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Abstract

We consider the lower semilattice D of differences of c.e. sets under
inclusion. It is shown that D is not distributive as a semilattice, and
that the c.e. sets form a definable subclass.

1 Introduction

A persistent open problem about the lattice £ of computably enumerable
(c.e.) sets under inclusion is to determine the least number & such that
the X-theory is undecidable. Lachlan [6] proved that the Yo—theory in
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the language of lattices is decidable, while one of the various known proofs
of undecidability for Th(€), in that case due to Harrington, shows that
in fact the Xg-theory in the language of lattices is undecidable (see [10],
p. 381 for a sketch of that proof). Thus a very unsatisfying gap of 6
quantifier alternations remains. The reason why the undecidability proofs
are so “bad” is that the coding used is very indirect. For instance, first
one codes the class of finite symmetric graphs (which has an hereditarily
undecidable Yo—theory) in the class of recursive Boolean pairs ([1]), and in
a second step, the latter class is coded in & (see [8] for details about how
to prove undecidability of fragments of theories). Each step involves quite a
complex coding, which yields an increase of three quantifier alternations.

Since & seems to be very well behaved for properties definable with few
quantifier alternations, it is not at all clear how to obtain a better coding.
Ideally, one would want to have a coding of a sufficiently complex class, like
the class of finite symmetric graphs, using only ;—formulas with parame-
ters. By the methods developed in [8], this would give the undecidability of
the Y3—theory. However, such a proof is not possible since it would show
that the class of finite distributive lattices with the reduction property has
an undecidable theory, contrary to a result of Ershov. The argument is as
follows: Suppose that, via some scheme of 3; formulas we can code each
finite symmetric graph (V, E), using appropriate parameters p (see [8] for
definitions). Let L be a finite distributive sublattice of £ which contains p,
all the elements of £ representing the vertices in V' and also witnesses for
all ¥;—formulas involved to code (V, E). Then L, and in fact any distribu-
tive lattice H such that L C H C & codes (V, E) via the same scheme and
parameters. Now let H be such a lattice which is also finite and satisfies
the reduction property. In this way, we have obtained a uniform coding of
a complex class in the class of finite distributive lattices with the reduction
property. We conclude that the best we can hope for to obtain by the stan-
dard coding methods is undecidability of the Y4—theory, which still would
require a far more direct coding than the ones presently known.

Here we propose a new view of £, which may eventually lead to such a
more direct coding. We consider the structure D of differences of c.e. sets
under inclusion. This structure coincides with the second level of Ershov’s
difference hierarchy. D is closed under intersections, since

(A1 — Bl) N (A2 — Bg) = (A1 N Ag) — (B1 U Bg) (11)

D* will denote the structure D modulo finite differences. For notational
reasons, we formulate most of our results in the setting of D*, not D. We



first collect some simple facts about D and D*. The first one shows that
any undecidability proof for a low-level fragment of Th(D) would yield the
same result for £, which justifies the program suggested above.

Proposition 1.1 The lower semilattice D can be interpreted in the lattice
&, using only quantifier free formulas without parameters. The same holds

for D* and £*.

Proof. We ambiguously represent the element A — B of D by the pair of c.e.
sets (A, B). Then (1.1) gives a formulas to define the infimum (and hence
inclusion) in terms of pairs as desired. The same formula works for D*. An
explicit way to define inclusion is

Al—BlgAg—Bgﬁ(AlgAQUBl AN AlﬂngBl).
¢

Conventions. We use the notational convention that, if a set X in D
is given, the corresponding lower case letter x denotes the element X* of
D*. Conversely, if y € D* is given, then Y denotes an element of D such
that Y* = y. We denote 0*,w* by 0,1 respectively. If X = A - B, A,B
c.e. then we assume that A, B are equipped with enumerations such that
Vs[Bs C Ag41]. We say that an element m enters X when m is enumerated
into A, and leaves X when, later, m is enumerated into B. The elements of
D are called difference c.e. (d.c.e.) sets. Letters A, B,C,D always denote
c.e. sets. A split of a c.e. set A is a c.e. set B C A such that A — B is c.e.

Proposition 1.2 D* is not a lattice.

Proof. We construct Dy, D1 € D such that sup(dy,d;) fails to exist. If
x = sup(dp,d;) then w.l.o.g. we can assume that Dy, D; C X. So it is
enough to build for each X a “counterexample” Dx D Dy, Dy such that the
following requirements are met:

PX:X D Dy,Dy = |X — Dx|>n.

For in that case, d; # x, so not x = sup(dp,d;). The strategy for P,f( is
as follows: if P.X | is met, i.e. if already |X — Dx| > n — 1, enumerate a
new candidate m for P;X into Dy. If m does not appear in X, we win P.
If mm appears in X then we extract m from Dy, so if m stays in X, we win
because we have increased |X — Dx| by one. If, however, m leaves X later,
then we enumerate m into D). Som € D) — X, so we win again. Combining
the strategies is routine. (A less elementary proof using major subsets also
works here.) &



Proposition 1.3 If A — B is coinfinite, then there is a coinfinite c.e. C
such that A— B C C.

Proof. If A is coinfinite, let C = A. Else B is coinfinite, so pick an infinite
computable R C B and let C = R. &

We next consider lattice embeddings. The property that a finite lattice L
can be embedded (preserving meets and joins) into D* is a 39 property of D*
in the language of partial order, and hence, by proposition 1.1, a ¥y property
of £* in the language of lattices. So the question whether this property
holds can in principle be answered by invoking Lachlan’s decision procedure
for the ¥o-theory of £* [6]. However, due to the technical complexity of
Lachlan’s procedure it is often easier to give a direct proof. In this way we
establish the following result, which shows that D* is not distributive as a
lower semilattice (see [9]). This supports our expectation that coding in D*
on a low quantifier level may turn out to be less restricted than coding in
E*.

Proposition 1.4 (Implicit in [6]) The five-element nonmodular lattice,
N5, can be embedded into D*, preserving meet, join and least element.

a-b

Figure 1: An embedding of N5

Sketch of a proof. We build c.e. sets A, B, C such that ) Coo C Coo B Coo A4,
and sup(a — b,¢) = a. Then an embedding of N5 is obtained as shown in



Figure 1. Along with making C,A — B and B — C infinite, we meet the
supremum requirements

Ny:A—B,CCV=AC*V.

The main problem is to make B — C' infinite, i.e. to meet for each k the
requirement Py : |B — C| > k. We outline a strategy to put a new element
z into B — C in the context of a higher priority Ny requirement. First,
we enumerate z into A. Then z must appear in V, else we win Ny in a
finitary way (and Py starts with a new z, but can now disregard Ny ). Now
we put z into B. Then we have succeeded (z is in B — C), unless x leaves
V', threatening to make us loose Ny . But in this case, we enumerate x into
C and, again, we win Ny in a finitary way. &
Also by a direct proof, we obtained the opposite result for Ms.

Proposition 1.5 (Implicit in [6]) The five element modular nondistribu-
tive lattice M5 cannot be embedded into D*.

¢

2 The definability of D* in £&*

We now analyze cupping properties and complementation in D*. This leads
to our main result that £*, viewed as a subclass, is definable in D* without
parameters. Analogous definability results have been obtained by Cooper
for the c.e. degrees [2], viewed as a subclass of the A)—degrees, and by the
second author for £*, viewed as a subclass of the uppersemilattice of c.e.
equivalence relations modulo finite differences [7]. Recall that A C,,, B iff

ACowBandVC (BUC =w= AUC =" w).
We write A C;, B it AC* B and

(A Cpm BUA or B — A finite).
Note that A C; B means that B* has no “cupping partner” above A*.
Thus, AC;, B &
VDI BUD ="w AN D Coow= AZ* D],

which is equivalent to VD[D C* BA|D| = oo = AND #* ()]. Therefore, for
A Co B, ACy, B iff B— A does not x-contain an infinite co-c.e. set (and
therefore no infinite c.e. set — compare this to proposition 1.3).



A complement of z € D* is a y such that Ay =0,z Vy =1. If Ais
c.e. then clearly @ = A is a complement of a in D*. We now prove that all
complements are of the form B for B “close to” A.

Lemma 2.1 Suppose A is c.e. Then the complements of A* in D* are
precisely those sets B st A C;, B, B c.e.

Proof. If B is such, then AN B =* (). Moreover, sup(A*,B") = 1 : else
there would be an c.e. w s.t. A*,E* < w < 1, whence B* would have a
cupping partner above A*. Now suppose (C — D)* is a complement of A*.
Then AU C =* w, so by the reduction principle,

AUR="w N RC*C

__*

for some recursive R. Since AN (C — D) =* (), this implies
C—-D="R-D.

So C — D is co-c.e. Let B=C — D, B c.e. Then A C* B. Otherwise there
would beace. Est. AC"ECowbut BUE="w,ie a,b<e<l.

Lemma 2.2 Suppose B C A and D C C. Then the following are equivalent:
(i) (A—B)*V(C—-D)" =1
(1)) AUC =*w AN BND finite NAC:, AUD N CC;,CUB

Proof (See figure 2). (i) — (ii). Clearly (C — D),(A— B) C AUC and
C—-D,A—B C"BND. So AUC and BN D must be cofinite. Now
suppose A C EF and AUD U FE =* w. We have to show that E is cofinite.
Clearly AND C* E and A C FE implies D C* E. Thus A— B,C —D C* E.
So by (i), E is cofinite. Thus A C, AU D. Similarly C Cf, C U B.

(ii) — (i). By proposition 1.3, it is enough to show that, if A—B,C—D C* X,
X c.e., then X is cofinite. Clearly A C* X UB. Moreover, since AUC =* w,

w="(C-D)UDUA)CXU(DUA).

So A Cy AU D implies that X U B =" w. Symmetrically, X UD =* w and
hence because BN D =* (),

X ="(XUB)N(XUD)="*w.

The following corollary gives an approximation to distributivity.



A

Figure 2: Proof of Lemma 2.2

Corollary 2.3 For each v € D*, F = {w : vV w = 1} is closed under
infima.

Proof. Suppose v = (A — B)*, and (C; — D;)* € F for i = 0,1. We
show that ((Co N Cy) — (DU Dy))* € F. Clearly AU (CyNC1) =* w and
BN(DyUD;) =* (. A routine computation shows the major subset relations:
e.g. for ACH (DopUDy),if AUDyUD UE =* w, then AUD UE =* w,
so AUE =" w. &
We now obtain the definability of £* as a subclass of D*.

Theorem 2.4 An element of D* is c.e. iff it is the supremum (in D*) of
two elements which have a unique complement.

Proof. Let v € D*. First, if v is c.e., then choose c.e. disjoint sets Ag, A;
of low degree such that V = Ay U A;. Then, in D*,v = ayp V a;. Moreover,
since each a; is low, but major subsets are high [So 87, XI.1.19], Lemma 2.1
implies that ag,a; have a unique complement: Z: is a complement of a;,
and, if (C'— D)* is a complement, where A; UC = w and A;NC C* D, then
A; C¥, A; U D. Therefore D C* A; which implies C — D =* A;.

For the other direction, it is sufficient to show that, if (A — B)* has a
unique complement (C'— D)* then A — B must be c.e. Then, if an element



of D* is the sup of two elements with a unique complement, it is c.e. as the
supremum of two c.e. elements of D*. To show this, we use Lemma 2.2.
Since A U C =* w, we can choose a computable set R s.t. R C* A and
RC*C.
Case 1. C is recursive. By Lemma 2.2, C C¥ C U B, which implies C' =
CUB,ie. BC*(C. Since ANC C* BUD andBﬂD =* (), it follows that
A—B=*(A-C)U(AND). So A— B is ce. (see Fig. 2).
Case 2. Otherwise, by [6], choose a small major subset U Cgp, C (see [10] for
a definition). Notice that U *-contains precisely those splits of C' which are
recursive (U C,, C implies that U *-contains all recursive splits, and U C; C
implies that all such splits are recursive). Thus, R C U. Let C = UUD. We
claim that also (C—D)* is a complement of (A—B)*. To verify this, we check
Lemma 2.2. Clearly, C =D CC — D, so (A—DB)N (C— D) = (. Moreover,
RCC so AUC =* w. FlnallyCC* CccC;,CUB,so CC,, C U B. Since
we didn’t change D, the hypotheses of Lemma 2.2 are satisfied.

Assume that A — B is not c.e. We claim that, in this case,

C-DCyxC—D

so that (A — B)* has two different complements. Assume that C — D =

C —D. Since BND =*(, BNC C*C —D C*C —D. Thus BNC C* U.
But S = RNBNC is a split of C with RU D as the other component since
RNC C* ANC C* BUD. So S must be recursive. Let X = RUSUB (X
is co-c.e.). Then A— B C* X and C C* SURUD C* X. We will show that
X =* RN (B - S) is infinite. This contradicts sup((4 — B)*, (C — D)*) =1
Assume X is finite. Then, “on R”, B =* S, so we have B C* C. We will
show that in this case,

A-B="(R-S)U(DnA

so that A — B is c.e. because S is recursive. Note that, if B C* C, then
R — S =* R— B. So we get the inclusion “2*” immediately from R C A
and BN D = (. For the inclusion “C*” , consider n € A — B. We can
assume that n € R. Thenn € ANC C* BU D, so for almost all relevant n,
n € AN D because n ¢ B. &

Corollary 2.5 {v € D* : v c.e.} is definable in D* without parameters.

Corollary 2.6 Aut(E*) = Aut(D*) via the map H defined by
H(®)(a — b) = ®(a) — ®(b).



Proof. First we show that, for each ® € Aut(£*), H(®) is well-defined and
an automorphism: Notice that for a,b,c,d, € &*

a—b<c—d & aNnd<bAa<cVd
& Pla) AND(d) < P(b) AN P(a) < P(c) V P(b)
< H(®)(a—1b) < H(®)(c—d)

Next, £ = {v € D* : v c.e.} is a definable set which generates D* under
A and complementation. Hence H is 1 — 1 and, for each ¥ € Aut(D*),
v = H(W [ (£7)). o
For the notions from model theory used in the following corollary, see [4],
Ch. 5.

Corollary 2.7 The structures £* and D* are bi-interpretable.

Proof. In the introduction, we gave an interpretation D* = I'(£*), repre-
senting v € D* by pairs a,b € £* s.t. v = a — b. Theorem 2.4 gives an
interpretation £* = A(D*).

We have to show that the isomorphisms

G: & = ADEY))

H:D* 2 T(A(DY))

are definable in £* and D* respectively. For the first, note that G maps
a € £* to a pair (b, c) representing ¢ in D*. Then it is enough to notice that
{(a;b,¢) : a = b — ¢} is definable in £*. For H, we have to show that the
relation

(%) {z;a,b:a,bce. N z=a—b}

is definable in D*. Since D*(< a) = D* for any c.e. a # 0, we can first
assume a = 1 to obtain a formula (b, z) defining “b c.e. Ax = b”. Then
the formula ¢ (a, b, z) = ¥[%(b, 2) (9 relativized to [0,a]) will define (x).
Recall from the proof of Theorem 2.4 that

{veD*:vce low} C{v:wvhasa unique complement}
C{v:vce}

So the desired formula is (b, z) = Jbg, by

“by, by have unique complements” A b=by Vb A = =byAb.
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