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Abstra
t. We establish a number of results on numberings, in parti
ular on Fried-

berg numberings, of families of d. 
. e. sets:

(1) There exists a Friedberg numbering of the family of all d. 
. e. sets. We also

show that this result, patterned on Friedberg's famous theorem for the family of all


. e. sets, holds for the family of all n-
. e. sets for any n > 2.

(2) There exists an in�nite family of d. 
. e. sets without a Friedberg numbering.

(3) There exists an in�nite family of 
. e. sets with a numbering (as a family of

d. 
. e. sets) whi
h is unique up to equivalen
e.

(4) There exists a family of d. 
. e. sets with a least numbering (under redu
ibility)

su
h that this numbering is a Friedberg numbering but not the only numbering

(modulo redu
ibility).

1. The theorems

In one of the early fundamental papers of 
lassi
al 
omputability theory, Fried-

berg [Fr58℄ 
onstru
ted an e�e
tive enumeration of the family of all 
omputably

enumerable sets of nonnegative integers without repetition, i. e., he built a uniformly


omputably enumerable sequen
e of sets f�

n

g

n2!

su
h that ea
h 
omputably enu-

merable set o

urs exa
tly on
e in this sequen
e.

This theorem 
an be viewed as an example of a result in the theory of numberings,

a �eld initiated by Kolmogorov in the mid-1950's, whi
h has sin
e then been pursued
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2 FRIEDBERG NUMBERINGS OF FAMILIES OF n-C. E. SETS

mainly in the (former) Soviet Union, in parti
ular by the Novosibirsk s
hool under

Mal'tsev and Ershov. (See Ershov [Er73-77, Er77, Er99℄ for more ba
kground.

There is also some work in the 1960's by La
hlan [La65-67℄, Pour-El and 
oauthors

[PH64, PP65℄, and others.)

A numbering tries to enable the algorithmi
 study of a (
ountable) family S

of obje
ts by giving \names" (i. e., integer indi
es) to the obje
ts in S. More

pre
isely, a numbering of S is a map � from the set ! of natural numbers onto

the family S. Of 
ourse, an obje
t in S 
an have many \names" under �, i. e.,

� is generally not assumed to be 1{1. If, however, � is 1{1, it is usually 
alled a

Friedberg numbering due to the above-mentioned result of Friedberg, whi
h was the

�rst example of a Friedberg numbering. Friedberg numberings play an important

role in the theory of numberings sin
e they are minimal under redu
ibility on the


olle
tion of numberings of a family S. (This redu
ibility, for numberings �; � of S,

is de�ned by � � � i� there is a 
omputable fun
tion f su
h that � = �Æf , i. e., from

any �-index of an obje
t in S one 
an e�e
tively 
ompute a �-index of this obje
t.

One 
an then de�ne an equivalen
e relation on the 
olle
tion of numberings of S by

setting � � � i� � � � and � � �. These equivalen
e 
lasses now form a natural

upper semilatti
e under the ordering indu
ed by �; and Friedberg numberings are

only found in minimal elements of this semilatti
e.)

A natural extension of the notion of a 
omputably enumerable set was de�ned

by Putnam [Pu65℄: Call a set A � ! 1-
omputably enumerable if it is 
omputably

enumerable; and (n+1)-
omputably enumerable if it is of the form A

0

�A

1

where

A is 
omputably enumerable and A

1

is n-
omputably enumerable. Equivalently, a

set A � ! is n-
omputably enumerable if there is a uniformly 
omputable sequen
e

of sets fA

s

g

s2!

su
h that for all x,

x =2 A

0

;

A(x) = lim

s

A

s

(x); and

jfs 2 ! j A

s

(x) 6= A

s+1

(x)gj � n:

Given a family S of n-
omputably enumerable sets, we 
all a numbering � of S


omputable if the relation \x 2 �(e)" is n-
omputably enumerable, i. e., if the

sequen
e f�(e)g

e2!

is uniformly n-
omputably enumerable. (Note that this notion

depends not only on the family S but also on n sin
e S might 
onsist of (n � 1)-


omputably enumerable sets only.)

In this notation, Friedberg's above-mentioned result now states that there is a


omputable Friedberg numbering of the family of all 
omputably enumerable sets.

Surprisingly, the question of whether, for any �xed n > 1, there is a Friedberg

numbering of the family of all n-
omputably enumerable sets has thus far been

open. We answer this question in the aÆrmative by the following

Theorem 1. For any n > 1, there is an e�e
tive enumeration of the family of

all n-
omputably enumerable sets without repetition. In other words, there is a


omputable Friedberg numbering of the family of all n-
omputably enumerable sets.

La
hlan [La65℄ and Pour-El and Putnam [PP65℄ gave an example of an in�nite

family of 
. e. sets without Friedberg numbering: For any non
omputable 
. e. set
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A, the family ff2n; 2n + 1g j n 2 Ag [ ff2ng; f2n + 1g j n =2 Ag is 
omputable

but has no 
omputable Friedberg numbering. Gon
harov[Go80℄ gave examples of


omputable families with any �xed �nite number of nonequivalent Friedberg num-

berings. Mal'
ev [Mf65℄ and Kummer [K90℄ gave suÆ
ient 
onditions on families

with Friedberg numberings. In the papers [Go82, GYY93℄, many results were es-

tablished about families with in�nitely many nonequivalent Friedberg numberings.

Gon
harov [Go83℄ proved that a family with a 
omputable Friedberg numbering

whi
h is not the least numbering has in�nitely many positive 
omputable number-

ings.

Theorem 2.

(1) There exists an in�nite family of d. 
. e. sets without Friedberg numbering.

(2) There exists an in�nite family of 
. e. sets whi
h (
onsidered as a family of

d. 
. e. sets) has a unique numbering (up to equivalen
e).

(3) There exists a family of d. 
. e. sets with a least numbering (under re-

du
ibility) su
h that this numbering is a Friedberg numbering but not the

only numbering (modulo redu
ibility).

The rest of the paper is devoted to the proof of our theorems.

2. The proof of Theorem 1

Our proof is loosely modeled on Friedberg's proof, as presented in Odifreddi

[Od89℄. (Note, however, an error in the proof in [Od89℄: In the notation there,

a least index e of a 
omputably enumerable set W need not have a follower if W

is �nite of the form [0; x℄ for some x.) We �rst present the proof of Friedberg's

theorem (i. e., the 
ase n = 1) in a way that 
an be easily generalized to arbitrary

n � 1.

Proof for n = 1. Suppose we are given a 
omputable numbering f�

n

g

n2!

of the

family S of all 
omputably enumerable sets. Without loss of generality, we assume

that �

0

= !. We now build a 
omputable numbering f�

n

g

n2!

of S and a ;

0

-partial


omputable fun
tion f (approximated by uniformly partial 
omputable fun
tions

f

s

in the sense that f(n) # = m if f

s

(n) = m for 
o�nitely many s, and f(n) is

unde�ned otherwise). We meet the following

Requirements:

(i) If �

n

= �

n

0

for some n

0

< n then f(n) is unde�ned.

(ii) If �

n

6= �

n

0

for all n

0

< n then either f(n) is de�ned and �

n

= �

f(n)

; or

�

n

is of the form [0; x℄ for some x, and there is m 2 ! � ran(f) su
h that

�

n

= �

m

.

(iii) Any set �

m

with m =2 ran(f) is of the form [0; x℄ for some x.

(iv) For any set of the form [0; x℄ for some x, there is a uniquem with �

m

= [0; x℄.

Constru
tion: At stage s = 0, we de�ne �

0

= ! and f(0) = f

0

(0) = 0, while

f

0

(n) is unde�ned for all n > 0.

At a stage s+ 1, we perform the following steps:

Step 1: If f

s

(n) is de�ned and for some n

0

< n,

�

n

0

;s

� (f

s

(n) + 1) = �

n;s

� (f

s

(n) + 1)
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(i. e., if n does not appear to be the least index for �

n

, then let f

s+1

(n) be unde�ned

(and keep f

s

(n) permanently out of the range of f from now on).

Step 2: If f

s

(n) is de�ned, n > 0, and, for some s

0

< s and some m 2 ran(f

s

0

)�

ran(f

s

),

�

m;s

� (f

s

(n) + 1) = �

f

s

(n);s

� (f

s

(n) + 1)

(i. e., if the set �

m

seems to appear twi
e in the �-sequen
e of sets, in
luding on
e

as a set with index no longer in the range of f), then let f

s+1

(n) be unde�ned (and

keep f

s

(n) permanently out of the range of f from now on).

Step 3: If f

s

(n) is de�ned but f

s+1

(n) is unde�ned (i. e., if f(n) just be
ame

unde�ned via Step 1 or Step 2), then for ea
h su
h n (in in
reasing order of n), set

�

f

s

(n)

= �

f

s

(n);s+1

= [0; x℄

for some x larger than any number mentioned thus far in the 
onstru
tion.

Step 4: If f

s

(n) is unde�ned for n � s, then for ea
h su
h n (in in
reasing order

of n), let f

s+1

(n) be the least m not in

S

s

0

�s

ran(f

s

0

) and not equal to f

s+1

(n

0

) for

some n

0

< n.

Step 5: If f

s+1

(n) is de�ned then let �

f

s+1

(n);s+1

= �

n;s+1

.

Veri�
ation: We �rst note that sin
e for ea
h m there is at most one n su
h

that f

s

(n) = m at some stage s, Step 5 
an be 
arried out sin
e no number has to

be removed from �

f

s+1

(n)

to 
arry out Step 5. Similarly, sin
e x is 
hosen large in

Step 3, this step 
an be 
arried out without removing numbers from �

f

s

(n)

.

We now verify the satisfa
tion of the above requirements:

(i) If �

n

= �

n

0

for some n

0

< n then f

s

(n) is unde�ned for in�nitely many s by

Step 1.

(ii) If �

n

6= �

n

0

for all n

0

< n then f(n) be
omes unde�ned via Step 1 at

most �nitely often. If f(n) be
omes unde�ned via Step 2 for the same m in�nitely

often then �

n

= �

m

as desired. Otherwise, sin
e �

n

is 
omputably enumerable,

�

n;s

= [0; x℄ at various stages s for larger and larger x; thus �

n

= !, and so n = 0

and Step 2 never applies to n.

(iii) This is immediate by Step 4.

(iv) Fix x. Steps 2 and 4 ensure that there is at most onem su
h that �

m

= [0; x℄.

Fix n least su
h that �

n

= [0; x℄. Then either f(n) is de�ned and �

f(n)

= [0; x℄; or

else we 
an argue as in (ii) above that there is some m su
h that �

m

= [0; x℄.

Proof for n > 1. We merely note some minor modi�
ations to the above needed

for n > 1: Fix a 
omputable numbering f�

n

g

n2!

of the family S of all n-
omputably

enumerable sets. Without loss of generality, we assume that �

0

= ! if n is odd,

and that �

0

= ; if n is even. We again build a 
omputable numbering f�

n

g

n2!

of

S and a ;

0

-partial 
omputable fun
tion f , meeting the same requirements (i){(iv)

as above ex
ept that in (iii) and (iv), we repla
e [0; x℄ by !� [0; x℄ in the 
ase that

n is even.

Constru
tion: We perform Steps 1{5 as above, ex
ept that in Step 3, we repla
e

[0; x℄ by ! � [0; x℄ in the 
ase that n is even.

Veri�
ation: We pro
eed as above, but note that we need a new argument that

Step 3 
an be 
arried out as pres
ribed. But this holds sin
e x is larger than any
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number mentioned thus far in the 
onstru
tion. So, in the 
ase that n is even,

Step 3 does not add numbers into �

f

s

(n)

; and in the 
ase that n is odd, Step 3 does

not remove numbers from �

f

s

(n)

.

Con
luding Remarks. We remark in 
losing that, as for the 
ase n = 1, the

above 
onstru
tion 
an be adapted, for any �xed n > 1, to any uniformly 
om-

putable family S of n-
omputably enumerable sets as long as S 
ontains all �nite

sets (if n is odd) or all 
o�nite sets (if n is even, respe
tively). If ! (if n is odd) or

the empty set (if n is even, respe
tively) is not in S, we 
an add it to S and then

later 
hange the numbering � by removing it again, whi
h is possible sin
e !, or

the empty set, respe
tively, appears only on
e in f�

m

g

m2!

.

3. The proofs for Theorem 2

The proofs for Theorem 2 are fairly simple 
onstru
tions.

The proof of part (1). We �x an e�e
tive list of all 
omputable numberings

f�

e

g

e2!

of d. 
. e. sets and build a 
omputable numbering � of d. 
. e. sets (enu-

merating a family S of d. 
. e. sets).

For ea
h e 2 !, we a
t as follows:

1. Enumerate 2e into �(2e), and 2e+ 1 into �(2e+ 1).

2. Wait for a stage s and distin
t indi
es i and j su
h that 2e 2 �

e;s

(i) and

2e+ 1 2 �

e;s

(j).

3. Extra
t 2e and 2e+ 1 from �(2e) and �(2e+ 1), respe
tively.

4. Wait for 2e and 2e + 1 to leave �

e

(i) and �

e

(j), respe
tively, by a stage

s

0

> s, say.

5. Enumerate both 2e and 2e+ 1 into �(e

0

) for all e

0

6= 2e; 2e+ 1.

Now suppose that �

e

is a numbering of a family T of d. 
. e. sets. If a stage s

and indi
es i and j as above do not exist for �

e

then S 
ontains two distin
t sets


ontaining 2e and 2e+1, respe
tively, but T does not; so S 6= T . If stage s exists as

above but stage s

0

does not then T 
ontains a set 
ontaining either 2e or 2e+1 but

S does not; so again S 6= T . Finally, if stage s

0

exists as above then the only set in

S not a superset of f2e; 2e+1g is �(2e) = �(2e+1), but f2e; 2e+1g 6� �(i); �(j), so

S = T implies �(i) = �(j) for distin
t indi
es i and j; thus � 
annot be a Friedberg

numbering.

The proof of part (2). We again �x an e�e
tive list of all 
omputable number-

ings f�

e

g

e2!

of d. 
. e. sets and build a 
omputable numbering � of d. 
. e. sets

(enumerating a family S of 
. e. sets).

For ea
h e 2 !, we a
t as follows:

1. Enumerate the 
oded pair hn; ei into �(n) for ea
h n.

2. For all k; n 2 ! for whi
h f

e

(k) and g

e

(n) are 
urrently unde�ned, if hn; ei

enters �

e

(k) then de�ne f

e

(k) = n and g

e

(n) = k (indi
ating our predi
tion

that �

e

(k) = �(n)).

3. If ever hn; ei leaves �

e

(k) while f

e

(k) = n and g

e

(n) = k, then enumerate

hn; ei into �(n

0

) for all n

0

6= n (so that �

e


annot be a 
omputable numbering

of S as a family of d. 
. e. sets).
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Now suppose that �

e

is a numbering of S as a family d. 
. e. sets. First suppose

that Step 3 above never applies. Then ea
h �(n) 
ontains exa
tly one element of

the form hn

0

; ei, namely, hn; ei. Thus, if �

e

is a numbering of S, then ea
h set �

e

(k)

must 
ontain exa
tly one element of the form hn; ei, and for ea
h n there must

be at least one k su
h that �

e

(k) 
ontains hn; ei; thus f

e

and g

e

are 
omputable

redu
tions witnessing that � and �

e

are equivalent numberings. On the other hand,

if Step 3 ever applies to hn; ei and k, say, then �

e

(k) does not 
ontain hn; ei but

�(n

0

) does for all n

0

, so �

e


annot be a 
omputable numbering of S as a family of

d. 
. e. sets.

The proof of part (3). We �x e�e
tive lists of all 
omputable numberings

f�

e

g

e2!

of d. 
. e. sets and of all partial 
omputable fun
tions fh

i

g

i2!

. We build

two 
omputable numberings � and � of d. 
. e. sets (enumerating the same family S

of d. 
. e. sets) as well as a 
omputable fun
tion f and a ;

0

-
omputable fun
tion g

(approximated by a uniformly 
omputable sequen
e of fun
tions fg

s

g

s2!

), meeting

the following requirements:

� = � Æ f;(3.1)

� = � Æ g;(3.2)

8i (� 6= � Æ h

i

); and(3.3)

8e (ran�

e

= ran� ! 9 
omputable fun
tion k

e

(� = �

e

Æ k

e

)):(3.4)

Note that requirements (3.1) and (3.2) ensure that � and � enumerate the same

family of d. 
. e. sets S and that � � � . Requirement (3.3) now implies that � < � ,

while requirement (3.4) ensures that � represents the least of the Rogers semilatti
e

of S. Our 
onstru
tion will also ensure that � is a Friedberg numbering.

Requirement (3.3) is met by diagonalization: We �x an index j =2 ran f and wait

for h

i

(j) to be de�ned. Then we enumerate h0; 2ii into �(j) and keep h0; 2ii out of

�(h

i

(j)).

Requirement (3.4) is met by strongly using the fa
t that the sets in S are d. 
. e. as

follows: We enumerate hn; 2e+ 1i into �(n) for ea
h n. Now, for ea
h n, we wait for

hn; 2e+ 1i to appear in �

e

(j

n

) for some j

n

(distin
t from all j

n

0

found previously).

We now extra
t hn; 2e+ 1i from �(n) (so that no �-set 
ontains hn; 2e+ 1i at this

point). When hn; 2e+ 1i leaves �

e

(j

n

), then we set k

e

(n) = j

n

and enumerate

hn; 2e+ 1i into �(n

0

) for all n

0

6= n. (Note that if �

e

is indeed a numbering of

S then for ea
h n, j

n

must eventually be de�ned and later hn; 2e+ 1i must leave

�

e

(j

n

). But then hn; 2e+ 1i =2 �

e

(j

n

), so �(n) = �

e

(j

n

) sin
e �(n) is now the only

�-set not 
ontaining hn; 2e+ 1i.)

Requirements (3.1) and (3.2) are met by dire
tly 
onstru
ting f and g: To build

f , we simply mat
h up ea
h �-set with a � -set, leaving an in�nite 
omputable set

J of � -indi
es outside the range of f (so that we 
an use these j 2 J to meet

requirement (3.3)). Similarly, to build g, we mat
h ea
h � -set with a �-set. We

now 
opy �(i) into �(f(i)) and vi
e versa. We also 
opy �(j) into �(g(j)) unless

requirement (3.3) prohibits this sin
e we need to enumerate into �(j) but keep it

out of �(g(j)) (i. e., �(g(j)), for the 
urrent value of g(j), and �(h

i

(j)) are supposed
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to be the same set). In that 
ase, we simply 
hange g(j) to a new �-index i

0

never

used before so that �(i

0

) 
an 
opy �(j).

It is now not hard to see how to 
ombine these strategies into a �nite-injury

priority argument, the details of whi
h we leave to the reader.
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