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Abstract. We give an algorithm for deciding whether an embedding of a finite
partial order P into the enumeration degrees of the Σ0

2-sets can always be extended
to an embedding of a finite partial order Q ⊃ P.

1. The theorem. Reducibilities are relations on the power set of the natural
numbers, conveying that a set A ⊆ ω can in some sense be “computed” or, in more
generality, “defined”, from another set B ⊆ ω, usually denoted as A ≤r B (where
r specifies what “computations” are allowed). Reducibilities are assumed to be
reflexive and transitive but usually not antisymmetric, i. e., they give a partial pre-
ordering on P(ω). They induce equivalence relations (defined by A ≡r B iff A ≤r B
and B ≤r A), and the equivalence class of a set is called its (r-)degree. The degree
of a set thus captures the computational complexity of a set of natural numbers
while stripping away the information about the set irrelevant from a computational
point of view (such as membership of a particular number, etc.).

The most important reducibility of classical computability theory is the Turing
reducibility, denoting that a set A can be computed from a set B by means of an
oracle Turing machine (i. e., by a hypothetical computer with unlimited resources
and access to membership information about the “oracle” set B). In addition,
there are various other reducibilities using models of computation which in various
ways restrict the run time, memory space, or oracle access, or which allow infinite
schemes of computation.

All the reducibilities mentioned in the above paragraph are based on the follow-
ing model of computing a set A from a set B: A query about membership in A
is reduced to an effectively generated sequence of queries about membership in B.
Enumeration reducibility introduces a different concept: One produces an enumer-
ation of a set A from an arbitrary enumeration of a set B, i. e., in the above Turing
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model, we use only positive information about membership in B and produce only
positive membership information about A. More formally, we define the reducibility
A ≤e B as follows:

Definition 1.1. Given sets A,B ⊆ ω, we say A is enumeration reducible to B (de-
noted by A ≤e B) if there is a computably enumerable set Φ of pairs (an enumer-
ation operator) such that

A = Φ(B) =def {x | ∃ 〈x, F 〉 ∈ Φ(F finite and F ⊆ B)}.
Note that this is closely modeled on Turing reducibility, since A is Turing re-

ducible to B (A ≤T B) if there is a computably enumerable set Φ of 4-tuples (a
Turing functional) such that

A(x) = Φ(B;x) = y iff ∃ 〈x, y, F,G〉 ∈ Φ (F , G finite and F ⊆ B and G ⊆ B).

Enumeration reducibility is thus the natural analogue to Turing reducibility for
“relative enumerability”. It arises naturally in applications of computability theory
to other areas of mathematics, such as for the analysis of types in effective model
theory (see, e.g., Ash, Knight, Manasse, Slaman [AKMS89]) and in the study of
existentially closed groups (see, e.g., Higman, Scott [HS88]).

The common analogue of both the computably enumerable Turing degrees and
the ∆0

2-Turing degrees in the enumeration degrees is the structure of the enumera-
tion degrees of the Σ0

2-sets, which coincide with the enumeration degrees of the sets
enumeration reducible to 0′e, the jump of the least enumeration degree, or, equiva-
lently, the enumeration degree of K. The Σ0

2-enumeration degrees share some of the
features of both the computably enumerable Turing degrees and of the ∆0

2-Turing
degrees: E.g., by Cooper [Co84], the Σ0

2-enumeration degrees are dense (cf. the
Sacks Density Theorem [Sa64] for the computably enumerable Turing degrees); but
by a recent result of Lempp and Sorbi [LS02], the Σ0

2-enumeration degrees admit the
embedding of any finite lattice preserving least and greatest element (cf. Lerman,
Shore [LS88] for the ∆0

2-Turing degrees).
Slaman and Woodin [SW97] showed that the first-order theory of the partial

order of the Σ0
2-enumeration degrees is undecidable. An inspection of their proof

shows that in fact undecidability appears after five alternations of quantifiers. How-
ever, the solution to the lattice embeddings problem by Lempp and Sorbi suggests
that it may be easier to decide the ∀∃-theory of the Σ0

2-enumeration degrees than
to decide the ∀∃-theory of the computably enumerable Turing degrees.

Deciding the ∀∃-theory amounts to deciding the following extension problem:
Given finite partial orders P,Q0, . . . ,Qn with P ⊂ Qi (for i = 0, . . . , n), decide
whether any embedding of P into the Σ0

2-enumeration degrees can be extended to
an embedding of Qi for some i ≤ n (where this i may depend on the particular
embedding of P). The classical extension of embeddings problem is a special case
of this problem, namely, with n = 0.

In the present paper, we offer a solution to the extension of embeddings problem.
Our analysis is closely modeled on the solution to the extension of embeddings prob-
lem for the computably enumerable Turing degrees by Slaman and Soare [SS01].
Before stating this result, we need some definitions:

Definition 1.2.
(1) A partial ordering P is bounded if it has a least element, 0, and a greatest

element, 1.
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(2) Given partial orderings P ⊂ Q and a subset S ⊆ Q, we set

A(S) = {a ∈ P | ∀x ∈ S (a ≥ x)}, and

B(S) = {a ∈ P | ∀x ∈ S (a ≤ x)}.

We abbreviate A(x) and B(x) for A({x}) and B({x}), respectively. For sim-
plicity, we often omit obvious parentheses thus writing for instance BA(S)
instead of B(A(S)), etc.

(3) Given two subsets S, T ⊆ Q, we also abbreviate by S < T that

∀x ∈ S ∀y ∈ T (x < y),

and analogously for S ≤ T , x < T , etc.

In this notation, we can now state the result of Slaman and Soare:

Theorem 1.3 (Extension of Embeddings Theorem for the Computably
Enumerable Turing Degrees) (Slaman, Soare [SS01]). Given finite bounded
partial orders P ⊂ Q, every embedding of P into the computably enumerable degrees
extends to an embedding of Q if and only if neither of the following conditions holds:

∃x, y ∈ Q (x 6≤ y and BA(x) ≤ AB(y)),(1)

∃y ∈ Q− P (Z(y) 6= ∅ and BA(Z(y) ∪ B(y)) 6⊆ B(y)),(2)

where
Z(y) = {z ∈ Q− P | z < y and B(y) 6⊆ BA(z)}.

So, intuitively speaking, there are two types of obstacles to extensions of embed-
dings in the computably enumerable Turing degrees. The first is a lattice-theoretic
one, since condition (1) above states that in some lattice extending P, the infimum
of the elements in A(x) is ≤ the supremum of the elements in B(y). The other
obstacle is a saturation condition, stating that one cannot always extend an em-
bedding to include a new point x above other new points z such that x bounds
points in P which are “far” from the z’s. (Later, in the extendibility construction,
this situation would cause problems since the z’s would be subject to a restraint
coming from x that is too complicated for points in P bounding z to handle.) A typ-
ical instance of this latter obstacle is a partial ordering P consisting of 0, 1, and of
two incomparable points a and b, extended to Q by inserting two points z < x such
that z < a is incomparable with b, and x > b is incomparable with a. Condition (2)
above now applies since Z(x) = {z} and BA(Z(x) ∪ B(x)) = P 6⊆ {b, 0} = B(x).
(The anonymous referee pointed out that the conjunct Z(x) 6= ∅ in Condition (2)
above is not necessary, since if Z(x) = ∅ but the other conjunct of Condition (2)
holds, then Condition (1) must hold. We chose to formulate Condition (2) as above,
however, since it reflects the construction and our intuition about it.)

In the case of the Σ0
2-enumeration degrees, we encounter an additional obstacle,

which is already present in the case of one-point extensions. An instance of this
obstacle was first found by Ahmad:
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Theorem 1.4 (Ahmad (see Ahmad, Lachlan [AL98])). There are Σ0
2-enumeration

degrees a and y such that a 6≤ y but any Σ0
2-enumeration degree x < a is ≤ y (i. e.,

a itself is the only degree x ≤ a with x 6≤ y).

The third obstacle (stated precisely in condition (3) in the theorem below) is
a generalization of Ahmad’s theorem, excluding the existence of extensions in the
case where a new point x ∈ Q−P is added incomparable to some y ∈ Q such that
B(y) ⊇ B(x) but B(y) 6≤ A(x) where y may be in P or in Q−P.

The main theorem of this paper is thus the following

Theorem 1.5 (Extension of Embeddings Theorem for the Σ0
2-Enume-

ration Degrees). Given finite bounded partial orderings P ⊆ Q, every embedding
of P into the Σ0

2-enumeration degrees extends to an embedding of Q if and only if
none of the following conditions holds:

∃x, y ∈ Q (x 6≤ y and BA(x) ≤ AB(y)),(1)

∃y ∈ Q− P (Z(y) 6= ∅ and BA(Z(y) ∪ B(y)) 6⊆ B(y)),(2)

∃x ∈ Q− P ∃y ∈ Q (x 6≤ y and B(x) ⊆ B(y) and B(y) 6≤ A(x)),(3)

where again
Z(y) = {z ∈ Q− P | z < y and B(y) 6⊆ BA(z)}.

Note that Theorem 1.4 is a special case of condition (3) of Theorem 1.5, with
P = {0, a, y, 1}, Q−P = {x}, and A(x) = {a, 1}.

Just as in Slaman and Soare [SS01], we immediately obtain the following

Corollary 1.6. The extension of embeddings problem (in the language of bounded
partial orderings) for the Σ0

2-enumeration degrees is decidable. ¤
We remind the reader that the extension of embeddings problem is only part of

the ∀∃-theory, for which decidability is still open:

Open Question 1.7. Is the ∀∃-theory of the Σ0
2-enumeration degrees in the language

of partial ordering decidable?

We note that another fragment of the ∀∃-theory of the Σ0
2-enumeration degrees,

the lattice embeddings problem, has recently also been shown to be decidable, in
contrast to the situation for the computably enumerable Turing degrees, where it
is still open:

Theorem 1.8 (Lattice Embeddings Theorem for the Σ0
2-Enumeration De-

grees) (Lempp and Sorbi [LS02]). Every finite lattice can be embedded into the
Σ0

2-enumeration degrees, preserving least and greatest element.

The rest of this paper is devoted to the proof of Theorem 1.5. We proceed in
four parts, showing in sections 2, 3, and 4, respectively, that each of the conditions
(1), (2), and (3) ensures non-extendibility; and in section 5 that extendibility holds
otherwise.

Our notation is standard and generally follows Soare [So87], in particular its
Chapter XIV.

2. The first non-extendibility theorem. In this section, we show that condi-
tion (1) of Theorem 1.5 ensures non-extendibility. We first state a lattice-theoretic
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Lemma 2.1. Given a finite bounded partial ordering P, there is a finite lattice L
extending P as a partial ordering such that for any embedding e of P into a lattice
L′, e extends to a partial order embedding e′ of L into L′. Furthermore, for any
subsets A, B ⊆ P such that A is upward closed and B is downward closed in P and
such that B(A) ≤ A(B), we have in L that

∧
A ≤

∨
B.

Proof. We first observe the following trivial facts about the operations A(X) and
B(X) for any sets X, Y ⊆ P:

X ⊆ Y =⇒ A(X) ⊇ A(Y ) and B(X) ⊇ B(Y ),(2.2)

X ⊆ AB(X) and X ⊆ BA(X),(2.3)

A(X) = ABA(X) and B(X) = BAB(X).(2.4)

We then define a closure operation on the power set of P by setting the closure of
X ⊆ P to be AB(X). Then the lattice L is given by

(2.5) L = {X ⊆ P | X = AB(X)},

with ordering and lattice operations on L defined by

X 4 Y ⇔ X ⊇ Y,(2.6)

X ∨ Y = A(B(X) ∪ B(Y )),(2.7)

X ∧ Y = A(B(X) ∩ B(Y )),(2.8)

and the embedding of P into L given by

(2.9) i(a) = {b ∈ P | b ≥ a}.

It is now easy to check, using (2.2)-(2.4), that L is a lattice and that i is a partial
order embedding.

Now fix a partial order embedding e of P into any lattice L′. We can then extend
e to a partial order embedding e′ of L into L′ by setting

(2.10) e′(X) =
∧

a∈X

e(a).

Clearly, e′ preserves the ordering; it also preserves non-ordering (and is therefore
injective). To see this, assume X 64 Y . Suppose B(X) ⊆ B(Y ), then AB(X) ⊇
AB(Y ), which contradicts the fact that X and Y are closed. So fix some x ∈
B(X)− B(Y ) and some y ∈ Y with x 6≤ y. Now if e′(X) ≤ e′(Y ), then

e(x) ≤
∧

a∈X

e(a) = e′(X) ≤ e′(Y ) =
∧

b∈Y

e(b) ≤ e(y),

contradicting x 6≤ y and the fact that e preserves non-ordering.
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Finally, fix subsets A,B ⊆ P such that A is upward closed and B is downward
closed in P and such that B(A) ≤ A(B). Without loss of generality, we may assume
that A ∈ L (otherwise replace A by AB(A) and note that B(A) = BAB(A)), and
by (2.4), we have A(B) ∈ L. Now observe that B(A) ≤ A(B) and A = AB(A)
imply A 4 A(B) and that

A =
∧

a∈A

i(a) and A(B) =
∨

b∈B

i(b).

This concludes the proof of Lemma 2.1. ¤
It is now easy to see that condition (1) of Theorem 1.5 implies non-extendibility:

Simply extend P to the finite lattice L given by Lemma 2.1, and fix an embedding
of L into the Σ0

2-enumeration degrees preserving least and greatest element given
by Theorem 1.8. Then observe that Lemma 2.1 implies that all possible extensions
meeting condition (1) of Theorem 1.5 are obstructed.

Remark 2.11. Note that the above proof actually shows a bit more than what
Theorem 1.5 requires: It is possible to embed P into the Σ0

2-enumeration degrees
such that all one-point extensions of embeddings of P meeting condition (1) of
Theorem 1.5 are obstructed simultaneously.

3. The second non-extendibility theorem. In this section, we show that
condition (2) of Theorem 1.5 ensures non-extendibility.

We first fix some notation, roughly following Slaman and Soare [SS01, section
5]: Assume that we are given two finite posets P ⊂ Q and an element y ∈ Q − P
with Z(y) 6= ∅ and BA(Z(y)∪B(y)) 6⊆ B(y). Let Z(y) = {z0, . . . , zk}, and for each
i ≤ k, let A(zi) = {ai,0, . . . , ai,ki}. Furthermore, let B(y) = {b0 = 0, b1, . . . , bm}.
Finally, fix h ∈ BA(Z(y) ∪ B(y))− B(y); and for each c 6≥ Z(y), let ic be the least
i ≤ k such that c 6≥ zi.

Our task is now to build an embedding of P into the Σ0
2-enumeration degrees

(where we use upper case letters to denote the sets representing the images under
the embedding of the elements of P denoted by the corresponding lower case letters)
such that for any potential extension toQ, one of the following holds for every choice
of Σ0

2 sets Z0, . . . , Zk:
(1) For some i ≤ k and some j ≤ ki, Zi 6≤e Ai,j , contrary to zi ≤ ai,j in Q;
(2) H ≤e

⊕
l≤m Bl ⊕

⊕
i≤k Zi; so

⊕
l≤m Bl ⊕

⊕
i≤k Zi ≤e Y implies H ≤e Y ,

contrary to h /∈ B(y); or
(3) for some c /∈ A(Z(y)), Zic ≤e C, contrary to the ordering in Q.
We thus need to construct Σ0

2-sets A (for each a ∈ P), satisfying the following
Requirements: First of all, there are the “global” requirements:

Cd,c : D ≤e C

for each pair d < c in P − {0, 1};

C1 : C ≡e K

for the element c = 1 in P ; and

C0 : C ≡e ∅
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for the element c = 0 in P.
We also need to satisfy the following “local” requirements. For all tuples of

Σ0
2-sets (Zi)i≤k and all tuples of enumeration operators (Ψi,j)i≤k;j≤ki

, we satisfy

T (Zi)i≤k,(Ψi,j)i≤k;j≤ki
: ∀i ≤ k ∀j ≤ ki (Zi = Ψi,j(Ai,j)) =⇒

∃Γ (H = Γ(
⊕

l≤m

Bl ⊕
⊕

i≤k

Zi)) or ∃∆ ∃c /∈ A(Z(y))(Zic = ∆(C)).

And finally, for all pairs c, d ∈ P with d 6≤ c and all enumeration operators Θ,
we satisfy the “local” requirements

Id,c
Θ : D 6= Θ(C).

Satisfying the global requirements Cd,c is simply achieved by coding D into C:
Whenever a number x is chosen and targeted for D, it is chosen by stage x, and
then x ∈ D if and only if x ∈ C. Satisfying the global requirement C0 is achieved
by setting C = ∅ for c = 0. And the global requirement C1 is ensured by setting
C = K ⊕⊕

d<c D for c = 1.
Satisfying one local requirement in isolation (in the presence of all the above

global requirements) is simple: For a requirement T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
, we simply

build the reduction Γ and keep it correct. For a requirement Id,c
Θ , we appoint a

witness n targeted for D and enumerate n into D. When (if ever) n enters Θ(C),
we remove n from D and restrain C to keep n ∈ Θ(C). (Note here that c 6= 1 and
d 6= 0, so this does not conflict with C0 or C1.)

Clearly, the strategy for an I-requirement is finitary, so we only have to inves-
tigate the interaction between an I-strategy and a finite number of higher-priority
T -strategies. We start by considering the interaction between one I-requirement
and one higher-priority T -requirement. (We note one important difference here
to the presentation in Slaman and Soare [SS01]: There, the “outcome of the T -
requirement along the true path” could “flip” twice, not just once as in the usual
0′′′-constructions: First, it could switch from building Γ to building ∆, and then
later from building ∆ to discovering that one of the reductions Ψi,j in the hypothesis
of the T -requirement is incorrect. This feature turns out to be unnecessary; a more
careful analysis of the restraint reveals that in their, and in our, construction, one
can simply restrain the sets involved so as to ensure that ∆-correction will not cause
injury to any I-strategies. We also correct a slight error in the description of the
construction there, as noted in Slaman and Soare [SSta].) Our presentation here is
somewhat reminiscent of the proof of the D.C.E. Nondensity Theorem [CHLLS91].

We first consider the case of an Id0,c0

Θ0 -strategy (or I0-strategy, for short) below
one T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

-strategy, building its functional Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi),
where we have to distinguish three cases:

Case A1: c0 6≥ B(y): Then the I0-strategy needs to restrain only the sets B with
b ∈ B(c), so the T -strategy can correct its Γ via some set B with b ∈ B(y)− B(c),
and the I0-requirement can be satisfied finitarily.

Case A2: c0 ≥ B(y)∪Z(y): Then h ∈ BA(Z(y)∪B(y)) implies h ≤ c0 and thus
h 6≥ d0, so D0-changes do not cause H-changes and so do not require Γ-correction
via C0; thus the I0-strategy can finitarily restrain C0 without injury.

Case A3: c0 ≥ B(y) but c0 6≥ Z(y): In this case, possibly h ≥ d0, so a D0-
change may cause an H-change. Now Γ needs correction, either via a Zi-change
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for some i ≤ k, or via B for some b ∈ B(y) with b ≤ c0. The latter may injure
the Θ0-computation. Thus, in the latter case, the I0-strategy will start destroying
the reduction Γ and building a reduction ∆(C0) computing Zic0

, using larger and
larger witnesses n0. If this happens infinitely often, then the I0-strategy will make
Γ(

⊕
l≤m Bl ⊕

⊕
i≤k Zi) finite and then has to ensure that ∆(C0) indeed correctly

computes Zic0
if the hypotheses of the T -requirement hold, as explained in more

detail below.
On the other hand, consider now an Id1,c1

Θ1 -strategy (or I1-strategy, for short)
below an I0-strategy, which destroys the functional Γ(

⊕
l≤m Bl ⊕

⊕
i≤k Zi) and

builds a functional ∆(C0) trying to compute Zic0
. By the above analysis, c0 ≥ B(y)

but c0 6≥ Z(y). We again distinguish cases and proceed as follows:
Case B1: c1 6≥ c0: Then the I1-strategy will only restrain C1 but not C0. Thus

∆(C0) can be corrected without injuring the C1-restraint, and the I1-requirement
can be satisfied finitarily.

Case B2: c1 ≥ c0 and c1 ≥ zic0
: Then c1 = aic0 ,j for some j, so the I1-

strategy can restrain Zic0
via C1 and prevent ∆-correction by the I0-strategy.

In order to enforce this restraint, we will ensure that the T -strategy has already
found the necessary computations from Aic0 ,j so that the I1-strategy can prevent
∆-correction by C-restraint.

Case B3: c1 ≥ c0 and c1 6≥ zic0
: In this case, Zic0

may change even though C0

and C1 are restrained. However, note now that ∆-correction is never necessary,
since the I0-strategy can satisfy its requirement finitarily without being injured
by Γ-correction if Zic0

changes permanently and so the I0-strategy can restore a
computation Θ0(C0;n0), whereas, if Zic0

changes back, we may assume that the
T -strategy has already found computations of Zic0

from Aic0 ,j for some j ≤ ki with
aic0 ,j 6≥ B(y), and so the I1-strategy can permanently restrain Zic0

via Aic0 ,j to
prevent ∆-correction from ever injuring Θ1(C1; n1).

An I-strategy below several higher-priority T -requirements acts in essentially
the same way as above, but the nesting is a bit complicated, so we analyze some
nontrivial cases for an I-strategy below two higher-priority T -requirements T 0 and
T 1, say.

An Id0,c0

Θ0 -strategy (or I0-strategy for short) below two T -strategies, say, a T 0-
strategy building a functional Γ0 and a T 1-strategy building a functional Γ1, must
be finitary (as in Cases A1 and A2 above) unless c0 ≥ B(y) but c0 6≥ Z(y). In the
latter case, the I0-strategy will act similarly to Case A3 above, destroying Γ1 and
building ∆1 unless it eventually finds a computation Θ0(C0; n0) cleared by both Γ0

and Γ1 (or no computation Θ0(C0;n0) at all). So the I0-strategy has two possible
outcomes: (1) destroying Γ1 and building ∆1 (the infinitary outcome), or (2) even-
tually finding a Γ0- and Γ1-cleared computation Θ0(C0; n0) (or no computation
Θ0(C0;n0) at all), the finitary outcome. (Note that we destroy Γ1 even if we find
computations Θ0(C0;n0) which are Γ1- but not Γ0-cleared.)

Next, we analyze the action of an Id1,c1

Θ1 -strategy (or I1-strategy for short) below
an I0-strategy building ∆1. Again this is only interesting if c1 ≥ B(y) but c1 6≥ Z(y)
(since otherwise the I1-strategy can deal with Γ0 as in Case A1 or A2, essentially
reducing the analysis to working below ∆1 only). In addition, we may assume
that c1 ≥ c0 and c1 6≥ zic0

(since otherwise the I1-strategy can deal with ∆1 as
in Case B1 or B2, this time essentially reducing the analysis to working below Γ0
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only). On the other hand, assume that c1 ≥ c0 and c1 6≥ zic0
. Then a computation

Θ1(C1;n1) found by the I1-strategy is threatened by both Γ0- and ∆1-correction.
Γ0-correction is handled by destroying more of Γ0 and ∆1 and building ∆0 as in
Case A3 above. Against ∆1-correction, we use the procedure of Case B3 above: The
I1-strategy, upon finding a computation Θ1(C1; n1), will first stop the I0-strategy
and have it restore a computation Θ0(C0;n0). If this computation Θ0(C0;n0) is
ever threatened by Γ1-correction (and so ∆1-correction is no longer necessary),
then we may assume that the T 1-strategy has already found enough computations
of Z1

ic0
from Aic0 ,j (for some j ≤ kic0

with aic0 ,j 6≥ B(y)) so as to make dangerous
∆1-correction impossible from now on (while Γ1 can still be corrected via some
b 6≤ aic0 ,j); now the I1-strategy can restrain Z1

ic0
once and for all via Aic0 ,j , unless

Γ0-correction, and thus Γ0-destruction, becomes necessary. (So again, there are
two possible outcomes, an infinite one destroying Γ0 and ∆1 and building ∆0, and
a finite one, achieving Θ1(C1) 6= D1.)

On the other hand, below the infinite outcome of the I1-strategy, both Γ1 and
∆1 have been destroyed, so we first have to introduce a new T 1-strategy building
Γ̂1. Now we can analyze the action of an I2-strategy, say, dealing with an active ∆0

and an active Γ̂1. Here again, for the interesting case, we will assume that c2 ≥ B(y)
but c2 6≥ Z(y), as well as c2 ≥ c0 and c2 6≥ zic0

. Then the I2-strategy will look for
a computation Θ2(C2; n2), which is Γ̂1-cleared, or destroy more of Γ̂1 and build ∆̂1

as in Case A3 above. If the I2-strategy does find a Γ̂1-cleared computation, then
it will first stop the I1-strategy and have it restore a computation Θ1(C1; n1) as
in Case B3 above until, if ever, Z0

ic1
changes back. If that happens, then we may

assume that the T 0-strategy has already found enough computations of Z0
ic1

from
Aic1 ,j (for some j ≤ kic1

with aic1 ,j 6≥ B(y)) so as to make dangerous ∆0-correction
impossible from now on (while Γ0 can still be corrected via some b 6≤ aic1 ,j); now
the I2-strategy can restrain Z0

ic1
once and for all via Aic1 ,j , the I1-strategy resumes

its destruction of Γ1 and ∆1, and the I2-strategy will be satisfied finitarily.
Finally, we analyze the case of an I3-strategy, say, below an I1-strategy building

∆0 and an I2-strategy building ∆̂1. For the interesting case, assume that c2 ≥ c0, c1

and c2 6≥ zic0
, zic1

(since otherwise the I3-strategy can deal with at least one of the
∆’s as in Case B1 or B2 above, essentially reducing the analysis to working below
at most one ∆). It is here that the minimal choice of the indices ic0 and ic1 turns
out to be important: If ic0 6= ic1 then either c0 ≥ zic1

or c1 ≥ zic0
, contradicting

our assumptions from the previous sentence. Thus we conclude that ic0 = ic1 = i∗,
say; and so the I3-strategy can choose the least j∗ ≤ ki∗ with ai∗,j∗ 6≥ B(y), say,
and ai∗,j∗ 6≥ b∗ for some b∗ ∈ B(y). We now allow the I3-strategy to first stop the
I0-strategy from correcting ∆1 upon the Z1

i∗-change caused by the I3-strategy’s
extracting n3 from D3, and let the I0-strategy restore its computation Θ0(C0; n0)
by restoring B for all b ∈ B(y). Then the I0-strategy will wait for Γ0- or Γ1-
correction to destroy the computation Θ0(C0;n0). (If this does not happen then
the I0-strategy wins finitarily.) There are now two possibilities:

(1) Γ1-correction first destroys Θ0(C0;n0): Then Z1
i∗ must have changed back,

so we may assume that the T 1-strategy has already found enough computations of
Z1

i∗ from Ai∗,j∗ so that the I1-strategy can restrain Z1
i∗ via Ai∗,j∗ while allowing

dangerous Γ1-correction via B∗; and we let the I0-strategy resume its destruction of
Γ1 and its definition of ∆1, stop the I1-strategy from destroying Γ0 and correcting
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∆0 upon the Z0
i∗-change caused by the I3-strategy’s extracting n3 from D3, and let

the I1-strategy restore its computation Θ1(C1;n1) by restoring B for all b ∈ B(y).
If this computation is not later destroyed by Γ0-correction then the I1-strategy
wins finitarily; otherwise, Z0

i∗ must have changed back also, so we may assume that
the T 0-strategy has already found enough computations of Z0

i∗ from Ai∗,j∗ ; then
the I3-strategy can restrain Z0

i∗ via Ai∗,j∗ while allowing dangerous Γ0-correction
via B∗; we let the I1- and I2-strategies also resume their destruction of Γ0 and Γ̂1

and their definition of ∆0 and ∆̂1, and let the I3-strategy restore its computation
Θ3(C3;n3) by restoring B for all b ∈ B(y). This computation can now no longer
be destroyed by any strategy above the I3-strategy.

(2) Γ0-correction first destroys Θ0(C0;n0): Then Z0
i∗ must have changed back,

so we may assume that the T 0-strategy has already found enough computations
of Z0

i∗ from Ai∗,j∗ ; then the I2-strategy can restrain Z0
i∗ via Ai∗,j∗ while allowing

dangerous Γ0-correction via B∗; we let the I0- and I1-strategies resume their de-
struction of Γ1 and Γ0 and their definition of ∆1 and ∆0, stop the I2-strategy from
destroying Γ̂1 and correcting ∆̂1 upon the Z1

i∗-change caused by the I3-strategy’s
extracting n3 from D3, and let the I2-strategy restore its computation Θ2(C2; n2)
by restoring B for all b ∈ B(y). If this computation is not later destroyed by Γ̂1-
correction then the I2-strategy wins finitarily; otherwise, Z1

i∗ must have changed
back also, so we may assume that the T 1-strategy has already found enough com-
putations of Z1

i∗ from Ai∗,j∗ ; then the I3-strategy can restrain Z1
i∗ via Ai∗,j∗ while

allowing dangerous Γ̂1-correction via B∗; we let the I2-strategy also resume its
destruction of Γ̂1 and its definition of ∆̂1, and let the I3-strategy restore its com-
putation Θ3(C3; n3) by restoring B for all b ∈ B(y). This computation can now no
longer be destroyed by any strategy above the I3-strategy.

Approximating the sets Zi: We have so far glossed over one important point,
namely, how we will approximate the sets Zi for each T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

-strategy.
There are two potential problems which need to be addressed:

(1) We need to check that, for fixed i ≤ k, Ψi,j(Ai,j) is the same set for each
j ≤ ki. (If this fails, then we will ensure that the T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

-strategy
eventually has only the finite outcome and stops building its functional Γ.)

(2) Since each Zi is part of the oracle for the corresponding functional Γ the
correctness of which we need to ensure, we will also force our approximation to Zi

to be a ∆0
2-approximation (and so each Zi to be a ∆0

2-set).
We achieve (1) and (2) by making all sets Ai,j (for ai,j 6≥ B(y)) low, which will

make Ψi,j(Ai,j) a ∆0
2-set (and our approximation to it a ∆0

2-approximation), and
by slowing down the T -strategy. For the lowness of each Ai,j with ai,j 6≥ B(y), we
introduce extra

Lowness Requirements:

La
Ω,x : ∃∞s(x ∈ Ω(A)[s]) =⇒ x ∈ Ω(A)

for each a ∈ P with a 6≥ B(y), each enumeration operator Ω, and each argument x.
This is ensured as usual, by restraining a computation x ∈ Ω(A) found by an La

Ω,x-
strategy ξ on the current approximation to the true path with the priority of the
highest-priority La

Ω,x-strategy ξ′ which has ever been eligible to act so far and then
initializing any strategy > ξ′.

For each i ≤ k, there is now some (least) ji ≤ ki such that ai,ji 6≥ B(y), and
so Ψi,ji(Ai,ji) is a ∆0

2-set with its ∆0
2-approximation. We may now assume that
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Zi equals Ψi,ji
(Ai,ji

) (both in the limit and at every stage). We can then ensure
that the sets Ψi,j(Ai,j) (for this i and all j ≤ ki) equal Ψi,ji

(Ai,ji
) by slowing

down the T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
-strategy. For this, we define ξ-expansionary stages

by induction on stage s: Stage 0 is always ξ-expansionary. A stage s > 0 is ξ-
expansionary if ξ is eligible to act at stage s (as defined below) and for all x ≤ the
largest number mentioned by the greatest ξ-expansionary stage s′ < s, we have

x ∈ Zi[s] =⇒ ∀j ≤ ki (x ∈ Ψi,j(Ai,j)[s]), and

x /∈ Zi[s] =⇒ ∀j ≤ ki ∃s′′ ∈ (s′, s] (x /∈ Ψi,j(Ai,j)[s′′]).

We then allow a T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
-strategy ξ eligible to act at stage s to take

the infinite outcome ∞ if and only if s is ξ-expansionary.
We are now ready to present the full construction, starting with the definition

of the
Tree of strategies: Let Λ = {∞ <Λ fin} be the set of outcomes. (Intuitively, a T -

strategy will take outcome∞ at expansionary, and outcome fin at non-expansionary
stages. An Id,c-strategy ξ can take the finitary outcome fin; in addition, if c ≥ B(y)
but c 6≥ Z(y) and there is some T -requirement active along ξ, i.e., there is an active
Γ threatening ξ, then ξ can also take outcome ∞. An La

Ω,x-strategy can only take
outcome fin.)

We define the tree of strategies T ⊆ Λ<ω, and the assignment of requirements to
nodes ξ ∈ T (which we will call strategies), by induction on |ξ|.

First of all, fix an effective priority ordering of all T -, I-, and L-requirements of
order type ω. (So the global C-requirements are not put on the tree T .)

Assign the highest-priority requirement from this list to the root ∅ ∈ T , and call
no requirement active or satisfied along the root ∅.

Given a node ξ ∈ T such that a requirement has been assigned to ξ and for each
T -, I-, and L-requirement, we have determined whether it is active or satisfied
along ξ, we now distinguish three cases depending on the type of requirement
assigned to ξ:

Case 1: ξ has been assigned to T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
: Then ξ has two immedi-

ate successors ξˆ〈∞〉 and ξˆ〈fin〉 on T . We call T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
active along

ξˆ〈∞〉. We call T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
satisfied along ξˆ〈fin〉. We call all other re-

quirements active or satisfied along ξˆ〈o〉 if and only if they are so along ξ (for
o ∈ {∞, fin}).

Case 2: ξ has been assigned to Id,c
Θ : We distinguish two subcases:

Subcase 2.1: c 6≥ B(y), or c ≥ B(y) ∪ Z(y), or there is no T -requirement active
along ξ: Then ξ has an immediate successor ξˆ〈fin〉 on T . We call Id,c

Θ satisfied
along ξˆ〈fin〉, and call all other requirements active or satisfied along ξˆ〈fin〉 iff
they are so along ξ.

Subcase 2.2: Otherwise: Let T ′ be the lowest-priority T -requirement active along
ξ. Then, in addition to the successor from Subcase 2.1, ξ also has an immediate
successor ξˆ〈∞〉. We call T ′ satisfied along ξˆ〈∞〉, call all requirements of higher
priority than T ′ active or satisfied along ξˆ〈∞〉 iff they are so along ξ, and call no
requirement of lower priority than T ′ active or satisfied along ξˆ〈∞〉.

Case 3: ξ has been assigned to La
Ω,x: Then ξ has only one immediate successor

ξˆ〈fin〉 on T . We call La
Ω,x satisfied along ξˆ〈fin〉, and call all other requirements

active or satisfied along ξˆ〈fin〉 iff they are so along ξ.
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In all the above cases, we now assign to any immediate successor ξˆ〈o〉 ∈ T of ξ
the highest-priority requirement not active or satisfied along ξˆ〈o〉.

(Again, the intuition here is that in Subcase 2.1, the I-strategy always has
finite outcome, whereas in Subcase 2.2, the I-strategy may have finite outcome,
or destroy the active functional Γ of a T -strategy above and build a functional ∆
instead. If the I-strategy “flips” the outcome of a T -requirement from “active” to
“satisfied”, then we have to start all over on all requirements of lower priority than
that T -requirement.)

We note an easy

Lemma 3.1. For each T -, I-, or L-requirement and each infinite path p ∈ [T ],
there is a strategy ξ ⊂ p such that the requirement is active (via ξ) along all ξ′ with
ξ ⊂ ξ′ ⊂ p, or satisfied (via ξ) along all ξ′ with ξ ⊂ ξ′ ⊂ p. ¤

In light of Lemma 3.1, we define a requirement to be active along a path p ∈ [T ],
or satisfied along a path p ∈ [T ], if it is active, or satisfied, respectively, along all
sufficiently long ξ ⊂ p.

Construction: The construction proceeds in stages s, each of which consists of
substages t ≤ s. At substage t, a strategy ξ ∈ T of length t is eligible to act. (So
at substage 0 of any stage s, the root ∅ is eligible to act.)

We first need to fix some further notation. A strategy ξ ∈ T is initialized by
making all its parameters and its functionals undefined, canceling all links to or from
it, canceling its restraint, and calling ξ no longer stopped (if it currently has stopped,
as defined below). An I-strategy ξ ∈ T is reset by making all its parameters (except
for its killing number) and all its functionals undefined, canceling all links to or from
it, and initializing all strategies > ξ. A number is chosen big by choosing it above
the current stage and above any number mentioned so far in the construction.

All Σ0
2-sets A (for a ∈ P) constructed by us are ∆0

2 (with the ∆0
2-approximation

given by our construction). By the above remark, we also force the opponent’s sets
Zi to be ∆0

2 (with the given ∆0
2-approximation). We can thus always take all sets

A and Zi as given at the current stage.
Now the action of a strategy ξ (of length t) eligible to act at substage t of stage s

depends on the type of requirement assigned to ξ:
Case 1: ξ has been assigned to T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

: If s is not ξ-expansionary
(as defined above) then end the substage by letting ξˆ〈fin〉 be eligible to act next.
Otherwise, we ensure the correctness of the functional Γ(

⊕
l≤m Bl ⊕

⊕
i≤k Zi).

For any x ∈ Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi) − H and each axiom 〈x, F 〉 ∈ Γ with F ⊆⊕
l≤m Bl ⊕

⊕
i≤k Zi, we remove the number corresponding to some y ∈ F from the

appropriate set B so as to minimize the priority of any strategy ξ′ ⊇ ξ such that y is
restrained or weakly restrained into B by ξ′. We then initialize any strategy ≥ any
such ξ′ the restraint of which has been injured, or > any such ξ′ the weak restraint
of which has been injured. If the weak restraint of such ξ′ has been injured, we
also cancel the link from ξ′ to all ξ′′ ⊂ ξ′ the Θ-computations of which have been
destroyed since the link was established.

Similarly, for any x ∈ H −Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi), we distinguish two subcases:
(1) If the use γ(x) is not defined then we choose a big number xb, for each

b ∈ B(y), and a new big use γ(x) > all the xb’s, enumerate the axiom

〈x,
⊕

l≤m

(Bm ¹ γ(x) ∪ {xbl
})⊕

⊕

i≤k

(Zi ¹ γ(x))〉
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into Γ and put xb into B for each b ∈ B(y).
(2) If the use γ(x) is defined then we enumerate the axiom

〈x,
⊕

l≤m

(Bm ¹ γ(x))⊕
⊕

i≤k

(Zi ¹ γ(x))〉

into Γ.
Now end the substage by letting ξˆ〈∞〉 be eligible to act next.
Case 2: ξ has been assigned to Id,c

Θ : Proceed as in the first applicable subcase:
Subcase 2.1: ξ has already stopped (as defined in Subcase 2.5.3 or Subcase 2.6.2

below): Then end the substage by letting ξˆ〈fin〉 be eligible to act next.
Subcase 2.2: ξ has not been assigned a killing number wξ: Then we choose a big

killing number wξ and end the stage.
Subcase 2.3: ξ has not been assigned a witness n: Then we choose a big witness n,

enumerate n into D, and end the stage.
So in the remaining subcases, we can assume that ξ’s killing number wξ and

witness n are defined. We have to distinguish subcases by the position of c within P.
Subcase 2.4: c ≥ B(y) but c 6≥ Z(y), and there is some T -requirement active

along ξ: Set i∗ = ic, and fix j∗ ≤ ki∗ least with ai∗,j∗ 6≥ B(y). Let η ⊂ ξ be the
longest T -strategy such that its T -requirement is active along ξ.

First, check whether some I-strategy ξ̂ ⊇ ξˆ〈∞〉 has linked to ξ (and this link
has not been canceled). (Note that, by our construction, there can be at most one
such ξ̂.) Proceed as in the first applicable subcase.

Subcase 2.4.1: Some set A (for a ∈ P) has changed on a number < wξ: Then
reset ξ and end the stage.

Subcase 2.4.2: ξ’s current witness n was chosen by an I-strategy ξ′ ⊇ ξˆ〈∞〉
(with a corresponding link, as defined in Subcase 2.5.3), and ξ′ has been initialized
since: Then make ξ’s witness undefined and end the stage.

Subcase 2.4.3: There is such a link and n ∈ Θ(C) −D: Then end the substage
by letting ξˆ〈fin〉 be eligible to act next.

Subcase 2.4.4: There is such a link but ξ’s computation Θ(C; n) from the time
the link from ξ̂ was created has been destroyed: Then ξ̂ weakly restrains all numbers
currently in C and restrains all numbers currently in Ai∗,j∗ , we cancel the link from
ξ̂ to ξ, and end the stage.

Subcase 2.4.5: For some axiom 〈x, F 〉 in ∆ with F ⊆ C, x has not been in Zic

at some stage since this axiom was enumerated into ∆: For each such axiom, we
remove a number y ∈ F from C so as to minimize the priority of any strategy ξ′ ⊇ ξ
such that y is restrained or weakly restrained into C by ξ′. We then initialize any
strategy ≥ any such ξ′ the restraint of which has been injured, or > any such ξ′

the weak restraint of which has been injured. If the weak restraint of such ξ′ has
been injured, we also cancel the link from ξ′ to all ξ′′ ⊂ ξ′ the Θ-computations of
which have been destroyed since the link was established. Now end the stage.

Subcase 2.4.6: There is no such link and n ∈ Θ(C)−D: Then end the substage
by letting ξˆ〈fin〉 be eligible to act next.

Subcase 2.4.7: n ∈ D − Θ(C): Then end the substage by letting ξˆ〈fin〉 be
eligible to act next.

Subcase 2.4.8: n ∈ Θ(C) ∩D: Remove n from D and end the stage.
Subcase 2.4.9: n /∈ D ∪ Θ(C): Then for each axiom 〈x,G〉 in η’s functional

Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi) (for η as defined at the beginning of Subcase 2.4) such that
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x ≥ wξ and such that G ⊆ ⊕
l≤m Bl ⊕

⊕
i≤k Zi, remove the number corresponding

to a number y ∈ G from the appropriate set B so as to minimize the priority of
any strategy ξ′ ⊇ ξ such that y is restrained or weakly restrained by ξ′. We also
make the use γ(x) undefined for all such x. Similarly, for each axiom 〈x,G〉 in some
∆∗ built by some I∗-strategy ξ∗ with η ⊂ ξ∗ ⊂ ξ such that x ≥ wξ and such that
G ⊆ C∗, remove a number y ∈ G from the set C∗ so as to minimize the priority of
any strategy ξ′ ⊇ ξ such that y is restrained or weakly restrained by ξ′. We also
make the use δ∗(x) undefined for all such x. We then initialize any strategy ≥ any
such ξ′ the restraint of which has been injured, or > any such ξ′ the weak restraint
of which has been injured. If the weak restraint of such ξ′ has been injured, we
also cancel the link from ξ′ to all ξ′′ ⊂ ξ′ the Θ-computations of which have been
destroyed since the link was established.

Furthermore, for any x ∈ Zic −∆(C), we distinguish two subcases:
(1) If the use δ(x) is not defined then we choose a big number xc and a big use

δ(x) > xc, enumerate the axiom 〈x,C ¹ δ(x) ∪ {xc}〉 into ∆, and put xc into C.
(2) If the use δ(x) is defined then we enumerate the axiom 〈x,C ¹ δ(x)〉 into ∆.
Finally, end the substage by making ξ’s witness n undefined and letting ξˆ〈∞〉

be eligible to act next. This ends the description of Subcase 2.4.
Subcase 2.5: c ≥ B(y) but c 6≥ Z(y), and there is no T -requirement active

along ξ: Set i∗ = ic, and fix j∗ ≤ ki∗ least with ai∗,j∗ 6≥ B(y). Proceed as in the
first applicable subcase.

Subcase 2.5.1: Some set A (for a ∈ P) has changed on a number < wξ: Then
reset ξ and end the stage.

Subcase 2.5.2: n ∈ D − Θ(C): Then end the substage by letting ξˆ〈fin〉 be
eligible to act next.

Subcase 2.5.3: n ∈ D∩Θ(C): Remove n from D and say ξ stops. Let ξ0 ⊂ · · · ⊂
ξq−1 be all the I-strategies ξp with icp = i∗ and ξpˆ〈∞〉 ⊆ ξ which destroy some
functional Γp built by ηp ⊂ ξp, say. (Set ξq = ξ and allow q = 0, in which case we
end the stage immediately.) Now, for each p = 0, . . . , q − 1, create a link from ξ to
ξp, request that ξp restore its computation Θp(Cp; np) (for the most recent witness
np for which ξp has found a computation, which we now again declare to be ξp’s
witness) by restoring B for all b ∈ B(y) as needed, weakly restrain all numbers
currently in C, restrain all numbers currently in Ai∗,j∗ , and do not redefine, extend
or correct ∆p until Θp(Cp;np) is destroyed (as detailed in Case 2.4), and end the
stage.

Subcase 2.6: c 6≥ B(y) or c ≥ B(y) ∪ Z(y):
Subcase 2.6.1: n ∈ D − Θ(C): Then end the substage by letting ξˆ〈fin〉 be

eligible to act next.
Subcase 2.6.2: n ∈ D∩Θ(C): Remove n from D, say ξ stops, restrain all numbers

currently in C, and end the stage.
Case 3: ξ has been assigned to La

Ω,x: If x /∈ Ω(A) or if some La
Ω,x-strategy ξ′ ≤ ξ

has already stopped (as defined below), then end the substage by letting ξˆ〈fin〉 be
eligible to act next. Otherwise, let ξ′ ≤ ξ be the highest-priority La

Ω,x-strategy that
has ever been eligible to act, let ξ′ restrain all numbers currently in A, say that ξ′

has stopped , initialize all strategies > ξ′, and end the stage.
End of Stage s: Initialize all strategies ≥ ξˆ〈fin〉 where ξ is the longest strategy

having been eligible to act at stage s.
Verification: We will now verify in a sequence of lemmas that the above con-
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struction proves that condition (2) of Theorem 1.5 ensures non-extendibility.
We first define the true path of the construction f ∈ [T ] by induction on the

length. Given ξ = f ¹ n, we set

f(n) =
{ ∞ if ξˆ〈∞〉 ∈ T and is eligible to act infinitely often;

fin otherwise.

Lemma 3.2. All sets A (for a ∈ P) are ∆0
2, with the ∆0

2-approximation as given.

Proof. A set A changes at a number x for one of three reasons: (i) x is a witness
for diagonalization, which is enumerated (in Subcase 2.3) or extracted (in Subcase
2.4.8, 2.5.3, or 2.6.2). (ii) x is a use number wa for some Γ or ∆, which is enumerated
(in Case 1 or Subcase 2.4.9, respectively) or extracted for correction (in Case 1 or
Subcase 2.4.5, respectively) or for killing (in Subcase 2.4.9). (iii) x is a number
which is enumerated into A as part of restoring a computation (in Subcase 2.5.3).
Obviously, (i) and (ii) can apply for enumeration of x at most once each. And (iii)
can apply for enumeration of x only by strategies with a killing number ≤ x, so there
are only finitely many such strategies. Let ξ be the highest-priority such strategy.
If ξ enumerates x into A after all enumeration of x under (i) and (ii) has stopped,
then all strategies > ξ are initialized and so can never want to restore computations
using x. If ξ’s computation using x is later destroyed (and x is extracted), then ξ
will later use a different computation not involving x, and so x is permanently out
of A. ¤

Lemma 3.3. (i) Every strategy along the true path is eligible to act infinitely often.
(ii) The restraint of every strategy along the true path is injured at most finitely

often. The weak restraint of every strategy ≤ the true path is injured at most finitely
often. No strategy along the true path is initialized or reset more than finitely often.

Proof. We proceed by induction on the length of ξ ⊂ f .
(i) This is trivial if ξ = ∅, so assume |ξ| > 0. By the definition of f , the claim is

again trivial if ξ = ξ−ˆ〈∞〉, so assume ξ = ξ−ˆ〈fin〉. If ξ− is a T - or L-strategy,
then, by (ii) for ξ−, ξ− ends the stage at most finitely often, so (i) for ξ follows.
So assume that ξ− is an I-strategy and, for the sake of a contradiction, that ξ−

ends the stage at cofinitely many stages at which it is eligible to act, say, always
after stage s0, and that ξ− is also not initialized or reset after stage s0. Again,
Subcases 2.5.3 and 2.6.2 can apply at most finitely often; so Subcases 2.2, 2.3,
2.4.1, 2.4.2, 2.4.5, or 2.4.8 must apply cofinitely often. Clearly, Subcases 2.2, 2.3,
2.4.2, and 2.4.8 can apply at most finitely often after stage s0. Subcase 2.4.5 can
apply at most finitely often since no new ∆-axioms can be defined after stage s0.
Subcase 2.4.1 can apply at most finitely often after stage s0 since wξ− is fixed and
all A ¹ wξ− eventually settles down by Lemma 3.2. Finally, Subcase 2.4.4 can only
apply again when another link has been created.

(ii) Fix a stage s0 such that ξ− is not initialized and such that no strategy <L ξ
is eligible to act after stage s0. Then the restraint of any ξ′ ≤ ξ−, and the weak
restraint of any ξ′ < ξ−, cannot be injured after stage s0. (Set s0 = 0 if ξ = ∅.)

So after stage s0, ξ can be initialized only if (1) ξ− ends the stage and ξ−ˆ〈fin〉 =
ξ; or if (2) the weak restraint of some strategy ξ′ < ξ is injured via Case 1, or via
Subcase 2.4.5 or 2.4.9; or (3) the restraint of some strategy ξ′ ≤ ξ is injured via
Case 1, or via Subcase 2.4.5 or 2.4.9.
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For (1) to apply, ξ− must end the stage. But this cannot happen infinitely often
unless ξ−ˆ〈∞〉 ⊂ f since ξ− cannot end the stage infinitely often without also
taking the outcome ∞ infinitely often, a contradiction.

For (2) to apply, by our inductive assumption, any such strategy ξ′ must satisfy
ξ′ ≥ ξ− and so ξ′ = ξ−. But then ξ− must be an I-strategy for which Subcase 2.5
applies, and the link from ξ− to some ξp ⊆ ξ− (for ξp as defined in Subcase 2.5.3
for ξ−) is canceled when ξ is initialized at stage s > s0, say. We first observe that
the weak restraint of ξ− cannot be injured by Γ- or ∆-correction for some Γ or ∆
not active along ξp (since this destruction will have happened just before ξp found
its current computation). Furthermore, the computation of ξp cannot be injured
by ∆-correction by some ξp′ (the ∆ of which is still active along ξp) since when the
link from ξ− to ξp was created at stage s′ < s, say, a link was also created from
ξ− to ξp′ , and this link was canceled at a stage s′′ ≤ s when the computation of
ξp′ was destroyed. By induction on p, we may assume that this computation was
destroyed by Γ-correction by ηp′ , say. But then this Γ-correction was necessitated
by the restoration of all of the Zi’s of ηp′ , and so, by the Ai,j-restraint imposed by
ξ− at stage s′′, ∆-correction by ξp′ becomes unnecessary.

We have thus shown that for (2) to apply after stage s0, the weak restraint of
ξ− must be injured by Γ-correction, destroying a computation of some ξp ⊂ ξ−

along which this Γ is still active. But every time this happens, a link from ξ− is
canceled and not created again later, so this can happen at most finitely often. (In
particular, the computation of ξ− itself can never be destroyed since there are no
active Γ along ξ−.)

For (3) to apply, by our inductive assumption, any such strategy ξ′ must satisfy
ξ′ > ξ− and so ξ′ = ξ. But then ξ must be an I-strategy for which Subcase 2.5
or 2.6 applies, or an La-strategy. The restraint of an La-strategy applies only to A
for a 6≥ B(y), and this restraint is eventually the highest-priority one possibly being
injured via Case 1, or via Subcase 2.4.5 or 2.4.9. But this injury is due to Γ- or
∆-correction with some oracle ≥ B(y), so ∆-correction will never injure, and injury
due to Γ-correction can eventually be avoided since we try to minimize the priority
of the injured strategy by a careful choice of the set B via which Γ is corrected.
The same holds true for the restraint of an Ic,d-strategy if c 6≥ B(y), so assume
that c ≥ B(y). We are thus left with two possibilities: (3a) Subcase 2.5 applies to
ξ, or (3b) Subcase 2.6 applies to ξ and c ≥ B(y) ∪ Z(y).

For (3a) to apply, the injury cannot be due to Γ-correction since Γ will just have
been destroyed at the stage at which ξ imposes its restraint. Also, if the injury
is due to ∆-correction (where ∆ computes some set Zi from some oracle C∗, say)
then a 6≥ zi (else Zi is restrained by ξ via C by our definition of expansionary
stages) and c ≥ c∗. Eventually, ∆-correction injuring ξ can only be performed by
I-strategies ⊂ ξ, so let ξ0 be the highest-priority such injuring ξ infinitely often
and note that ξ0ˆ〈∞〉 ⊆ ξ and that some T -requirement is satisfied along ξ via ξ0

(else ∆ will just have been destroyed at the stage at which ξ imposes its restraint).
Say ξ0 performs its ∆-correction via Subcase 2.4.5 at stage s since some z, which
was in Zi at the stage s′ < s at which the ∆-axiom was defined, is no longer in
Zi. This z can have left Zi between stages s′ and s only because ξ itself extracted
a witness n, say (else ξ would have been initialized already upon the extraction of
n). But then ξ, while extracting n, also restores the Θ0-computation of ξ0, and
ξ0 cannot correct ∆ until its Θ0-computation is again destroyed. This destruction
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means that ξ’s weak restraint for ξ0 was injured.
For (3b) to apply, the injury can again not be due to Γ-correction, but this time

since Γ will just have been corrected at the stage at which ξ imposes its restraint
and since h ≤ c by our assumption on h, so ξ restrains also the set H. The argument
for ∆-correction is the same as for (3a). ¤
Lemma 3.4. Each C-requirement is satisfied.

Proof. The satisfaction of the requirements C0 and C1 follows immediately by the
definition of C for c ∈ {0, 1}. The satisfaction of Cd,c for each pair d < c in P−{0, 1}
follows as outlined above: A number x ever entering D must be targeted for a set
A (with a ≤ d) by stage x, and then x ∈ D iff x ∈ C. ¤
Lemma 3.5. (i) Every La

Ω,x-requirement is satisfied.
(ii) For every a ∈ P with a 6≥ B(y), A is a low set.
(iii) Every set Zi (used by a T -strategy ξ ⊂ f , for some i ≤ k) is ∆0

2, with the
∆0

2-approximation as given.

Proof. (i) Suppose that for infinitely many stages s, x ∈ Ω(A)[s]. Let ξ ⊂ f be the
La

Ω,x-strategy via which La
Ω,x is satisfied along f , and fix a stage s0 at which ξ is

eligible to act and such that no strategy ≤ ξ is initialized after stage s0, as well as
a stage s > s0 such that x ∈ Ω(A)[s]. Then at stage s, if no La

Ω,x-strategy ξ′ ≤ ξ

has already stopped, this will happen at stage s. Since ξ′ is not initialized after
stage s0, its A-restraint is never injured, and so x ∈ Ω(A) as desired.

(ii) and (iii) are now immediate by (i). ¤
Lemma 3.6. (i) If a requirement T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

is active along the true path
f (via a T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

-strategy ξ ⊂ f) then the set H is correctly computed
by ξ’s functional Γ(

⊕
l≤m Bl ⊕

⊕
i≤k Zi).

(ii) If a requirement T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
is satisfied along the true path f (via

a T(Zi)i≤k,(Ψi,j)i≤k;j≤ki
-strategy ξ ⊂ f) then for some i ≤ k and some j, j′ ≤ ki,

Ψi,j(Ai,j) 6= Ψi,j(Ai,j′).
(iii) If a requirement T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

is satisfied along the true path f (via
a Ic,d-strategy ξ ⊂ f) then ξ’s functional ∆(C) correctly computes the set D.

Proof. (i) Fix an argument x of Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi). By Γ-correction, if x /∈ H

then x /∈ Γ(
⊕

l≤m Bl ⊕
⊕

i≤k Zi). So suppose that x ∈ H and that any I-strategy
ξ′ ⊇ ξˆ〈∞〉 along which T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

is active via ξ and for which the killing
number wξ′ is ≤ x has stopped killing Γ (under Subcase 2.4.9 of the construction).
By the definition of the use γ(x), this use must eventually settle down. By Lemma
3.5 (iii), each Zi in the oracle of Γ is a ∆0

2-set (under the given approximation), and
so is each set Bl in the oracle of Γ by Lemma 3.2. Thus ξ will eventually enumerate
a Γ-axiom which ensures that x ∈ Γ(

⊕
l≤m Bl ⊕

⊕
i≤k Zi).

(ii) In this case, there are only finitely many ξ-expansionary stages, so eventually
for some fixed i ≤ k and some fixed x, either

x ∈ Zi and x /∈
⋂

j≤ki

Ψi,j(Ai,j),

or
x /∈ Zi and x ∈

⋂

j≤ki

Ψi,j(Ai,j).
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Either way, we have that Zi 6= Ψi,j(Ai,j) for some j ≤ ki as claimed.
(iii) Fix an argument x of ∆(C). By ∆-correction (under Subcase 2.4.5), if x /∈ Zi

then x /∈ ∆(C). So suppose that x ∈ Zi and that any I-strategy ξ′ ⊇ ξˆ〈∞〉 along
which T(Zi)i≤k,(Ψi,j)i≤k;j≤ki

is satisfied via ξ and for which the killing number wξ′

is ≤ x has stopped killing ∆ (under Subcase 2.4.9 of the construction). By the
definition of the use δ(x), this use must eventually settle down. Now the oracle C
of ∆ is a ∆0

2-set by Lemma 3.2. Thus ξ will eventually enumerate a ∆-axiom which
ensures x ∈ ∆(C). ¤

Lemma 3.7. Every requirement Ic,d
Θ is satisfied.

Proof. Fix the Ic,d
Θ -strategy ξ ⊂ f via which Ic,d

Θ is satisfied along f , and fix a
stage s0 at which ξ is eligible to act such that no strategy ≤ ξˆ〈fin〉 is initialized or
reset after stage s0. Then after stage s0, ξ has a fixed witness n, which is initially
enumerated into D. By our assumption on stage s0, any restraint ξ imposed after
stage s0 is never injured. We can now distinguish the following three cases:

Case I: ξ never finds a computation Θ(C;n) after stage s0: Then n ∈ D, and
Ic,d

Θ is satisfied.
Case II: ξ finds a computation Θ(C; n) after stage s0: Then this computation

cannot be destroyed later since either ξ is able to restrain C (via Subcase 2.5 or
2.6 of the construction), or since ξ would, after the destruction of the computation,
take outcome ∞ (via Subcase 2.4.9 of the construction), contrary to the choice of
s0. Also, ξ removes n from D, and so Ic,d

Θ is satisfied.
Case III: ξ has a computation Θ(C;n) which is restored by an I-strategy ξ′ ⊇ ξ

via a link from ξ′ to ξ existing at stage s0: Then this computation cannot be
destroyed later since ξ would, after the destruction of the computation, end the
stage and initialize ξˆ〈fin〉 (via Subcase 2.4.2 of the construction), contrary to the
choice of s0. Also ξ will have removed n from D, and again Ic,d

Θ is satisfied.
Note that this exhausts all possibilities since if there is a link to ξ at stage s0,

then Case III must apply, and otherwise no such link can be created after stage s0

by our assumption on stage s0. ¤
The fact that condition (2) of Theorem 1.5 ensures non-extendibility now follows

by Lemma 3.1 and Lemmas 3.5–3.7.

4. The third non-extendibility theorem. In this section, we show that con-
dition (3) of Theorem 1.5 ensures non-extendibility. Fix x and y as in condition
(3). We may assume that condition (1) of Theorem 1.5 fails for x and y, i.e., that
BA(x)) 6≤ AB(y), in particular that BA(x)− B(y) 6= ∅.

We will build an embedding of P into the Σ0
2-enumeration degrees. (In this sec-

tion, we will assume again the convention that an element of P denoted by a lower-
case letter is mapped to the Σ0

2-enumeration degree denoted by the corresponding
boldface letter, which is represented by the Σ0

2-set denoted by the corresponding
upper-case letter.)

We will show that our embedding of P cannot even be extended to an embedding
of P ∪ {x, y} (allowing y ∈ P) meeting only the conditions

x 6≤ y,

B(x) ⊆ B(y), and

B(y) 6≤ A(x).
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So we may assume without loss of generality that

Q = P ∪ {x, y} (allowing y ∈ P), and

y =
⋃

b∈B(y)

b.

In our construction, this allows us to build the set Y ourselves even in the case
when y /∈ P.

We can ensure that the embedding preserves 0 and 1 by mapping 0 to 0e =
dege(∅), and 1 to 0′e = dege(K), respectively. Note the below requirements will
cause numbers to be targeted into the image of 0. And any embedding not neces-
sarily mapping 1 to 0′e can be modified by changing the image of 1 to be 0′e. The
new embedding will still satisfy all the requirements since for the S-requirements
below, A(x) cannot be {1}.

We set C = BA(x) − B(y). We also fix an element b0 ∈ B(y) − BA(x). (Both
BA(x)−B(y) and B(y)−BA(x) are non-empty by the first paragraph of this section
and by the third condition above, respectively.)

We now need to meet, for all c, d ∈ P, all e ∈ P ∪ {y}, all Σ0
2-sets X, all

|A(x)|-tuples ~Φ of enumeration operators, and all enumeration operators Ψ, the
following

Requirements:

P : Y ≤e

⊕

b∈B(y)

B (as discussed above),

Qc,e : C = Θc,e(E) (if c < e),

SX,~Φ : ∀a ∈ A(x) (X = Φa(A)) =⇒
∃Γ (X = Γ(Y )) or ∃c ∈ C ∃∆(C = ∆(X)), and

T c,d
Ψ : C 6= Ψ(D) (if c 6≤ d),

where the Γ’s, ∆’s, and Θ’s are enumeration operators built by us.
Strategy for P: Any number z′ entering or leaving Y will turn out to be the

Θb,y-use of a number z targeted for some set B with b ∈ B(y) (i.e., we have a
Θb,y-axiom 〈z, {z′}〉), and once this Θb,y-axiom is enumerated, we will ensure that
z′ ∈ Y if and only if z ∈ B. This will clearly ensure P.

Strategy for Qc,e: We will explicitly build enumeration operators Θc,e to ensure
the satisfaction of Qc,e. Each such enumeration operator will be a so-called s-
operator, i.e., all axioms of Θc,e will be of the form 〈z, {z′}〉 for some numbers z
and z′ (or of the form 〈z, ∅〉). In that case, we call any such z′ a Θc,e-use (or simply
Θ-use) of z.

We pause briefly to remark on the overall setup of targeting numbers and picking
Θ-uses. A number z will first be picked either as

(i) a diagonalization witness for T c,d, or as
(ii) a “killing point” for an enumeration operator Γ (used by a T -strategy to

destroy Γ, to be replaced by an enumeration operator ∆), or as
(iii) a “coding number” for Γ(Y ; z′) (i.e., z will be a number in the oracle set F

of a Γ-axiom 〈z′, F 〉), or as
(iv) a Θ-use.
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As we go down the tree of strategies, the set of numbers that may enter or leave
any set C will be restricted to an infinite “stream” S of numbers. This stream will
be generated from numbers used at earlier stages which now have to be reused.
Whenever we target a number for a set C0, we will be restricted to numbers from
the stream S, with Θc0,c-uses also from the stream S (where c0 < c). We will have
to ensure that there are always infinitely many “independent” numbers available for
each set C, in particular, numbers which are not yet Θ-uses of any number which
has not yet been dumped, and all of whose current Θ-uses have been removed.

Returning to the discussion of satisfying Qc,e, we now proceed as follows:
When a number z is first targeted for a set C as a witness, killing point, or coding

number, then we pick not only an “independent” number z = zc from the current
stream S but also possibly distinct numbers ze from the current stream S (for each
e ∈ P ∪ {y} with e > c), and we add an axiom 〈zd, {ze}〉 into Θd,e for each d ∈ P
and e ∈ P ∪ {y} with c ≤ d < e. These numbers ze (for e > c) will not appear
in the stream of subsequent strategies since they are no longer “independent”; zc,
however, can enter another stream, at which point the ze’s are removed.

If z is a killing point or a coding number for some Γ, then z and all its Θ-uses
will be dumped into their respective target sets when Γ is canceled, and none of
these numbers will be reused. Similarly, if z is a diagonalization witness then z and
all its Θ-uses will be dumped into their respective target sets when the strategy
that picked z is initialized. On the other hand, if z is a diagonalization witness for
a T c,d-strategy α (where c ≤ A(x)) which turns out not to be “Γ-cleared” for some
higher-priority enumeration operator Γ, then, for each e > c, z’s current Θc,e-use
ze will be extracted from its respective target set E as well as from the stream S.
Now z can be retargeted for C with different Θc,e-uses since the previous Θ-axioms
cannot apply.

Of course, when a number z is dumped into a set C then we add an axiom 〈z, ∅〉
into Θc,e for all e ∈ P ∪ {y} with e > c.

Strategy for S: This strategy will build an enumeration operator Γ trying to
achieve Γ(Y ) = X. We first define a stage s to be expansionary if s = 0 or

⋃

a∈A(x)

Φa(A)[s0] ⊆
⋂

a∈A(x)

Φa(A)[s]

where s0 denotes (the end of) the most recent expansionary stage < s. (The
idea here is that we cannot measure the length of agreement between the Σ0

2-sets
Φa(A) as is usually done for computably enumerable or ∆0

2-sets; instead, we merely
measure whether any number z which was in the union of the Φa(A) at the end
of stage s0 (and which thus must still be in this union at stage s by the implicit
restraint imposed between stages s0 and s) must now be in the intersection of the
Φa(A); otherwise, we do not believe that all the Φa(A) coincide.)

At non-expansionary stages, the S-strategy now does nothing and simply takes
the finite outcome. At an expansionary stage, the S-strategy will take the infinite
outcome, and it acts as follows: For the least z currently in

⋂
a∈A(x) Φa(A)− Γ(Y )

(if any) and for each b ∈ B(y), the S-strategy picks an available coding number
zb (targeted for B), enumerates zb into B, and adds an axiom 〈z, F 〉 into Γ where
the oracle set F is the set containing the current Θb,y-uses of all zb’s as well as the
current Θb0,y-uses of all current “killing points” for Γ defined by T -strategies below
the S-strategy. (Recall that b0 is our fixed element in ∈ B(y) − BA(x). Since all
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these killing points will be in Y whenever the S-strategy is eligible to act, these
killing points will not affect Γ from the S-strategy’s point of view. The purpose of
the killing points, as explained in more detail below, is to allow a T -strategy below
the S-strategy to make Γ(Y ) finite by removing its killing point from Y at infinitely
many stages, each time for only one stage.) Furthermore, for any z currently in
Γ(Y )−⋃

a∈A(x) Φa(A), the S-strategy removes zb0 from B0.
Strategy for T in isolation: This strategy is merely the Friedberg-Muchnik strat-

egy for Σ0
2-enumeration degrees: We fix a witness z at which we wish to diagonalize

C against Ψ(D), add z to C, and wait until (if ever) z ∈ Ψ(D) via some Ψ-axiom
〈z, F 〉 with F ⊆ D. Then we remove z from C and ensure that F ⊆ D from
now on. This clearly ensures diagonalization and is compatible with the P- and
Q-strategies.

Strategy for T below one S-strategy: Fix a requirement T c,d
Ψ . If c 6≤ A(x)

then we can change C while holding X = Φa(A) for some a ∈ A(x) with a 6≥ c,
preventing Γ(Y ) from needing to be corrected. If d 6≥ B(y) then the S-strategy can
correct Γ by extracting the witness’s coding number from B (for some b ∈ B(y)
with b 6≤ d), and thus its Θb,y-use from Y , without affecting the T -strategy. In
both these cases, the T -strategy can thus diagonalize finitarily.

On the other hand, assume c ≤ A(x) and d ≥ B(y) (and so c ∈ C). Then the
T -strategy will try to find a number z ∈ Ψ(D) which can be removed from C while
still maintaining Γ(Y ) ⊆ X and z ∈ Ψ(D); if the T -strategy ever finds such a
number then it will diagonalize and stop. Otherwise, it will generate a sequence of
z’s such that the removal of each z causes numbers to leave X. We now restrict
future C-changes to these z’s. This will allow us to compute C from X via an
enumeration operator ∆, which we define, thus meeting the S-requirement via the
second alternative.

More precisely, the T -strategy proceeds as follows:
(1) Pick a fresh “killing point” k for Γ. Put k into B0 (where, again, b0 was

chosen above once and for all as a fixed element of B(y)−BA(x)). Require
all future Γ-axioms 〈z′, F ′〉 to include the Θb0,y-use of k in their oracle set
F ′.

(2) Pick a fresh witness z and put z into C.
(3) Wait for z ∈ Ψ(D) via some axiom 〈z, F 〉 at a stage s, say.
(4) Extract z from C (without restraining D for now, i.e., allowing the S-

strategy to correct Γ, thus possibly injuring Ψ(D; z) for now).
(5) From now on, if ever Γ(Y )[s] ⊆ ⋃

a∈A(x) Φa(A) (while z /∈ C), then cancel
all action between stage s and now, restrain F ⊆ D, and stop. (In this case,
we call the computation Ψ(D; z) Γ-cleared.)

(6) While waiting for Step (5) to apply, put z into the stream S; restrict all
future changes in C ¹ s to numbers in S; extract k from B0 for the remainder
of stage s; add an axiom 〈z, Γ(Y )[s]〉 into ∆; add axioms 〈z′, ∅〉 to ∆ for all
z′ < s with z′ ∈ Cs − S; and restart at Step (2) with a fresh z.

The possible outcomes of the above T -strategy are as follows:
(A) Waiting forever at Step (3): Then z ∈ C−Ψ(D), and Γ is not affected since

k ∈ B0 and so its Θb0,y-use is in Y .
(B) Stopping eventually at Step (5): Then z ∈ Ψ(D)−C, and Γ is not affected

since k ∈ B0 and so its Θb0,y-use is in Y .
(C) Looping between Step (2) to Step (6) infinitely often: Then the T -require-
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ment may not be satisfied by the action of this strategy, and Γ(Y ) will be
finite since k /∈ B0 (and thus its Θb0,y-use is not in Y ) while all but finitely
many Γ-axioms 〈z′, F ′〉 contain Θb0,y-use of k in their oracle set F ′. On the
other hand, C(z) = ∆(X; z) can be seen to hold for all z as follows: It is
clear for all z /∈ S by the C-restraint in Step (6), so assume that z ∈ S. If
z ∈ C (enumerated into S at stage s, say) then Xs ⊆ X (assuming here
that no other strategies remove numbers in As from A for any a ∈ A(x),
and so no number of Xs, the set X as measured immediately before the
extraction of z from C, can leave X), implying that z ∈ ∆(X). Conversely,
if z ∈ ∆(X) then Γ(Y )[s] ⊆ X, and since Step (5) never applies, we must
have that z ∈ C as desired.

Finally, note the situation for a T̃ c̃,d̃-strategy below the above T -strategy: If
the T̃ -strategy assumes a finite outcome (A) or (B) of the T -strategy, then the T̃ -
strategy acts exactly as the above T -strategy; on the other hand, if the T̃ -strategy
assumes the infinite outcome (C) of the T -strategy, then this T̃ -strategy assumes
that Γ(Y ) is finite; in fact, the T̃ -strategy will only be eligible to act at stages s at
which the T -strategy proceeds through Step (6) while k /∈ B0. The T̃ -strategy can
now act as if in isolation, the restriction being that if c̃ ≤ c then the T̃ -strategy can
only use a witness with Θc̃,c-use in the stream S so as to keep ∆ correct. (When the
T̃ -strategy puts a number into, or extracts a number from, its set C̃ at a stage s̃,
we also have to remove all other numbers > s̃ from the stream S of strategies below
the T̃ -strategy and dump them into C since their assumption about the Φ(A)’s may
no longer be correct.)

Strategy for T c,d below several S-strategies: Again we may assume that c ≤ A(x)
and d ≥ B(y); otherwise, the T -strategy can diagonalize finitarily as in the previous
case below a single S-strategy.

But then the T -strategy is essentially a nested version of the previous T -strategy:
If we only generate finitely many witnesses, or if we find a witness which is Γ-cleared
for all Γ’s above, then we will use it to diagonalize finitarily. Otherwise, we find
the lowest-priority S-requirement such that infinitely many witnesses are not Γ-
cleared for its Γ. These witnesses will then constitute the stream S within which
the strategies below this infinite outcome will have to work.

The possible outcomes of the above T -strategy, in addition to the usual finitary
outcomes, are then i0 many infinitary outcomes (where i0 is the number of Γ’s
that our T -strategy has to deal with). We skip further details until the formal
description of our construction.

Tree of strategies: We fix

Λ = {stop <Λ ∞0 <Λ ∞1 <Λ · · · <Λ wait} ∪ {∞ <Λ fin}
as our set of outcomes, where ∞i (for i ∈ ω) as well as stop and wait are the
possible outcomes of the T -strategies; ∞ and fin are the possible outcomes of the
S-strategies; and <Λ denotes the ordering of the outcomes. (The ordering between
{∞, fin} and the other outcomes is irrelevant since they will never be compared on
the tree.) We use a tree T ⊆ Λ<ω and refer to it as our tree of strategies. Each
node of T will be associated with, and thus identified with, a strategy. We fix an
effective priority ordering {Re}e∈ω of all S- and T -requirements. (Requirement P
and the Q-requirements will be handled globally by the construction and thus do
not appear on the tree of strategies.)
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We now assign requirements to nodes on T by induction as follows: The empty
node is assigned to requirement R0, and no requirement is active or satisfied along
the empty node. Given an assignment to a node α ∈ T , we distinguish cases
depending on the requirement R assigned to α:

Case 1: R is an S-requirement: Then call R active along αˆ〈∞〉 via α, and call
R satisfied along αˆ〈fin〉 via α. For all other requirements R′ and for o ∈ {∞,fin},
call R′ active or satisfied along αˆ〈o〉 via β ⊂ α if and only if it is so along α,
respectively. Now, for o ∈ {∞,fin}, assign to αˆ〈o〉 the highest-priority requirement
neither active nor satisfied along αˆ〈o〉. (The intuition is that under outcome
fin, R is satisfied vacuously, whereas under outcome ∞, α builds an enumeration
operator Γ.)

Case 2: R is a T c,d-requirement where c 6≤ A(x) or d 6≥ B(y): Then, for
o ∈ {stop, wait}, call R satisfied along αˆ〈o〉 via α; and for all other requirements
R′, call R′ active or satisfied along αˆ〈o〉 via β ⊂ α if and only if it is so along
α, respectively. Now assign to αˆ〈o〉 (for o ∈ {stop, wait}) the highest-priority
requirement neither active nor satisfied along αˆ〈o〉.

Case 3: R is a T c,d-requirement where c ≤ A(x) and d ≥ B(y): Let β0 ⊂
· · · ⊂ βi0−1 be all the strategies β ⊂ α such that some S-requirement is active
along α via βi. We denote by Si the S-requirement for βi. (Here we allow i0 = 0,
in which case Case 3 will reduce to Case 2.) Then, for o ∈ {stop, wait}, call R
satisfied along αˆ〈o〉 via α, and call any other requirement active or satisfied along
αˆ〈o〉 via β ⊂ α if and only if it is so along α, respectively. Now (if i0 > 0), fix
i ∈ [0, i0). Call Si satisfied along αˆ〈∞i〉 via α, and call any Sj-requirement (for
j ∈ (i, i0)) neither active nor satisfied along αˆ〈∞i〉; call any other requirement
active or satisfied along αˆ〈∞i〉 via β ⊂ α iff it is so along α, respectively. For any
outcome o ∈ {stop, wait} ∪ {∞i | i ∈ [0, i0)}, assign to αˆ〈o〉 the highest-priority
requirement neither active nor satisfied along αˆ〈o〉. (The intuition is that under
the finitary outcomes stop and wait, the T -requirement is assumed to be satisfied
finitarily by diagonalization, whereas under outcome ∞i, the Si-requirement, while
previously satisfied via an enumeration operator Γi, is now assumed to be satisfied
by α constructing an enumeration operator ∆i, whereas all Sj-requirements active
via some strategy between βi and α are assumed to be injured.)

The tree of strategies T is now the set of all nodes α ∈ Λ<ω to which requirements
have been assigned.

As usual, our construction will let strategies be eligible to act if they are along
the current approximation fs ∈ T to the true path f ∈ [T ] of the construction. So
we call a stage s an α-stage if α ⊆ fs.

Construction: We proceed in stages s ∈ ω.
We begin with some general conventions and definitions:
A strategy α is initialized by making all its parameters undefined and making

the stream S(α) of α empty.
The stream S(∅) of the root node ∅ of our tree of strategies at any stage s is [0, s)

minus the set of numbers already dumped into C. The streams S(α) for α 6= ∅ are
defined during the construction.

At an α-stage s, call a number in the stream S(α) suitable for α if for every set
C

(a) z is not currently in use for C by any strategy (i.e.,
z is not the current witness targeted for C of any T -strategy, z is not a
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killing point or coding number targeted for C picked by a strategy that has
not been initialized since z has been picked, and z is not the Θc′,c-use (for
some c′ < c) of any number);

(b) z has not been dumped into C;
(c) z is greater than |α| and greater than any stage at which any β ⊇ α has

changed any set, picked any number, or extended any enumeration operator;
(d) z is greater than the stage sβ since which any β ⊂ α with finitary outcome

o ∈ {fin, stop, wait} along α has only taken outcome o;
(e) z is greater than z′ many numbers in S(α) which are not in use for C by

any β ⊆ α where z′ is the greater of the last number in use by α and the
most recent stage at which α was initialized;

(f) for any e ∈ P ∪ {y} with e > c and for any Θc,e-axiom 〈z, {z′}〉, z′ /∈ E;
(g) for any e ∈ P ∪ {y} with e > c, there is a number z′ ∈ S(α) suitable for α

(which thus can be chosen as a Θc,e-use of z); and
(h) for any d ∈ P with d < c and for any Θd,c-axiom 〈z′, {z}〉, z′ has been

dumped into D.

Note that the above definition of suitability is not circular since it proceeds by
induction on the number of elements e > c. If the instructions below call for a
strategy α to pick a number suitable for α and no such number currently exists,
then we agree to simply end the stage. (We will show later that the collection
of suitable numbers in any stream of a strategy along the true path is infinite, so
the above delay will never be permanent. The purpose of the delay is to enforce
automatic restraint, and to allow strategies below to have sufficiently many unused
numbers available.)

Θ-maintenance: For the sake of the Q-requirements, we guarantee during the
construction (without explicitly mentioning this further) the following:

(1) When a number z is picked by a strategy α as a diagonalization witness,
killing point, or coding number targeted for a set C (for c ∈ P), then z = zc

is suitable for α, and there is a (least) number ze (for each e ∈ P ∪{y} with
e > c) suitable for α. We then enumerate ze into E (for each e ≥ c) and
add axioms 〈ze1 , {ze2}〉 into Θe1,e2 for all e1 ∈ P and e2 ∈ P ∪ {y} with
c ≤ e1 < e2.

(2) When a number z (which was previously chosen, and is still in use now, by
a strategy α) is enumerated into, or extracted from, a set C then we also
enumerate ze into, or extract ze from, E, respectively (for all e ∈ P ∪ {y}
with e > c), where ze is chosen as at the time z was picked by α.

(3) When a number z is a diagonalization witness, killing point, or coding
number (targeted for a set C) of a strategy, that number is canceled, and
that number has not been added to the stream of a strategy that is not
initialized, then we dump z into C and add an axiom 〈z, ∅〉 into Θc,e for
any e ∈ P ∪ {y} with e > c. We also dump into D all z′ which are targeted
for D and for which a Θc,d-axiom 〈z, {z′}〉 exists.

(4) When z is added to the stream S(αˆ〈∞i〉) of a strategy αˆ〈∞i〉 (for some
T c,d-strategy α) then z is extracted from C, and for any e > c and for any
Θc,e-axiom 〈z, {z′}〉, we extract z′ from E and remove z′ from the stream
S(αˆ〈∞i〉) (so that the Θc,e-axiom 〈z, {z′}〉 does not interfere with any
future use of z).

All parameters are assumed to remain unchanged unless the construction below
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specifies otherwise.
Stage 0: We initialize all strategies.
Stage s > 0: Each stage s has substages t ≤ s such that some strategy α ∈ T of

length t (with a “guess” about the outcomes of all strategies β ⊂ α that currently
“look correct”) acts at substage t of stage s and then decides which strategy will
act at the next substage (or whether to end the stage). The longest strategy eligible
to act at stage s is called the current approximation to the true path and is denoted
by fs. At the end of stage s (i.e., after all the substages of s), we initialize all
strategies β >L fs.

Substage t of stage s: Suppose a strategy α of length t is eligible to act at this
substage. We distinguish cases, depending on the requirement R assigned to α:

Case 1: R is an SX,~Φ-requirement: Call (substage t of) stage s α-expansionary
if α is initialized at s or if

⋃

a∈A(x)

Φa(A)[s0] ⊆
⋂

a∈A(x)

Φa(A)[s],

where s0 denotes (the end of) the most recent α-expansionary stage < s.
If s is not α-expansionary then end the substage by letting αˆ〈fin〉 be eligible to

act next and setting the stream

S(αˆ〈fin〉) = S(α) ∩ [s0, s).

Otherwise, for each z currently in
⋂

a∈A(x) Φa(A), let the entry stage ez of z be
the least stage such that for all s′ ∈ [ez, s], z ∈ ⋂

a∈A(x) Φa(A)[s′]. Then choose z

currently in
⋂

a∈A(x) Φa(A)− Γ(Y ) (if any) with least entry stage (and the least z

among these) and for each b ∈ B(y)−{0}, pick a coding number zb in S(α) suitable
for α; enumerate zb into B; and add an axiom 〈z, F 〉 into Γ where the oracle set F is
the set containing the Θb,y-uses of all zb’s and Θb0,y-uses of all those current killing
points k (with k < ez) for Γ defined by T -strategies β ⊇ αˆ〈∞〉. Furthermore, for
any z currently in Γ(Y )−⋃

a∈A(x) Φa(A), the S-strategy removes zb0 from B0. Now
end the substage by letting αˆ〈∞〉 be eligible to act next and setting the stream

S(αˆ〈∞〉) = S(α) ∩ [s0, s),

where s0 is the most recent stage ≤ s at which α was initialized. (Recall that if a
suitable number cannot be found, we end the stage.)

Case 2: R is a T c,d
Ψ -requirement: Let β0 ⊂ · · · ⊂ βi0−1 be all the strategies

βi ⊂ α such that some S-requirement (say, the Si-requirement) is active along α
via βi (allowing i0 = 0). In the following, for i ∈ [0, i0), the enumeration operators
Φa,i and Γi are those of βi.

Now pick the first subcase which applies:
Case 2.1: α has not been eligible to act since its most recent initialization, or

some number z had entry stage ez < ki for X at the previous α-stage but now has
entry stage ez > ki: We distinguish the following subcases:

Case 2.1.1: c ≤ A(x); d ≥ B(y); i0 > 0; and the killing points ki for i ∈ [0, i0) are
currently undefined: Then pick killing points ki suitable for α for each i ∈ [0, i0),
and end the stage.
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Case 2.1.2: c ≤ A(x); d ≥ B(y); i0 > 0; and there is some number z which had
entry stage ez < ki for X at the previous α-stage but now has entry stage ez > ki:
Then initialize all strategies > α and end the stage.

Case 2.1.3: Otherwise: End the stage.
Case 2.2: α currently has no witness zi0 : Then pick a witness zi0 suitable for α,

add zi0 to C, initialize all strategies β ⊇ αˆ〈wait〉, and end the stage.
Case 2.3: zi0 ∈ C−Ψ(D): Then end the substage by letting αˆ〈wait〉 be eligible

to act next and setting the stream

S(αˆ〈wait〉) = S(α) ∩ [s0, s)

where s0 is the stage at which zi0 was chosen.
Case 2.4: α has stopped (as defined below) and was not initialized since then:

Then end the substage by letting αˆ〈stop〉 be eligible to act next and setting the
stream

S(αˆ〈stop〉) = S(α) ∩ [s0, s)

where s0 is the stage at which α stopped.
Case 2.5: Otherwise: Then zi0 ∈ C ∩ Ψ(D), so we call zi0 a realized witness.

We now need to distinguish further subcases, depending on the location of c and
d relative to A(x) and B(y), respectively, and whether there are any active Γ’s to
worry about; so pick the first subcase which applies:

Case 2.5.1: c 6≤ A(x) or i0 = 0: Then α stops by extracting zi0 from C and
ending the stage.

Case 2.5.2: d 6≥ B(y): Then α stops as follows: Fix some b ∈ B(y) with b 6≤
d. Now α extracts zi0 from C, extracts the Γi-coding number z′b from B for all
z′ ∈ Γi(Y ) − ⋃

a∈A(x) Φa,i(A) and for each i ∈ [0, i0), repeating this process until
Γi(Y ) ⊆ ⋃

a∈A(x) Φa,i(A) for each i < i0, and ends the stage.
Case 2.5.3: Otherwise: Then c ≤ A(x); d ≥ B(y); and i0 > 0. For i ∈ [0, i0),

call z Γi-cleared if
Γi(Y )[sz] ⊆

⋃

a∈A(x)

Φa,i(A− Fa),

where sz is the stage at which z became a realized witness of α and Fa is the set
of Θc,a-uses of z.

Now α first extracts zi0 from C. We then need to distinguish even further
subcases, depending on whether we have a witness which is “fully Γ-cleared”:

Case 2.5.3.1: Some witness z (current or former uncanceled, picked since α’s
most recent initialization) is Γi-cleared for all i ∈ [0, i0): Then α stops by removing
z from C (if necessary), adding B[sz] into B for all b ≤ d, setting zi0 = z as its
current witness and ending the stage.

Case 2.5.3.2: Otherwise: We will now define the streams associated with α’s
infinitary outcomes. We will use zi to denote the least element of the stream
S(αˆ〈∞i〉).

α acts as follows: Fix the least i < i0 for which there is a current or former
uncanceled witness z (minimal for this i, picked since α’s most recent initialization)
such that

z /∈ S(αˆ〈∞i〉),
z is Γj-cleared for all j ∈ (i, i0), and

z > max{zj | j ≤ i and zj currently defined}.
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(Here we set max(∅) = 0. Note that the above condition holds trivially for z = zi0

and i = i0 − 1, so z defined as above must exist.)
Then α

(i) extracts kj (for each j ∈ [i, i0)) from B0 for the remainder of stage s;
(ii) cancels ∆j for all j ∈ (i, i0);
(iii) cancels all (former or current) witnesses z′ 6= z of α with z′ /∈ S(αˆ〈∞j〉)

(for any j ≤ i), makes zj undefined for all j ∈ (i, i0] and makes α’s current
witness undefined;

(iv) sets zi = z if zi is currently undefined;
(v) adds the axiom

〈z, Γi(Y )[sz]〉
into ∆i;

(vi) adds axioms 〈z′, ∅〉 into ∆i for
all z′ with zi < z′ < max(S(αˆ〈∞i〉)) and z′ ∈ C − S(αˆ〈∞i〉);

(vii) adds z to the stream S(αˆ〈∞i〉), and
(viii) ends the substage by letting αˆ〈∞i〉 be eligible to act next.

Recall that by (4) of Θ-maintenance, z and all its Θ-uses will be removed from their
respective sets.

Verification: Let f = lim infs fs be the true path of the construction, defined
more precisely by induction as follows:

f(n) = lim inf{s|f¹n⊂fs} fs(n).

Lemma 4.1 (Tree Lemma).

(i) Each α ⊂ f is initialized at most finitely often.
(ii) For each strategy α ⊂ f , the stream S(α) is

an infinite set. No number can leave S(α) unless α is initialized. For
every c ∈ P and every stage s, there are an α-stage t > s and a number
z > s such that z is suitable for α at stage t.

(iii) The true path f is an infinite path through T .
(iv) For any requirement Re = SX,~Φ or T c,d

Ψ , there is a strategy α ⊂ f such
that the requirement is active via α along all sufficiently long β ⊂ f , or
is satisfied via α along all β with α ⊂ β ⊂ f . (In particular, for any
requirement Re, there is a longest strategy assigned to Re along f .)

Proof. (i) Proceed by induction on α and note that there are only finitely many
numbers with entry stage ≤ any fixed killing point k, so initialization via Case 2.1.2
of the construction is finite as long as the killing point k stabilizes.

(ii) Proceed by induction on |α| and note for the last part of (ii) that any number
just entering S(α) is suitable for α at that stage.

(iii) A stage s is ended before substage s only under Cases 2.1, 2.5.1, 2.5.2, or
2.5.3.1 (which can apply at most twice after α’s last initialization) and when a
suitable number cannot be found (which cannot happen cofinitely often by (ii)).

(iv) By an easy induction argument on e. ¤

We now verify the satisfaction of the requirements.

Lemma 4.2 (P-Lemma). Requirement P is satisfied.
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Proof. Any number z targeted for Y is the Θb,y-use of a number z′, say, targeted
for B (for some b ∈ B(y)). By the construction, we ensure z ∈ Y iff z′ ∈ B from
now on. So P is satisfied. ¤

Lemma 4.3 (Q-Lemma). All requirements Qc,d (for c ∈ P and d ∈ P ∪ {y} with
c < d) are satisfied. Also, 0 and 1 are mapped to 0e and 0′e, respectively.

Proof. By the definition of the images of 0, 1 ∈ P and the remarks preceding the
description of the requirements, the second part of Lemma 4.3 is clear.

So fix c ∈ P and d ∈ P ∪ {y} with 0 < c < d < 1 and any number z. By
Θ-maintenance, whenever z is targeted for C (as diagonalization witness, killing
point, coding number, or Θ-use) at a stage s, say, we also pick a Θc,d-use z′ of z.
There are now three possibilities:

(i) α is initialized or z is canceled, in which case both z and z′ are dumped;
(ii) z remains in the stream S(α) forever but never enters a stream S(αˆ〈∞i〉),

in which case z ∈ C iff z′ ∈ D; or
(iii) z enters a stream S(αˆ〈∞i〉), at which time z is removed from C and z′ is

permanently removed from D (unless both are dumped later); in this case,
if z later re-enters C, it will receive a new Θc,d-use.

Finally note that (iii) above can apply only finitely often by clause (c) of the defi-
nition of suitability. ¤

Lemma 4.4 (T -Lemma). All T -requirements are satisfied.

Proof. Fix a requirement T c,d
Ψ , and, by the Tree Lemma (Lemma 4.1(iv)), a T -

strategy α ⊂ f such that T c,d
Ψ is satisfied via α along all sufficiently long β ⊂ f .

Then αˆ〈o〉 ⊂ f for some o ∈ {stop, wait}.
By the construction and the fact that α is eventually no longer initialized, α

eventually has a fixed diagonalization witness z, say.
If αˆ〈wait〉 ⊂ f then z ∈ C − Ψ(D) by the construction, thus the requirement

T c,d
Ψ is clearly satisfied.
Otherwise, αˆ〈stop〉 ⊂ f , so α stops at a stage s, say; and z ∈ Ψ(D)[s]−C. We

will show that no set changes at any number < sz (where sz is the stage ≤ s at
which z becomes a realized witness) by considering all possible strategies β:

Case A: β <L α: Then β is no longer eligible to act after stage s (or else α would
be initialized and lose its witness).

Case B: β ≥ αˆ〈stop〉: The first time β is eligible to act after α stops, β acts
the first time after being initialized and thus cannot change D at a number that
will injure Ψ(D; z).

Case C: βˆ〈o〉 ⊆ αˆ〈stop〉 for some o ∈ {stop,wait,fin}: Then β cannot change
D without initializing α.

Case D: βˆ〈∞i〉 ⊆ α for some i ∈ ω: Then z was put by β into the stream of
βˆ〈∞i〉, and at stage s, β adds a number > z into the stream of βˆ〈∞i〉. At the
first β-stage > s, β picks a diagonalization witness z′ as well as its Θ-uses, all of
which are too large to injure Ψ(D; z), and after stage s, β does not change D at a
number less than z′ and its Θ-uses. So β cannot injure Ψ(D; z) after stage s.

Case E: βˆ〈∞〉 ⊆ α and β’s S-requirement is active along α via β: Then α stops
via Case 2.5.3.1 of the construction where β = βi for some βi mentioned in Case
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2.5.3.2. Thus z is Γi-cleared, i.e.,

Γi(Y )[sz] ⊆
⋃

a∈A(x)

Φa,i(A− Fa),

where Fa is the set of Θc,a-uses of z. By the action at stage s,

Γi(Y )[s] ⊆
⋃

a∈A(x)

Φa,i(A)[s],

so any later Γi-correction by β will only involve Γi-axioms defined after stage sz,
and thus will change any set only on numbers > sz.

Case F: βˆ〈∞〉 ⊆ α and β’s S-requirement is not active along α via β: Then
some α′ with β ⊂ α′ ⊂ α kills β’s enumeration operator Γ. Then

Γ(Y )[sz] ⊆
⋃

a∈A(x)

Φa(A)[sz]

by the action of β at stage sz; and any later Γ-correction by β will only involve
Γ-axioms defined after stage sz, and thus will change any set only on numbers
> sz. ¤
Lemma 4.5 (S-Lemma). All S-requirements are satisfied.

Proof. Fix a requirement SX,~Φ. Assume that Φa0(A0) = Φa1(A1) for all a0, a1 ∈
A(x), and denote their common value by X. Then by the Tree Lemma (Lemma
4.1(iv)), there is a longest SX,~Φ-strategy β ⊂ f . We argue that there are infinitely
many β-expansionary stages, so βˆ〈∞〉 ⊂ f . Otherwise, let s0 be the greatest
β-expansionary stage. Then no Φ-computation existing at the end of stage s0 can
be destroyed after stage s0 since any strategy >L βˆ〈∞〉 cannot remove a number
≤ s0, and neither can any strategy ⊂ β as in Cases C through F of Lemma 4.4.

Again by the Tree Lemma (Lemma 4.1(iv)), we may now distinguish two cases:
Case 1: SX,~Φ is active via β along all α with β ⊂ α ⊂ f : Suppose that β is no

longer initialized after stage s0, say.
For the sake of a contradiction, assume first that z ∈ X − Γ(Y ) for some z of

least entry stage sz. Fix a stage s1 ≥ s0, sz such that all z′ ∈ X with lesser entry
stage are permanently in Γ(Y ). Fix s2 ≥ s1 such that no T -strategy with killing
point ≤ z (for this Γ) executes step (i) of Case 2.5.3.2 of the construction. Then by
the first β-expansionary stage ≥ s2, β will permanently put z into Γ(Y ) by Case 1
of the construction.

On the other hand, suppose z ∈ Γ(Y ). Then by Γ-correction by β under Case 1
of our construction, z ∈ X as desired.

Case 2: There is a T c,d
Ψ -strategy α ⊂ f such that SX,~Φ is satisfied via α along

all ξ with β ⊂ ξ ⊂ f : Then β is α’s strategy βi, αˆ〈∞i〉 ⊂ f , and we need to
show that ∆i(X) = C (for the enumeration operator ∆i built by α after α’s last
initialization and after α cancels ∆i for the last time).

We show C =∗ ∆i(X) by distinguishing two cases for arguments z ≥ zi of ∆i(X):
Case 2A: z /∈ S(αˆ〈∞i〉): Then, once z < max(S(αˆ〈∞i〉)[s]), no strategy can

remove z from C (and so by (vi) of Case 2.5.3.2 of the construction, z ∈ C iff
z ∈ ∆i(X)). To see this, note that only strategies ξ ⊂ α with infinitary outcome
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along α can possibly change C(z) (by the usual initialization argument). But, after
stage s, any such ξ cannot put z into the stream of any strategy ⊃ ξ. If ξ is a
T -strategy, it will no longer remove z as a realized witness, and it will not remove
z for Γ-correction (as in Case 2.5.2 of the construction) since ξ does not stop (as
Case 2.5.2 does not apply). If ξ is an S-strategy then ξ only removes numbers from
B0 but b0 6≤ c.

Case 2B: z ∈ S(αˆ〈∞i〉): We first observe that

z ∈ C ⇔ Fa ⊆ A for all a ∈ A(x), and

z /∈ C ⇔ Fa ∩A = ∅ for all a ∈ A(x),(1)

z ∈ ∆i(X) ⇔ Γi(Y )[sz] ⊆ X, and(2)

Γi(Y )[sz] 6⊆
⋃

a∈A(x)

Φa,i(A− Fa)(3)

by Θ-maintenance, the definition of ∆i, and the fact that α does not stop, respec-
tively.

Thus z /∈ C, by (1), implies
⋃

Φa,i(A− Fa) = X,

so, by (3), we have
Γi(Y )[sz] 6⊆ X,

which, by (2), entails z /∈ ∆i(X) as desired.
On the other hand, if z ∈ C then, by (1),

Fa ⊆ A for all a ∈ A(x),

so, since sz is βi-expansionary,

Γi(Y )[sz] ⊆
⋃

a∈A(x)

Φa,i(A ∪ Fa)[sz] ⊆
⋃

a∈A(x)

Φa,i(A) = X,

implying z ∈ ∆i(X) as desired. ¤
This completes the proof of the third non-extendibility theorem.

5. The extendibility theorem. In this section, we show that if conditions (1),
(2), and (3) of Theorem 1.5 fail, then extendibility must hold.

We assume the following is known to the reader. Suppose that (Wi : i ∈ ω) is
a sequence of Σ0

2 subsets of ω, and that (Wi[s] : i ∈ ω and s ∈ ω) is a uniformly
computable approximation to it. That is, for each i ∈ ω and for all n, n ∈ Wi if
and only if there are cofinitely many s such that n ∈ Wi[s]. Then (Wi : i ∈ ω) has a
uniformly computable approximation (W ∗

i [s] : i ∈ ω and s ∈ ω) such that for each
s, W ∗

i [s] is a subset of the intersection of Wi[s] with the numbers less than s, and
such that there are infinitely many s such that for all n ≤ s and all i, n ∈ W ∗

i [s] if
and only if n ∈ Wi. Such an s is called a true stage in the approximation. Further,
the computable description of the *-sequence may be obtained effectively from a
computable description of the original one. In the following, we will be given finitely
many Σ0

2 sets and will give computable approximations for finitely many others.



S. LEMPP, T. A. SLAMAN, A. SORBI 31

By the Kleene recursion theorem, we may assume that we have an index for this
sequence when we begin our construction. Thus, we may assume that we have a
computable approximation to the sequence of sets given to us together with the
ones that we enumerate such that there are infinitely many true stages for that
approximation.

We will be given sets A, B, C, and we will construct sets X, Y , U , and so
forth. By this, we mean that we will present computable approximations to the
sets that we construct. For each set X under construction, X[0] is empty. When
at a stage s, we put a number n into X, we are setting X(n)[s] to 1. Similarly, if
we extract a number from X, we are setting X(n)[s] to 0. To fix our notation, the
*-approximation of these sets is the one referred to in the previous paragraph, with
infinitely many true stages.

We now proceed to the proof of the extendibility theorem.

Definition 5.1. Suppose that P ⊆ Q are finite partially ordered sets. The extension
conditions for Q over P are the following three conditions.

(1) If x 6≤ y in Q, then BA(x) 6⊆ BAB(y).
(2) If y ∈ Q − P, then Z(y) = ∅ or BA(Z(y) ∪ B(y)) ⊆ B(y), where Z(y) is

given by

Z(y) = {z : z ∈ Q− P, z < y, and B(y) 6⊆ BA(z)}.
(3) If x 6≤ y in Q, then either B(x) 6⊆ B(y) or B(y) ⊆ BA(x).
(Notice that Condition 3 is obviously true when x ∈ P.)

Theorem 5.2. Suppose that P ⊆ Q are finite bounded partial orders such that Q
satisfies all three of the extension conditions over P. Then for any π, a partial
order embedding of P into the Σ0

2-enumeration degrees preserving 0 and 1, there is
an extension of π to a partial order embedding of Q, also preserving 0 and 1.

Definition 5.3. Suppose that P is a finite bounded partial order and that Q is a
finite extension of P. We say that J is a minimal extension ideal if there is a
u ∈ Q−P such that J = BA(u) and there is no proper subset of J with the same
property.

Suppose that P is a finite bounded partial order, Q is a finite extension of P
satisfying the extension conditions, π is an embedding of P into the Σ0

2-enumeration
degrees, and J is a minimal extension ideal in P. Let RJ be the subset of Q− P
given by RJ = {u : u ∈ Q − P and BA(u) = J }. We let QJ = P ∪ RJ with the
order obtained by restriction from Q.

Continuing, suppose that u1 and u2 belong to Q − P and u1 > u2. Then,
BA(u2) ⊆ BA(u1). Consequently, if u1 ∈ RJ , then by the minimality of J ,
BA(u2) = J . Thus the elements of RJ are closed downward in Q− P. Further if
u1 and u2 are elements of RJ , then because BA(u1) = BA(u2) = J , u2 6∈ Z(u1).

In the following, we will use lower case letters (d, x, y, u an so forth) to denote
elements of the finite partially ordered set Q and the same letters in upper case to
denote the sets corresponding to the images (namely, Σ0

2-enumeration degrees) of
these points. We sometimes identify the set corresponding to the image of a point,
with the image itself, thus writing for instance X = π(x). Analogously, B(Y ) will
be the set of images of elements of B(y). Likewise, J will sometimes denote the
sets corresponding to the images of elements in the minimal extension ideal J : the
exact meaning of the symbol will be clear from the context.
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We will extend π to an embedding of Q by a sequence of extensions. During
each step of the sequence, we will extend the domain of our embedding to include
the elements bounded by a minimal extension ideal over the previous embedding.
We will ensure that at each step, we satisfy a version of the extension conditions.

Definition 5.4. Suppose that P ⊆ Q are finite partially ordered sets with 0 and
1 and π is an embedding of P into the Σ0

2-enumeration degrees. The extension
conditions for Q over P and π are the following three conditions.

(1) If x 6≤ y in Q, then there is an h in BA(x) such that H 6≤e

⊕B(Y ).
(2) If y ∈ Q−P, then Z(y) = ∅ or BA(Z(y)∪B(y)) ⊆ B(y), where again Z(y)

is given by

Z(y) = {z : z ∈ Q− P, z < y, and B(y) 6⊆ BA(z)}.

(3) If x 6≤ y in Q, then either B(x) 6⊆ B(y) or B(y) ⊆ BA(x).
Note that if P ⊆ Q satisfy the extension conditions of Definition 5.1 and π is

an embedding of P into the Σ0
2-enumeration degrees then Q satisfies the extension

conditions over P and π as in Definition 5.4.
In the following let us use the symbol E(Σ0

2) to denote the poset of Σ0
2-enumer-

ation degrees.

Proposition 5.5. For any π, P, Q such that Q satisfies the extension conditions
over P and π, and any J a minimal extension ideal in Q over P, there is an
extension πJ : QJ → E(Σ0

2) of π such that the following conditions hold.
(1) For all u in RJ ,

⊕J ≥e U .
(2) For all y ∈ Q and d ∈ P, if ~u is the set of elements u in RJ such that

y ≥ u, and if y 6≥ d, then
⊕ ~U ⊕⊕B(Y ) 6≥e D.

(3) For all y ∈ Q and v ∈ RJ , if ~u is the set of elements u in RJ such that
y ≥ u, and if y 6≥ v, then

⊕ ~U ⊕⊕B(Y ) 6≥e V .

Note that second and third conditions ensure that if y and x are elements of QJ
and y 6≥ x, then Y 6≥e X, where Y = πJ (y) and X = πJ (x).

5.1. Strategies. We fix enumerations of the finite sets x1, x2, . . . of elements of
P and u1, u2, . . . of elements of RJ . We let Xi denote the set corresponding to the
image π(xi) of xi and let Ui denote the Σ0

2 set that we will construct as the image
of ui.

5.2. Comparability strategies. We fix a uniformly computable sequence (Ri :
i ∈ ω) of infinite, pairwise disjoint computable subsets of ω.

We choose the embedding π of P into E(Σ0
2) so that the ith element of P is

mapped to a subset of Ri.
If y > x in QJ and y ∈ RJ then we ensure that Y ≥e X by requiring that

X ⊆ Y . Now, X will be contained in the (computable) union of those Ri which are
used to code elements of π(P) into X together with those Ri used by Sacks coding
strategies directing numbers into X and sets below X. No other numbers from this
union will belong to Y . And so, n will be an element of X if and only if n is an
element of the above computable union and n ∈ Y .

If y > x in QJ and y ∈ P then we distinguish two cases: If x ∈ P then Y ≥e X
since π is an embedding. If x ∈ RJ then y ≥ BA(x) = J , and so Y ≥e

⊕J , and
by clause (1) of Proposition 5.5, Y ≥e X.
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5.3. Incomparability strategies. We have two families of incomparability re-
quirements, corresponding to Clauses 2 and 3 of Proposition 5.5. We will present
strategies to ensure that Θ(

⊕ ~U ⊕⊕B(Y )) 6= X, treating these three cases sepa-
rately: X ∈ π(P), ~U is empty (a special case of Clause 3 in Proposition 5.5), and
neither of the previous two. Of course, since we are given an embedding of P, if ~U
is empty and X ∈ π(P), then since y 6≥ x in Q,

⊕B(Y ) 6≥e X (apply Condition
(1) in Definition 5.1).

Before we describe the strategies, we anticipate their success and describe the
parameter which characterizes their outcomes.

Definition 5.6. Suppose that Y and X are Σ0
2 sets such that for all n ∈ ω,

n ∈ Y ⇐⇒ (∃u)(∀v)ΦY (u, v, n)

n ∈ X ⇐⇒ (∃u)(∀v)ΦX(u, v, n)

in which ΦY and ΦX are computable predicates, and suppose that Ξ(Y ) 6= X.
Then, w is a witness to the inequality (between Ξ(Y ) and X) if either one of the
following conditions (1) or (2) holds.

(1) w = 〈1, n, 〈x1, s1〉, . . . , 〈xm, sm〉, t〉 and
- (∀i ≤ m)(∀u < si)(∃v < t)¬ΦY (u, v, xi),
- (∀i ≤ m)(∀v)ΦY (si, v, xi), 〈n, {x1, . . . , xm}〉 ∈ Ξ[t]
- n 6∈ X.

So, n ∈ Ξ(Y )−X.

(2) w = 〈0, n, s, t〉, and
- (∀u < s)(∃v < t)¬ΦX(u, v, n),
- (∀v)ΦX(s, v, n),
- Ξ(Y, n) diverges.

So, n ∈ X − Ξ(Y ).

Note that in both cases, w’s being a witness to Ξ(Y ) 6= X is expressed by the
conjunction of a Π0

1 formula with a Π0
2 formula. We will abbreviate the conjunction

as (∀x)φ1(x,w) & (∀x)(∃y)φ2(x, y, w).

Lemma 5.7. Suppose that Y and X are enumeration reducible to A. Then the
condition “no number less than w is a witness to Ξ(Y ) 6= X” is enumeration
reducible to A, uniformly in Ξ.

Proof. A number w is not a witness to Ξ(Y ) 6= X if either a Σ0
1 condition holds,

which is enumerable relative to A, or either a number belongs to a set X enu-
meration reducible to A (Clause (1) of Definition 5.6) or a computation Ξ(n, Y )
converges using only positive information about a set enumeration reducible to A
(Clause (2) of Definition 5.6). Both of the latter disjuncts are enumeration reducible
to A. ¤

Approximating the least witness to Ξ(Y ) 6= X. Let w(1), w(2), . . . be an
enumeration of the possible witnesses to Ξ(Y ) 6= X, written in increasing order.
Let φ1 and φ2 be taken as in the comment following Definition 5.6. Note, we are
using the fixed point theorem to work with φ1 and φ2 during the construction of
the sets to which they refer.
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We define the following parameters for the strategy during stage s. For each k,
define `(k)[s] to be the largest ` such that (∀x ≤ `)(∃y ≤ s)φ2(x, y, w(k)). Let w[s]
be the least w(k) such that

(1) (∀x ≤ s)φ1(x, w(k)),
(2) (∀t < s)(`(k)[t] < `(k)[s]).

Programming environment. Ultimately, we will run our diagonalization
strategies simultaneously. With this in mind, we will design our strategies to work
within the constraints that we expect to encounter.

Constraints on σi. The constraint within which we will be working for the ith
incomparability strategy σi will be of the following type. Suppose that σi is meant
to satisfy the requirement Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Xi. We are using the following

notation: Si is the set of indices of sets Uj with uj ≤ yi in Q, and
⊕

Si
Uj is the

join of those Uj ’s whose indices belong to Si. In the course of running σi, we will
approximate the least witness wi to the inequality between a functional constructed
by σi relative to a join of sets from P and another element of P.

We let s denote a stage in the execution of σi.

(1) σi must be consistent with the coding requirements discussed earlier.
(2) σi cannot designate that any numbers from

⋃
j<i Rj belong to any set. That

is,
⋃

j<i Rj will be controlled by the strategies of higher priority.
(3) Let ~Ii be the Σ0

2 sequence of sets of length |RJ |, the cardinality of RJ , such
that for every m < |RJ |, the numbers which are eventually put into Um

by a strategy of higher priority than σi are exactly those numbers in ~Ii(m),
the mth element of ~Ii. We say that ~Ii(m) is the injury set for Um.

σi will be given approximations (~Ii[s] : s ∈ ω) to ~Ii, ~U [s] to ~U , B(Yi)[s]
to B(Yi), and X[s] to X.

σi is constrained so that for all n ∈ Rj and U under construction, if
numbers from Rj are designated to belong to U and there is an m such that
n ∈ ~Ii(m)[s], then n ∈ U [s]. The set to which numbers are designated will
be clear from the construction.

(4) σi will be given simultaneous true stage approximations for all of ~I∗i [s],
~U∗[s], B(Yi)∗[s], X∗

i [s], and w∗i [s]. The first four correspond to the sets
mentioned in the previous item. The last corresponds to our approximation
to the least witness wi as described earlier. We may assume that for all
stages s, ~I∗i [s] ⊆ ~Ii[s], ~U∗[s] ⊆ ~U [s], B(Yi)∗[s] ⊆ B(Yi)[s], and w∗i [s] ≤ wi[s].

There are infinitely many stages s such that ~I∗i [s] ⊆ ~Ii, ~U∗[s] ⊆ ~U ,
B(Yi)∗[s] ⊆ B(Yi), and X∗

i [s] ⊆ Xi. Further, if Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6=
Xi, then for infinitely many of these stages s, w∗i [s] is the least witness to
this inequality.

Of course, we will design our strategies so that their only permanent effect is to
impose a system of constraints as above.

In our construction, we will have incomparability strategies for y 6≥ x only when
B(y) ⊆ J . The satisfaction of the other incomparability requirements will follow
by an algebraic argument.

Case 1: Requirement Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6= Di with B(yi) ⊆ J and di ∈
P. If di is not an element of J , then we may conclude that

⊕
Si

Uj ⊕
⊕B(Yi) 6≥e

Di, once we prove that
⊕

Si
Uj is below

⊕J . If di 6∈ J , then we say that
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Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6= Di is a trivial requirement.
When di ∈ J , then we implement a version of the Sacks preservation strategy

as follows.
We will enumerate a functional Γi and ensure

Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) = Di =⇒ Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi)) = Di.

Sacks preservation. We order finite sets by canonical index, i.e., for finite sets
G0 and G1, say that G0 is less than G1 if the greatest element of G0 is less than the
greatest element of G1 or if their greatest elements are equal and G0 precedes G1 lex-
icographically. Say that a finite set G appears consistent with

⊕
Si

~Ii(j)⊕
⊕B(Yi)

during stage s, if G is of the form
⊕ ~H ⊕⊕ ~K, where ~H and ~K are sequences of

finite sets of the same lengths as ~Ii and B(Yi), for any Hm in ~H, Hm ∩ ⋃
j<i Rj

is a subset of those numbers in ~I∗i (jm)[s], where jm is the mth element of Si and
~I∗i (jm)[s] is the mth component of ~I∗i [s], and ~K is contained in B(Yi)∗[s]. In short,
the numbers appearing in G which are under the control of the strategies of higher
priority all appear to be in their designated sets. For example, we may assume
that

⊕
Si

U∗
j ⊕

⊕B(Yi)∗ appears consistent with
⊕

Si

~Ii(j)⊕
⊕B(Yi) during ev-

ery stage s.
Let wi be the least witness to the inequality between Γi(

⊕
Si

~Ii(j)⊕
⊕B(Yi))

and Di, with the understanding that we will later prove Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi))

not equal to Di. The strategy σi works with the approximation wi[s], and does not
depend on the value of wi, or even on whether Γi(

⊕
Si

~Ii(j)⊕
⊕B(Yi)) is actually

unequal to Di.
During stage s, we take the following action. If s = 0, then we have no constraints

from earlier stages.

Description. Enumerating Γi. During each stage s, for each n such that n ∈ D∗
i [s]

and Θi(
⊕

Si
U∗

j ⊕
⊕B(Yi)∗; n)[s] ↓, if Γi(

⊕
Si

~Ii(j)∗ ⊕
⊕B(Yi)∗; n)[s] ↑, then let

〈n,G0 ⊕B0〉 be the least axiom in Θi[s] (i.e., the axiom with least Gödel number)
such that G0 ⊕ B0 appears consistent with

⊕
Si

~Ii(j)∗ ⊕
⊕B(Yi)∗ during stage s,

and enumerate the axiom 〈n,
⊕

Si

~Ii(j)∗[s] ⊕ B0〉 into Γi. We associate the axiom
〈n,

⊕
Si

~Ii(j)∗[s]⊕B0〉 in Γi with 〈n,G0⊕B0〉. (More formally, the set of associated
pairs of axioms is a computably enumerable set generated simultaneously with Γi.)

Imposing constraints. For each n and for each axiom 〈n, F 〉 in Γi, let 〈n, G0⊕B0〉
be the axiom in Θi associated with 〈n, F 〉. We impose the constraint that G0 ⊆⊕

Si
Uj for the sake of 〈n, F 〉. By this we mean, for each number m in G0 which

is not in
⊕

Si

~Ii(j), either for all sufficiently large stages t the number m belongs
to

⊕
Si

Uj [t], or there are infinitely many stages during which we postpone the
constraint imposed for the sake of 〈n, F 〉 (as defined below). Here, we arrange that
G0 ⊆

⊕
Si

Uj by adding numbers to the sets Uj , for j ∈ Si. This constraint may
involve the inclusion of these same numbers into other sets for the coding.

Postponing constraints. Postpone all constraints imposed for the sake of axioms
〈n, F 〉 for which n ≥ w∗i [s]. Additionally, postpone any constraint imposed for
the sake of an axiom 〈n, F 〉 ∈ Γi such that F does not appear consistent with⊕

Si

~Ii(j)⊕
⊕B(Yi).

We have used the word “postpone” without having defined it. Our intention is
that a constraint that is postponed infinitely often is not meant to apply in the
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limit, and that a constraint that is only postponed finitely often is meant to apply
for every stage after the last one in which it was postponed.

Deciding values of Yi. Once the needed constraints have been enumerated and
the ones that seem superfluous have been postponed, for every constraint “G0 ⊆⊕

Si
Uj for the sake of 〈n, F 〉” that σi has not postponed, for every m in such a G0,

σi puts m into
⊕

Si
Uj [s]. Note that σi does not require any number in

⋃
j<i Rj to

belong to any set unless that number already belongs to that set by virtue of ~I∗i [s].

Lemma 5.8. Suppose that ~U is constructed according to the prescriptions of σi in
a construction in which σi operates within the programming environment described
above. If Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) = Di then Γi(

⊕
Si

~Ii(j)⊕
⊕B(Yi)) = Di.

Proof. Assume that Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) = Di.
First note that if n ∈ Di then Θi(

⊕
Si

Uj ⊕
⊕B(Yi); n) ↓. Since all of the sets

in question are Σ0
2, there is a stage s0 such that Θi(

⊕
Si

U∗
j ⊕

⊕B(Yi)∗; n)[s] ↓
during every stage s greater than or equal to s0. But then there is a ∗-true stage s
such that Θi(

⊕
Si

U∗
j ⊕

⊕B(Yi)∗;n)[s] ↓. In such a stage, either we have that
Γi(

⊕
Si

~Ii(j)∗ ⊕
⊕B(Yi)∗; n)[s] ↓, or otherwise we force it to happen by enumer-

ating an axiom 〈n,
⊕

Si

~I∗j [s] ⊕ B0〉 into Γi (where B0 ⊆ B(Yi)∗[s]). Since s is a
true stage,

⊕
Si

~Ii(j)∗ ⊕
⊕B(Yi)∗[s] is contained in

⊕
Si

~Ij ⊕
⊕B(Yi), and so the

axiom in Γi applies to
⊕

Si

~Ii(j)⊕
⊕B(Yi). Consequently, if n ∈ Di, then we

conclude that Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi); n)↓.

Now, consider the converse. Suppose that Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi); n) ↓ and let

〈n, F 〉 be an axiom in Γi such that F ⊆ ⊕
Si

~Ii(j)⊕
⊕B(Yi). Let 〈n,G0 ⊕B0〉 be

an axiom in Θi associated with 〈n, F 〉. Since Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) = Di, there is
no w which is a witness to the inequality of Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) and Di. The

set
⊕

Si

~Ii(j)⊕
⊕B(Yi) is Σ0

2 and n’s not being a witness to the inequality is a
Σ0

2 property of n, and so there is an s0 such that for all s > s0, w∗i [s] > n and
F ⊆ ⊕

Si

~Ii(j)∗ ⊕
⊕B(Yi)∗[s].

After stage s0, the constraint that G0 ⊆
⊕

Si
Uj for the sake of 〈n, F 〉 can only

be postponed if either there is a stage s > s0 during which w∗i [s] ≤ n or during
which F does not appear to be consistent with

⊕
Si

~Ii(j)∗ ⊕
⊕B(Yi)∗. By the

choice of s0, neither condition can apply. Thus, G0 will be a subset of
⊕

Si
Uj . In

addition, since F applies to
⊕

Si

~Ii(j)⊕
⊕B(Yi), B0 is a subset of

⊕B(Yi).
So Θi(

⊕
Si

Uj ⊕
⊕B(Yi); n)↓. Since Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) = Di, we have that

n ∈ Di. Consequently, if Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi); n)↓ then n ∈ Di, as required. ¤

We will prove that
⊕

Si

~Ij ⊕
⊕B(Yi) 6≥e Di and apply Lemma 5.8 to conclude

that Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6= Di.
Effect of the strategy when Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Di. Consider the

case in which Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi)) 6= Di and wi is the least witness to this

inequality. There will be infinitely many stages during which w∗i [s] = wi, and only
finitely many stages during which w∗i [s] < wi.

Our strategy may well enumerate infinitely many axioms into Γi and therefore
infinitely many constraints on

⊕
Si

Uj ⊕
⊕B(Yi) for the sake of these axioms. Since

some of these constraints may be for the sake of axioms in Γi with arguments less
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than wi, we may impose constraints which are only postponed finitely often. We
show that there are only finitely many of these.

During each of the infinitely many stages during which w∗i [s] = wi, any constraint
associated with making Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) converge at an argument greater

than or equal to wi is postponed.
For the numbers n less than wi, let s be large enough so that for all t > s

we have wi[t]∗ ≥ wi, and if Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi); n) ↓, then there is an Fn

contained in
⊕

Si

~Ii(j)⊕
⊕B(Yi) such that 〈n, Fn〉 in Γi[s] and for all t > s,

Fn ⊆
⊕

Si

~Ii(j)∗ ⊕
⊕B(Yi)∗[t]. For each of these n’s and each t > s, we have that

Γi(
⊕

Si

~Ii(j)∗ ⊕
⊕B(Yi)∗; n)[t] will converge. Consequently, σi will not enumerate

any additional axioms into Γi with any of these n’s as arguments. So there can be at
most finitely many axioms for numbers less than wi which apply to ~Ii in the limit.
Constraints imposed for the sake of these axioms will only be postponed finitely
often, and all other constraints will be postponed infinitely often, in particular they
will be postponed during every ∗-true stage.

Case 2: Requirement Θi(
⊕B(Yi)) 6= Xi with B(yi) ⊆ J and xi ∈ RJ . Next,

we consider the case when the oracle of the left term of the inequality is a join of
sets in the image of P.

If B(Xi) 6⊆ BAB(Yi) then we may conclude that
⊕B(Yi) 6≥e Xi, once we prove

that Xi is an upper bound for B(Xi). Since we are directly coding the elements of
B(Xi) into Xi, the latter condition is immediate. If B(Xi) 6⊆ BAB(Yi), then we say
that Θi(

⊕B(Yi)) 6= Xi is a trivial requirement.
When B(Xi) ⊆ BAB(Yi), we implement a version σi of the Sacks coding strategy

as follows. Since Condition (1) of Definition 5.1 applies and since J = BA(xi), we
may fix an hi ∈ J − BAB(yi). Since hi /∈ BAB(yi), we have

⊕B(Yi) 6≥e Hi.
We enumerate an enumeration operator ∆i and ensure that if Θi(

⊕B(Yi)) = Xi,
then ∆i(Xi) = Hi. With the same caveats as above, we let wi be the least witness
to the inequality between Θi(

⊕B(Yi)) and Xi.

Sacks coding. We now adapt the coding strategy to enumeration reducibility.

Description. For each element of Ri which is not an element of ~Ii[s], we proceed as
follows.

(1) If n is less than w∗i [s], then we set Xi(mn)[s] = Hi(n)[s] where mn is the
nth element of Ri.

(2) If n is greater than or equal to w∗i [s], we set Xi(mn)[s] = 0.

The effect is to define Xi so that with finitely many exceptions, if n < wi then
Xi(mn) = H(n), and if n ≥ wi then Xi(mn) = 0. Thus, we have the following
lemma.

Lemma 5.9. If Xi is enumerated according to the Sacks coding strategy, and if
Θi(

⊕B(Yi)) = Xi, then Xi ≥e Hi.

Since
⊕B(Yi) 6≥e Hi, we will later apply Lemma 5.9 to conclude Θi(

⊕B(Yi)) 6=
Xi.

Effect of the strategy when Θi(
⊕B(Yi)) 6= Xi. By the choice of Hi, we have

that ∆i(Θi(
⊕B(Yi))) cannot equal Hi. As we mentioned above, the effect is to

define Xi so that except for the finite effect of ~Ii, if n < wi then Xi(mn) = Hi(n),
and if n ≥ wi then Xi(mn) = 0.
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Our effect on Xi is then described by the finite set of numbers less than wi which
belong to Hi whose coding locations were not controlled by ~Ii. Further, the only
sets affected once we correct for the sake of coding are those sets which directly
code the effects of incomparability strategies on Xi.

Case 3: Requirement Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6= Vi with B(yi) ⊆ J , Si 6=
∅, and vi ∈ RJ . The third case for an incomparability strategy is the one in
which both sides of the inequality include elements of RJ . If B(Vi) 6⊆ BAB(Yi),
then we may conclude that

⊕
Si

Uj ⊕
⊕B(Yi) 6≥e Vi once we invoke the effects of

strategies of Case 1 and prove that not all of the elements of B(Vi) are e-reducible to⊕
Si

Uj ⊕
⊕B(Yi). In this case, we say that requirement Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6=

Vi is trivial.
Otherwise, our strategy is the simultaneous combination of our strategies in the

previous two cases. We define Hi to be an element of BA(Vi)−BAB(Yi) and ensure
the following two implications.

Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) = Vi =⇒ Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi)) = Vi, and

Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) = Vi =⇒ ∆i(Vi) = Hi

We use Sacks’s preservation strategy for the first implication, regarding Vi as
if it were in P. We use Sacks’s coding strategy for the second implication, now
regarding Vi as a set under construction. We let their common value of wi be the
least witness to the inequality between ∆i(Γi(

⊕
Si

~Ii(j)⊕
⊕B(Yi))) and Hi.

Our analysis from the previous sections applies, both to show that these impli-
cations hold and to show that if Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Vi, then our strategy has

a finitely described effect on
⊕

Si
Uj and Vi.

Lemma 5.10. Suppose that
⊕

Si
Uj and Vi are approximated according to the

above incomparability strategy in a construction in which σi operates within the
programming environment described above. Then, if Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) = Vi

then Γi(
⊕

Si

~Ii(j)⊕
⊕B(Yi)) = Vi and ∆i(Vi) = Hi.

5.4. Construction. We now describe our construction to combine strategies for
all of the requirements.

Definition 5.11.
(1) Suppose ri is the requirement Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Xi and σi is our

strategy to satisfy ri. We write σi,N and σi,P to refer to the Sacks preserva-
tion and Sacks coding components of σi, respectively. Depending on which
of Si = ∅ or Xi ∈ P holds, one or the other of σi,N or σi,P may be trivial.

(2) We write wi to refer to the least witness to the inequality between Xi and
Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) if there is one, and to refer to infinity otherwise.

The stage-by-stage construction. We organize our construction by stages,
indexed by s. Each stage s is divided into s + k many substages, indexed by i,
where k is the number of comparability strategies.

During stage s, we are given stage s approximations to the elements in the image
of P. We define approximations Uj [s] to the elements that we are constructing in
the image of RJ , approximations ~Ii[s] (for i ≥ k + 1) to the injury sets ~Ii defined
below, and approximations wi[s]. By the Recursion Theorem, we fix in advance
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a simultaneous true stage approximation to these quantities, and we use X∗[s]
and so forth to refer to the approximations to the above sets under the true stage
approximation.

Comparability strategies. For each u ∈ RJ , for each X in QJ such that
u > x, we ensure that X[s] ⊆ U [s].

Incomparability strategies. Fix a computable enumeration (ri : i > k) of all
the nontrivial incomparability requirements. (We let Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Xi

denote the inequality required by ri.)
We define ~Ii[s] at the beginning of substage i. For each i, ~Ii[s] will be a sequence

of length |RJ | all of whose coordinates are finite sets.
For i less than or equal to k, σi is devoted to coding the elements of P into the

appropriate Uj ’s. Since the coding strategies are not injured, we let ~Ii[s] be the
sequence of empty sets.

We let ~Ik+1[s] be the sequence such that for each m less than |RJ |, the mth
coordinate of ~Ik+1[s] is the union of the elements of B(Um)[s].

For the inductive step, suppose that ~Ii[s] is defined. Let ~Ii+1[s] be the sequence
such that for all m less than to |RJ |, the mth coordinate ~Ii+1(m)[s] of ~Ii+1[s] is
the union of ~Ii(m)[s] with the set of numbers n such that during stage s or earlier,
σi imposed a constraint which included n’s belonging to Um[s] and that constraint
was not postponed by σi during stage s.

We define wi[s] as in the section on approximating outcomes.
During substage i, we follow the instructions of the strategy described earlier for

the requirement ri, relative to the true stage approximations.
For each um ∈ RJ , we define Um[s] once we have completed substage s + k of

stage s. We let Um[s] be the set of numbers n such that for some σi with i less
than s + k, during stage s or earlier σi imposed a constraint which included n’s
belonging to Um[s] and that constraint was not postponed by σi during stage s.

5.5. Verification.

Lemma 5.12. Let i be greater than k.
(1) The sets constructed satisfy all of the nontrivial inequality requirements ri :

Θi(
⊕

Si
Uj ⊕

⊕B(Yi)) 6= Xi.
(2) ~Ii(j) is enumeration reducible to

⊕B(Uj) for each j < |RJ |.
(3) ~Ii is uniformly enumeration reducible to

⊕J . That is, the indices for the
enumeration reductions are obtained as a computable function of i.

Proof. Clearly, the second and third claims hold when i is equal to k + 1.
Suppose that clauses (2) and (3) of Lemma 5.12 hold for numbers greater than

or equal to k +1 and less than or equal to i. We will show that clause (1) holds for
i and clauses (2) and (3) hold for i + 1.

First, by applying the appropriate Lemma 5.8, 5.9, or 5.10, we may conclude
that Θi(

⊕
Si

Uj ⊕
⊕B(Yi)) 6= Xi. This verifies the clause (1) of Lemma 5.12.

Consequently, there are only finitely many constraints which are imposed by σi and
only postponed by it finitely often. Thus, for each j < |RJ |, ~Ii+1(j)− ~Ii(j) is finite
and clause (2) of the Lemma follows. Finally, each number n that appears in ~Ii+1(j)
and not in ~Ii(j) does so as follows. Either an axiom applies to

⊕
Si

~Ij ⊕
⊕B(Yi)

(in the case of preservation strategies) or a number belongs to Hi ∈ J (in the case
of coding strategies), and the least witness to the inequality is sufficiently large that
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the constraint on n is postponed at most finitely often by comparison with wi[s].
By Lemma 5.7, the latter condition on postponement is enumeration reducible to⊕J since all of the sets used as oracles in the equation to which wi refers belong
to J . ¤

We can now complete the proof of Proposition 5.5. Recall that this proposition
has three clauses, which we verify in turn for the sets that we constructed above.

Clause (1) asserts that for all u in RJ ,
⊕J ≥e U . For each u and each n,

n ∈ U if and only if n is designated for U , n is constrained to belong to U by some
strategy in the construction, and that constraint is postponed only finitely often.
Equivalently, for each u and each n, n ∈ U if and only if n is designated for U

and there is an i such that n appears in ~Ii. Since the sequences ~Ii are uniformly
enumeration reducible to

⊕J , U is enumeration reducible to
⊕J .

Clause (2) asserts for all y ∈ Q and d ∈ P, if y 6≥ d, then
⊕ ~U ⊕⊕B(Y ) 6≥e D

where ~u is the set of elements u ∈ RJ . If ~u is empty, then Clause 2 follows from the
first extension condition of Definition 5.4, so we may assume that ~u is not empty.
First consider the case when B(y) ⊆ J . If d is an element of J , then for each Θ,
we satisfied the requirement Θ(

⊕ ~U ⊕⊕B(Y )) 6= D, and Clause 2 follows. If d is
not an element of J , then for any u in RJ , d 6∈ BA(u). So let u be an element of
RJ and let a be an element of A(u) such that a 6≥ d. But then A 6≥e D. Of course
A ≥e

⊕J and so A ≥ ⊕ ~U ⊕⊕B(Y ). Now consider the case when B(y) 6⊆ J .
Then for each u in ~u, B(y) 6⊆ BA(u) and so u is an element of Z(y). But then, the
second extension condition ensures that BA(u) ⊆ B(y), that is J ⊆ B(y). Since
~U is enumeration reducible to

⊕J , the condition
⊕ ~U ⊕⊕B(Y ) 6≥e D reduces

to
⊕B(Y ) 6≥e D. As above, this latter condition is guaranteed again by the first

extension condition.
Clause (3) asserts for all y ∈ Q and v ∈ RJ , if ~u is the set of elements u in RJ

such that y ≥ u, and if y 6≥ v, then
⊕ ~U ⊕⊕B(Y ) 6≥e V . As above, if B(y) ⊆ J ,

then we satisfied the requirements to ensure that
⊕ ~U ⊕⊕B(Y ) 6≥e V . If B(y)

is not a subset of J and ~u is not empty, then we get a contradiction: for u in
~u, as above, the second extension condition implies that BA(u) ⊆ B(y); the first
extension condition of Definition 5.4 implies that there is an H in BA(V ) such that⊕B(Y ) 6≥e H; since v and u belong to RJ , BA(V ) = J = BA(U); and so, H is an
element of B(Y ) and not enumeration reducible to

⊕B(Y ), contradiction. Finally,
consider the case when ~u is empty and B(y) is not a subset of J . Since y 6≥ v, the
third extension condition applies, and either B(v) 6⊆ B(y) or B(y) ⊆ BA(v). Since
B(y) 6⊆ J = BA(v), it must be the case that B(v) 6⊆ B(y). Let h ∈ B(v) − B(y).
By the action of our coding strategies, V ≥e H and, again by the first extension
condition,

⊕B(Y ) 6≥e V as required. ¤
5.6. Completing the extension. Now we derive Theorem 5.2 from Proposi-
tion 5.5. We begin by showing that the sets we constructed in Proposition 5.5
satisfy the extension conditions of Definition 5.4.

Proposition 5.13. Suppose that P ⊆ Q are finite bounded partial orders, and that
π is an embedding of P into the Σ0

2-enumeration degrees such that Q satisfies the
extension conditions over P and π. Suppose that J is a minimal extension ideal
in Q, and πJ is an embedding of QJ into the Σ0

2-enumeration degrees extending
π and satisfying the conditions of Proposition 5.5. Then Q satisfies the extension
conditions over QJ and πJ .
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Proof. We will be evaluating expressions such as BA(x) relative to P and also
relative to QJ . We use superscripts to specify our intention, such as BA(x)P and
BA(x)Q

J
.

It is immediate as argued in section 5.2 that πJ preserves comparability. To
see that πJ preserves incomparability, let y ∈ QJ and observe that then Y ≡e⊕ ~U ⊕⊕B(Y ) as defined in Proposition 5.5, and so Conditions 2 and 3 ensure the
incomparability requirements involving y.

Condition 1. Suppose that y 6≥ x in Q. We must show that there is an h in
BA(x)Q

J
such that

⊕B(Y )Q
J 6≥e H.

Case 1.1: x 6∈ RJ . Since Q satisfies the extension conditions over P and π, let h
be an element of BA(x)P such that

⊕B(Y )P 6≥e H. Of course, since
⊕B(Y )P 6≥e

H, we have y 6≥ h in Q. By the second clause of Proposition 5.5, for ~u equal
to the set of elements u in RJ such that y ≥ u,

⊕ ~U ⊕ ⊕B(Y )P 6≥e H. But,⊕ ~U ⊕ ⊕B(Y )P is equal to
⊕B(Y )Q

J
, and so the first extension condition is

verified.
Case 1.2: x ∈ RJ . The argument for this case is similar to the previous one,

using the third clause of Proposition 5.5 in place of the second clause. Since y 6≥ x

in Q, for ~u the set of elements u in RJ such that y ≥ u,
⊕ ~U ⊕⊕B(Y )P 6≥e X.

Again,
⊕ ~U ⊕ ⊕B(Y )P is equal to

⊕B(Y )Q
J

. Then x itself is an element of
BA(x)Q

J
such that

⊕B(Y )Q
J 6≥e X.

Condition 2. We must verify that, for all y ∈ Q − QJ , then Z(y)Q
J

= ∅ or
BA(Z(y) ∪ B(y))Q

J ⊆ B(y)Q
J

, where Z(y)Q
J

is given by

Z(y)Q
J

= {z : z ∈ Q−QJ , z < y, and B(y)Q
J 6⊆ BA(z)Q

J }.

Claim 5.14. For all y in Q−QJ , Z(y)Q
J

is a subset of Z(y)P .

Proof. Suppose that y and z are in Q−QJ , and z is in Z(y)Q
J −Z(y)P .

Since y and z belong to Q−QJ and RJ is closed downward in Q−P, A(y)Q
J

and A(z)Q
J

are equal to A(y)P and A(z)P , respectively. Consequently, BA(z)P is
contained in BA(z)Q

J
.

Since z 6∈ Z(y)P , B(y)P ⊆ BA(z)P and thus B(y)P ⊆ BA(z)Q
J

.
Since z ∈ Z(y)Q

J
, B(y)Q

J − BA(z)Q
J

is not empty. Also, B(y)Q
J − BA(z)Q

J

is contained in RJ , the set of u’s in Q − P such that BA(u)P = J . Let u be an
element of B(y)Q

J − BA(z)Q
J

.
We consider the cases depending on whether u ∈ Z(y)P .
Suppose u ∈ Z(y)P . Then the second extension condition for Q over P and π

implies that BA(u)P ⊆ B(y)P . Of course, BA(u)P = J and U ≤e

⊕J . But then,
U ≤e

⊕B(Y )P . Since B(y)P ⊆ BA(z)P , for each a in A(z)P , A ≥e

⊕B(Y )P . So,
for all A in A(Z)P = A(Z)Q

J
, A ≥e U . Consequently, u ∈ BA(z)Q

J
, contradicting

the choice of u.
Now, suppose u is not an element of Z(y)P . Then B(y)P ⊆ BA(u)P . As in

the previous paragraph, if BA(u)P ⊆ BA(z)P , then we obtain a contradiction. So,
we may assume that BA(u)P 6⊆ BA(z)P . But then, there must be an az ∈ A(z)P

such that az is not above some element of P which is below every element of P
which is above u. It follows that az 6≥ u. Now apply the third extension condition
for Q over P and π to az and u: either B(u)P 6⊆ B(az)P or B(az)P ⊆ BA(u)P .
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Since az belongs to P and BA(u)P = J , this condition reduces as follows: either
az is not an upper bound for B(u)P or az ∈ J . We have already concluded that
B(y)P ⊆ BA(z)P , and we note that u ≤ y implies that B(u)P ⊆ B(y)P . Thus, az

is an upper bound for B(u)P . If az is an element of J , then BA(z)P ⊆ J . By the
minimality of J , BA(z)P = J . But then z ∈ QJ , a contradiction.

This finishes the proof of Claim 5.14. ¤

Now, we complete the analysis of the second extension condition for Q over
QJ and πJ . Suppose that Z(y)Q

J
is not empty. We must show that BA(Z(y) ∪

B(y))Q
J ⊆ B(y)Q

J
. By Claim 5.14, We know that Z(y)P is not empty.

Case 2.1: First, we consider the case of b in P ∩ BA(Z(y) ∪ B(y))Q
J

. Suppose
that b is not an element of B(y)Q

J
. Since the second extension condition is satisfied

for Q over P and π, BA(Z(y)∪B(y))P ⊆ B(y)P . Then there must be an a such that
a is an element of A(Z(y) ∪ B(y))P and not in A(Z(y) ∪ B(y))Q

J
. By Claim 5.14,

Z(y)Q
J ⊆ Z(y)P , and so a is an upper bound for Z(y)Q

J
. Therefore, we may fix

u ∈ RJ such that y ≥ u and a 6≥ u. Apply the third extension condition for Q over
P and π: either B(u)P 6⊆ B(a)P or B(a)P ⊆ BA(u)P . Since a ∈ A(Z(y) ∪ B(y))P ,
and y ≥ u implies B(u)P ⊆ B(y)P , we have B(u)P ⊆ B(a)P . So, B(a)P ⊆ BA(u)P ,
and consequently a ∈ J . But then for every z ∈ Q−P, if z < a then BA(z)P ⊆ J
and so z ∈ QJ . Since a ∈ A(Z(y))Q

J
, Z(y)Q

J
must be empty, contradiction.

Case 2.2: We now consider the case of u in RJ ∩ BA(Z(y) ∪ B(y))Q
J

.
If u is below every a in A(Z(y)∪B(y))P , then BA(u)P is a subset of BA(Z(y)∪

B(y))P . By the second extension condition for Q over P and π, BA(Z(y)∪B(y))P

is a subset of B(y)P . Consequently, BA(u)P , which is equal to J , is a subset of
B(y)P . By the first clause of Proposition 5.5,

⊕J is an upper bound for U , so
U ≤e

⊕B(Y )P . Consequently, by the third clause of Proposition 5.5, y ≥ u and
so u ∈ B(y)Q

J
, as desired.

Now, for the sake of a contradiction, we suppose that a is an element of A(Z(y)∪
B(y))P such that a 6≥ u. Apply the third extension condition for Q over P and π:
either B(u)P 6⊆ B(a)P or B(a)P ⊆ BA(u)P . Look at the first case, B(u)P 6⊆ B(a)P .
Then there is a b such that a 6≥ b, u ≥ b, and so b is in P ∩ BA(Z(y) ∪ B(y))Q

J
.

In Case 2.1, we showed that b ∈ P ∩ BA(Z(y) ∪ B(y))Q
J

implies that b ∈ B(y)P ,
contradicting a ∈ A(Z(y) ∪ B(y))P and a 6≥ b. Now, we look for a contradiction
in the remaining case, B(a)P ⊆ BA(u)P . Since u ∈ RJ , BA(u)P = J . Now, let
z ∈ Z(y)Q

J
, which is not empty by assumption. By Claim 5.14, z ∈ Z(y)P and so

BA(z)P ⊆ B(a)P . Consequently, BA(z)P ⊆ B(a)P ⊆ J , and by the minimality of
J they are all equal. But then a is the greatest element of J . By the first clause of
Proposition 5.5,

⊕J ≥e U , hence A ≥e U and so a ≥ u. This is a contradiction to
the choice of u. The disjunction of two contradictions is a contradiction, and there
can be no a as supposed.

Combining the analysis of the two components of BA(Z(y) ∪ B(y))Q
J

, we con-
clude that BA(Z(y) ∪ B(y))Q

J ⊆ B(y)Q
J

. This verifies the second extension con-
dition for Q over QJ and πJ .

Condition 3. We must verify that, for all y and x in Q, if y 6≥ x in Q, then
either B(x)Q

J 6⊆ B(y)Q
J

or B(y)Q
J ⊆ BA(x)Q

J
.

First, if x ∈ QJ , then x ∈ B(x)Q
J − B(y)Q

J
and Condition 3 is satisfied. So,

assume that x 6∈ QJ . Further, note that since RJ is closed downward in Q − P
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and x 6∈ QJ , if a ∈ QJ and a ≥ x, then a ∈ P. Consequently, A(x)Q
J

= A(x)P .
Case 3.1: y ∈ P. If B(x)Q

J 6⊆ B(y)Q
J

, then Condition 3 is satisfied. Assume
that B(x)Q

J ⊆ B(y)Q
J

, and consequently B(x)P ⊆ B(y)P . By the third extension
condition for Q over P and π, since y ∈ P and B(y)P ⊆ BA(x)P , we have y ∈
BA(x)P . Since, A(x)P = A(x)Q

J
, we may conclude that y ∈ BA(x)Q

J
and so

B(y)Q
J ⊆ BA(x)Q

J
.

Case 3.2: y ∈ RJ . If B(x)P 6⊆ B(y)P , then any element of B(x)P −B(y)P is also
an element of B(x)Q

J − B(y)Q
J

, and Condition 3 is satisfied. Otherwise, by the
third extension condition for Q over P and π, B(y)P ⊆ BA(x)P .

Suppose that B(y)Q
J 6⊆ BA(x)Q

J
. In particular, y 6∈ BA(x)Q

J
. Let a be an

element of A(x)Q
J

such that a 6≥ y. Since, A(x)P = A(x)Q
J

, a is an element of
P. But then, Condition 3 applies to the pair a and y for Q over P and π: since
a 6≥ y, either B(y)P 6⊆ B(a)P or B(a)P ⊆ BA(y)P . But B(y)P ⊆ B(a)P since we
have assumed that B(y)P ⊆ BA(x)P and a ∈ A(x)P , and so BA(x)P ⊆ B(a)P .
Consequently, B(a)P ⊆ BA(y)P . But then BA(x)P ⊆ BA(y)P . Since y ∈ RJ ,
BA(y)P = J and so BA(x)P ⊆ J . By the minimality of J , BA(x)P = J and so
x ∈ QJ , a contradiction since we have assumed that x /∈ QJ . Thus, B(y)Q

J ⊆
BA(x)Q

J
, and Condition 3 follows.

Case 3.3: y ∈ Q−QJ . If B(x)Q
J 6⊆ B(y)Q

J
, then Condition 3 is satisfied.

Otherwise, B(x)Q
J ⊆ B(y)Q

J
, and hence B(x)P ⊆ B(y)P . By the third exten-

sion condition for Q over P and π, B(y)P ⊆ BA(x)P .
If B(y)Q

J
= B(y)P , then since A(x)Q

J
= A(x)P , B(y)Q

J ⊆ BA(x)Q
J

, and
Condition 3 is satisfied.

Now assume that B(y)Q
J 6= B(y)P , and let ~u be the set of elements u in RJ

such that y ≥ u. Since for each u in ~u, B(u)P ⊆ B(y)P and B(y)P ⊆ BA(x)P , we
observe that for each u in ~u, B(u)P ⊆ BA(x)P .

Suppose that for some u in ~u, u 6∈ BA(x)Q
J

. Fix a ∈ A(x)Q
J

, and hence
a ∈ A(x)P , so that a 6≥ u. Since Q satisfies the third extension condition over P
and π, either B(u)P 6⊆ B(a)P or B(a)P ⊆ BA(u)P . Since B(u)P ⊆ BA(x)P , the first
disjunct is not possible. Consequently, B(a)P ⊆ BA(u)P , and by evaluating these
terms, a ∈ J . But then BA(x)P ⊆ J , and by the minimality of J , BA(x)P = J .
Therefore, x ∈ QJ , a contradiction.

Thus, for every u in ~u, u ∈ BA(x)Q
J

, and Condition 3 follows.
The three extension conditions are verified and we have completed the proof of

Proposition 5.13. ¤

Now, we finish the proof of Theorem 5.2. Suppose that P ⊆ Q are finite bounded
partial orders such that Q satisfies all three of the extension conditions over P. Let
π be any embedding of P into the Σ0

2-enumeration degrees preserving 0 and 1.
Then note that Q satisfies all three of the extension conditions over P and π. We
can decompose Q into a chain of partial orders P = P0 ⊂ P1 ⊂ · · · ⊂ Pk = Q so
that each Pi+1 is obtained by adding the elements in a minimal extension ideal in
Q over Pi. Letting π0 equal π, we can iteratively use Propositions 5.5 and 5.13 to
extend πi to an embedding πi+1 of Pi+1 into the Σ0

2-enumeration degrees so that
Q meets the extension conditions over Pi+1 and πi+1. Then πk is the extension of
π to Q needed to verify Theorem 5.2. ¤

6. Concluding remarks. The next goal in this line of research would be to
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provide a decision procedure for the ∀∃-theory of the Σ0
2-enumeration degrees. We

observe that the obstacles to extendibility of condition (1) in Theorem 1.5 can occur
simultaneously, as we showed in section 2 above. However, by the following theorem
of Ahmad, the obstacles of condition (3) cannot necessarily occur simultaneously:

Theorem 6.1 (Ahmad (see Ahmad, Lachlan [AL98])). For any Σ0
2-enumeration

degrees a0 and a1, if
{x | x < a0} = {x | x < a1}

then a0 = a1.

Now fix a partial ordering P = {0, a0, a1, 1} with a0 and a1 incomparable, as
well as two extensions Qi = P ∪ {xi} (for i ≤ 1) where 0 < xi < ai and xi 6≤
a1−i. Note then that Theorem 1.4 implies that P can be embedded into the Σ0

2-
enumeration degrees so as to prevent an extension to an embedding of Qi for fixed i;
but by Theorem 6.1, we cannot embed P into the Σ0

2-enumeration degrees so as to
simultaneously prevent an extension to an embedding of Qi for both i ≤ 1.
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