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Abstrat. We show that the Dushnik-Miller Theorem for ountable linear order-

ings (stating that any ountable linear ordering has a nontrivial self-embedding)

is equivalent (over reursive omprehension (RCA

0

)) to arithmeti omprehension

(ACA

0

).

This paper presents a result in reverse mathematis, a program initiated by H.

Friedman and S. Simpson, trying to determine the weakest possible \set-theoretial"

axiom (system) to prove a given theorem of \ordinary" mathematis by trying to

prove the axiom from the theorem (over a weaker \base system").

The \set-theoretial" axiom systems we will be onerned with are weak sub-

systems of seond-order arithmeti. (We refer to Simpson [Sita℄ for a detailed

exposition of suh systems.) In partiular, we will use the axiom system RCA

0

of

reursive omprehension (with �

0

1

-indution) as a base system and exhibit a theo-

rem whih is equivalent (over the base system RCA

0

) to the axiom system ACA

0

of arithmeti omprehension (with �

0

1

-indution).
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2 PROOF-THEORETIC STRENGTH OF DUSHNIK-MILLER

The area of \ordinary" mathematis we study in the ontext of reverse math-

ematis is that of linear orderings. In partiular, we will haraterize the proof-

theoreti strength of the

Dushnik-Miller Theorem on Countable Linear Orderings [DM40℄. Let L

be a ountably in�nite linear ordering. Then there is a nontrivial self-embedding

of L, i.e., an order-preserving injetion of L into itself whih is not the identity.

We will thus show the following

Theorem. Over the base system RCA

0

, the Dushnik-Miller Theorem on Countable

Linear Orderings is equivalent to the axiom system ACA

0

.

Proof. We �rst prove the easy diretion, namely, that ACA

0

is strong enough to

prove the Dushnik-Miller Theorem on Countable Linear Orderings. Fix a ountably

in�nite linear ordering L. Call C � L a onvex subset of L if C ontains any point

z between any points x; y 2 C.

First assume that L ontains a onvex subset C of order type !. Then the map i

whih is the identity o� C and moves every element of C to its immediate suessor

is a nontrivial self-embedding of L and an be de�ned by a �rst-order formula (in

the language of arithmeti), thus an be shown to exist by ACA

0

. The ase where

L ontains a onvex subset of order type !

�

(i.e., ! under the reverse ordering) is

handled similarly.

So assume that L does not ontain any onvex subsets of order type ! or !

�

.

Call a onvex subset C of L disrete if every element of C (exept the least, if any)

has an immediate predeessor in C, and every element of C (exept the greatest,

if any) has an immediate suessor in C. By our assumption, any disrete subset

of L must be �nite. By piking one element from eah maximal disrete subset of

L (exept the �rst and last maximal disrete subset, if any), we see that there is

an in�nite subset of L whih is densely ordered without endpoints. Sine ACA

0

atually allows full �rst-order indution, we an now de�ne the self-embedding as

follows: List the points of L as fx

n

g

n2!

. When piking an image i(x

n

) for x

n

,

simply ensure that i(x

n

) has in�nitely many points to its left and right and is

in�nitely far apart from i(x

0

); � � � i(x

n�1

). Sine the hoie of i(x

n

) an be made in

an arithmeti way, i an be shown to exist by ACA

0

. This onludes the proof of

the easy diretion.

As for the hard diretion, we need to show that the seond-order part of any

model of \RCA

0

plus Dushnik-Miller Theorem on Countable Linear Orderings"

is losed under �

0

1

-omprehension. So �x any set A 2 S (where S is the olle-

tion of subsets inluded in the given seond-order model of \RCA

0

plus Dushnik-

Miller"). We need to show that its \Turing jump" A

0

is also in S. We do so by

de�ning a ountable linear ordering L omputable in A suh that any nontrivial

self-embedding i of L an ompute A

0

.

Fix an A-omputable enumeration fA

0

s

g

s2!

of A

0

, and let (x) = �s � x(A

0

�

(x + 1) = A

0

s

� (x + 1)) be the assoiated A-omputable omputation funtion of

A

0

. Sine A

0

�

T

A� , it suÆes to ensure the following
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Claim 1. Any nontrivial self-embedding i of L an ompute the omputation fun-

tion .

We de�ne the linear ordering L of order type (M;<) with universe M in stages

and start by letting L

0

be the ordering 0 �

L

2 �

L

4 �

L

: : : of all even integers

in M . We establish Claim 1 by ensuring the existene of a funtion e satisfying the

following

Claim 2. There is a stritly inreasing funtion e : M ! L

0

suh that for all

x 2M ,

8n

0

; n

1

< (x) (e(x) <

L

n

0

<

L

n

1

! d(e(x); n

0

) > d(n

0

; n

1

)); and(1)

e(x+ 1) = �y 2 L

0

8n (n < (x)! n <

L

y);(2)

where d(n

0

; n

1

) is the (M-�nite) distane between n

0

and n

1

in L.

We �rst establish Claim 1 from Claim 2: Fix any nontrivial self-embedding i

of L. By �

0

1

-indution, e is monotoni, so the range of e is o�nal in (M;<), and

so there is x

0

2 M suh that for all x � x

0

, we have e(x) <

L

ie(x). Also, by

�

0

1

-indution and (1) of Claim 2, for all x � x

0

, we have that one of ie(x) and

i

2

e(x) is � (x) (sine d(e(x); ie(x)) � d(ie(x); i

2

e(x))). So from e(x) and i we an

ompute (x). Finally, by (2) of Claim 2, we an also ompute e(x + 1). Thus i

allows us to ompute  as desired, establishing Claim 1 from Claim 2.

The proof of Claim 2 is a �nite-injury priority argument (using �

0

1

-indution).

We have to maintain (1) and (2) of Claim 2 at any stage s for all x � s (evaluating

(x) for these x's at stage s). Note that the de�nition of the funtion e is �xed by

(2) at any stage s (assuming e(0) = 0). The only problem arises if some number

x enters A

0

at a stage s > 0, thus making (1) false. In that ase, add all urrently

unused elements y � s in M � L

s�1

into L

s

just to the left of e(x), and add

suÆiently many unused elements y > s in M � L

s�1

into L

s

just to the right of

e(x) to make (1) true. Note that this ation will not interfere with keeping (1)

satis�ed for any x

0

< x. It is now easy to verify that this onstrution will produe

the desired linear ordering satisfying Claim 2.
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