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Abstrat

We onsider the lower semilattie D of di�erenes of .e. sets under

inlusion. It is shown that D is not distributive as a semilattie, and

that the .e. sets form a de�nable sublass.

1 Introdution

A persistent open problem about the lattie E of omputably enumerable

(.e.) sets under inlusion is to determine the least number k suh that

the �

k

-theory is undeidable. Lahlan [6℄ proved that the �

2

{theory in

�
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the language of latties is deidable, while one of the various known proofs

of undeidability for Th(E), in that ase due to Harrington, shows that

in fat the �

8

{theory in the language of latties is undeidable (see [10℄,

p. 381 for a sketh of that proof). Thus a very unsatisfying gap of 6

quanti�er alternations remains. The reason why the undeidability proofs

are so \bad" is that the oding used is very indiret. For instane, �rst

one odes the lass of �nite symmetri graphs (whih has an hereditarily

undeidable �

2

{theory) in the lass of reursive Boolean pairs ([1℄), and in

a seond step, the latter lass is oded in E (see [8℄ for details about how

to prove undeidability of fragments of theories). Eah step involves quite a

omplex oding, whih yields an inrease of three quanti�er alternations.

Sine E seems to be very well behaved for properties de�nable with few

quanti�er alternations, it is not at all lear how to obtain a better oding.

Ideally, one would want to have a oding of a suÆiently omplex lass, like

the lass of �nite symmetri graphs, using only �

1

{formulas with parame-

ters. By the methods developed in [8℄, this would give the undeidability of

the �

3

{theory. However, suh a proof is not possible sine it would show

that the lass of �nite distributive latties with the redution property has

an undeidable theory, ontrary to a result of Ershov. The argument is as

follows: Suppose that, via some sheme of �

1

formulas we an ode eah

�nite symmetri graph (V;E), using appropriate parameters p (see [8℄ for

de�nitions). Let L be a �nite distributive sublattie of E whih ontains p,

all the elements of E representing the verties in V and also witnesses for

all �

1

{formulas involved to ode (V;E). Then L, and in fat any distribu-

tive lattie H suh that L � H � E odes (V;E) via the same sheme and

parameters. Now let H be suh a lattie whih is also �nite and satis�es

the redution property. In this way, we have obtained a uniform oding of

a omplex lass in the lass of �nite distributive latties with the redution

property. We onlude that the best we an hope for to obtain by the stan-

dard oding methods is undeidability of the �

4

{theory, whih still would

require a far more diret oding than the ones presently known.

Here we propose a new view of E , whih may eventually lead to suh a

more diret oding. We onsider the struture D of di�erenes of .e. sets

under inlusion. This struture oinides with the seond level of Ershov's

di�erene hierarhy. D is losed under intersetions, sine

(A

1

�B

1

) \ (A

2

�B

2

) = (A

1

\A

2

)� (B

1

[B

2

): (1.1)

D

�

will denote the struture D modulo �nite di�erenes. For notational

reasons, we formulate most of our results in the setting of D

�

, not D. We
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�rst ollet some simple fats about D and D

�

. The �rst one shows that

any undeidability proof for a low{level fragment of Th(D) would yield the

same result for E , whih justi�es the program suggested above.

Proposition 1.1 The lower semilattie D an be interpreted in the lattie

E, using only quanti�er free formulas without parameters. The same holds

for D

�

and E

�

.

Proof. We ambiguously represent the element A�B of D by the pair of .e.

sets (A;B). Then (1.1) gives a formulas to de�ne the in�mum (and hene

inlusion) in terms of pairs as desired. The same formula works for D

�

. An

expliit way to de�ne inlusion is

A

1

�B

1

� A

2

�B

2

, (A

1

� A

2

[B

1

^ A

1

\B

2

� B

1

):

}

Conventions. We use the notational onvention that, if a set X in D

is given, the orresponding lower ase letter x denotes the element X

�

of

D

�

. Conversely, if y 2 D

�

is given, then Y denotes an element of D suh

that Y

�

= y. We denote ;

�

; !

�

by 0; 1 respetively. If X = A � B, A;B

.e. then we assume that A;B are equipped with enumerations suh that

8s[B

s

� A

s+1

℄. We say that an element m enters X when m is enumerated

into A, and leaves X when, later, m is enumerated into B. The elements of

D are alled di�erene .e. (d..e.) sets. Letters A;B;C;D always denote

.e. sets. A split of a .e. set A is a .e. set B � A suh that A�B is .e.

Proposition 1.2 D

�

is not a lattie.

Proof. We onstrut D

0

;D

1

2 D suh that sup(d

0

; d

1

) fails to exist. If

x = sup(d

0

; d

1

) then w.l.o.g. we an assume that D

0

;D

1

� X. So it is

enough to build for eah X a \ounterexample" D

X

� D

0

;D

1

suh that the

following requirements are met:

P

X

n

: X � D

0

;D

1

) jX �D

X

j � n:

For in that ase, d

x

6� x, so not x = sup(d

0

; d

1

). The strategy for P

X

n

is

as follows: if P

X

n�1

is met, i.e. if already jX � D

X

j � n � 1, enumerate a

new andidate m for P

X

n

into D

0

. If m does not appear in X, we win P .

If m appears in X then we extrat m from D

0

, so if m stays in X, we win

beause we have inreased jX �D

X

j by one. If, however, m leaves X later,

then we enumerate m into D

1

. So m 2 D

1

�X, so we win again. Combining

the strategies is routine. (A less elementary proof using major subsets also

works here.) }
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Proposition 1.3 If A � B is oin�nite, then there is a oin�nite .e. C

suh that A�B � C.

Proof. If A is oin�nite, let C = A. Else B is oin�nite, so pik an in�nite

omputable R � B and let C = R. }

We next onsider lattie embeddings. The property that a �nite lattie L

an be embedded (preserving meets and joins) into D

�

is a �

2

property of D

�

in the language of partial order, and hene, by proposition 1.1, a �

2

property

of E

�

in the language of latties. So the question whether this property

holds an in priniple be answered by invoking Lahlan's deision proedure

for the �

2

{theory of E

�

[6℄. However, due to the tehnial omplexity of

Lahlan's proedure it is often easier to give a diret proof. In this way we

establish the following result, whih shows that D

�

is not distributive as a

lower semilattie (see [9℄). This supports our expetation that oding in D

�

on a low quanti�er level may turn out to be less restrited than oding in

E

�

.

Proposition 1.4 (Impliit in [6℄) The �ve-element nonmodular lattie,

N

5

, an be embedded into D

�

, preserving meet, join and least element.

,

,
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l

l
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0

a

Figure 1: An embedding of N

5

Sketh of a proof. We build .e. sets A;B;C suh that ; �

1

C �

1

B �

1

A,

and sup(a � b; ) = a. Then an embedding of N

5

is obtained as shown in

4



Figure 1. Along with making C;A � B and B � C in�nite, we meet the

supremum requirements

N

V

: A�B;C � V ) A �

�

V:

The main problem is to make B � C in�nite, i.e. to meet for eah k the

requirement P

k

: jB � Cj � k. We outline a strategy to put a new element

x into B � C in the ontext of a higher priority N

V

requirement. First,

we enumerate x into A. Then x must appear in V , else we win N

V

in a

�nitary way (and P

k

starts with a new x, but an now disregard N

V

). Now

we put x into B. Then we have sueeded (x is in B � C), unless x leaves

V , threatening to make us loose N

V

. But in this ase, we enumerate x into

C and, again, we win N

V

in a �nitary way. }

Also by a diret proof, we obtained the opposite result for M

5

.

Proposition 1.5 (Impliit in [6℄) The �ve element modular nondistribu-

tive lattie M

5

annot be embedded into D

�

.

}

2 The de�nability of D

�

in E

�

We now analyze upping properties and omplementation in D

�

. This leads

to our main result that E

�

, viewed as a sublass, is de�nable in D

�

without

parameters. Analogous de�nability results have been obtained by Cooper

for the .e. degrees [2℄, viewed as a sublass of the �

0

2

{degrees, and by the

seond author for E

�

, viewed as a sublass of the uppersemilattie of .e.

equivalene relations modulo �nite di�erenes [7℄. Reall that A �

m

B i�

A �

1

B and 8C (B [ C = ! ) A [ C =

�

!):

We write A �

�

m

B if A �

�

B and

(A �

m

B [A or B �A �nite):

Note that A �

�

m

B means that B

�

has no \upping partner" above A

�

.

Thus, A �

�

m

B ,

8D[B [D =

�

! ^ D �

1

! ) A 6�

�

D℄;

whih is equivalent to 8D[D �

�

B^ jDj =1) A\D 6=

�

;℄. Therefore, for

A �

1

B, A �

m

B i� B � A does not �-ontain an in�nite o-.e. set (and

therefore no in�nite .e. set { ompare this to proposition 1.3).

5



A omplement of x 2 D

�

is a y suh that x ^ y = 0; x _ y = 1. If A is

.e. then learly a = A

�

is a omplement of a in D

�

. We now prove that all

omplements are of the form B

�

for B \lose to" A.

Lemma 2.1 Suppose A is .e. Then the omplements of A

�

in D

�

are

preisely those sets B

�

s.t. A �

�

m

B, B .e.

Proof. If B is suh, then A \ B =

�

;. Moreover, sup(A

�

; B

�

) = 1 : else

there would be an .e. w s.t. A

�

; B

�

� w < 1, whene B

�

would have a

upping partner above A

�

. Now suppose (C �D)

�

is a omplement of A

�

.

Then A [ C =

�

!, so by the redution priniple,

A [R =

�

! ^ R �

�

C

for some reursive R. Sine A \ (C �D) =

�

;, this implies

C �D =

�

R�D:

So C �D is o-.e. Let B = C �D, B .e. Then A �

�

m

B. Otherwise there

would be a .e. E s.t. A �

�

E �

1

! but B [E =

�

!, i.e. a; b � e < 1. }

Lemma 2.2 Suppose B � A and D � C. Then the following are equivalent:

(i) (A�B)

�

_ (C �D)

�

= 1

(ii) A [ C =

�

! ^ B \D �nite ^ A �

�

m

A [D ^ C �

�

m

C [B

Proof (See �gure 2). (i) ! (ii). Clearly (C � D); (A � B) � A [ C and

C � D;A � B �

�

B \D. So A [ C and B \D must be o�nite. Now

suppose A � E and A [D [ E =

�

!. We have to show that E is o�nite.

Clearly A\D �

�

E and A � E implies D �

�

E. Thus A�B;C �D �

�

E.

So by (i), E is o�nite. Thus A �

�

m

A [D. Similarly C �

�

m

C [B.

(ii)! (i). By proposition 1.3, it is enough to show that, ifA�B;C�D �

�

X,

X .e., then X is o�nite. Clearly A �

�

X [B. Moreover, sine A[C =

�

!,

! =

�

(C �D) [ (D [A) � X [ (D [A):

So A �

�

m

A [D implies that X [B =

�

!. Symmetrially, X [D =

�

! and

hene beause B \D =

�

;,

X =

�

(X [B) \ (X [D) =

�

!:

}

The following orollary gives an approximation to distributivity.
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C

A

B

D

Figure 2: Proof of Lemma 2.2

Corollary 2.3 For eah v 2 D

�

, F = fw : v _ w = 1g is losed under

in�ma.

Proof. Suppose v = (A � B)

�

, and (C

i

� D

i

)

�

2 F for i = 0; 1. We

show that ((C

0

\ C

1

) � (D

0

[D

1

))

�

2 F . Clearly A [ (C

0

\ C

1

) =

�

! and

B\(D

0

[D

1

) =

�

;. A routine omputation shows the major subset relations:

e.g. for A �

�

m

(D

0

[D

1

), if A [D

0

[D

1

[E =

�

!, then A [D

1

[E =

�

!,

so A [E =

�

!. }

We now obtain the de�nability of E

�

as a sublass of D

�

.

Theorem 2.4 An element of D

�

is .e. i� it is the supremum (in D

�

) of

two elements whih have a unique omplement.

Proof. Let v 2 D

�

. First, if v is .e., then hoose .e. disjoint sets A

0

; A

1

of low degree suh that V = A

0

[ A

1

. Then, in D

�

; v = a

0

_ a

1

. Moreover,

sine eah a

i

is low, but major subsets are high [So 87, XI.1.19℄, Lemma 2.1

implies that a

0

; a

1

have a unique omplement: A

�

i

is a omplement of a

i

,

and, if (C �D)

�

is a omplement, where A

i

[C = ! and A

i

\C �

�

D, then

A

i

�

�

m

A

i

[D: Therefore D �

�

A

i

whih implies C �D =

�

A

i

.

For the other diretion, it is suÆient to show that, if (A � B)

�

has a

unique omplement (C �D)

�

then A�B must be .e. Then, if an element

7



of D

�

is the sup of two elements with a unique omplement, it is .e. as the

supremum of two .e. elements of D

�

. To show this, we use Lemma 2.2.

Sine A [ C =

�

!, we an hoose a omputable set R s.t. R �

�

A and

R �

�

C.

Case 1. C is reursive. By Lemma 2.2, C �

�

m

C [ B, whih implies C =

�

C [B, i.e. B �

�

C. Sine A \C �

�

B [D and B \D =

�

;, it follows that

A�B =

�

(A�C) [ (A \D). So A�B is .e. (see Fig. 2).

Case 2. Otherwise, by [6℄, hoose a small major subset U �

sm

C (see [10℄ for

a de�nition). Notie that U �-ontains preisely those splits of C whih are

reursive (U �

m

C implies that U �-ontains all reursive splits, and U �

s

C

implies that all suh splits are reursive). Thus, R � U . Let

e

C = U [D. We

laim that also (

e

C�D)

�

is a omplement of (A�B)

�

. To verify this, we hek

Lemma 2.2. Clearly,

e

C �D � C �D, so (A�B)\ (

e

C �D) = ;. Moreover,

R �

e

C, so A [

e

C =

�

!. Finally

e

C �

�

m

C �

�

m

C [B, so

e

C �

m

e

C [B. Sine

we didn't hange D, the hypotheses of Lemma 2.2 are satis�ed.

Assume that A�B is not .e. We laim that, in this ase,

e

C �D �

1

C �D

so that (A � B)

�

has two di�erent omplements. Assume that C � D =

�

e

C �D. Sine B \D =

�

;, B \ C �

�

C �D �

�

e

C �D. Thus B \ C �

�

U .

But S = R\B \C is a split of C with R[D as the other omponent sine

R \C �

�

A\C �

�

B [D. So S must be reursive. Let X = R[ S [B (X

is o-.e.). Then A�B �

�

X and C �

�

S [R[D �

�

X. We will show that

X =

�

R\ (B�S) is in�nite. This ontradits sup((A�B)

�

; (C �D)

�

) = 1.

Assume X is �nite. Then, \on R", B =

�

S, so we have B �

�

C. We will

show that in this ase,

A�B =

�

(R� S) [ (D \A)

so that A � B is .e. beause S is reursive. Note that, if B �

�

C, then

R � S =

�

R � B. So we get the inlusion \�

�

" immediately from R � A

and B \ D = ;. For the inlusion \�

�

" , onsider n 2 A � B. We an

assume that n 62 R. Then n 2 A\C �

�

B [D, so for almost all relevant n,

n 2 A \D beause n 62 B. }

Corollary 2.5 fv 2 D

�

: v :e:g is de�nable in D

�

without parameters.

}

Corollary 2.6 Aut(E

�

)

�

=

Aut(D

�

) via the map H de�ned by

H(�)(a� b) = �(a)� �(b):

8



Proof. First we show that, for eah � 2 Aut(E

�

);H(�) is well-de�ned and

an automorphism: Notie that for a; b; ; d;2 E

�

a� b � � d , a ^ d � b ^ a �  _ b

, �(a) ^ �(d) � �(b) ^ �(a) � �() _ �(b)

, H(�)(a� b) � H(�)(� d)

Next, E

�

= fv 2 D

�

: v :e:g is a de�nable set whih generates D

�

under

^ and omplementation. Hene H is 1 � 1 and, for eah 	 2 Aut(D

�

),

	 = H(	 � (E

�

)): }

For the notions from model theory used in the following orollary, see [4℄,

Ch. 5.

Corollary 2.7 The strutures E

�

and D

�

are bi-interpretable.

Proof. In the introdution, we gave an interpretation D

�

= �(E

�

), repre-

senting v 2 D

�

by pairs a; b 2 E

�

s.t. v = a � b. Theorem 2.4 gives an

interpretation E

�

= �(D

�

).

We have to show that the isomorphisms

G : E

�

�

=

�(�(E

�

))

H : D

�

�

=

�(�(D

�

))

are de�nable in E

�

and D

�

respetively. For the �rst, note that G maps

a 2 E

�

to a pair (b; ) representing a in D

�

. Then it is enough to notie that

f(a; b; ) : a = b � g is de�nable in E

�

. For H, we have to show that the

relation

(�) fx; a; b : a; b :e: ^ x = a� bg

is de�nable in D

�

. Sine D

�

(� a)

�

=

D

�

for any :e: a 6= 0, we an �rst

assume a = 1 to obtain a formula

e

 (b; x) de�ning \b :e: ^ x = b". Then

the formula  (a; b; x) =

e

 

[0;a℄

(b; x) (

e

 relativized to [0; a℄) will de�ne (�).

Reall from the proof of Theorem 2.4 that

fv 2 D

�

: v :e: lowg � fv : v has a unique omplementg

� fv : v :e:g

So the desired formula is

e

 (b; x) � 9b

0

; b

1

\b

0

; b

1

have unique omplements" ^ b = b

0

_ b

1

^ x = b

0

^ b

1

:
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