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ABSTRACT. We establish a number of results on numberings, in particular on Fried-
berg numberings, of families of d. c. e. sets:

(1) There exists a Friedberg numbering of the family of all d. c. e. sets. We also
show that this result, patterned on Friedberg’s famous theorem for the family of all
c. e. sets, holds for the family of all n-c. e. sets for any n > 2.

(2) There exists an infinite family of d. c. e. sets without a Friedberg numbering.

(3) There exists an infinite family of c. e. sets with a numbering (as a family of
d. c. e. sets) which is unique up to equivalence.

(4) There exists a family of d. c. e. sets with a least numbering (under reducibility)
such that this numbering is a Friedberg numbering but not the only numbering
(modulo reducibility).

1. THE THEOREMS

In one of the early fundamental papers of classical computability theory, Fried-
berg [Fr58] constructed an effective enumeration of the family of all computably
enumerable sets of nonnegative integers without repetition, i. e., he built a uniformly
computably enumerable sequence of sets {ay, }ne, such that each computably enu-
merable set occurs exactly once in this sequence.

This theorem can be viewed as an example of a result in the theory of numberings,
a field initiated by Kolmogorov in the mid-1950’s, which has since then been pursued
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mainly in the (former) Soviet Union, in particular by the Novosibirsk school under
Mal’tsev and Ershov. (See Ershov [Er73-77, Er77, Er99| for more background.
There is also some work in the 1960’s by Lachlan [La65-67], Pour-El and coauthors
[PH64, PP65], and others.)

A numbering tries to enable the algorithmic study of a (countable) family S
of objects by giving “names” (i. e., integer indices) to the objects in S. More
precisely, a numbering of S is a map v from the set w of natural numbers onto
the family S. Of course, an object in S can have many “names” under v, i. e.,
v is generally not assumed to be 1-1. If, however, v is 1-1, it is usually called a
Friedberg numbering due to the above-mentioned result of Friedberg, which was the
first example of a Friedberg numbering. Friedberg numberings play an important
role in the theory of numberings since they are minimal under reducibility on the
collection of numberings of a family S. (This reducibility, for numberings v, u of S,
is defined by v < p iff there is a computable function f such that v = pof,i. e., from
any v-index of an object in S one can effectively compute a p-index of this object.
One can then define an equivalence relation on the collection of numberings of S by
setting v = p iff v < p and p < v. These equivalence classes now form a natural
upper semilattice under the ordering induced by <; and Friedberg numberings are
only found in minimal elements of this semilattice.)

A natural extension of the notion of a computably enumerable set was defined
by Putnam [Pu65]: Call a set A C w 1-computably enumerable if it is computably
enumerable; and (n + 1)-computably enumerable if it is of the form Ay — A; where
A is computably enumerable and A; is n-computably enumerable. Equivalently, a
set A C w is n-computably enumerable if there is a uniformly computable sequence
of sets {As}sew such that for all z,

x ¢ Ay,
A(z) = lims As(z), and
{s ew | As(x) # Asya(2)}] < .

Given a family S of n-computably enumerable sets, we call a numbering v of S
computable if the relation “x € v(e)” is m-computably enumerable, i. e., if the
sequence {v(e)}ee, is uniformly n-computably enumerable. (Note that this notion
depends not only on the family S but also on n since S might consist of (n — 1)-
computably enumerable sets only.)

In this notation, Friedberg’s above-mentioned result now states that there is a
computable Friedberg numbering of the family of all computably enumerable sets.
Surprisingly, the question of whether, for any fixed n > 1, there is a Friedberg
numbering of the family of all n-computably enumerable sets has thus far been
open. We answer this question in the affirmative by the following

Theorem 1. For any n > 1, there is an effective enumeration of the family of
all n-computably enumerable sets without repetition. In other words, there is a
computable Friedberg numbering of the family of all n-computably enumerable sets.

Lachlan [La65] and Pour-El and Putnam [PP65] gave an example of an infinite
family of c. e. sets without Friedberg numbering: For any noncomputable c. e. set
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A, the family {{2n,2n 4+ 1} | n € A} U{{2n},{2n + 1} | n ¢ A} is computable
but has no computable Friedberg numbering. Goncharov[Go80] gave examples of
computable families with any fixed finite number of nonequivalent Friedberg num-
berings. Mal’cev [Mf65] and Kummer [K90] gave sufficient conditions on families
with Friedberg numberings. In the papers [Go82, GYY93], many results were es-
tablished about families with infinitely many nonequivalent Friedberg numberings.
Goncharov [Go83| proved that a family with a computable Friedberg numbering
which is not the least numbering has infinitely many positive computable number-
ings.

Theorem 2.

(1) There exists an infinite family of d. c. e. sets without Friedberg numbering.

(2) There exists an infinite family of c. e. sets which (considered as a family of
d. c. e. sets) has a unique numbering (up to equivalence).

(3) There exists a family of d. c. e. sets with a least numbering (under re-
ducibility) such that this numbering is a Friedberg numbering but not the
only numbering (modulo reducibility).

The rest of the paper is devoted to the proof of our theorems.

2. THE PROOF OF THEOREM 1

Our proof is loosely modeled on Friedberg’s proof, as presented in Odifreddi
[Od89]. (Note, however, an error in the proof in [Od89]: In the notation there,
a least index e of a computably enumerable set W need not have a follower if W
is finite of the form [0, z] for some x.) We first present the proof of Friedberg’s
theorem (i. e., the case n = 1) in a way that can be easily generalized to arbitrary
n>1.

Proof for n = 1. Suppose we are given a computable numbering {a, }nen of the
family S of all computably enumerable sets. Without loss of generality, we assume
that ag = w. We now build a computable numbering {3, },c. of S and a ('-partial
computable function f (approximated by uniformly partial computable functions
fs in the sense that f(n)] = m if fs(n) = m for cofinitely many s, and f(n) is
undefined otherwise). We meet the following
Requirements:
(i) If a, = vy for some n’ < n then f(n) is undefined.
(ii) If oy # e for all ' < n then either f(n) is defined and a, = Bf(,); or
ay, is of the form [0, z] for some x, and there is m € w — ran(f) such that
Op = /Bm
(iii) Any set (3, with m ¢ ran(f) is of the form [0, z] for some z.
(iv) For any set of the form [0, | for some z, there is a unique m with 3, = [0, x].
Construction: At stage s = 0, we define fy = w and f(0) = fo(0) = 0, while
fo(n) is undefined for all n > 0.
At a stage s + 1, we perform the following steps:
Step 1: If fs(n) is defined and for some n’ < n,

Ap' s f (fs(n) + 1) = Qps f (fs(n) + 1)
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(i. e., if n does not appear to be the least index for «,, then let fs11(n) be undefined
(and keep fs(n) permanently out of the range of f from now on).
Step 2: If fs(n) is defined, n > 0, and, for some s’ < s and some m € ran(fy) —

ran(fs),
Bm,s f (fs(n) + 1) - ﬂfs(n),s f (fS(n) + 1)

(i. e., if the set (3, seems to appear twice in the -sequence of sets, including once
as a set with index no longer in the range of f), then let fs11(n) be undefined (and
keep fs(n) permanently out of the range of f from now on).

Step 3: If fq(n) is defined but fsy1(n) is undefined (i. e., if f(n) just became
undefined via Step 1 or Step 2), then for each such n (in increasing order of n), set

/st(n) = ﬂfs(n),s—i—l = [va]

for some z larger than any number mentioned thus far in the construction.

Step 4: If fs(n) is undefined for n <'s, then for each such n (in increasing order
of n), let fs41(n) be the least m not in | J,, ., ran(fs) and not equal to fs41(n') for
some n' < n. B

Step 5: If fsy1(n) is defined then let B¢ (n)s41 = Qn st1.

Verification: We first note that since for each m there is at most one n such
that fs(n) = m at some stage s, Step 5 can be carried out since no number has to
be removed from Sy . (n) to carry out Step 5. Similarly, since x is chosen large in
Step 3, this step can be carried out without removing numbers from Sy ().

We now verify the satisfaction of the above requirements:

(i) If ay, = vy for some n’ < n then fy(n) is undefined for infinitely many s by
Step 1.

(ii) If o, # ay for all n’ < n then f(n) becomes undefined via Step 1 at
most finitely often. If f(n) becomes undefined via Step 2 for the same m infinitely
often then «, = [, as desired. Otherwise, since a, is computably enumerable,
ap,s = [0, 2] at various stages s for larger and larger z; thus o, = w, and so n =0
and Step 2 never applies to n.

(iii) This is immediate by Step 4.

(iv) Fix x. Steps 2 and 4 ensure that there is at most one m such that 3,, = [0, z].
Fix n least such that oy, = [0, z]. Then either f(n) is defined and B¢,y = [0, z]; or
else we can argue as in (ii) above that there is some m such that (3, = [0, z].

Proof for n > 1. We merely note some minor modifications to the above needed
for n > 1: Fix a computable numbering {c, },c. of the family S of all n-computably
enumerable sets. Without loss of generality, we assume that oy = w if n is odd,
and that ap = 0 if n is even. We again build a computable numbering {/3,, }ncw of
S and a (/-partial computable function f, meeting the same requirements (i)—(iv)
as above except that in (iii) and (iv), we replace [0, z] by w — [0, ] in the case that
n is even.

Construction: We perform Steps 1-5 as above, except that in Step 3, we replace
[0, z] by w — [0, z] in the case that n is even.

Verification: We proceed as above, but note that we need a new argument that
Step 3 can be carried out as prescribed. But this holds since z is larger than any
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number mentioned thus far in the construction. So, in the case that n is even,
Step 3 does not add numbers into ¢, (,); and in the case that n is odd, Step 3 does
not remove numbers from B¢, ().

Concluding Remarks. We remark in closing that, as for the case n = 1, the
above construction can be adapted, for any fixed n > 1, to any uniformly com-
putable family S of n-computably enumerable sets as long as S contains all finite
sets (if n is odd) or all cofinite sets (if n is even, respectively). If w (if n is odd) or
the empty set (if n is even, respectively) is not in S, we can add it to S and then
later change the numbering 8 by removing it again, which is possible since w, or
the empty set, respectively, appears only once in {8, }mew-

3. THE PROOFS FOR THEOREM 2
The proofs for Theorem 2 are fairly simple constructions.

The proof of part (1). We fix an effective list of all computable numberings
{pe}ecw of d. c. e. sets and build a computable numbering v of d. c. e. sets (enu-
merating a family S of d. c. e. sets).

For each e € w, we act as follows:

1. Enumerate 2e into v(2e), and 2e + 1 into v(2e + 1).

2. Wait for a stage s and distinct indices ¢ and j such that 2e € p. (i) and
2e+1¢€ /'l'e,s(j)'

3. Extract 2e and 2e + 1 from v(2e) and v(2e + 1), respectively.

4. Wait for 2e and 2e + 1 to leave p.(i) and pe(j), respectively, by a stage
s’ > s, say.

5. Enumerate both 2e and 2e + 1 into v(e’) for all e’ # 2e, 2e + 1.

Now suppose that p. is a numbering of a family 7" of d. c. e. sets. If a stage s
and indices 7 and j as above do not exist for p. then S contains two distinct sets
containing 2e and 2e+ 1, respectively, but T does not; so S # T'. If stage s exists as
above but stage s’ does not then T' contains a set containing either 2e or 2e + 1 but
S does not; so again S # T. Finally, if stage s’ exists as above then the only set in
S not a superset of {2e,2e+1} is v(2e) = v(2e+1), but {2e,2e+1} 2 (i), u(4), so
S = T implies pu(i) = p(j) for distinct indices ¢ and j; thus g cannot be a Friedberg
numbering.

The proof of part (2). We again fix an effective list of all computable number-
ings {fte}ecw of d. c. e. sets and build a computable numbering v of d. c. e. sets
(enumerating a family S of c. e. sets).

For each e € w, we act as follows:

1. Enumerate the coded pair (n,e) into v(n) for each n.

2. For all k,n € w for which f.(k) and g.(n) are currently undefined, if (n, e)
enters p.(k) then define f.(k) = n and g.(n) = k (indicating our prediction
that pe(k) =v(n)).

3. If ever (n,e) leaves p.(k) while f.(k) = n and g.(n) = k, then enumerate
(n,e) into v(n') for all n’ # n (so that p. cannot be a computable numbering
of S as a family of d. c. e. sets).
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Now suppose that . is a numbering of S as a family d. c. e. sets. First suppose
that Step 3 above never applies. Then each v(n) contains exactly one element of
the form (n/, e), namely, (n,e). Thus, if y. is a numbering of S, then each set p.(k)
must contain exactly one element of the form (n,e), and for each n there must
be at least one k such that p.(k) contains (n,e); thus f. and g. are computable
reductions witnessing that v and p,. are equivalent numberings. On the other hand,
if Step 3 ever applies to (n,e) and k, say, then p.(k) does not contain (n,e) but
v(n') does for all n’, so p. cannot be a computable numbering of S as a family of
d. c. e. sets.

The proof of part (3). We fix effective lists of all computable numberings
{pe}ecw of d. c. e. sets and of all partial computable functions {h;};c.,. We build
two computable numberings o and 7 of d. c. e. sets (enumerating the same family S
of d. c. e. sets) as well as a computable function f and a (/'-computable function g
(approximated by a uniformly computable sequence of functions {gs}sec., ), meeting
the following requirements:

c=r0f,
T=0o0gy,
Vi(T # o oh;), and

(3.
(3.
(3.
(3 Ve (ran pe = rano — 3 computable function k. (60 = pe o k.)).

N N N N

1
2
3
4

Note that requirements (3.1) and (3.2) ensure that o and 7 enumerate the same
family of d. c. e. sets S and that o < 7. Requirement (3.3) now implies that o < 7,
while requirement (3.4) ensures that o represents the least of the Rogers semilattice
of S. Our construction will also ensure that o is a Friedberg numbering.

Requirement (3.3) is met by diagonalization: We fix an index j ¢ ran f and wait
for h;(j) to be defined. Then we enumerate (0, 2¢) into 7(j) and keep (0, 27) out of
o (hi(7))-

Requirement (3.4) is met by strongly using the fact that the sets in S are d. c. e. as
follows: We enumerate (n,2e + 1) into o(n) for each n. Now, for each n, we wait for
(n,2e + 1) to appear in p.(j,) for some j, (distinct from all j,,» found previously).
We now extract (n,2e + 1) from o(n) (so that no o-set contains (n,2e + 1) at this
point). When (n,2e+ 1) leaves p(j,), then we set k.(n) = j, and enumerate
(n,2e+ 1) into o(n’) for all n’ # n. (Note that if p. is indeed a numbering of
S then for each n, j, must eventually be defined and later (n,2e + 1) must leave
pe(Jr ). But then (n,2e + 1) ¢ pe(jn), so o(n) = pe(jn) since o(n) is now the only
o-set not containing (n,2e + 1).)

Requirements (3.1) and (3.2) are met by directly constructing f and g: To build
f, we simply match up each o-set with a 7-set, leaving an infinite computable set
J of 7-indices outside the range of f (so that we can use these j € J to meet
requirement (3.3)). Similarly, to build g, we match each 7-set with a o-set. We
now copy o (i) into 7(f(¢)) and vice versa. We also copy 7(j) into o(g(j)) unless
requirement (3.3) prohibits this since we need to enumerate into 7(j) but keep it
out of o(g(7)) (i. e., o(g(j)), for the current value of g(j), and o (h;(j)) are supposed
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to be the same set). In that case, we simply change g(j) to a new o-index i’ never
used before so that o(i") can copy 7(5).

It is now not hard to see how to combine these strategies into a finite-injury
priority argument, the details of which we leave to the reader.
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