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Abstract. We study the set of depths of relative algebras of countable Boolean

algebras, in particular the extent to which this set may not be downward closed
within the countable ordinals for a fixed countable Boolean algebra. Doing so,

we exhibit a structural difference between the class of arbitrary rank countable

Boolean algebras and the class of rank one countable Boolean algebras.

1. Introduction

For most classes of common algebraic structures, there is a natural ordinal-valued
or cardinal-valued measure that captures the size and/or complexity of a particular
structure S in comparison to other members of the class. Examples include the
dimension of a vector space, the Hausdorff rank of a scattered linear order, the
rank of a torsion-free abelian group, the transcendence degree of a field, etc. These
measurements of size and/or complexity share a common property: All are closed
downwards in the sense that if S has size or complexity α and β ≤ α, then S has
a substructure of size or complexity β.

For the class of countable Boolean algebras, there are several natural notions of
size and complexity. After cardinality, which is not downward closed within the
finite cardinalities, perhaps the simplest measure of size is the smallest ordinal α
for which an α-atom (the interval algebra of ωα) is not a relative algebra. As a
α-atom bounds a β-atom exactly when β ≤ α, this is also downward closed.

If instead the desire is to measure complexity, perhaps the most appropriate
measure is depth. Though perhaps surprising, there are straightforward examples
that demonstrate depth is not downward closed within the relative algebras of an
algebra. The purpose of this paper is to illustrate such examples and to study the
extent to which depth fails to be downward closed. We do so both in the context of
arbitrary rank Boolean algebras and rank one Boolean algebras. As these classes
behave differently with respect to the extent to which depth fails to be downward
closed, this exhibits a structural difference between arbitrary rank Boolean algebras
and rank one Boolean algebras.
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For every countable ordinal α, we exhibit countable Boolean algebras whose
depths of relative algebras are precisely the sets {0, . . . , α, α + 2} (Theorem 3.1),
{0, 1, ωα} (Theorem 3.6), and {0, 2, ωα} (Theorem 3.7). We show that every Boolean
algebra (of depth at least one) has, in addition to a depth zero relative algebra,
a depth one relative algebra or a depth two relative algebra (Section 4). We also
exhibit rank one Boolean algebras whose depths of relative algebras are precisely
the set ω ∪ {ωα} (Theorem 5.4) and show the set of depths of relative algebras are
even more heavily constrained for rank one Boolean algebras (Theorem 5.3).

Though we assume the reader has a working knowledge of measures, derivatives,
and depth, we recall some background on measures and depth within Section 2.
We defer the reader elsewhere (see [5], or see [3] or [7] for alternate expositions) for
a full exposition of this material.

Another important measure of complexity is Scott rank. It, too, is not always
downward closed. Alaev [1], for each countable ordinal α, constructs a Boolean
algebra of Scott rank greater than α such that every relative algebra has Scott rank
strictly less than ω + ω or greater than or equal to α. Indeed, a careful analysis of
his work (his constructions are very different from our constructions) might show
that the set of depths of relative algebras is exactly {0, 1, ωβ} for some β. Similarly,
a careful analysis of our work in Section 3.2 or Section 3.3 would probably yield the
Scott ranks of relative algebras are exactly ω∪{ωα}. We defer the reader elsewhere
(see [6], for example) for background on Scott rank.

Throughout this paper, all Boolean algebras are countable. As is often done, we
identify an element of Boolean algebras with the associated relative algebra. Thus,
for x ∈ B, we often write x for the subalgebra with universe x � B := {y ∈ B : y ≤ x}
and say that x has property P if x � B has property P .

2. Background and Notation

As part of the isomorphism invariants for countable (uniform) Boolean algebras,
Ketonen [5] introduced a hierarchy of sets {Kα}α∈ω1

. The algebraic invariant as-
signed to a uniform Boolean algebra was a member of Kα for some α ∈ ω1. The
least possible α is a measure of the complexity of the uniform Boolean algebra.

Throughout this paper, we identify the countable atomless algebra F with the
clopen algebra of 2ω in the natural way. With this identification, we denote the
element of the countable atomless algebra corresponding to a basic clopen set [σ] :=
{f ∈ 2ω : σ 4 f}, where σ ∈ 2<ω, by σ. We therefore view measures as functions
σ : 2<ω → ω1, with σ(x) = max{σ(τ1), . . . , σ(τk)} for an arbitrary element of the
countable atomless algebra written as a sum x = τ1 ⊕ · · · ⊕ τk of basic clopen sets.

Because measures are additive, these functions always satisfy

σ(τ) = max{σ(τ a 0), σ(τ a 1)}

for all τ ∈ 2<ω, ensuring σ(x) is well-defined.
Taking several steps backward, the algebraic invariants for arbitrary countable

Boolean algebras begin with the better-known algebraic invariants for countable
superatomic Boolean algebras. We recall that a Boolean algebra is superatomic
if every subalgebra is atomic (bounds an atom). In the countable setting, the
superatomic algebras are precisely the (left-closed, right-open) interval algebras of
ordinals. We also recall that the rank of a nonzero countable superatomic Boolean
algebra B, denoted rank(B), is the ordinal α + 1 for which there is an integer n
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so that B is the interval algebra of ωα · n. By convention, the rank of the trivial
algebra is zero.

The notion of rank is then generalized to arbitrary B.

Definition 2.1. If B is any Boolean algebra and x ∈ B, the rank of x, denoted
µB(x), is given by

µB(x) := sup{rank(y) : y ≤ x, y ∈ SA(B)},

where SA(B) is the set of superatomic elements of B.
The element x ∈ B is uniform if µB(x) = µB(x− z) for all z ∈ SA(x).

From the notion of rank for an arbitrary element, the notion of measures can be
developed.

Definition 2.2. If B is any Boolean algebra, define its measure (with domain B)
to be the function σ̂B : B → ω1 ∪ {o} given by

σ̂B(x) :=

{
o if x ∈ SA(B),

min{µB(y) : y ≤ x, x− y ∈ SA(B)} otherwise.

Here o is a special symbol that (by definition) satisfies o < α for any ordinal α ∈ ω1.

The observation that F , the countable atomless Boolean algebra, is isomorphic
to the quotient of any non-superatomic Boolean algebra B by the ideal SA(B) allows
the domain of a measure (with domain B) to be shifted from B to F .

Definition 2.3. If B is any Boolean algebra and π : B/SA(B) → F is an isomor-
phism, define its measure (with domain F with respect to π) to be the function
ςB : F → ω1 ∪ {o} given by

ςB(x) := σ̂B(z),

where z ∈ B is such that π([z]) = x.

We note that ςB is well-defined for if π([z]) = π([z′]), then z and z′ differ by
at most a superatomic element, and consequently σ̂B(z) = σ̂B(z′). The choice of
the isomorphism π is unimportant, so we will omit reference to it. Because of
the natural embedding ι of 2<ω into F , we can further simplify the domain of a
measure.

Definition 2.4. If B is any Boolean algebra, define its measure (with domain 2<ω)
to be the function σB : 2<ω → ω1 given by

σB(x) := ςB(ι(x)).

Conversely, if σ : 2<ω → ω1 is any map satisfying the equality σ(τ) = max{σ(τ a 0), σ(τ a 1)}
for all τ ∈ 2<ω, define a map ςσ : F → ω1 ∪ {o} by

ςσ(x) := sup{σ(τ) : τ ∈ 2<ω, ι(τ) ≤ x}

and ςσ(0F ) := o. Let Bσ be the (unique) Boolean algebra having σ (equivalently ςσ)
as its measure.

We end this discussion of measures by introducting the notion of derivatives.
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Definition 2.5. If σ : F → ω1 ∪ {o} is a measure, define by recursion on α its αth
derivative to be the map ∆ασ with domain F given by ∆0σ(x) := σ(x),

∆α+1σ(x) := {(∆ασ(x1), . . . ,∆ασ(xn)) : x = x1 ⊕ · · · ⊕ xn},

and ∆ασ(x) := {(∪β<α∆βσ(x1), . . . ,∪β<α∆βσ(xn)) : x = x1⊕· · ·⊕xn} for limit α.

Definition 2.6. The depth of a measure σ (with domain F) is the least ordinal δ
such that

∆δσ(x) = ∆δσ(y) =⇒ ∆δ+1σ(x) = ∆δ+1σ(y)

for all x, y ∈ F .

We note that this exposition largely follows Kach [4], which itself is largely based
on the exposition in Heindorf [3] and Pierce [7].

Definition 2.7. If B is a Boolean algebra, we denote its depth by δ(B).
If B is a Boolean algebra, we denote the collection of depths {δ(x) : x ∈ B} by

∆(B).

When studying the downward closure of depths of relative algebras, the depth
zero measures (studied in [3] and [4]) and certain depth α measures (for α ∈ ω1)
will be ubiquitous. We introduce notation to describe them.

Definition 2.8. If S ⊂ ω1 is a nonempty set with maximal element, denote by Bv(S)
the depth zero countable Boolean algebra having range(σ) = S and having disjoint
elements x and y with σ(x) = maxS = σ(y); denote by Bu(S) the depth zero
Boolean algebra having range(σ) = S and not having disjoint elements x and y
with σ(x) = maxS = σ(y).

We will abuse notation slightly, sometimes writing Bv(S) for Bu(S) when |S| = 1.

Definition 2.9. For β > 0, denote by χβ,0 the rank β measure for which the
preimage of β has order type 1 and the preimage of γ is empty for any 0 < γ < β.

For β > 0 and α > 0, denote by χβ,α the rank β measure for which the preimage
of β has order type ωα + 1 and the preimage of γ is empty for any 0 < γ < β.

Heindorf showed that, for any countable ordinal α, the depth of χ1,α is α. We
show more.

Lemma 2.10. The depth of
⊕i=N

i=1 χβ,α is α if N = 1 and α+ 1 if N > 1.

Proof. Heindorf showed δ(χ1,α) = α in Example 1.23.1 of Pierce [7]. As the depth
of χβ,α does not depend on β, we have δ(χβ,α) = α.

As
⊕i=N

i=1 χβ,α is a relative algebra of χβ,α+1 for anyN , we have that δ(
⊕i=N

i=1 χβ,α) ≤
α + 1. If N > 1, then δ(

⊕i=N
i=1 χβ,α) > α as ∆ασ(χβ,α) = ∆ασ(χβ,α ⊕ χβ,α) and

∆α+1σ(χβ,α) 6= ∆α+1σ(χβ,α ⊕ χβ,α). �

Proposition 2.11. For any countable ordinal α, the (α + 1)st derivative of χβ,α
is an isomorphism invariant. Indeed, the (α + 1)st derivative of any finite sum∑i=N
i=1 χβ,γi with γi ≤ α is an isomorphism invariant.

Proof. We start by noting that we need only consider the case when γi = α for all i.
For if γj < γk for some 1 ≤ j, k ≤ N , then χβ,γj ⊕χβ,γk ∼= χβ,γk . Consequently, we
may assume γj = γk for all 1 ≤ j, k ≤ N . Moreover, if γ1 = max{γ1, . . . , γN} < α,
then the (α+ 1)st derivative is an isomorphism invariant if the (max{γ1, . . . , γN}+
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1)st derivative is an isomorphism invariant. Consequently, we may assume γi = α
for all 1 ≤ i ≤ N .

If α = 0, then the first derivative of
∑i=N
i=1 χβ,0 consists of all sequences with at

most N many βs and any number of 0s. It is easy to see that this is an isomorphism
invariant.

If α > 0, then the (α+1)st derivative of
∑i=N
i=1 χβ,α consists of finite sequences of

αth derivatives. We note that no countable Boolean algebra having a perfect kernel
of nodes x with σ(x) = β can share this (α+1)st derivative. The reason is that any
such Boolean algebra has arbitrarily many disjoint elements with measure β, each
of which can be split into arbitrarily many disjoint elements with measure β, each

of which . . . , and so on α many times. The Boolean algebra
∑i=N
i=1 χβ,α has only N

many elements with this property. Moreover, the (α + 1)st derivative reflects this
difference.

Similarly, if N ′ 6= N , then the (α+1)st derivatives of
∑i=N
i=1 χβ,α and

∑i=N ′

i=1 χβ,α
reflect this difference: If N ′ < N , then the latter does not have N many elements
that can be sufficiently split; and if N ′ > N , then the latter has more than N
elements that can be sufficiently split. �

Finally, we introduce some mechanisms to describe more complicated measures.
The idea is to code information by having infinitely many Boolean algebras ap-
pear as relative algebras. These relative algebras can either appear “linearly” or
“densely”.

Definition 2.12. Denote the empty string by ε.

Definition 2.13. If {Bi}i∈ω is any infinite sequence of (not necessarily distinct)
Boolean algebras (with σi a measure for Bi), define their spined sum (denoted∑

sp Bi) to be the Boolean algebra with measure

σ(τ) :=

{
σi(τ1) if τ = 1i a 0 a τ1,

sup{σj(ε) : j ≥ i} if τ = 1i.

Define their repeated spined sum (denoted
∑

rsp Bi) to be the spined sum of the

sequence {B0,B0,B1,B0,B1,B2, . . . }.
If {Bi}i≤K is any finite sequence of Boolean algebras, define their repeated spined

sum to be the spined sum of the sequence {B0, . . . ,BK ,B0, . . . ,BK , . . . } (denoted∑
rsp Bi).

We remark that the functions σ for spined sums and repeated spined sums are
indeed measures as they satisfy σ(τ) = max{σ(τ a 0), σ(τ a 1)} for all τ ∈ 2<ω.

Definition 2.14. A string τ ∈ 2<ω is a repeater string if the length |τ | of τ is even
and τ(2i) = τ(2i+1) for all i < |τ | /2. The string τ ′ = τ(0) a τ(2) a . . .a τ(|τ | /2−1)
is a witness to τ being a repeater string.

A string τ ∈ 2<ω is an almost repeater string if τ is a repeater string or of the
form τ = τ ′ a 0 or τ = τ ′ a 1 for some repeater string τ ′.

A string τ ∈ 2<ω is a xor string if either τ = 01 or τ = 10.

We note that if τ is not an almost repeater string, there is a unique decomposition
τ = τ1

a τ2
a τ3 with τ1 a repeater string, τ2 a xor string, and τ3 an arbitrary string.

This uniqueness ensures later measures are well-defined.
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The idea is for the relative measures rooted at a node τ1
a τ2 to code information,

where τ1 is a repeater string and τ2 is a xor string. We therefore informally refer to
these nodes as coding locations. It is possible to code this information at a coding
location in different ways: either by utilizing depth (as in Definition 2.15) or by
utilizing rank (as in Definition 2.16).

Definition 2.15. If T : 2<ω → ω is any map, define the rank one BT to be the
Boolean algebra with measure

σT (τ) :=


1 if τ is an almost repeater string,

χ1,T (τ ′)(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2.

Definition 2.16. If T : 2<ω → ω is any map, define the arbitrary rank BT to be
the Boolean algebra with measure

σT (τ) :=


ω if τ is an almost repeater string,

χT (τ ′),0(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2.

Of course, these maps can be generalized to maps T with ranges encompassing
larger ordinals. For our purposes, it suffices to restrict attention to when the range
is a subset of ω rather than a (bounded) subset of ω1.

3. Arbitrary Rank Examples

In this section, we exhibit various countable Boolean algebras B for which ∆(B)
is not a downward closed set within the countable ordinals. Before constructing
more sophisticated examples, we start with perhaps the simplest example: The
Boolean algebra B := B1 ⊕ B2 with B1 := Bu({0,1}) and B2 := Bv({0,1}) has ∆(B)
not downward closed. This follows from the following readily verified facts:

• The depth of B is two.
• The depth of B1 is zero. The depth of B2 is zero.
• If x ∈ B1 and y ∈ B2, then x⊕ y is isomorphic to a relative algebra of B1,

a relative algebra of B2, or B.

Consequently, we have ∆(B) = {0, 2}.

3.1. The Set {0, . . . , α, α + 2}. In order to realize ∆(B) = {0, . . . , α, α + 2}, it
suffices to generalize the example just discussed. If α is a successor ordinal β + 1,
rather than have the zero measure at the coding locations of B1 and B2 ∼= χ1,0, we
have χ1,β at the coding locations of B1 and B2 ∼= χ1,α. If α is a limit ordinal, we
instead have χ1,fα(n) (where {fα(n)}n∈ω is an increasing sequence cofinal in α) at
the coding locations at height n of B1.

Theorem 3.1. For every ordinal α, there is a countable Boolean algebra B with
∆(B) = {0, . . . , α, α+ 2}.

Proof. We start with the case when α is a successor ordinal β + 1. The algebra B
is the sum of depth α algebras B1 and B2, where B1 is the rank one BT with T ≡ β
and B2 is χ1,α.
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We establish ∆(B) = {0, . . . , α, α+ 2} by showing δ(B1) = α, δ(B) = α+ 2, and
x⊕ y is isomorphic to a relative algebra of B1, a relative algebra of B2, or B for all
x ∈ B1 and y ∈ B2.

Claim 3.1.1. The depth of B1 is α.

Proof. Since B1 contains χ1,β ⊕ χ1,β (which has depth β + 1 by Lemma 2.10) as a
relative algebra, the countable Boolean algebra B1 has depth at least α = β + 1.
On the other hand, it has depth at most α = β + 1 as the αth derivative of any
element characterizes its isomorphism type (within those present in B1). This is a
consequence of Proposition 2.11.

In more detail, we verify if u, v ∈ B1 share common αth derivatives, then u ∼= v.
Proposition 2.11 implies u and v are isomorphic if neither u nor v have a perfect
kernel of ones. If exactly one of u and v has a perfect kernel of ones (say u without
loss of generality), then they do not share αth derivatives as u can be split α + 1
many times into elements with measure one whereas v cannot. If both u and v have
a perfect kernel of ones, then u and v are isomorphic since T is a constant map. �

Claim 3.1.2. If x ∈ B1 and y ∈ B2, then x⊕ y is isomorphic to a relative algebra
of B1, a relative algebra of B2, or B.

Proof. Fix x ∈ B1 and y ∈ B2.
First assume that x contains a perfect kernel. Then x ∼= B1 by Claim 3.1.1. If

y ∼= B2, then x ⊕ y ∼= B1 ⊕ B2. If y 6∼= B2, then y is a finite sum of χ1,γ for some
γ ≤ β. Then as B1 ⊕ y is isomorphic to B1, it must be that x⊕ y is isomorphic to
a relative algebra of B1.

Otherwise, i.e., if x does not contain a perfect kernel, then x is a finite sum
of χ1,γ for some γ ≤ β. Then as x ⊕ B2 is isomorphic to B2, it must be the case
that x⊕ y is isomorphic to a relative algebra of B2. �

Claim 3.1.3. The depth of B is α+ 2.

Proof. As the (α + 1)st derivative of B2 is an isomorphism invariant by Propo-
sition 2.11, the (α + 2)nd derivative of an element z ∈ B gives whether z has a
relative algebra isomorphic to B2. The (α + 2)nd derivative of an element z ∈ B
also dictates whether z can be split (α+ 2)-many times into measure one elements.
This gives whether z has a relative algebra isomorphic to B1. Hence, by Claim 3.1.2
and Lemma 2.10, we have that the (α+2)nd derivative of an element z ∈ B dictates
its isomorphism type within B. �

We finish by noting these claims imply ∆(B) = {0, . . . , α, α + 2}. Since δ(B) =
α + 2, we have α + 2 ∈ ∆(B). Since δ(B2) = α and ∆(B2) is downward closed,
we have {0, . . . , α} ⊆ ∆(B). Finally, as a consequence of Claim 3.1.2, there are no
elements with depth α+ 1.

When α is a limit ordinal, it is no longer possible to take B1 to be BT for some
constant valued T . Instead, we take B1 to be the rank one BT , where T (τ) = fα(|τ |)
(where {fα(n)}n∈ω is an increasing sequence cofinal in α), and take B2 to be χ1,α.
The analysis proceeds identically to the case when α is a successor ordinal. �

3.2. The Set {0, 1, ωα}. Fixing a countable ordinal α (throughout this subsection),
the definition of a Boolean algebra B with ∆(B) = {0, 1, ωα} is rather complicated.
Independent of α, the Boolean algebra will have a pure perfect kernel of rank ω.
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At the coding locations, we will insert χn,0 for n ∈ ω. The positioning of these χn,0
will depend on α and ensure every rank ω node has depth ωα.

We describe the positioning of the χn,0, developing the necessary terminology to
do so via a sequence of definitions and lemmas.

Lemma 3.2. If α > 0, there is an increasing sequence of ordinals {αn}n∈ω cofinal
in ωα satisfying αn+1 ≥ αn · 2 + 1.

Proof. If α is a successor ordinal α = µ + 1, then αn = ωµ · (2n − 1) suffices. If α
is a limit ordinal, then αn = ωµn suffices, where {µn}n∈ω is any strictly increasing
sequence cofinal in α. �

We fix such a sequence {αn}n∈ω.

Definition 3.3. Define a sequence T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ 2<ω of trees and a
sequence of strings $0, $1, $2, . . . by recursion as follows.

Define T0 to be a subset of 2<ω homeomorphic to the ordinal ωα0 + 1 and
$0 = ε. If T0, . . . , Tn and $0, . . . , $n have been defined, let $n+1 be the length-
lexicographically least string $ with $ 6∈ Tn. Let f ∈ 2ω be the infinite path
$n+1

a 0∞. Define Tn+1 to be a subset of 2<ω containing Tn homeomorphic to
ωαn+1 + 1 with the following properties:

• The subset Tn+1 has major spine f , i.e., the (unique) path of rank αn+1 +1
in Tn+1 is f .
• If % ∈ Tn has a unique infinite path in Tn through it, then the subset
Tn+1 � % is homeomorphic to the ordinal ωαn + 1.

• If % ∈ Tn has incomparable infinite paths in Tn through it, then %a 0 (%a 1,
respectively) is in Tn+1 if and only if %a 0 (%a 1, respectively) is in Tn.

We note several important properties about the sequence {Tn}n∈ω.

Lemma 3.4. Every string ς ∈ 2<ω appears in cofinitely many Tn.
For any ς ∈ 2<ω and for every ` ∈ ω, there is an integer n ∈ ω such that Tn � ς

is homeomorphic to an ordinal greater than ωα` + 1.
If ς ∈ Tn and k ∈ ω satisfies k > n, then the subset Tk � ς is homeomorphic to

an ordinal greater than or equal to ωαn + 1.

Proof. Fix a string ς. We prove each of the three statements in turn.
As the length-lexicographic ordering on 2<ω has order type ω, the choices of $n

assures ς ∈ Tn for some n. Then ς ∈ Tm for all m ≥ n.
Fix ς ∈ 2<ω and ` ∈ ω. For some n > `, the string $n will satisfy ς ≺ $n. This

choice of n suffices as a consequence of the first condition.
If ς ∈ Tn has a unique infinite path in Tn through it, then the fact that Tk � ς is

homeomorphic to an ordinal greater than ωαn +1 for k > n follows from the second
condition on Tn+1 in the construction for k = n+ 1. More generally, for k > n+ 1,
this follows from the containment Tn+1 ⊆ Tk. And if ς ∈ Tn does not have a unique
infinite path in Tn through it, it follows by restricting attention to a subtree above
such a node. �

Definition 3.5. For each ς ∈ 2<ω, define nς to be the least integer k such that nς
appears in Tk.

Having done the necessary preparation, we are ready to construct the desired
countable Boolean algebra.
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Theorem 3.6. There is a countable Boolean algebra B with ∆(B) = {0, 1, ωα}.

Proof. The algebra B is

σ(τ) =


ω if τ is an almost repeater string,

χnτ′ ,0(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2.

Since any nontrivial finite sum of countable Boolean algebras χn,0 has depth one
(whether or not the n are distinct), it suffices to show that if τ is an almost repeater
string, then the depth of τ is ωα. We demonstrate this by showing δ(τ) ≤ ωα and
δ(τ) ≥ ωα separately.

Claim 3.6.1. If τ is an almost repeater string, then δ(τ) ≤ ωα.

Proof. Fix elements x, y ∈ B with ∆ωασ(x) = ∆ωασ(y). Then x ∼= y as the order
type of the relative algebras χn,0 above x and above y must be equal for every
n ∈ ω. For if there were an integer n for which these order types were distinct,
the ωαth derivative would distinguish this as the order types would be strictly less
than ωα (being not greater than ωαn + 1). �

Claim 3.6.2. If τ is an almost repeater string, then δ(τ) ≥ ωα.

Proof. For a contradiction to δ(τ) ≥ ωα, suppose δ(τ) = β < ωα. Fix the witness τ ′

to τ being an almost repeater string. Fix an integer n for which τ ′ 4 $n and αn > β
(this is possible by Lemma 3.4). We reach the desired contradiction by showing
δ(τ̂) > β, where τ̂ is the almost repeater string (of even length) having witness $n.

Let τ̃ satisfy τ̂ ≺ τ̃ and Tn � τ̃ ∼= ωβ + 1. Then ∆βσ(τ̂) = ∆βσ(τ̃) as the order
type of Tm (for each m ∈ ω) above both τ̂ and τ̃ is either empty for both or greater
than or equal to ωβ + 1 for both. On the other hand, ∆β+1σ(τ̂) 6= ∆β+1σ(τ̃) as
the order type of Tn above τ̂ is strictly greater than β, whereas this is not the case
for τ̃ . �

Thus, we have ∆(B) = {0, 1, ωα} as desired. �

3.3. The Set {0, 2, ωα}. Fixing an ordinal α (throughout this subsection), the
idea for constructing a measure σ with ∆(σ) = {0, 2, ωα} is similar to the idea for
Section 3.2. The key difference is the usage of depth zero measures Bu(n) at the
coding locations rather than χn,0.

Theorem 3.7. For each countable ordinal α, there is a countable Boolean algebra B
with ∆(B) = {0, 2, ωα}.

Proof. As with Theorem 3.6, we rely heavily on the definition of nζ for ζ ∈ 2<ω

(see Definition 3.5). The algebra B is

σ(τ) =


ω if τ is an almost repeater string,

σu(nτ′+1)(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2,

where σu(nτ′+1) is the measure for the depth zero Boolean algebra Bu(nτ′+1).
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Since any relative algebra of any finite sum of countable Boolean algebras of the
form Bu(n) has depth zero or two (whether or not the n are distinct), it suffices
to show that if τ is an almost repeater string, then the depth of τ is ωα. As the
justification for this is identical to Theorem 3.6, we omit it. �

3.4. More Complicated Sets. By utilizing the constructions of the previous sub-
sections, more complicated sets can be realized as ∆(B).

Theorem 3.8. For all countable ordinals α and β with ωα < β, there is a countable
Boolean algebra B with ∆(B) = {0, 1} ∪ {ωα, . . . , β}.

Proof. We argue that a β-spined sum of the Boolean algebra from Theorem 3.6
suffices. More precisely, let T ⊂ 2ω be homeomorphic to ωβ + 1. The Boolean
algebra B is

σ(τ) =


ω if τ ∈ T ,

σα(τ3) if τ = τ1
a τ2

a τ3

with τ1 ∈ T , τ1
a τ2 /∈ T , and |τ2| = 1.

where σα is the measure of the Boolean algebra Bα constructed in Theorem 3.6
with ∆(Bα) = {0, 1, ωα}.

We note that γ 6∈ ∆(B) for any ordinal γ with 1 < γ < ωα. The reason is that
every relative algebra of B is either a (possibly trivial) finite sum of depth zero
relative algebras of Bα (thus depth zero or one) or bounds a depth ωα element
of Bα (thus depth at least ωα).

We note that a γ-spined sum of B has depth γ for γ ≥ ωα. The reason is
essentially the same reason as the reason why δ(χβ,α) = α, namely, that the γth
derivative cannot distinguish a γ-spined sum from a (γ+1)-spined sum. We empha-
size that the hypothesis γ ≥ ωα is necessary, else the order type of χnτ′ ,0 (where τ ′ is
as in Theorem 3.6) would be less than ωγ , allowing the γth derivative to distinguish
a γ-spined sum and a (γ + 1)-spined sum.

It follows δ(B) is as desired. �

Lemma 3.9. If B1 and B2 satisfy max{δ(B1), δ(B2)} ≥ 2 and have measures with
disjoint range, then δ(B1 ⊕ B2) = max{δ(B1), δ(B2)}.

Proof. Let δ = max{δ(B1), δ(B2)}. As δ(B1 ⊕ B2) ≥ δ is immediate, we show
that δ(B1 ⊕ B2) ≤ δ. Fixing x1, y1 ∈ B1 and x2, y2 ∈ B2, we show ∆δσ(x1 ⊕ x2) =
∆δσ(y1⊕y2) implies x1 ∼= y1 and x2 ∼= y2. For a contradiction, we suppose (without
loss of generality) that x1 6∼= y1.

Since x1 6∼= y1 and δ(B1) ≤ δ, there must be (without loss of generality) a
decomposition x1 = x10 ⊕ · · · ⊕ x1k of x and an ordinal β ≥ 1 such that

(∆βσ(x10), . . . ,∆βσ(x1k)) 6∈ ∆β+1σ(y1).

As x10⊕· · ·⊕x1k⊕x2 is a decomposition of x1⊕x2, we conclude from ∆δσ(x1⊕x2) =
∆δσ(y1 ⊕ y2) that there is a decomposition y10 ⊕ · · · ⊕ y1k ⊕ y′2 of y1 ⊕ y2 with
∆βσ(x1i) = ∆βσ(y1i) and ∆βσ(x2) = ∆β(y′2). As β ≥ 1 and the measures have
disjoint range, this implies y1i ≤ y1 for 0 ≤ i ≤ k and y′2 ≤ y2. Consequently, it must
be the case that y1 = y10⊕· · ·⊕y1k and y2 = y′2. Thus (∆βσ(x10), . . . ,∆βσ(x1k)) =
(∆βσ(y10), . . . ,∆βσ(y1k)) ∈ ∆β+1σ(y1), a contradiction. �
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Theorem 3.10. For all countable ordinals α1, . . . , αm and β1, . . . , βm with ωα1 <
β1 < · · · < ωαm < βm, there is a countable Boolean algebra B with ∆(B) = {0, 1} ∪
{ωα1 , . . . , β1} ∪ · · · ∪ {ωαm , . . . , βm}.

Proof. We construct such a countable Boolean algebra by induction on m. When
m = 2, the idea is to replicate Theorem 3.8 (using α2 and β2 for α and β), replacing
the instances of σα with instances of Theorem 3.8 (using α1 and β1 for α and β).
For m > 2, the idea is to replicate Theorem 3.8 (using αm and βm for α and β),
replacing the instances of σα with the inductively constructed instances with depths
{0, 1} ∪ {ωα1 , . . . , β1} ∪ · · · ∪ {ωαm−1 , . . . , βm−1}.

We start by explicitly constructing a countable Boolean algebra B with δ(B) =
{0, 1}∪{ωα1 , . . . , β1}∪{ωα2}. As preparation, partition the integers ω into infinite
disjoint sets {Qn}n∈ω. Let Bn be the Boolean algebra from Theorem 3.8 with
δ(Bn) = {0, 1} ∪ {ωα1 , . . . , β1}, where χi,0 exists as a relative algebra only for
i ∈ Qn rather than all i ∈ ω.

The countable Boolean algebra B is

σ(τ) =


ω if τ is an almost repeater string,

σBn
τ′

(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2,

where σnτ′ is the measure associated with Bnτ′ .
We verify ∆(B) = {0, 1}∪{ωα1 , . . . , β1}∪{ωα2}. By Lemma 3.9 and Theorem 3.8,

any finite sum of relative algebras of elements not bounding an almost repeater
string has depth in {0, 1} ∪ {wα1 , . . . , β1}. Of course, as Lemma 3.9 only applies
if max{δ(B1), δ(B2)} ≥ 2, the case δ(B1), δ(B2) < 2 needs to be treated separately:
Both B1 and B2 are finite sums of Boolean algebras χi,0, so the sum B1 ⊕ B2 has
depth one. If τ is an almost repeater string, then δ(τ) = ωα2 as in Claim 3.6.1 and
Claim 3.6.2. It follows that ∆(B) = {0, 1} ∪ {ωα1 , . . . , β1} ∪ {ωα2}.

In order to realize the set of depths {0, 1}∪{ωα1 , . . . , β1}∪{ωα2 , . . . , β2}, we take
a β2-spined sum (using a tree homeomorphic to ωβ2 + 1) of the Boolean algebra B
just constructed. As in Theorem 3.8, it is not difficult to verify that this has the
desired depths.

For m > 2, we repeat this process using the Boolean algebras constructed in-
ductively for the set {0, 1}∪{ωα1 , . . . , β1}∪ · · ·∪{ωαm−1 , . . . , βm−1} to construct a
Boolean algebra B with ∆(B) = {0, 1} ∪ {ωα1 , . . . , β1} ∪ · · · ∪ {ωαm−1 , . . . , βm−1} ∪
{ωαm}. We take a βm-spined sum of this to obtain {0, 1} ∪ {ωα1 , . . . , β1} ∪ · · · ∪
{ωαm−1 , . . . , βm−1} ∪ {ωαm , . . . , βm}. �

If the constructions instead use Theorem 3.7 rather than Theorem 3.6, the fol-
lowing sets are realized.

Theorem 3.11. For all countable ordinals α1, . . . , αm and β1, . . . , βm with ωα1 <
β1 < · · · < ωαm < βm, there is a countable Boolean algebra B with ∆(B) = {0, 2} ∪
{ωα1 , . . . , β1} ∪ · · · ∪ {ωαm , . . . , βm}.

4. Arbitrary Rank Constraints

Though the examples of Section 3 demonstrate that there is some flexibility
within the set of depths of relative algebras of a countable Boolean algebra, there
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are constraints. For example, as a consequence of the fact that the depth of every
constant measure is zero, every countable Boolean algebra has a depth zero relative
algebra. More subtle is that every countable Boolean algebra of depth greater than
zero has either a depth one relative algebra or a depth two relative algebra. Thus, in
terms of trying to make ∆(B) minimal, Theorem 3.6 and Theorem 3.7 are optimal.

Theorem 4.1. If B has depth greater than zero, then either 1 ∈ ∆(B) or 2 ∈ ∆(B),
i.e., there is a depth one or depth two relative algebra of B.

This theorem follows quickly from the following technical lemma.

Lemma 4.2. Fix an ordinal α and a rank downward closed countable Boolean
algebra B with ρ := ρ(B). If:

• ρ ≥ α,
• the preimage of each β < α is a union of pure perfect kernels, and
• σ(x) = β implies x ∼= Bv({0,...,β}) for β < α,

then either

• B contains a depth one relative algebra,
• B contains a depth two relative algebra, or
• ρ ≥ α + 1, the preimage of each β ≤ α is a union of pure perfect kernels,

and σ(x) = β implies x ∼= Bv({0,...,β}) for β ≤ α.

Proof. Assuming B contains no depth one relative algebra and no depth two relative
algebra, we show ρ ≥ α+ 1, the preimage of each β ≤ α is a union of pure perfect
kernels, and σ(x) = β implies x ∼= Bv({0,...,β}) for β ≤ α.

Before performing some case analysis, we show every ordinal β < α must appear
above any element with rank α. If not, there would be an element x ∈ B of
rank α and some β < α with σ(y) 6= β for all y ≤ x (choose β minimal with this
property). Passing to a relative algebra of x as necessary, we may assume that
the preimage of α in x is either a pure perfect kernel or an isolated path. Passing
to a relative algebra of x again as necessary, we may assume that x ∼= Bu(S) or
x ∼= Bv(S), where S is the set of ordinals strictly less than β together with α. Then
x⊕ Bv({0,...,β}) is a depth one relative algebra, contrary to the hypothesis.

We continue by treating separately the cases when the preimage of α is exactly
one isolated path, contains at least two isolated paths, is exactly one isolated path
and a union of pure perfect kernels, and is a union of pure perfect kernels.

If the preimage of α were to be exactly one isolated path, it would be the case
that ρ > α as δ(B) > 0. As B is rank downward closed, there would then be an
element x ∈ B with ρ(x) = α + 1. Passing to a relative algebra of x as necessary,
we may assume that the preimage of α+ 1 in x is either a pure perfect kernel or an
isolated path. Passing to a relative algebra of x again as necessary, we may assume
that x ∼= Bu(S) or x ∼= Bv(S) for some set S ⊆ {0, . . . , α, α+ 1} containing α+ 1 but
not containing α. Then x⊕Bu({0,...,α}) would be a depth one or depth two relative
algebra (depending on S), contrary to the hypothesis.

If the preimage of α were to contain at least two isolated paths, then there would
be ordinals µ1 and µ2 (possibly equal) such that B contains the relative algebra
Bu(0,...,µ1,α) ⊕ Bu(0,...,µ2,α). This is depth one, contrary to the hypothesis.

If the preimage of α were to contain exactly one isolated path and a union of pure
perfect kernels, then B would contain the depth two relative algebra Bu(0,...,α) ⊕
Bv(0,...,α), contrary to the hypothesis.
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Consequently, the preimage of α is a union of pure perfect kernels. Combined
with the discussion above, this implies x ∼= Bv({0,...,α}) if ρ(x) = α. Finally, it must
be the case that ρ ≥ α+ 1 as otherwise B would be depth zero. �

Proof of Theorem 4.1. We start by observing that it suffices to consider rank down-
ward closed countable Boolean algebras. The reason is the depth of a relative al-
gebra does not depend on the ranks of its relative algebras but rather the relative
sizes of the ranks of its relative algebras (i.e., we can take the Mostowski collapse
of {σ(x) : x ∈ B} and preserve depths).

Since B has depth greater than zero, it has rank greater than zero. Consequently,
the hypotheses of Lemma 4.2 are satisfied for α = 1. Thus B either contains a depth
one relative algebra or a depth two relative algebra (in which case nothing more
needs to be shown) or ρ ≥ 2 and the hypotheses of Lemma 4.2 are satisfied for
α = 2. Continuing by induction, as ρ = ρ(B) is a fixed countable ordinal, at some
point the third possibility in Lemma 4.2 cannot happen. We conclude B has either
a depth one relative algebra or a depth two relative algebra. �

5. Rank One Examples and Constraints

As there are natural maps from the class of arbitrary rank countable Boolean
algebras to the class of rank one countable Boolean algebras, these classes share
many properties. For example, Camerlo and Gao [2] showed the isomorphism prob-
lem for the class of arbitrary rank countable Boolean algebras is no more difficult
than the isomorphism problem restricted to the class of rank one countable Boolean
algebras.

However, there are significant differences between which sets of countable ordi-
nals are realized as ∆(B) for some arbitrary rank countable Boolean algebra and
for some rank one countable Boolean algebra. For example, there is no rank one
countable Boolean algebra B with ∆(B) = {0, 1, ωα} or ∆(B) = {0, 2, ωα}. This
is particularly interesting as this is the first structural difference, to the authors’
knowledge, between the arbitrary rank countable Boolean algebras and the rank
one countable Boolean algebras.

Lemma 5.1. Let B :=
∑

rsp Bi for an arbitrary sequence of countable Boolean

algebras {Bi}i∈ω (not necessarily rank one). If x and y are spined elements, then x
and y are isomorphic.

Proof. We show the αth derivatives of x and y are equal for all α. Equality of the
0th derivatives follows from

σ(x) = sup{ρ(Bi)}i∈ω = σ(y)

as both x and y bound a copy of Bi for all i.
Assuming equality of the βth derivative for all β < α, we show equality of the αth

derivative. Fix a partition (x0, x1, . . . , xn) of x, where without loss of generality x0
is spined and xi is not spined for 1 ≤ i ≤ n. Since y is spined and the xi for
1 ≤ i ≤ n are not spined, there are disjoint non-spined yi for 1 ≤ i ≤ n with
yi ≤ y and yi ∼= xi. Then y0 := y −

⊕
1≤i≤n yi is spined. The inductive hypothesis

ensures ∆βσ(x0) = ∆βσ(y0) for any β < α, so (∆βσ(x0),∆βσ(x1), . . . ,∆βσ(xn)) =
(∆βσ(y0),∆βσ(y1), . . . ,∆βσ(yn)) ∈ ∆ασ(y). The reverse containment ∆ασ(y) ⊆
∆ασ(x) is identical. �
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It is important to note that the isomorphism type of B =
∑

rsp Bi is not depen-
dent on the choice of the sequence B0, B0, B1, B0, B1, B2, . . . . Indeed, as long
as every Bi appears infinitely often, the proof of Lemma 5.1 shows that it has the
same isomorphism type as B.

Lemma 5.2. Let B :=
∑

sp Bi, where ρ(Bi) = 1 and δ(Bi) ≤ N for some fixed

N ∈ ω. Then δ(B) ≤ N + 10.

Proof. Let {B0, . . . ,BK} enumerate the rank one countable Boolean algebras of
depth at most N , noting the important fact that this set is finite by Heindorf [3].
Fix an integer m with the property that

(∀k ≤ K)
[
(∃i ≥ m)

[
Bi ∼= Bk

]
=⇒ (∃∞i)

[
Bi ∼= Bk

]]
,

noting that such an integer m must exist. It follows from the preceding remarks
that

∑
sp≥m Bi is a repeated spined sum of some finite subset of {B0, . . . ,BK}.

We show the depth of B is at most N + 10 by showing the depth of
∑

sp≥m Bi
is at most N + 6. If

∑
sp≥m Bi is isomorphic to a relative algebra of a finite sum

of the Bi, then in fact it has depth at most N + 4. Otherwise, the (N + 6)th
derivative of any spined element is distinct from the (N + 6)th derivative of any
nonspined element (the latter all having depth at most N + 4, so the (N + 6)th
derivative is an isomorphism invariant). As all spined elements of

∑
sp≥m Bi are

isomorphic by Lemma 5.1 and the discussion following, it follows that
∑

sp≥m Bi
has depth at most N + 6. Since B is the sum of

∑
sp≥m Bi and

∑
<m Bi, we have

δ(B) ≤ max{N + 4, N + 6}+ 4 = N + 10. �

Theorem 5.3. If B is rank one and has depth at least ω, then n ∈ ∆(B) for
integers n cofinal in ω.

Proof. Fix a rank one countable Boolean algebra B with δ(B) ≥ ω. Towards a
contradiction, we suppose that there is an integer N ∈ ω with n 6∈ ∆(B) for any
integer n > N .

Let S ⊂ 2ω be the set of strings τ with δ(τ) ≥ ω. This set S, being downward
closed, forms a tree. The set S has no dead ends as a consequence of the inequality
δ(B1 ⊕ B2) ≤ max{δ(B1), δ(B2)} + 4 for all B1 and B2 in Heindorf [3]. The set S
also has no isolated paths as a consequence of Lemma 5.2. Thus, the set S is a
pure perfect kernel.

We therefore view B as having rank one countable Boolean algebras of depth at
most N at coding locations and depth at least ω at every almost repeater string.
From this representation of B, we define trees T i for 0 ≤ i ≤ K, where τ ∈ T i if Bi
appears at some coding location above τ .

Then there is a string τ such that if τ ′ extends τ , then τ ′ ∈ T i whenever τ ∈ T i
(for all 0 ≤ i ≤ K). This has depth at most N + 10 via the same argument as in
Lemma 5.2, a contradiction. �

The key ingredient in the proof of Theorem 5.3 is the existence of at most finitely
many rank one algebras of depth at most N (see the proof of Lemma 5.2). Hence,
the hypothesis of Theorem 5.3 can be weakened to B having finite rank. Thus, the
countable Boolean algebras of Theorem 3.6 and Theorem 3.7 are simplest possible
(in terms of rank). The conclusion of Theorem 5.3 cannot be strengthened with
the proof provided as there are infinitely many rank one algebras of finite depth.
Indeed, it cannot be strengthened at all.
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Theorem 5.4. For each countable ordinal α, there is a rank one countable Boolean
algebra B with ∆(B) = ω ∪ {ωα}.

Proof. As with Theorem 3.6 and Theorem 3.7, we rely heavily on the definition
of nζ for ζ ∈ 2<ω (see Definition 3.5). The measure for B is

σ(τ) =


1 if τ is an almost repeater string,

χ1,nτ′ (τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

with witness τ ′ and xor string τ2.

Since δ(χ1,n) = n, it follows n ∈ ∆(B) for all n ∈ ω. Since any finite sum of χ1,n

has finite depth, it suffices to show that if τ is an almost repeater string, then the
depth of τ is ωα. As the justification for this is similar to Theorem 3.6, we omit
it. �

6. Questions

Unfortunately, we do not completely understand which sets of countable ordinals
are within the set {∆(B) : B is a countable Boolean algebra}. Though a complete
understanding of this set may or may not be interesting, certain questions seem
fundamental to understanding the structure of the set of relative algebras of an
arbitrary countable Boolean algebra.

With the exception of Theorem 3.1, the examples within this paper make strong
usage of the combinatorial properties of an ordinal of the form ωα. It is natural to
ask if similar examples exist for ordinals not sharing these combinatorial properties
(e.g., a successor ordinal like ω + 1 or a limit ordinal like ω + ω).

Question 6.1. Is there a countable Boolean algebra B with ∆(B) = {0, 1, ω + 1}
or ∆(B) = {0, 2, ω + 1}? With ∆(B) = {0, 1, ω + ω} or ∆(B) = {0, 2, ω + ω}?

We also do not know whether it is possible to have arbitrarily large but finite
gaps in ∆(B).

Question 6.2. Is there, for each integer N > 2, a countable Boolean algebra B
and an ordinal λ with λ, λ+N ∈ ∆(B) and λ+ k 6∈ ∆(B) for any 0 < k < N?

In a similar vein, we wonder if Theorem 5.3 can be strengthened.

Question 6.3. If B is rank one and has depth at least ω, is n ∈ ∆(B) for (almost)
all integers n ∈ ω?

Finally, we wonder if Theorem 5.3 is in essence the only structural difference
between ∆(B) for arbitrary rank B and rank one B.

Question 6.4. Is there, for any set S with ω ⊂ S, a rank one countable Boolean
algebra B with ∆(B) = S whenever there is an arbitrary rank countable Boolean
algebra B with ∆(B) = S?
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