there are many instances of the low

�
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degrees behaving like the recursive one. A classic example is the Robinson

[15] Splitting Theorem: If d < c and d is low then there are r. e. a and b

with d < a, b < c such that a _ b = c. (This generalizes the Sacks[16]

Splitting Theorem in which d is recursive.) For the high sets (A

0

�

T

;

00

) and

degrees, the trend of results has been that anything possible happens. Here

the classic examples are Martin's [14] theorem that every high degree contains

a maximal set and Cooper's [2] result that there is a minimal pair (a;b 6= 0

with a ^ b = 0) below every high degree. More recently, Shore and Slaman

[19] and [20] have shown that other important phenomena (the special triples

of Slaman[21] and the nonsplitting pairs of Lachlan [12], respectively) occur

below every high degree. As for the lattice E

�

, Cholak[1] and Harrington and

Soare [10] have proven that every possible lattice of supersets L

�

(A) occurs

as one of a high set B, i. e. there is a high B with L

�

(A)

�

=

L

�

(B). Indeed, if

A is not recursive, they construct an automorphism of E

�

which takes A to

B:

There has been some recent work extending such results on low sets to

low

2

ones (A

00

�

T

;

00

). Harrington et al. [9] have shown that if A is low

2

then

L

�

(A)

�

=

E

�

. In R, Shore and Slaman [18] have shown that all extensions

of embeddings not ruled out by two classical theorems can be done in the

low

2

r. e. degrees. (They also supply a proof of Harrington's extension of the

Robinson splitting theorem to the situation where c is assumed low

2

and d

can be an arbitrary degree below c:) In E

�

, these results have supplied various

characterizations of the high and low

2

degrees. The high ones, for example,

are precisely the ones containing maximal sets (Martin [14]). The low

2

de-

grees are precisely those containing sets with no maximal superset (Lachlan

[11] and Shoen�eld [17]). In R, the above mentioned results of Shore and

Slaman [18], [19] have separated these two classes. More recently,Groszek

and Slaman [8] have combined Lachlan's nonbounding theorem [13] (there is

a nonzero degree with no minimal pair below it) with Lachlan's [12] nonsplit-

ting theorem to provide a de�nable class that is disjoint from both the high

and low

2

degrees. There are, however, no de�nitions or characterizations

of any of the jump classes in R. (In contrast, Downey and Shore [4] have

actually de�ned the low

2

r. e. sets in R

tt

, the structure of the r. e. truth table

degrees, as precisely those with minimal covers in R

tt

:)

The obvious general problem is to give order theoretic characterizations

of the jump classes in R, in particular, of the high or low

2

degrees. More

speci�c questions include the possibility of extending each of the various
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results mentioned so far about these two jump classes to others such as the

high

2

(A

00

�

T

;

000

) or low

3

(A

000

�

T

;

000

) degrees. Until now there have been no

direct constructions of high

2

degrees with (order theoretic) properties that

guarantee that they are not high. We show (Theorem 4.1) that Lachlan's

nonbounding degree [13] can be made high

2

and so Cooper's result [2] that

every high degree bounds a minimal pair cannot be extended to the high

2

degrees. (This result has recently been proven independently by both Lerman

and Ku�cera. Ku�cera uses an approach di�erent from ours.) We also indicate

an application of our methods to a question about E

�

by showing that not

all high

2

degrees contain hemimaximal sets (halves of splittings of maximal

sets). (On the other hand, Downey and Stob [5] show that every high degree

contains such a set.) This application answers a question of Downey and

Stob [6] and [6]. On the low side of the jump hierarchy, Shore and Slaman

[19] show that the Slaman triples can have a low

3

top. Taken together, these

results indicate that the classes de�ned by Slaman and Groszek cannot be

further restricted in the jump hierarchy. We also feel that they indicate that

we are far from having a de�nition of the high degrees. On the other hand,

there are now techniques for working both above and below a low

2

degree

and there should be some hope for de�ning this class in R:

In addition to proving that there is a high

2

nonbounding degree, we con-

sider the question of whether there is one below every high degree. Cooper

proved (see Soare [23]( p. 337) that this is not so by constructing a high

degree a such that every b < a bounds a minimal pair. No proof of this

result has appeared and we do not know how Cooper proceeded. We supply

a proof of a somewhat stronger result:

Theorem 1.1: There is a high degree a such that for every b < a, there

is a minimal pair c, d such that c _ d = b:

1 A High Strongly Bounding Degree

Our �rst theorem concerns bounding minimal pairs:

Theorem 1.1 . There exists a high r.e. degree a such that any nonrecursive

r.e. degree w � a is the join of a minimal pair, i.e. if 0 < w � a then there

are r.e. degrees b

0

;b

1

> 0 with b

0

\ b

1

= 0 and b

0

[ b

1

= w.

Proof: We build an r.e. set A and a p.r. functional �.
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We make A high by meeting the requirements

H

x

: lim

s

�

A

(x; s) = Inf(x);

where Inf = fx j jW

x

j in�niteg is the canonical �

2

-complete set.

In order to ensure that degA only bounds joins of minimal pairs, we

build, for each r.e. set W and p.r. functional �, two r.e. sets B

0

and B

1

and

a p.r. functional � (all depending on W and �) meeting the requirement

R

W;�

: �

A

=W ! B

0

; B

1

�

T

W and �

B

0

�B

1

= W;

and the subrequirements

N

W;�;	

: �

A

=W and 	

B

0

= 	

B

1

total ! 	

B

0

�

T

; or W �

T

;

for each p.r. functional 	, and

P

W;�;i;e

: �

A

= W and B

i

= feg !W �

T

;

for each i � 1 and each e 2 !. (The reductions B

0

; B

1

�

T

W will be given by

permitting, and we will therefore not name them.) The requirement R

W;�

thus ensures that if �

A

= W then W �

T

B

0

� B

1

; and the N - and P-

subrequirements ensure that ifW is also nonrecursive then the degrees of B

0

and B

1

form a minimal pair.

The basic strategy for a highness requirement H

x

is to enumerate the

r.e. set W

x

and keep de�ning �

A

(x; s) = 0 for larger and larger s with

some big use �(x; s). Whenever a new number appears in W

x

at stage s,

say, then for each s

0

� s, we enumerate the current use �(x; s

0

) into A (if

currently �

A

(x; s

0

) #= 0) and rede�ne �

A

(x; s

0

) = 1 with use �1, i.e. the

axiom de�ning �

A

(x; s

0

) does not depend on A. As long as the strategy

is prevented from rede�ning �

A

(x; s

0

) from 0 to 1 at most �nitely often, it

will clearly ensure the requirement. Since the construction, as usual for 0

000

-

priority arguments, uses a tree of strategies, we have a whole level of this tree

reserved for de�ning �

A

(x;�) for a �xed x, and we will have to coordinate

these strategies to make the de�nition of �

A

uniform in x.

The strategy for R

W;�

consists in a node � on the tree measuring the

length of agreement

`

s

(�) = maxfx j 8y < x(�

A

(y)[s] #= W

s

(y))g:
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� imposes an implicit A � s-restraint (via initialization) at any �-expan-

sionary stage s. At every �-expansionary stage s, for all y < `

s

(�), � enu-

merates the use of �

B

0

�B

1

(y) into B

0

or B

1

if �

B

0

�B

1

(y) #6=W (y) and then

(re)de�nes �

B

0

�B

1

(y) = W (y) (with big use if �

B

0

�B

1

(y) was never before

de�ned). The reductions B

0

; B

1

�

T

W will be ensured by permitting on �-

expansionary stages (i.e. we allow B

i

(x) to change only if W � x has changed

since the last �-expansionary stage).

Below the in�nite outcome of an R

W;�

-strategy � (guessing that �

A

=

W ), we have N

W;�;	

-strategies and P

W;�;i;e

-strategies. An N

W;�;	

-strategy �

will measure the length of agreement

`

s

(�) = max

�

x j 8y < x(	

B

0

(y)[s] #= 	

B

1

(y)[s] # and

8i � 1(�

A

� ( 

B

i

(y) + 1)[s] #) g

and, at each �-expansionary stage, impose restraint to preserve either 	

B

0

�

`

s

(�) or 	

B

1

� `

s

(�) until the next �-expansionary stage. A P

W;�;i;e

-strategy


 (in isolation) will pick a witness z

0

targeted for B

i

and wait for z

0

to become

realized (i.e. feg(z

0

) #= 0). Once z

j

is realized, 
 picks a new larger witness

z

j+1

and repeats the process. If, at any �-expansionary stage (not just at a


-stage), a realized witness z

j

is permitted by W then z

j

is enumerated into

B

i

and P

W;�;e;i

is satis�ed forever. If there are in�nitely many realized wit-

nesses but none isW -permitted thenW is recursive (by the usual permitting

argument), representing a global win for requirement R

W;�

.

We next analyze the interaction between strategies. First, let us assume

that � � 


0

< 


1

, where � is an R

W;�

-strategy and 


i

a P

W;�;i;e

-strategy

(for i � 1). (Note that 


0

and 


1

will assume the in�nite outcome of �.)

On the one hand, we have to ensure that 


1

's action does not interfere with




0

's. On the other hand, if 


0

's action is in�nitary, i.e. if 


0

has in�nitely

many realized witnesses but none is W -permitted then 


1

may be initialized

in�nitely often. Furthermore, if 


0

can determine that �

A

is partial then

again it can initialize 


1

in�nitely often. We thus agree that 


0

initializes




1

whenever (i) 


0

's most recent witness z

0

j

, say, becomes realized and 


0

thus picks a new witness z

0

j+1

; or (ii) for some witness z

0

j

, say, of 


0

, either

�

A

� z

0

j

[s

0

] # fails or A � ('(z

0

j

� 1) + 1)[s

0

] 6= A

s

� ('

s

0

(z

0

j

� 1) + 1)

holds for the greatest �-expansionary stage s

0

< s (this initialization may

be performed at any �-expansionary stage); or (iii) 


0

enumerates a witness

into B

0

; or (iv) 


0

<

L




1

and 


0

currently appears to be on the true path.
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Note that (iii)-(iv) are as usual in tree constructions but that (i) and (ii)

re
ect that 


0

believes W to be recursive or �

A

to be partial, respectively,

and so the initialization for (i)-(ii) only a�ects strategies � � working for the

same pair (W;�) and can occur at any �-expansionary stage. (We call this

initialization (W;�)-initialization.)

We next analyze the possible injury to an N

W;�;	

-strategy � (below an

R

W;�

-strategy �). By the last conjunct of the de�nition of `

s

(�), any W (y)-

change (for y � maxf 

B

i

(`(�) � 1)[s] j i � 1g) after a �-expansionary

stage s must be preceded by an A � ('(y)[s] + 1)-change, necessarily caused

by an H

x

-strategy ". No " � � will put numbers � s into A unless � is

initialized. No " >

L

�

^

h0i (where 0 denotes the in�nite outcome of �) will

put numbers � s into A by initialization at s. And �nally, any " � �

^

h0i can

only act at a �-expansionary stage s. So assume that enumeration by some

" � �

^

h0i allows 	

B

i

� `

s

(�) (for some i � 1) to be destroyed at some (least)

�-expansionary stage s

0

> s. We distinguish two cases at this stage s

0

.

Case A: Some P

W;�;i;e

-strategy 
 � � has a realizedW -permitted witness

z, which it enumerates into B

i

at s

0

: Then any P

W;�;i

0

;e

0

-strategy 


0

> 
 will

be initialized at s

0

. Also, all witnesses z

0

of P

W;�;i

0

;e

0

-strategies 


0

< 
 satisfy

'(z

0

) < least A-change at s. Thus no more numbers � s can enter B

0

or

B

1

via a P

W;�;i

0

;e

0

-strategy 


0

until the next �-expansionary stage unless �

is initialized. Furthermore, at any �-expansionary stage > s

0

before the

next �-expansionary stage, we allow � to initialize all P

W;�;i

0

;e

0

-strategies




0

>

L

�

^

h0i whenever A � ('

s

(s � 1) + 1) has changed. This ensures that,

whenever W � s changes, 
 is the lowest-priority active P

W;�;i

0

;e

0

-strategy

and thus ensures �

B

0

�B

1

-correction via B

i

(rather than B

1�i

, which could

destroy 	

B

1�i

� `(�)[s]).

Case B: � corrects �

B

0

�B

1

via B

i

at stage s

0

: Let 
 � �

^

h0i be the

lowest-priority P

W;�;i;e

-strategy active at s

0

. By the same argument as in

Case A, no P

W;�;i

0

;e

0

-strategy 


0

< 
 can enumerate a number until the next

�-expansionary stage, and again we allow � to initialize P

W;�;i

0

;e

0

-strategies




0

>

L

�

^

h0i. So 
 again ensures that we never enumerate a number � s

into B

1�i

until the next �-expansionary stage. (Note that this additional

(W;�)-initialization occurs in�nitely often only if �

^

h0i is on the true path

or if �

A

is partial.)

We now describe the construction formally.
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2 The Construction for Theorem 1.1

We �x an e�ective !-ordering of all requirements H

x

and R

W;�

and subre-

quirements N

W;�;	

and P

W;�;i;e

such that each R

W;�

precedes all its subre-

quirements N

W;�;	

and P

W;�;i;e

.

Our tree of strategies T will be a subtree of the full binary tree 2

<!

(where 0 and 1 will denote in�nite and �nite outcome, respectively). To each

strategy � 2 T , we assign the highest-priority requirement that has not been

assigned to any strategy � � �, with the following two provisos:

(i) We never assign subrequirements N

W;�;	

or P

W;�;i;e

to strategies � �

�

^

h1i where � is an R

W;�

-strategy. (� guesses that � has satis�ed the overall

(W;�)-requirement by showing �

A

6= W .)

(ii) We never assign any (sub)requirement to strategies � � �

^

h0i where �

is a P

W;�;i;e

-strategy. (We allow a P-strategy to have only the �nite outcome

since it enumerates at most one number unless initialized again.)

If (sub)requirement R is assigned to a strategy � 2 T , we call � an R-

strategy. A (W;�)-strategy is an R

W;�

-, N

W;�;	

-, or P

W;�;i;e

-strategy for the

pair (W;�).

The construction builds two global objects, the r.e. set A and the p.r. func-

tional � (to show highness). Each R

W;�

-strategy � 2 T builds r.e. sets B

0

; B

1

and a p.r. functional �. (We normally suppress the index � on these func-

tionals.) A strategy is initialized by making unde�ned all its parameters

and, in the case of an R

W;�

-strategy, its sets and functional. A parameter is

de�ned big by setting it to a value greater than any number mentioned thus

far in the construction.

The construction proceeds in stages s, each of which is divided into sub-

stages t < s, with some additional action at the end of stage s, i.e. after the

last substage. Within stage s of the construction, we use symbols with no

stage identi�cation such as A to denote the value of the appropriate object,

e.g. A

s

, at stage s: At each stage, we de�ne a string �

s

of strategies � � �

s

eligible to act at that stage, where � is eligible to act at substage t = j�j of

stage s. At stage s, we de�ne a stage s

�

= s

�

[s] as the least stage s

0

� s such

that � � �

s

0

and � has not been initialized since (substage j�j of) stage s

0

.

At stage 0, we initialize all strategies and let A be empty and � totally

unde�ned.

At substage t of stage s + 1, a strategy � � �

s+1

of length t is eligible to

act. We distinguish cases by the requirement assigned to �. (All parameters

7



are measured at the current substage and do not change unless otherwise

speci�ed.)

Case 1: � is an H

x

-strategy: Let s

0

be the greatest stage t � s such

that � � �

s

0

and � has not been initialized since t. (If there is no such stage

t, set s

0

= s + 1). If W

x;s

0

= W

x;s+1

then we set �

A

(x; s

0

) = 0 (for all

s

0

� s for which �

A

(x; s

0

) is currently unde�ned) with previous use �(x; s

0

)

(if �

A

(x; s

0

) has been de�ned before) or with big use �(x; s

0

) (otherwise), and

we let �

^

h1i be eligible to act next. Otherwise, i.e. if W

x;s

0

6= W

x;s+1

, we

enumerate �(x; s

0

) into A for all s

0

� s

�

such that currently �

A

(x; s

0

) #= 0.

Then we de�ne �

A

(x; s

0

) = 1 with use �1 for all s

0

� s for which �

A

(x; s

0

) is

now unde�ned, let any R

W;�

-strategy � with �

^

h0i � � perform additional

(W;�)-initialization (as de�ned in Case 2 if (ii) or (iii) of Case 2 holds), and

let �

^

h0i be eligible to act next.

Case 2: � is an R

W;�

-strategy: We de�ne the length of agreement by

`(�) = maxfx j 8y < x(�

A

(y) #= W (y))g :

We call s+ 1 �-expansionary if � � �

s+1

and `

s

0

(�) < `(�) for all s

0

� s with

� � �

s

0

. The strategy eligible to act next is �

^

h0i if s + 1 is �-expansionary

and �

^

h1i otherwise.

If s+1 is �-expansionary then let s

0

be the greatest �-expansionary stage

� s and check if there is a (W;�)-strategy � � �

^

h0i (with a witness z if �

is a P-strategy) such that

(i) z is realized and W � z 6= W

s

0

� z; or

(ii) �

A

� z[s

0

] # fails or A � ('

s

0

(z � 1) + 1) 6= A � ('(z � 1) + 1)[s

0

]; or

(iii) � is anN

W;�;�

-strategy and for the greatest �-expansionary stage s

0

� s,

�

A

� s

0

[s

0

] # fails or A � ('

s

0

(s

0

� 1) + 1) 6= A � ('(s

0

� 1) + 1)[s

0

]:

For the highest-priority such � and the least such z (if they exist), enumer-

ate z into B (in case (i)) and initialize all (W;�)-strategies � �

^

h1i (in cases

(ii)-(iii)), we call this action (W;�)-initialization. (The further de�nition of

�

B

0

�B

1

is delayed until the end of stage s+ 1 to allow strategies � �

^

h0i to

in
uence whether B

0

- or B

1

-enumeration is used for �-correction.)

8



Case 3: � is an N

W;�;	

-strategy: We de�ne the length of agreement by

`(�) = max

�

x j 8y < x(	

B

0

(y) #= 	

B

1

(y) # and

8i � 1(�

A

� ( 

B

i

(y) + 1) #) g

The notions of �-expansionary stage and strategy eligible to act next are

de�ned analogously to Case 1. (The de�nition of the recursive function

describing 	

B

0

= 	

B

1

is implicit as in the usual minimal pair argument.)

Case 4: � is a P

W;�;i;e

-strategy: (Note that � may have acted before at

this stage via Case 2 for the R

W;�

-strategy � �.) At the beginning of the

substage, � has a (possibly empty) sequence of witnesses z

0

; z

1

; : : : ; z

n

. We

proceed according to the �rst applicable subcase. (In each subcase, �

^

h1i is

eligible to act next.)

Subcase 4a: � has a witness z

j

2 B

i

: Do nothing.

Subcase 4b: z

n

is not realized and feg(z

n

) #= 0 (or n = �1): Then z

n

becomes realized (if n � 0), and we pick a new big unrealized witness z

n+1

and initialize all (W;�)-strategies > �.

Subcase 4c: Otherwise: Do nothing.

At the end of substage t, we end the stage if t = s, or let the strategy

eligible to act next act at substage t + 1.

At the end of the stage, i.e. after substage s, we initialize all strategies

> �

s+1

and correct and further de�ne �

B

0

�B

1

�

for each R

W;�

-strategy � with

�

^

h0i � �

s+1

. For each such �, �rst check if currently �

B

0

�B

1

(y) #6= W (y)

for some y. If so then enumerate �(y) into B

i

0

for the least such y (where

i

0

is chosen such that the lowest-priority P

W;�;i;e

-strategy that has not been

initialized at stage s + 1 satis�es i = i

0

or, if this strategy does not exist,

i

0

= 0). Then, for each y < `(�) for which �

B

0

�B

1

(y) is now unde�ned, de�ne

�

B

0

�B

1

(y) =W (y) with previous use �(y) (if any) or big use (otherwise).

This ends the description of the construction.

3 The Veri�cation for Theorem 1.1

We de�ne the true path f 2 [T ] of the construction inductively by

f(n) = �k � 1((f � n)

^

hki is eligible to act in�nitely often):

9



We �rst prove some easy facts about the true path:

Lemma 3.1 (True Path Lemma). (i) The true path f is well-de�ned.

(ii) Any strategy � � f is initialized at most �nitely often and thus

s

�

= lim

s

s

�

[s] < 1 (for s

�

as de�ned at the beginning of the construction),

except that if � is an N

W;�;	

- or P

W;�;i;e

-strategy then � is possibly initialized

in�nitely often by the (W;�)-initialization.

Proof. (i) Clear since lim

s

j�

s

j =1 and T is �nite-branching.

(ii) We proceed by induction on j�j. Once no � � � is initialized (ex-

cept for (W;�)-initialization), � can be initialized only if �

s

< �, which, by

the de�nition of f , can happen at most �nitely often (except for (W;�)-

initialization). �

We next turn to the highness requirements.

Lemma 3.2 (Highness Lemma). For all x, lim

s

�

A

(x; s) = Inf(x), and

thus A is high.

Proof. Fix x and the H

x

-Strategy " � f .

Since the use of �

A

(x; s) is never increased and �

A

(x; s) is eventually

(re)de�ned by " whenever necessary, �

A

is clearly total.

First assume that W

x

is �nite, and �x s

0

� s

"

such that " � �

s

0

and

W

x;s

0

= W

x

. Then no de�nitions �

A

(x; s) = 1 are made by any H

x

-strategy

after stage s

0

.

Now assume W

x

to be in�nite. Then, by the construction, �

A

(x; s) = 1

for all s � s

"

with use �1. �

We need one more fact about the action of the H

x

-strategies:

Lemma 3.3 (H

x

-Strategy Lemma). If �

^

h0i � �

s

for an H

x

-strategy �

then no numbers � s are enumerated by any H

x

-strategy at a stage s

0

> s

unless � is initialized by stage s

0

.

Proof. Suppose some H

x

-strategy �

0

enumerates a number � s at a stage

s

0

> s. If �

0

<

L

� then � is initialized at stage s

0

. If �

0

>

L

� then s

�

0

[s

0

] > s, so

�

0

cannot enumerate numbers � s after stage s (since �(x; s

00

) � s

00

). Finally,

for �

0

= �, we observe that s

�

[s] � s

�

[s

0

] for all s

0

> s, so any number � s that

� would enumerate after stage s has already been enumerated by stage s. �

We now begin verifying the (W;�)-requirements:

10



Lemma 3.4 (R

W;�

-Satisfaction Lemma). If �

A

= W then W �

T

B

0

�

B

1

, and furthermore �

^

h0i � f for the R

W;�

-strategy � � f .

Proof. Fix the R

W;�

-strategy � � f . Since �

A

= W there are in�nitely

many �-expansionary stages, so �

^

h0i � f .

Now B

0

; B

1

�

T

W is immediate by permitting on �-expansionary stages.

W = �

B

0

�B

1

follows since the use of �

B

0

�B

1

(y) is never increased and since

�

B

0

�B

1

(y) is eventually corrected and (re)de�ned by � whenever necessary.

�

By Lemma 3.4, if �

A

= W then all subrequirements N

W;�;	

and P

W;�;i;e

are assigned to strategies � f . We now prove a fact about (W;�)-initia-

lization.

Lemma 3.5 ((W;�)-Initialization Lemma). Suppose �

A

= W and W is

not recursive. Then every N

W;�;	

- or P

W;�;i;e

-strategy � < f is initialized at

most �nitely often.

Proof. Fix an N

W;�;	

- or P

W;�;i;e

-strategy � < f and assume it is initialized

in�nitely often. Let � be the longest common substring of � and f , and

suppose that we have chosen � so that j�j is minimal. By Lemma 3.1(ii) and

the construction, � must be initialized in�nitely often by (W;�)-initialization;

and since no strategy <

L

f is eligible to act in�nitely often, some N

W;�;	

-

or P

W;�;i;e

-strategy � � � must cause this in�nite initialization. By the

minimality of j�j, we may assume that � is initialized at most �nitely often.

Fix the stage s

�

= lim

s

s

�

[s] < 1 and the R

W;�

-strategy � � �. We

distinguish two cases:

Case 1: � is an N

W;�;	

-strategy: (W;�)-initialization occurs via Case

2(iii) of the construction. We distinguish two subcases.

Subcase 1a: There are in�nitely many �-expansionary stages: Then

�

^

h0i � f and so �

^

h0i � �; therefore � cannot be (W;�)-initialized via �.

Subcase 1b: There is a last �-expansionary stage s

0

: Then �

A

� s

0

is

not permanently de�ned contradicting our hypothesis.

Case 2: � is a P

W;�;i;e

-strategy: Recall that each time � (or � for �)

(W;�)-initializes �, it does so for some (least) witness z. We distinguish two

subcases:

11



Subcase 2a: There is a (least) witness z for which this initialization

occurs in�nitely often: Then this initialization for witness z must occur in�-

nitely often via Case 2(ii) of the construction, so �

A

� z is not permanently

de�ned contrary to hypothesis.

Subcase 2b: This initialization occurs for each witness at most �nitely

often: Then there must be in�nitely many permanent witnesses for �, say

z

0

< z

1

< z

2

< : : : . For each z

j

, �x the stage s

j

� s

�

at which z

j

becomes

realized. (Note that necessarily each z

j

becomes realized.) But now for

each j, W

s

j

� z

j

= W � z

j

, or else z

j

2 B and 
 will not pick new witnesses.

This establishes that W is recursive contrary to hypothesis.

The �nal lemmas now establish the satisfaction of the (W;�)-subrequire-

ments.

Lemma 3.6 (P

W;�;i;e

-Satisfaction Lemma). If �

A

= W and W is not

recursive then B

0

and B

1

are not recursive.

Proof. We �x i and e and establish B

i

6= feg. Let 
 � f be the P

W;�;i;e

-

strategy. By Lemma 3.5, 
 is not initialized after stage s




and can act via

Case 2 or via Subcase 4b of the construction at most �nitely often. Thus 


has a permanent witness z

n

such that either z

n

2 B

i

(and thus feg(z

n

) #=

0 6= B

i

(z

n

)) or z

n

is never realized (and thus feg(z

n

) 6= 0 = B

i

(z

n

)). So

B

i

6= feg. �

We now prove a technical fact about (W;�)-initialization by N -strategies

and about �-correction that will be used to establish the satisfaction of the

N -requirements.

Lemma 3.7 (�-Correction Lemma). Suppose 	

A

= W , W is not re-

cursive and s

�

is the last stage at which � is initialized.

(i) Let � � f be an N

W;�;	

-strategy and � � � an R

W;�

-strategy. Fix

two consecutive �-expansionary stages s

0

and s

3

(with s

�

� s

0

< s

3

) and

two consecutive �-expansionary stages s

1

and s

2

(with s

0

� s

1

< s

2

< s

3

).

Suppose that 
 and 


0

are the lowest-priority P

W;�;i;e

- and P

W;�;i

0

;e

0

-strategies

that have not been initialized at stages s

0

and s

2

, respectively. Then 
 � 


0

(and, in particular, if 
 exists then so does 


0

).

(ii) If we also assume that �

A

� s

0

[s

1

] fails or A

s

1

� '

s

1

(s

0

� 1) 6= A

s

2

�

'

s

1

(s

0

� 1) then 
 = 


0

(or, if 
 does not exist then neither does 


0

). Thus

�

B

0

�B

1

-correction at the end of stages s

0

and s

2

uses the same set B

i

.
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Proof. (i) First note that 
 < �

^

h1i by initialization at stage s

0

. Suppose,

for the sake of a contradiction, that 
 is initialized by stage s

2

, say, at stage s

0

.

Then �

^

h0i � 
 since s

�

� s

0

. So 
 must be (W;�)-initialized at s

0

by some

strategy � with �

^

h0i � � < 
 (again since s

�

� s

0

). We distinguish two

cases for �:

Case 1: � is an N

W;�;	

0

-strategy: Then �

^

h1i � 
, and since 
 was not

initialized at stage s

0

, s

0

is not an �-expansionary stage. Let s

4

and s

5

be

the greatest �-expansionary and �-expansionary stages < s

0

, respectively.

Since � did not initialize 
 at stage s

0

via Case 2 of the construction, �

A

�

'(s

4

� 1)[s

5

] was de�ned and not destroyed by the end of stage s

0

. By

Lemma 3.3 and initialization at stage s

0

, �

A

� '(s

4

�1)[s

5

] can then also not

be destroyed by the end of stage s

2

, contradicting �'s (W;�)-initialization

of 
.

Case 2: � is a P

W;�;i

00

;e

00

-strategy: Let s

4

be the greatest �-expansionary

stage < s

0

. Since � did not (W;�)-initialize 
 at stage s

0

, �

A

� z[s

4

] is not

destroyed by the end of stage s

0

for every witness z of � (and � does not

pick a new witness at stage s

0

). By Lemma 3.3 and initialization at stage s

0

,

�

A

� z[s

4

] can then also not be destroyed by the end of stage s

2

(for every

such z), contradicting �'s (W;�)-initialization of 
.

(ii) Now also assume that �

A

� s

0

[s

1

] fails or A

s

1

� '

s

1

(s

0

� 1) 6= A

s

2

�

'

s

1

(s

0

� 1). Suppose, for the sake of a contradiction, that 
 < 


0

(or that 


0

exists but not 
). By initialization at stage s

0

and since s

2

< s

3

, necessarily




0

� �

^

h1i. But then � (W;�)-initializes 


0

at stage s

2

, a contradiction. �

Lemma 3.8 (N

W;�;	

-Satisfaction Lemma). If 	

A

= W , W is not recur-

sive, and 	

B

0

= 	

B

1

is total then 	

B

0

is recursive.

Proof. Let � � f be the N

W;�;	

-strategy and assume the hypotheses of the

lemma. By Lemma 3.5, � is not initialized after stage s

�

, and since there

are in�nitely many �-expansionary stages, we have �

^

h0i � f . We establish

the lemma by showing, for each �-expansionary stage s

0

� s

�

and each stage

s � s

0

:

	

B

0

� `(�)[s

0

] = 	

B

0

[s] � `

s

0

(�) or(3.1)

	

B

1

� `(�)[s

0

] = 	

B

1

[s] � `

s

0

(�):

For the sake of a contradiction, suppose one of the disjuncts of (3.1) fails

at a stage s

1

and the other at a stage s

2

where s

0

� s

1

< s

2

< s

3

, and s

0

13



and s

3

are consecutive �-expansionary stages � s

�

. Let 


0

, 


1

, and 


2

be

the lowest-priority P

W;�;�;�

-strategies that are not initialized at stages s

0

,

s

1

, and s

2

, respectively. Since a number � s

0

enters B

0

or B

1

at stages s

1

and s

2

, there must be a W � s

0

-change and thus an A � '(s

0

� 1)-change

before these stages. By Lemma 3.7, we have 


0

= 


1

= 


2

. Thus at stages s

1

and s

2

, either the P

W;�;i;e

-strategy 


0

enumerates a number into B

i

or causes

the R

W;�

-strategy � � � to correct �

B

0

�B

1

via B

i

. This contradicts our

assumption that both disjuncts of (3.1) are destroyed at the end of stage s

2

.

�

Lemmas 3.2, 3.4, 3.6, and 3.8 now establish Theorem 1.1. �

4 A High

2

Nonbounding Degree

In the next section we shall develop machinery that allows us to construct

properly high

2

degrees with prescribed properties. In our constructions we

shall look only at properties can be possessed by high

2

but cannot be pos-

sessed by high degrees. In this section, we review the nonbounding theorem

of Lachlan [13] as presented in Soare [22] and [23].

Theorem 4.1 . There is a high

2

recursively enumerable degree c that bounds

no minimal pair.

Proof. Since the construction of a nonbounding degree is a very well an-

alyzed and documented result, we shall assume that the reader is familiar

with the account of Soare [23](pp. 315-337) and will therefore only give the

reader a gentle reminder, concentrating on the new ideas needed to make C

high

2

. To this end, we remind the reader that to make C nonbounding we

will meet requirements of the form

R

e

: �

C

e

= A

e

^	

C

e

= B

e

!

[A

e

recursive _B

e

recursive _ (D

e

�

T

A

e

; B

e

^ (8j)(R

e;j

))];

where

R

e;j

: D

e

6=W

j

:

Here we are building C and D

e

and our opponent is playing �

e

, 	

e

, A

e

, B

e

,

and W

j

. The reader should recall that we regard functionals as controlling

14



enumerations of sets in the sense that if (e.g.) �

C

e

(x) = A

e

(x)[s] then we will

not allow A

e

(x) to change unless C changes below the use, �

e

(x)[s].

Dropping the subscripts, Lachlan's basic strategy for the R above was

the following: associated with R

e;j

are three parameters, restraints r

1

and r

2

and a current candidate x.

Step 1. Wait for an s with x 2 W

j

[s]. At stage s+ 1 open an A-gap by

setting r

1

[s+ 1] = 0.

Step 2. Wait till the least t � s+ 1 such that l

�

[t] > s, where l denotes

the relevant length of agreement. At stage t+1 close the A-gap and perform

one of the following.

Step 2a. (Successful Closure.) A[s] � x 6= A[t] � x. Open a B-gap by

de�ning r

2

[t+ 1] = 0, keeping r

1

= 0.

Step 2b. (Unsuccessful Closure.) A[s] � x = A[t] � x. De�ne r

1

[t + 1] =

t+1 (preserving A[t] � x), reset x to be a big fresh number, and go to Step 1.

Step 3. Wait for the least v � t + 1 such that l

	

[v] > x. At stage v + 1

close the B-gap via 3a or 3b below. Step 3a. (Successful Closure.) B[v] �

x 6= B[t] � x: Enumerate x into D and stop. Step 3b. (Unsuccessful

Closure.) B[v] � x = B[t] � x. De�ne r

2

[v + 1] = v + 1, reset x, and go to

Step 1.

The reader should recall that the outcomes of the basic module above are

S = fs; g2; g1; wg:

Here s denotes the outcome that we get to the successful closure of a B-gap,

g2 denotes the outcome that we cycle through step 3b in�nitely often (and

hence B is recursive and the collective liminf of the restraints r

1

; r

2

is zero),

g1 denotes the outcome that we only �nitely often cycle through 3b but we

in�nitely often cycle through 2b (and hence A is recursive and the liminf

of r

1

; r

2

is the limit of r

1

), and, �nally, w denotes the outcome that we get

stuck waiting for something to happen forever. Note that s and w are finite

outcomes.

The above plan is implemented on a tree of strategies, with nodes �

devoted to the global action of building D and the reductions from A and

B to D for R

e

. These are called top nodes. Below such nodes are nodes �

devoted to the subrequirements R

e;i

. We write e(�) = e; i(�) = i. Such an �

will have outcomes s; g2; g1; w from left to right. Below the outcomes g2 and

g1 we will have no nodes � with e(�) = e since these outcomes represent a
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global win for R

e

. Furthermore, below such outcomes we will have new (top

node) versions of any R

k

with k > e, this being the so-called \�nite injury

on the true path" feature. In the construction, whenever we open an �-gap

we create a link from � to �. The next time we hit � we will travel the link

directly from � to � and see how to resolve the gap at �. We will either play

outcome g1 or open a B-gap depending on whether we play, respectively,

Step 2b or 2a. In the former case, we remove the link, but in the latter case

we do not. If we open a B-gap then we again travel the link at the next � -

stage. We then remove the link either playing g2 or putting x into D as with

the basic module. Note that if � is the �nal version of a top node devoted to

e on the true path (TP ), then below � every gap opened is closed and hence

D

�

�

T

A

e

; B

e

. Since this is all just a reminder we refer the reader to Soare

[23] for more details.

5 Making C High

2

.

Now we turn to the problem of making C high

2

. To this end, we shall de�ne

a C-recursive function � so that for all x, we meet the requirements

H

x

: lim

s

lim

t

�(C; x;m; t) = Cof(x):

where Cof = fxjW

x

is cofiniteg is the canonical �

0

3

-complete set. For

the sake of this requirement we will have nodes � (= �(x;m)), which test

if [m;1) � W

x

. Note that this is a �

2

test. Such nodes have outcomes

1; f . The 1 outcome corresponds to the �

2

node in�nitely often looking

correct. The other one is the �nite outcome. Now � is responsible for de�ning

�(C; x;m; t) for each t. However, the reader should note that we need some

care since � must be C-recursive and this cannot depend on knowledge of

which version of � lies on TP . This problem makes us use a whole level of

nodes to collectively de�ne �(C; x;m; t). We may assume that we initially

de�ne �(C; x;m; t)[s] = 0, and that Cof will only ask us to rede�ne this to 1.

The fact that we are dealing with double limits allows us to be wrong on a

�nite number of m. This fact will be the key to getting the coding to work,

and is where the argument di�ers from making C high, which we know is

impossible.

The basic idea is that when we hit �, we will rede�ne all values of

�(C; x;m; t) for t � s in accordance with the current picture, provided that
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such actions are not prohibited by higher priority restraints. The point is

that to rede�ne a value of �(C; x;m; t) we will need C-enumeration. Hence,

at the beginning, when we �rst set �(C; x;m; t) = 0, we will also de�ne

a number �(x;m; t) which we will use to revise the value of �(C; x;m; t)

should this be necessary. In fact these �'s can be de�ned at the beginning

of the construction. Note that all nodes devoted to H

x

want to enumerate

the same �'s (to correct � as needed); however, whether a particular node

actually succeeds will depend upon its priority. Hence if we get to � and we

see that, since we have de�ned �(x;m; t), the relevant �

2

condition saying

that x appears in Cof with witness m

0

� m has again appeared to hold, we

will enumerate �(x;m; t) into C to allow us to change �(C; x;m; t) to be 1.

We will do this unless, of course, we are restrained by requirements of higher

priority.

We will describe how the construction lives with this idea and what mod-

i�cations we need to make to the priority tree as a consequence. First, we

consider the situation where we have H

x

of lower priority than R

e

(which is

associated with �). In the tree architecture we will, of course, have no �'s

devoted to H

x

above � , although they can be to the right or left of � . The

problem is the following. Suppose we have a situation with nodes � � � � �

where e(�) = e(�) = e and � is �'s top node. Thus, while � has higher global

priority that �, its local priority is lower. Now, suppose at some stage we

open a �-gap for the sake of candidate z, creating a link from � to � at stage

s

0

. At a later stage s

1

we again get to � and we wish to travel the link and

perhaps to close the gap and preserve A. This causes no problem if � extends

�

^

f but there are problems if � extends �

^

1. The crucial fact needed in

the veri�cation is that between gaps no new numbers enter C and so A is

recursive since we know it does not change during gaps and, by restraints,

does not change between gaps, either. Now, when we open the A-gap at �,

we certainly ask that the l[s] > x via �-correct computations. After all, �

is guessing the �

2

outcome 1 for � and will therefore expect that all the

relevant changes below the use needed to make �(C; x;m; t) output 1 have

occurred. (I.e. we will have put the relevant �(x;m; t) into C[s

0

].)

The trouble is that when we next get to � to travel the link, numbers may

have entered C changing the C-use for (e.g.) �

C

(z)[s

1

]. Now, it might be

that �

C

(z)[s

1

] is no longer �-correct. For instance, some � = �(x;m; q) that

we have set aside to change C if we wish to again play �

^

1 may now be less

than �

C

(z)[s

1

]: The trouble is that when we get to � we may not yet wish
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to put � into C since the �

2

outcome may be looking correct at �. Now, if

we close the gap at � then since � has higher priority than �, any restraint

imposed at stage s

1

may not be successful since � might later put � into C.

The reader should note that this is precisely the problem that occurs if we

try to make C high, and it cannot be overcome in that case.

In our case, we overcome this dilemma as follows. When we hit � , if we

see some � as above we preempt � by immediately enumerating any � below

the C-use of �'s current candidate z into C. This means that � cannot later

use � to injure �. Of course, if there are no such � around then we would

travel the link and act as in the basic Lachlan construction since any restraint

we impose will actually succeed provided that � is on the true path. This

is the condition we would like to achieve, but failing that, we'd like to get a

global win on R

e

. Assuming that such a � exists, what we do is travel the

link from � to �, but we do not delete the link. Because of this, we now need

to add two new outcomes to �. These are denoted by u1 and u2. Hence, the

outcomes of a � node are now

S = fs; g2; u2; g1; u1; wg:

The new outcomes correspond to the outcome that one of � or 	 has un-

bounded use on some �xed z. Outcome ui corresponds to gi. If we are in

an A-gap when we hit � and we perform the capricious enumeration of �

indicated above then we will play the outcome u1. We act similarly for u2

and a B-gap. Note that if we get to some z which always has some � below

its C-use, then the net e�ect will be that � will de�ne �(C; x;m; t) to have

limit 1 for a �xed �nite set of x and m. Furthermore, for almost all stages

there will be a link from � to �. This will correspond, however, to a global

win for R

e

since � is drawing attention to the fact that one of �

C

(z) " or

	

C

(z) " holds. As with the other in�nitary outcomes g1; g2, below u2; u1 we

will restart all requirements of lower priority than � , using the list method

presented in Soare [23]. The reader should note that we do not restart �

since �(C; x;m; t) is going to be de�ned to be 1 for the (�nitely many) rel-

evant x and m. The cost of this to H

x

is that for a �nite number of m,

lim

t

�(C; x;m; t) may be incorrectly outputting 1 instead of 0. This is, of

course, �ne provided that we only lose on a finite number of them. The idea

is that we will only lose on an m if we can eliminate one of the requirements

of globally higher priority. In this way, we will be certain that we get a loss

on only �nitely many m's.
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We will employ the following technique from Downey-Stob [7]. When

we hit � , we realize that if there is a link from � down then this may be

a potentially permanent link. To make the combinatorics easier, instead of

directly going to �, we �rst do a scouting report to see where we would go

if there were no link around. If we were to go to a node 
 to the left of �

then we will erase the link cancelling z and actually go to 
 instead. This

technique ensures that the node of highest priority that ever wishes to be

visited will be.

The reader should note that if � is on the true path, then either � will be

linked over for almost all stages, or we will actually visit � in�nitely often.

In the latter case, since links from �

0

to �

0

are created at bottom nodes, if �

is genuinely on the true path { and not permanently linked over { then its

outcome must actually re
ect its true nature.

To complete the description of the construction we only need to describe

the situation where we are dealing with an H

x

of higher priority than the

R

e

associated with � . Suppose we are below � and � has so far been below

the �

2

outcomes of �'s devoted to x. Suppose further that we have a node

� devoted to H

x

below � . Then below �

^

1, the �

2

outcome of �, we will

restart � in the same way as we do in the case of other global wins.

Thus we can suppose we are looking at the �nal version of � and it is

below �

^

1. Again, we need to consider some �, a subrequirement of � ,

interacting with � as above as well as a 
 also devoted to H

x

but now with


 between � and �. Note that 
 only has one outcome: 1. This is because,

if 
 is below �

^

1 then 
 must agree with �; they do, after all, pertain to

the same x. Now the argument is easier, since when we hit � we will be at

a stage when �

^

1 looks correct. Hence if there is a link from � to � it is

perfectly okay with 
 that � enumerate any potentially injurious �(x;m

0

; t)

for m

0

= m(
) into C since that is what 
 wants to do now anyway! If there

is no link then, as in the other case, � needs to do no C enumeration. The

key point is that, in this case, � cannot injure H

x

because at the stages at

which � is accessible, it is only doing what H

x

wants to do now anyway. In

this way, we see that H

x

can only be injured for �nitely many m.

Hence, in either case, either we get a permanent link and so a global win

on someR

e

of higher priority, or all nodes are actually visited in�nitely often.

Since links are created at bottom nodes, when we genuinely visit a node its

outlook is the true one; so it follows that the liminf of restraints, etc., on the

true path is �nite. In this way we see that all requirements are met. This
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concludes our discussion of Theorem 5.1.

6 Remarks.

For the reader familiar with the details of Downey-Stob [7], we make some

remarks concerning the limitations on applying the techniques of the last

section to make sets high

2

when there are permanent links. In [7], Downey

and Stob prove that the following holds in the r.e. degrees:

8c 6= 09a(0 < a < c ^ 8b � c(b 6= 0! b \ a 6= 0)):

In that construction, it is also the case that there are permanent links. How-

ever, in the construction [7], the existence of permanent links necessitated

additional guessing at the bottom nodes (corresponding to � above) as to the

�

2

behavior of nodes intermediate between the top and bottom of the links.

The reason for this was that the links emanated from the top rather than the

bottom in the construction. In the general situation of permanent links or

other devices that can potentially kill parts of the true path in the sense that

they might only be visited �nitely often (such as e.g. the tree architecture of

Downey-Shore [4]), such additional �

2

guessing will be necessary for all �

2

nodes that might be jumped over. This is because we will need to guess as to

whether they are truly visited or not. Thus the above technique for making

a set high

2

cannot be combined with the link mechanism of the construction

[7]. The reader is referred to [7], [3], and [4] for further details.

7 Other High

2

Applications.

The technique of Section 5 can be applied in other situations. To illustrate

this, we give one further example. We shall answer a question from Downey-

Stob [5], [6]. Recall from [5] that a nonrecursive r.e. set A is called hemiP if

there is a nonrecursive r.e. set B disjoint from A such that A[B has property

P . So a hemimaximal set is half of a (nontrivial) splitting of a maximal set.

Hemimaximal sets form an interesting orbit in the automorphism group of

the lattice of r.e. sets (Downey-Stob [5]). In [5], Downey and Stob proved

that all high r.e. degrees contain hemimaximal sets, and below any given

nonzero r.e. degree there is one containing an r.e. hemimaximal set. On the
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other hand in the same paper they showed that not all r.e. degrees contain

hemimaximal sets. Subsequently, Downey and Stob [6] further classi�ed

the degrees of hemimaximal sets by showing that the degrees containing

hemimaximal degrees jump-invert in the sense that if a is REA(0

0

) then

there is a hemimaximal set whose jump has degree a. They also showed that

there is a low

2

-low r.e. degree b that contains no hemimaximal r.e. set. It is

therefore of some interest to resolve the question of the existence of a high

2

degree containing no hemimaximal r.e. sets, a question left open in [6]. We

solve this question here:

Theorem 7.1 . There exists a high

2

recursively enumerable degree c that

contains no hemimaximal sets.

Proof. We sketch the proof using the ideas above. We build an r.e. set C to

meet the high

2

ness requirements H

x

of the previous theorem as well as the

following:

R

e

: (�

e

(C) = V

e

^ �

e

(V

e

) = C ^W

e

\ V

e

= ;)! W

e

[ V

e

is not maximal:

Here we work over quadruples consisting of two functionals �;� and two

disjoint r.e. setsW;V . Let

b

V = V [W . For the sake of these requirements, we

will de�ne collections of markers Q = fq(e; i; s) : i 2 !g, and

b

Q = fq(e; i; s) :

i 2 !g. For any triple he; i; si, only a �nite number of elements will share the

same label q(e; i; s) (q(e; i; s), respectively). By abuse of notation if x has a

marker q(e; i; s) upon it at stage s, then we will write x 2 q(e; i; s). The idea

is that the q and q are to form disjoint sets. We will ensure that for all i, j,

lim

s

q(e; i; s) and lim

s

q(e; j; s) exist and are distinct. Furthermore, for all i

at least one element labelled q(e; i; s) (respectively q(e; i; s)) will be in

b

V . In

this way Q and

b

Q will be r.e. sets essentially splitting

b

V . The construction

can easily be altered so as to put all the numbers not put into

b

Q into Q and

hence in fact guarantee that c will not even contain hemi-r-maximal r.e. sets.

Before we discuss the high

2

version of the construction of a nonhemimax-

imal degree, we brie
y recall the construction from [5] of a (low) nonhemi-

maximal degree. We split R

e

into in�nitely many subrequirements of the

form

R

e;i

: q(e; i) = lim

s

q(e; i; s) exists ^ 9x(x 2 q(e; i) ^ x 2

b

V );
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R

e;i

: q(e; i) = lim

s

q(e; i; s) exists ^ 9x(x 2 q(e; i) ^ x 2

b

V ):

Let

l(e; s) = maxfx : 8y < x(�

e

(V

e

; y) = C^ (8z � 
(y))(�

e

(C; z) = V

e

(z)))[s]g:

That is l(e; s) is the C-controllable length of agreement at stage s. Again

we regard C as controlling V below the length of agreement, and hence

once l(e; s) > x then V

e

� 


e

(x)[s] = V

e;s

� 


e

(x)[s] unless we change C �

�

e

(


e

(x))[s]. We concentrate upon R

e;i

, the R

e;i

being exactly the same. The

idea for R

e;i

is to wait till an e-expansionary stage s

0

, with, say, l(e; s

0

) = l

0

and use �

e

(


e

(l

0

))[s

0

] = d

0

, and assign a candidate z which is large and fresh.

R

e

has now asserted control, and in particular restrains C � s

0

to preserve

the current picture. We now wait till a stage s

1

> s

0

where l(e; s

1

) > z:

At stage s

1

, we put a q(e; i; s

1

) marker on all y 2 [


e

(l

0

); 


e

(z)[s

1

]], and now

restrain C � s

1

: Note that we have succeeded in meeting R

e;i

unless all

q(e; i; s

1

) enter

b

V . However, if there occurs a stage where all x 2 q(e; i; s)

have entered

b

V , then we can globally win R

e

by enumerating z into C but

otherwise restraining C. Assuming this restraint is successful, we have that

C � s

0

= C

s

0

� s

0

, and hence, in particular, we have C � d

0

= C � d

0

.

This fact implies that V

e;s

0

� 


e

(l

0

)[s

0

] = V

e

� 


e

(l

0

)[s

0

]: As z enters C

since l(e; s

1

) > z, we know that V [s

1

] must change below 


e

(z)[s

1

]: But

by the above, V [s

1

] cannot change below 


e

(l

0

), so it must change in the

interval [


e

(l

0

); 


e

(z)[s

1

]]. But such a change is impossible if V

e

and W

e

are

to remain disjoint: we have enumerated z because [


e

(l

0

); 


e

(z)[s

1

]] �

b

V and

b

V = V

e

[W

e

.

As we will see, the ideas from the last section needed to make C high

2

are essentially the same as those we have met for the nonbounding theo-

rem. Again we need to resort to a strategy tree. On this tree there are two

sorts of nodes associated with an R

e

. There are � -nodes where we measure

l(e; s) and �-nodes devoted to the requirements R

e;i

. (The parallels with

the nonbounding theorem should be obvious.) Again we have nodes � de-

voted to the H

x

, for hx;mi. The action of a �-node is exactly the same as

it was in the last theorem. The action of a �-node is the following. At a

�-stage s

0

, which is by de�nition � -expansionary, � will seek to get a setup

as above. Its action is to pick a candidate z and then set up a link from �

to � and wait till the �rst � -stage s

1

with l(�; s

1

) > z. Again � will only
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wish to put a q(�; s

1

) = q(e(�); i(�); s

1

) marker on the numbers in the interval

[
(l

0

); 
(z)[s

1

]]. Again, we must ensure that at the stage at which we perform

this action, it is safe to impose C-restraint to preserve this setup. As the gap

began at a �-stage, we see that the l(e; s

0

)-computations are �-correct. Now

if there is a �

^

1 between � and � we see that at stage s

1

the computations

ensuring l(e; s

1

) > z might not be �

^

1-correct. So as with the nonbounding

theorem our solution is to capriciously enumerate the relevant �(x;m; t) into

C to attempt to ensure �

^

1-correctness for the z-computation (each time

playing a u-outcome below �) or getting a global win for R

e

. The details

now go through virtually as before.

.
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