
A Limit on Relative Genericity 

in the Recursively Enumerable Sets 

STEFFEN LEMPP 

THEODORE A. SLAMAN 

ABSTRACT. Work in the setting of the recursively enumerable sets and 

their Turing degrees. A set X is low if X', its Turing jump, is recursive in 

0' and high if X' computes 0". Attempting to find a property between being 

low and being recursive, Bickford and Mills produced the following definition. 

W is deep, if for each recursively enumerable set A, the jump of A E9 W is 

recursive in the jump of A. We prove that there are no deep degrees other 

than the recursive one. 

Given a set W, we enumerate a set A and approximate its jump. The 

construction of A is governed by strategies, indexed by the Turing functionals 

<P. Simplifying the situation, a typical strategy converts a failure to recursively 

compute W into a constraint on the enumeration of A, so that (W E9 A)' is 

forced to disagree with <P(-; A'). The conversion has some ambiguity; in 

particular, A cannot be found uniformly from W. 

We also show that there is a "moderately" deep degree: There is a low 

non-zero degree whose join with any other low degree is not high. 1 

§ 1. INTRODUCTION 

There is a strong similarity between building a generic real (subset of 

the integers), by meeting dense subsets of a partially ordered set, and 

The results appearing here form a section of Lempp's Ph.D. thesis, The University of 

Chicago, 1986. The authors would like to thank R. I. Soare, who is also Lempp's thesis 

advisor, for encouraging this work. Slaman was supported by N.S.F. grant DMS-8601856 

and Presidential Young Investigator Award DMS-8451748. 
1 Harrington has recently shown that there is a low non-zero degree whose join with any 

other low degree is also low. 



recursively enumerating a real, by simultaneously executing a family of re­

cursive strategies. The analogy is exact provided that the forcing partial 

ordering is recursive and genericity is only required relative to a uniformly 

recursive family of dense sets. Otherwise, priority methods diverge from 

forcing techniques. To take an obvious example, it is not possible to recur­

sively enumerate a set of integers so that it is different from every E~-set, 

even though the diagonalizing conditions are dense. Instead of meeting 

every dense set, as does a fully generic real, the real enumerated during a 

priority construction meets sets that are dense in its enumeration. In fact, 

this is the typical effect of a strategy on the construction of a recursively 

enumerable set. 

Cohen forcing in the context of recursively enumerable sets has been 

systematically studied and well understood by Maass [Ms82], Jockusch 

[Jo85], and others. In their work, reals were enumerated so as to meet 

certain dense subsets of the Cohen partial order. The reals produced were 

then shown to have many of the recursion theoretic properties associated 

with Cohen generic reals. To cite an example, let G be Maass generic 

(roughly speaking, its enumeration is generic. with respect to all primitive 

recursive sets), and let G' be its Turing jump. A E~(G)-statement is true 

if and only if it is forced by some strategy; further, the forcing relation 

for E~ ( G)-statements is E~. A II~ ( G)-statement is true if and only if its 

a.ssociated strategy cannot force its negation. Given that G is produced by 

a recursive construction that uses only strategies with outcomes recursive 

in 0', these two facts show that G' is recursive in 0'. 

In this paper, we will examine a Eg-aspect of Cohen genericity. Namely, 

how close can a recursively enumerable set come to being Cohen generic 

relative to every recursively enumerable set? For other results addressing 

2 



the same issue, see Shore [Shta] or Soare-Stob [SS82]. 

Given two sets of integers A and B, let A ED B denote their effective 

disjoint union. Bickford and Mills defined a recursively enumerable set W 

to be deep if for every recursively enumerable set A, the jump of A ED W is 

recursive in A'. Following the guide of Cohen genericity, we might attempt 

to enumerate a set W, make W sufficiently Cohen generic to be different 

from every recursive set and ensure W's being deep by using strategies to 

decide :E~(AE9 W)-statements in a way that is recursive in A'. For a single 

formula, it is not hard to find a strategy that satisfies the third condition 

and is compatible with W's not being recursive; in fact, the strategies fit 

together to show that, for every recursively enumerable set A, there is a 

recursively enumerable set W such that W is not recursive in A (if A is 

incomplete) and (A E9 W)' is recursive in A'. 

The obstacle appears in the attempt to make W simultaneously deep 
A ' 

with regard to two sets A and A. The way that a strategy decides a 
•/ 

:E~(AE9 W)-statement is recursive in A' but not necessarily recursive in A. 

Similarly, A' cannot compute those steps taken for the sake of genericity 
A 

relative to A. This obstacle is insurmountable; in section §3, we show 

that if W is recursively enumerable and not recursive then W is not deep. 

In the proof of the theorem, we find strategies showing that the obstacle 

mentioned above is completely general. That is, no recursively enumerable 

set is sufficiently Cohen generic for the Maass style calculation of the jump 

to apply relative to an arbitrary recursively enumerable set. 

The proof is organized as follows. Suppose that W is a recursively enu­

merable set. First, we enumerate a set A and functional r. Suppose that 

3 



W meets enough dense sets to be not recursive and to satisfy 

(1) r(-; (W EfJ A)') = w(-; A'). 

for all w. The key feature of the argument is that the dense sets associated 

with W's not being recursive involve numbers entering W. The dense sets 

associated with equation (1) involve W's enumeration's being timed so 

that numbers enter W only when other numbers enter A. We synchronize 
A A 

the enumeration of another pair A and so that numbers enter A only when 

numbers are not entering A. Thus, it is impossible for numbers to enter W 

only when A changes. The combination of W's not being recursive and also 

not being fully generic relative to A provides the vehicle by which (W EBA)' 
A/ A A 

coherently computes a set not recursive in A. Namely, r(-; (W EfJ A)') 

meets dense sets relative to A1
, making it diagonalize against functions 

A/ 
recursive in A , during the stages when W meets those sets making W not 

recursive. 

A set X is low if X' is recursive in 0'; Xis high if X' computes 0". Be­

cause of the possibility of infinitary outcomes in the strategies used above, 

we are unable to conclude that the sets A and A are low. In section §4, 

we show that there is a recursively enumerable nonrecursive set W such 

that its join with any low recursively enumerable set is not high. Re­

cently, Harrington improved this result to show that there is a recursively 

enumerable nonrecursive set W whose join with any low recursively enu­

merable set is again low. In both constructions, the set being enumerated 

is only required to be deep relative to low sets. This makes it possible to 

meet dense sets that are not accessible relative to an arbitrary recursively 

enumerable set. 

4 



§2. NOTATION 

Our notation is fairly standard and generally follows Soare's forthcoming 

book "Recursively Enumerable Sets and Degrees" [Sota]. 

We work in .the context of sets and functions on w, the set of natu­

ral numbers { O, 1, 2, 3, ... }. Usually lower-case Latin letters a, b, c, .. . 

denote natural numbers; f, g, h,... total functions on w; Greek letters 

<I>, \Ji, ... , r.p, 'If;, ... partial functions on w; and upper-case Latin letters 

A, B, C, ... subsets of w. For a partial function r.p, r.p(x) l denotes that 

x E domcp, otherwise we write cp(x) f. We identify a set A with its char­

acteristic function XA· f ~ x denotes f restricted to arguments less than 

x, likewise for sets. 

We let A C B denote that A C B but A i= B. A LJ B will denote the 

disjoint union. For each n E w, we let ( x1, x2, ... , Xn) denote the coded 

n-tu pie (where x; < ( x1, x2, ... , Xn) for each i); and ( x ); the ith projection 

function, mapping ( x1, x2, ... , Xn) to x;. A[k] = {y I (y, k) E A} denotes 

the kth "row" of A; and A[<!J = Uk<l A[kJ. 

The logical connectives "and" and "or" will be denoted by & and V, 

respectively. We allow as an additional quantifier (in the meta-language) 

(300 x) to denote that the set of such x is infinite. 

{ e} (or 'Pe) and We ( { e }X (or <I>;) and wex) denote the eth partial recur­

sive function and its domain (with oracle X) under some fixed standard 

nu1nbering. <r denotes Turing reducibility, and =r the induced equiva­

lence relation. The use of a computation cJ>;(x) (denoted by u(X;e,x)) 

is 1 plus the largest number from oracle X used in the computation if 

<P;(x) l; and 0 otherwise (likewise for u(X; e, x, s), the use at stage s). 

Sets, functionals, and parameters are often viewed as being in a state of 

5 



formation, so, when describing a construction, we may write A (instead 

of the full Lachlan notation A8 , A[s], or At[s] for the value at the end of 

stage s or at the end of su bstage t of stage s). 

In the context of trees, p, a, r, ... denote finite strings of integers; !al 
the length of a; aAr the concatenation of a and r; (a) the one-element 

string consisting of a; a C r (a C r) that a is a (proper) initial segment 

of r; a <L r that for some i, a~ i = r ~ i and a(i) <A r(i) (where <A 
is a given order on A and TC A<w); and a< r (a< r) that a <Lr or 

a C r (a C r). The set [T] of infinite paths through a tree T C A <w is 

{p E Aw I ('v'n)[p~ n ET]}. 

We use the following conventions: Upper-case letters at the beginning 

of the alphabet are used for sets A, B, C, ... and functionals r, ~' ... 
constructed by us; those at the end of the alphabet are used for sets 

U, V, W, ... and functionals <I>, '1!, ... constructed by the opponent. A func­

tional <I> ('1!, e, ... ) is viewed as a recursively enumerable set of triples 

( x, y, a) (denoting <I>" ( x) t = y), and the corresponding Greek lower­

case letter <p ('1/1, {), ••• ) denotes a modified use function for <I> ('1!, e, ... ), 
namely, <p(x) = !al - 1 (so changing X at <p(x) will change <I>X(x)). Pa­

rameters, once assigned a value, retain this value until reassigned. 

Strategies are identified with strings on the tree corresponding to their 

guess about the outcomes of higher-priority strategies and are viewed as 

finite automata described in flow charts. In these flow charts, states are 

denoted by circles, instructions to be executed by rectangles, and decisions 

to be made by diamonds. To initialize a strategy means to put it into 

state init and to set its restraint to zero. A strategy is initialized at stage 

0 and whenever specified later. At a stage when a strategy is allowed to 

act, it will proceed to the next state along the arrows and according to 

6 



whether the statements in the diamonds are true (y) or false (n). Along 

the way, it will execute the instructions. Half-circles denote points in 

the diagram where a strategy starts from through the action of another 

strategy. Sometimes, parts of a flow chart are shared, the arrows are then 

labeled i and ii. The strategy control decides which strategy can act when. 

For some further background on 0111-priority arguments, we refer to Soare 

([Sota] or [So85]). 

§3. DEEP DEGREES 

Bickford and Mills defined the notion of a deep degree: 

DEFINITION. A recursively enumerable degree w is deep if for all recur­

sively enumerable degrees a, 

(1) a'=(auw)'. 

They raised the question of whether a nonrecursive deep degree exists. 

THEOREM. The only deep recursively enumerable degree is the recursive 

degree. 

PROOF: For each recursively enumerable set W, we have to construct a 

recursively enumerable set A such that 

(2) R : w <T 0 v A' <T (A ED W)'. 

Let us first show that A cannot be built uniformly in W. Suppose there 

is a recursive function f such that for all e, 

(3) We <T 0 V Wf(e) <T (WJ(e) ED W.)'. 

7 



We will show that there is a recursive function g such that for all e 

(4A) (We EB Wg(e))' -r w:, 
(4B) (We <r 0' ==? Wg(e) "tr We) &(We =r 0' ==? Wg(e) -r 0'). 

Now pick a fixed point eo for gf by the Recursion Theorem. Then 

By our assumption (3) on f (which was supposed to pick a counterex­

ample to We 0 deep), We 0 has to be recursive. Therefore, Wgf(eo) is also 

recursive. This contradicts our claim ( 4) about g (which is supposed to 

build nonrecursive sets). 

The proof of (4) is a simple infinite injury argument. For given W = W0 

we have to uniformly build A = Wg(e)· To satisfy (WEB A)' <r W', we 

use the Sacks preservation strategy (as in Sacks [Sa63a]); it preserves all 

possible computations to keep (WEB A)' down; its restraint drops on W­

true stages. In the attempt to satisfy A "tr W, we use the Sacks coding 

strategy, trying to code K into A (as in Sacks [Sa64]). Note that this 

strategy makes A complete if W is complete. 

The Requirements and the Basic Module. Fix a recursively enu­

merable set W. We show (2) by building a functional r such that for all 

iJ!' lims rA$W (-' 8) is not equal to limv wA(-' v). The construction of the 

counterexample to W's being deep is not uniform. We will build a pair 

(A, r) consisting of a recursively enumerable set A and a functional r, and 
A A 

a sequence {(Aw, rill) }Ill functional of such pairs such that if A, r, and iJ!o 

do not satisfy the above inequality, then (All!0 ,f'lll0 ) will be the desired 

8 



counterexample satisfying (2). The requiren1ents will thus be as follows 

(for all pairs of functionals (w, q-,)): 

Rw q, : w <T 0 v limv wA(-, v) i= lims rAmW (-, s) , 

(6) V limv w.Aw (-, v) i= Iims f'~wmW (-, s ). 

Once we have shown that W <T 0 through one strategy, the requirements 

of lower priority need not be satisfied. (We will suppress the index W on 

Aw and rw.) 

The basic idea for the proof is to either observe changes in W often 

enough to make r (or r) different from w (or w) in the limit, or else to 

build an implicit recursive functional .6.w q, (or .6., for short) to show that , 
W is recursive via .6.. 

• 
The highest priority here is to make r (and all r) total and to ensure 

•• 
that lim8 fAEllW(-,s) (and all lim.rAEllW(-,s)) exist. 

To ensure the former for r, we will define rAEl)W (x, 8) at stage 8. At stage 

O, we set rAmW (x, 0) = 0 and its use '"Y(x, 0) = 0. If, at a stage s' > s, 

rAE!lW ( x, s) becomes undefined because of a change in A or W, we will 

redefine it by the end of stage s1
• This will either be done explicitly by a 

strategy on the tree, or implicitly at the end of stage s1
, when the strategy 

control sets rAEllW(x,s) = rAEllW(x,s - 1) and '"Y(x,s) = '"Y(x,s -1). We 

ensure that rAE!lW (x, s) is redefined only finitely often by setting the use 

'"Y(x, s) only equal to 0 and at most one other number. 

To ensure that the limit of r exists, we commit ourselves that for all x 

and s, rAEl)W (x, 8) < rAE!lW (x, 8+1) < 1. So actually lims rAEl)W (-, s) will 

be I:fEllW. (There will be one modification later.) We do the same for the 
• rw. 

9 



For some fixed i, the basic module of a strategy (for one Rw q,) first 
' 

tries to make limv WA(i,v) different from lim8 fAEllW(i,s) by changing 

fA$W (i, s) whenever WA( i, v) catches up. If this fails, it tries to show that 

Iimv wA( i, v) does not exist by restraining A while resetting rA$W (i, 8) = 0 

for all s. The latter requires infinitely many numbers to go into W or A. If 

r has to be corrected cofinitely often by putting numbers into A (thus not 

enabling us to show that limv qt A ( i, v) does not exist) then we indirectly 

achieve temporary restraint on W. So the third possibility for the outcome 
. A 

is to combine this strategy with the same strategy for A to show that W 

is recursive. 

The basic module can thus informally be described as follows (call this 

the A-side of the module): 

(i) fix a candidate i (for Jim 8 fA$W(i,s) f: limv qtA(i,v)), 

(ii) start setting fA$W(i,s) = 0 (until (iii) holds) at each stages, 

(iii) wait for wA(i, v0 ) = 0 for some vo (at stage si, say), 

(iv) impose A-restraint on A~ (1/!(i,vo) + 1), 

(v) start setting rA$W(i,s) = 1with7(i,s) > ¢(i,v0 ) (until (ix) or (x) 

holds) at each stage s, 

(vi) wait for wA(i, v1) = 1 for some v1 > v0 (at stage s2 , say), 

(vii) impose A-restraint on A~ (1f!(i,v1) + 1), 

(Notice that we have now put a squeeze on our opponent: either 

W ~ (7(i, s1) + 1) changes, and we can reset rA$W (i, s') = 0 (for 

all s1 > s1) while IT!A(i, -) has a flip (a switch from 0 to 1 back to 

0), which we preserve; or else W~ (7(i,s1) + 1) remains unchanged, 

which constitutes a step towards showing that Wis recursive. In the 

second case, the effect is that we temporarily restrain W until we 

reset rA$W(i,s1
) = 0 (for alls'> s) by changing A below 7(i,s1). 

10 



The key idea is to run a copy of the module (ii)-(vii) (the A-side) 

until this copy restrains W in a similar way. Our strategy threat­

ens to compute W recursively by restraining it by the A-side while 

rAEBW ( i, s) = o, and by the A-side while f'AEBW (?, s) = 0.) 
A A 

(viii) start the A-side at (i) or restart the A-side at (ii) (until (ix) or (x) 

holds), 

(ix) ifW82 ~ (1'(i,s1)+l) #Ws~ (1'(i,s1)+l)atstages,thenimmediately 

reset rAEBW (i, s1) = 0 for s1 < s1 < s, initialize the A-side, and go to 

(ii) (looking for a new Vo greater than the current vi), 

(x) if the A-side reaches (vii), then stop it, put 'l(i, s1) into A, reset 

rAEBW ( i, s1) = 0 for s1 < s1 < s, cancel the part of the A-restraint 

for preserving A~ (¢(i,v0) + 1) and A~ (¢(i,vi) + 1), and restart 

the A-side at (ii). 

We will for this proof tacitly assume that for all x and v, 7/i(x,v) < 
A 

¢(x, v + 1) (and likewise for ¢ ). 

Continuing in this informal way, let us verify that the basic module 

satisfies the requirement. 

The outcomes can be classified as follows: 

(a) finitary: One of the sides is waiting forever at (iii) or (vi) for wA( i, - ) 
A A A 

(or IJ!A(t, -)) to change. Then, if the limit for IJ! (or IJ!) exists at all, 

it must be unequal to the limit of r (or r). 
(b) IJ!-flip: The A-side gets infinitely many W-changes at (ix). Then 

limv IJ!A ( i, v) cannot exist since we ensured infinitely many flips via 

A-restraint. 
A A 

(c) IJ!-flip: The A-side gets infinitely many W-changes at (ix), the A-side 
A A 

only finitely many. Then limv IJ!A(z, v) does not exist. Note that the 

candidate t settles down, and that Jim. rAEBW (i, s) still exists since 

11 



rAEllW ( i, s) is ultimately set to 0 for every s. 

(d) recursive outcome: Both the A- and the A-side get only finitely many 

W-changes at (ix) but both sides change states infinitely often. Then 

we will show that W is recursive. In this case, we will not need any 

other strategies to rule out W's being a nontrivial deep degree. The 

construction need not continue past this point, so we do not put this 

outcome on the tree. 

The full module only requires two minor modifications: 

1) If a strategy a has outcome (b) (or (c)) then the A-restraint (or A.­
restraint, respectively) that a imposes on a weaker strategy fJ below this 

outcome on the tree tends to infinity. So fJ has to be able to injure a in 

some controlled way (explicit injury feature). But notice that a has some 

flexibility in preserving 11!-flips (or q,-flips). For each m, a can afford to 

have its mth flip injured finitely often before preserving it permanently. 

Then a will be able to preserve infinitely many flips, if it encounters in-
• 

finitely many opportunities. fJ may have to put elements into A (or A) 
A A 

in order to reset r (or r), so fJ has to delay setting r (or r) equal to 1 

until it would be allowed to change a's flip and reset its own computation, 

if necessary (delay feature). When fJ assumes infinitely many 11!-flips (or 
A 

11!-fiips) for a, fJ can afford to wait. 

2) Whenever a strategy a puts an element into A (or A), a strategy fJ 
below it may be injured. However, the set that a puts in can be made 

strictly increasing, so fJ (if it is below outcome (b) or (c) of a) will wait 

until the part of A (or A) it wants to work with is cleared of possible 

attention from a (postponement feature). fJ assumes that the numbers 

enumerated by a increase to infinity, so again fJ can afford to wait. 

12 



pick new i ES,,, let v? = O, define P(a), 
let n = 1, let s0 = s, let r = 0, 
set rA<llW(i,so) = 0, set /(i,so) = 0 

let n = m, let r = if;(i, v~- 1 ), 

initialize A-side, 

waitDJE-------------j (re)set rA<llW(i, s1) = 0, 

y 

let vg = v, let r = if!(i, vi!'), let s 1 = s, 

set rA<llW(i,s1) ~ 1, set /(i,si) = u(n) 

(3v > vg) 

['lJA(i,v) = lj 

let vj = v, let r = if;(i, vj), 

let s2 = s, start up A-side 

set 1(i, s') = 0 for s':::; s 

let r = if;(i, vg), 
initialize A-side 

redefine P(a), 

reset rA(l)W(i,s 1) = 0, 
1?-.....:...-1 

set 1(i, s') '~ 0 for s1 :<; s1 :S s 

put 1(i, s1 ) into A 

y 

r'<1(i,s1) 

·'·( · n-1) let r = '¥ i, v1 

11 

increment n by + 1, 

initialize A-side 

Wcliange 

Diagram 1. The A-side 



pick new f E S,,' let v? = o, 
let n = 1, let 80 = s, let r = O, 

set f'A$W (i, so) = 0, set "y(i! so) = 0 

waitO 

(3v > v~-l) 

[itA(f, v) = O] 

y 

let v~ = v, let r = ~(i, v~), let 81 = s, 

set f'A$W(f, si)~ 1, set ')'(i, si) = u(n) 

let v? = v, let f = ~(i, v?), 
let 82 = s, start up A-side 

y 

let n = m, let r = ~(f, v~- 1 ), 
(re)set f'A$W (f, s') = O, 

set ')'(i, s') = 0 for s' ::; s 

. let f = ~(f, v~) 

injfnit 

Y A-side 
'------< 

in hold 

y 

redefine P( a), reset f'A$W (f, s') = O, 

set ')'(f, s') = 0 for 81 ::; s' ::; s 

ii 

increment n by +l 

Diagram 2. The A-side Wc11ange 



The Full Construction. We will first describe the tree of strategies, 

then the full module for each strategy, and finally the strategy control, 

which supervises the interaction between the strategies. 

Let A= {flip <A fflp <A fin} be the set of outcomes. Notice that these 

outcomes correspond to the outcomes (b), ( c ), and (a), respectively, of the 

basic module above, that we collapsed all finitary outcomes into one, and 

that outcome (d) of the basic module will not be put on the tree since 

then this one strategy will satisfy the overall requirement (2). Now let 

T = A <w be the tree of strategies. Fix an effective 1-1 correspondence 

between all requirements R\f! q, and the levels of the tree (sets of nodes 
' 

of equal length). Let each strategy work on the requirement of its level. 

Also effectively associate each strategy with an infinite recursive set of 

integers Sa = Sa (such that UaET Sa = w), and let a work with pairs 
' (i, t) E Sa x Sa. 

' The A and A-sides of a strategy a's full module proceed as described in 

Diagrams 1 and 2, respectively. 

In general, parameters without hats refer to the A-side, parameters 
' with hats refer to the A-side of the module. We assume that 7, the 

use of r, is computed separately on A and w, so rAE!lW ( x, 8) 1 implies 

rA~(l(x,s)+l)EBW~(l(x,s)+l) ( x, 8 ) 1. 

The parameters i, n, r, and vj (for j = 0, 1; k E w) are defined in the 

flow chart and roughly denote the candidate for an inequality at which a 

is trying to establish lim8 fAEllW(i,s) =f- limv IJ!A(i,v), the number of the 

IJ!-flip that a is trying to achieve now, the A-restraint a imposes, and the 

opponent's "stage" v at which he establishes IJ!A( i, v) = j for the kth time. 

The current stage is denoted by s. To initial~ze a means to put both sides 

into init and to set the restraints to zero, to initialize the A-side means to 

15 



do this for the A-side only. 

The following parameters referred to in the diagrams are defined in the 

text: 

The A-side respects A-restraint r1 = max{ r(/3) I /3A(fflp) C a}, the 

A-restraint imposed by strategies that a assumes will get finitely many 
A 

W-flips and infinitely many \Ii-flips. Note that a can afford to do so since 

it assumes that r1 has a finite limit on the set of stages when it acts. 

To organize the delay properly, the module defines P(a) and P(a) 

(whenever indicated in the diagram) by setting it to a number greater 

than all current values of P(a) (or P(a)) for any a E T. Intuitively, a 

cannot injure the first P(a) many IT!-fiips or the first P(a) many W-flips 

of stronger strategies. 

We define u(n) (the assigned use for 'l(i, s1)) to be the least y E Sex 

greater than all of the following: 

(i) 1/J ( i, v0); 
(ii) all previous values of the parameter 'l(i, st); 

(iii) max{ r(/3) I /3A(flip) <La}; and 

(iv) 1/;13(i13, vi,1ex)) for all /3 with /3A(flip) Ca. 

(Here, r(/3) is the A-restraint imposed by j3. Notice that for f3 with 

/3A(flip) C a, a observes only the part of the A-restraint imposed by 

/3 that it is not allowed to injure.) 

Likewise, u(n) (the assigned use for ')'('i,81)) is the least y E Sex greater 

than all of the following: 
A A 

(i) 1/J('i, v()); 

(ii) all previous values of the parameter ')'('i, 81); 

(iii) r(/3) for all be with /3A(fflp) <La associated with the same IT! (and 

16 



A 

thus A); and 

(iv) ~13(%13, vf,1a)) for all fl with flA (filp) C o: associated with the same Ill 
A 

(and thus A). 

(Notice that We will have r(fl) = 0 for fl with flA (flip) C 0: whenever 0: 

acts since (J's A-side will just have been initialized, so o: need not consider 

the A-restraint of these fl.) 

This ends the description of the full module of an individual strategy. 

We will now describe the strategy control. 

At stage O, the strategy control will set all parameters to 0 or 0 (except 

rA$W (x, s) and "Y(x, s) for s > 0 and their counterparts with hats). 

At each stage s > O, the strategy control will perform the following three 

steps: 

1) It will let each strategy o: whose A-side (or A-side) is in hold (or hold) 

go to Wchange (or Wchange) and on to the next state if W8 ~ ( "Y(i, si)+ 1) i­
W82 ~ ("Y(i,si)+l) (or W8 ~ ('°)'(i,81)+1) i- W,,2 ~ (-1(%,81)+1), respectively). 

(Notice that this action does not interfere with any other strategies.) 

2) At each substage t < s of stage s, some strategy o: (with lo:I = t) will 

be eligible to act. Strategy 0 will be eligible to act at substage O; if o: acted 

at substage t, then o:A(a) will be eligible to act at substage t + 1 where a 

is the temporary outcome of o: (as defined below). 

3) At the end of stage s, the strategy control will define rA$W (x, s') 

(and all f'A$W (x, s')) for all x E w and all s1 < s to ensure that rA$W and 
A A 

fA$W are total (as outlined before the description of the basic module). 

The rest of this section is devoted to describing in detail the action at 

substage t under step 2. At each substage t, the strategy control will first 

check if the strategy o: that is eligible to act is delayed or postponed. o: 

is delayed on the A-side if there is some fl with flA (flip) C o: such that 

17 



n(/3) < P(a) where n(/3) is /J's parameter n (the number of the \.!!-flip that 

f3 is trying to achieve now). Likewise, a is delayed on the A-side if there 
A 

is some f3 with /JA (filp) C a and associated with the same W (and thus A) 
A 

such that n(/3) < P(a) where n(/3) is defined analogously. a is postponed 

on the A-side if there is some f3 with /3A (flip) C a or /3A (filp) C a such 

that if a acted now it would measure (in a decision), or restrain, A at or 

above ry(i(/3), s1(/3)) (and thus might be injured later by this /3). Likewise, 

a is postponed on the A-side if there is some f3 with /3A (flip) C a or 

/]A (filp) C a associated with the same W (and thus A) such that if a acted 

now it would measure or restrain A at or above ')'(t(/3),81(/3)). 

If a is delayed or postponed then the strategy control will initialize all 

f3 >La and start the next substage with a A (fin). Otherwise, we let a act 

according to the flow chart on the A-side if that side is not in hold; and on 

the A-side otherwise. (Notice that only one side of a will act unless the 

flow chart explicitly starts up the action on the other side in which case 

both sides will act.) 

If there is some /3 with /3A(flip) C a and a puts some x < r(/3) into A, 

then f3 has been injured explicitly by a on the A-side as x's entering A 

changes an A-computation that f3 was preserving. In this case, each such 

f3 will perform injury action on the A-side as follows: 

(i) if now rAE!lW ( i, s1) != 1 then f3 goes to inj and on to the next state; 

(ii) otherwise, /3 goes to inJmp where mp = min{ m I x < 'lf;p(ip, vl,',s)} 

(the number of the least injured Ill-flip) and on to the next state. 

(In the first case, we have x > ry(i, s1), and so rAE!lW (i, s1) cannot (and 

need not) be reset to 0. In this case, /J's A-side must be in hold, and so 

/3 just gives up the first half of the Ill-flip it is currently trying to achieve. 

In the second case, f3 goes back to the situation before it established the 

18 



mth w-flip.) 

Likewise, if there is some (:J with (:JA (fl'ip) C a associated with the same 
A A 

w and (thus A) such that a put some x < r((:J) into A, then (:J has been 
A 

injured explicitly on the A-side, and we let (:J perform the corresponding 
A 

injury action on the A-side (using the counterparts of the above with hats). 

Furthermore, the strategy control determines the temporary outcome a 

of a. It will be: 

(i) flip, if the A-side of a went from flip to waitO; 

(ii) filp, if the A-side of a went from hold to waitO and, since the last 

time the A-side was in hold, the A-side went from fflp to wait6 and 

has not been initialized or injured since (this is the time when a's 

A-restraint is low); and 

(iii) fin, otherwise. 

Finally, the strategy control will initialize all "I > L aA (a); if either side 

of a changed states, it will also initialize all "I :J aA (fin). 

The Verification. Let 68 , the recursive approximation to the true 

path, be the string of strategies that are eligible to act at stage s. 

Let f = lim inf8 68 be the true path, and let lo = U{ a E f I 

a initialized at most finitely often} be the correct part of the true path 

(which is possibly only a finite initial segment of /). Intuitively, /o will 

be finite if we discover at that finite level of the tree that W is recursive. 

Otherwise, f = fa. 

LEMMA 1 (INJURY FROM BELOW LEMMA). If a < (:J then at any 

stage s, (:J injures a only explicitly (i.e., (:J injures a only if aA (flip) C (:J 

or aA(filp) C (:J, and a performs injury action), and (:J does not injure a's 
A A 

first P(a) {or P(a)) many \!!-flips (or w-fiips). 

19 



PROOF: f3 can only injure a: on the A-side at stage s if f3 C 80 , i.e., 

if f3 acts at stage s. At that stage, f3 will put its 'Y(i, s1) into A. This 

'Y(i, s1) was defined at stage s1 < s, and at that time 'Y(i, s1) > r81 (a:) if 

a:A(f/.ip) <L /3, and 'Y(i,s1) > 1/ia(ia,vi,~))[s1] if a:A(f/.ip) C (3. 

In the first case, a: has increased its restraint since stage s1, say, at 

stage s1. If a: <L f3 or a:~(fin) C f3 then f3 was initialized and 'Y(i, s1) 

was cancelled at stage s1
• If a:A (flip) C f3 then f3 explicitly respects a:'s 

restraint. 

On the other hand, if a:A (Hip) C f3 then a: will perform injury action if 

f3 injures a:. Furthermore, at stage si, 'Y(3(i(3, s1)[s1] > 1/ia(ia, vi,~))[s1]. 
Now, no strategy fi with fi <L f3 or PA(nn) C f3 can injure a:'s first 

P(/3) many W-flips without f3 being initialized. If some P with PA (flip) C 

f3 or PA (filp) C f3 injures a:'s first P(/3) many W-flips then fi puts its 

'Yf3(if3,s1,f3) into A. But then f3 would have been postponed with defining 

its 'Y(i, s1) until after P's injury to a:. Any p with p > L f3 or p :::> /3A (fin) 

is initialized at stage s1 and therefore P(P) > P(/3) and P cannot injure 

a:'s first P(/3) many w-flips. No p with p :::> f3A (flip) or p :::> f3A (filp) 

can injure a:'s first P(/3) many W-flips between stage s 1 and stage s, or 

else it would also injure /3, and 'Y(3(i(3, s1,(3) would be redefined. Therefore, 

1/ia(ia, v[~l)[s1] = 1/ia(ia, v[~l)[s], and so /3 will not injure a:'s first P(/3) 
' ' 

many flips. 

The proof for the A-side is the same except that we note that f3 cannot 
A A 

injure a: on the A-side if a:A (flip) C f3 since the A-side of a: has just been 

initialized and a:'s A-restraint is zero whenever f3 acts. 

LEMMA 2 (INJURY FROM ABOVE LEMMA). If a: C f3 then at any stage 

s, a: will not injure f3 by putting x < r(/3) into A or x < r(/3) into A. 

20 



PROOF: Note that any (3::) a~(fin) will be initialized if a puts any num., 

ber into A or A. If (3 ::) a~ (flip) or (3 ::) a~ (ffip) then (3 will be postponed 

until a cannot injure it. <> 

Notice the unusual feature that for a C (3, the weaker (3 may injure the 

stronger a infinitely often (in a controlled way), but that (3 is too smart 

to be injured by a. 

LEMMA 3 (NUMBER OF FLIPS LEMMA). If a C fo and a~ (flip) C f 

then lims n(a) = oo. If a c fo and a~ (ffip) c f then lims n(a) = oo and 

lim8 n( a) < oo exists. 

PROOF: Assume that a is never initialized after stage s1
• Then n(a) is 

increased each time aA(flip) C 158 • Furthermore, for each n, n(a) can be 

decreased to n through explicit injury only a finite number of times by 

Lemma 1 and the fact that the P(f3) increase. Therefore, lim8 n8 (a) = oo. 

The analogous proof shows that lims n(a) = oo if we also assume that 
• • 

aA(ffip) < 158 for all s > s' since the A-side of a goes from fflp to waitO 

infinitely often and is not initialized after stage s'. On the other hand, 

n(a) can only decrease after stages' (or else we would have a~(flip) C 158 

for some s > s'), so lim8 n( a) < oo exists. <> 
The fact that strategies are allowed to injure higher-priority strategies 

infinitely often seems to prevent A from being low. 

LEMMA 4 (DELAY/POSTPONEMENT LEMMA). If a Cf and both q;A . . . 
and q;A are total, then a is not delayed or postponed at cofinitely many 

a-stages (stages such that a C 88 ). 

PROOF: Suppose for the sake of contradiction that a is always delayed or 

postponed at a-stages after some stage s1
, say. Now any delay is finite since 

lims n(f3) = 00 (lims n(f3) = 00) for each (3 with (JA (flip) c a ((JA (fl1p) c a, 

21 



respectively) by Le1nma 2, but P(a) (or P(a)) is constant after stage s1
• So 

suppose a is always postponed after stage s11 > s1
, say. Since wA and ~A 

are total, their uses settle down. Moreover, the A-restraint of any f3 with 

/3A(flip) C a (and the A-restraint of any f3 with /3A(filp) C a associated 
. A 

with the same W (and thus A)) settles dowh on the a-stages. (For the 

A-restraint of such a f3 use the fact that a is eligible to act only when 

/3's A-restraint is down by the definition of the temporary outcome of f3.) 
Finally, n(/3) (and n(/3)) tends to infinity for these /3, so 'l/!,e(i,e,vi,1"')) (and 

-f,e('i,e, vf.1"'))) settles down for these /3. Therefore, u(n) (and u(n)) settles 

down. But 'l(i(/3), s1(/3)) (and '1-(i(/3), 81(/3))) tends to infinity for any such 

/3, so a will not be postponed eventually. · <> 

LEMMA 5 (CONVERGENCE LEMMA). (i) rAEllW is total, and for all x, 

lim8 rAEllW ( x, 8) exists. 

(ii) For all I]!' t~-vEllW is total, and for all x, Jim. r~-vEllW (x, 8) exists. 

PROOF: It follows immediately from the construction (step 3) that rAEllW 

and all of the r~-vEllW are total. All r~-vEllW have limits since we ensure 
A A El)W A A El)W A w 
r 11/ ( x, s) < r w -v ( x, s + 1) < 1. The same is almost true for r Ell as 

well, except that some strategy a may not be able to reset a computation 

rAEllW (i, s) = 1 on going from hold to waitO if 'l(i, s1) < r'. But for all /3 

with /3A (filp) C a, lim8 n(/3) < oo exists (by Lemma 3), and thus so does 

limsESa r (/3) < 00 where S"' = { t I a c Ot } . So Jim rAEl)W ( i, 8) also exists 

for those i. 

We now analyze the outcomes: 

LEMMA 6 (FINITE OUTCOME LEMMA). Suppose a C fo, both WA and 

~A are total, and eventually neither the A-side nor the A-side changes 

states. Then: 

22 



(i) eventually, the A-side of a stays in waitO or waitl, or the A-side 
A A 

stays in waitO or waitl; and 

(ii} either not limv WA(i,v) lim8 fAEllW(i,s) or not limv q,A(z,v) 

lim8 f'AE!lW (2, s) for the eventual candidates i and i of a. 

PROOF: (i) By the construction and Lemma 4, the A-side can get stuck 

only in waitO, wait1, or hold. If the A-side is stuck in hold then the A-side 
A A 

must be stuck in waitO or waitl. 

(ii) Otherwise, a would leave the states mentioned in (i) by the con-

struction and Lemma 4. 

LEMMA 7 (FLIP OUTCOMES LEMMA). (i) IfaC lo anda~(flip) CI 

then limv wA(i,v) does not exist for the eventual candidate i of a. 

(ii) If a c lo and a A (filp) c f then limv wA(z, v) does not exist for the 

eventual candidate i of a. 

PROOF: By the construction, the candidate i (2) settles down in case (i) 

(case (ii), respectively), and by Lemma 2, n(a) (n(a)) tends to infinity. 

But n(a) - 1 (n(a) - 1) is the number of protected flips from 0 to 1 back 
A A A 

to 0 of wA ( i, - ) ( q_;A (Z, - ) ) , so the limit of W ( \l_i) cannot exist. <> 

LEMMA 8 (RECURSIVE OUTCOME LEMMA). If a = fo is of finite 

length, then W is recursive. 

PROOF: First of all, a A (flip) C f or a A (fl'ip) C f is impossible by the 

way the initialization is arranged; thus aA(fin) C f. So suppose that 

a~(fin) < 88 for all s > s', say. Thus n(a) and n(a) eventually come to 

a finite limit, and by Lemmas 1 and 2, a is never injured after stage s1
• 

Since a A (fin) is initialized infinitely often, a keeps changing states. Both 

sides settle down on candidates i and i after stage s" > s', lim8 7(i, s) = 

lim8 1-(Z, s) = oo, and both these parameters are nondecreasing in s. Also, 

23 



after stage s", both sides always destroy their r- and r-computations, 

and thus W ~ 1(i, s1) does not change while the A-side is in hold, and 
A 

W ~ ')'(%, 81) does not change while the A-side is in hold. Therefore, W is 

recursive. 

Lemma 8 immediately yields Lemma 9: 

LEMMA 9 (INFINITE TRUE PATH LEMMA). If W is not recursive then 

f o is infinite. <> 

Thus, if W is not recursive, then a C f o of each level will satisfy its 

requirement by Lemmas 6 and 7. This concludes the proof of the theorem. 

§4, A "MODERATELY" DEEP DEGREE 

In the construction of the previous section, the jump of A is not con­

trolled. Due to the infinitary outcomes of the strategies influencing A's 

construction there does not seem to be an obvious way to make A low 

whenever W is nonrecursive. In fact, it seems quite conceivable to the 

authors that for some nonrecursive low recursively enumerable degree w, 

auw is low for any low recursively enumerable degree a 2• In the following, 

we will prove a weaker version of this. 

Jockusch (private communication) raised the question whether there is 

a nonrecursive low recursively enumerable degree that does not join with 

any other low recursively enumerable degree to a high degree. We answer 

this question positively (reversing the roles of a and w conforming with 

our convention on names of objects built by us or built by the opponent): 

2 Harrington (unpublished) has recently shown this. 

24 



THEOREM. There is a low recursively enumerable degree a =I 0 such that 

for all low recursively enumerable degrees w, a U w is not high. 

PROOF: We will drop the restriction that a be low, since if a is not low 

choose a 0 < a low which satisfies the theorem. (However, a closer analysis 

shows that our a is already low.) 

We have, for all recursively enumerable sets We, the usual positive re­

quirements for nonrecursiveness: 

(7) Pe : A =I We, 

and, for all recursively enumerable sets W, the requirements: 

(8) • R w : W nonlow or W ffi A nonhigh. 

The Strategy. We have to construct a recursively enumerable set A 

satisfying all requirements. 

The opponent will try to put up a recursively enumerable set W and 

a functional <I> claiming that W is low and <I>WEllA is total and dominates 

all total recursive functions, and thus, by a theorem of Martin [Ma66], 

W ffi A is high. 

We will respond by trying to build a functional r(W,<Ji) witnessing the 

nonlowness of W via lim8 fW,<Ji)(-, s) 1=T 01
• 

If the opponent succeeds in refuting this by furnishing some total recur­

sive function il_i such that lim8 fW,<Ji)(-,s) = limv il_i(-,v) <r 0' then we 

will defeat him by constructing a total recursive function .6.(w,w,w) that is 

not dominated by <I>WEllA. (We will use L\(W,<Ji,w) to try to force changes in 

w to redefine rfw,<Jii·) 

25 



The requirements are thus of the form 

(9) Rw,w,w:<r>We;iAtotal ==i> (iim.r~,w)(-,s)jlimvw(-,v)v 

[~(W,<I>,w) total&(:300j)[~(W,<I>,w)U) > <r>We;iA(j)J]). 

Now fix W and <r> and assume that <r>We;iA is total. Then we will either 

satisfy Rw,<I>,w for all W by the first disjunct, and thus W is nonlow; or we 

will satisfy one Rw,<I>,w by the second disjunct, and therefore W E9 A is not 

high via <r>. (We will suppress the subscripts on r and ~ if they are clear 

from the context.) We assume that Ip, the use of <r>, is computed separately 

on Wand A, so <r>We;iA(x) l implies <r>W~(l"(x)+l)e;iA~(ip(x)+ll(x) l· 

The basic module for Rw,<I>,w consists of a stack of w copies, each denoted 

by Cn, of a simple submodule. Copy Co acts first, each copy Cn+l is started 

by copy Cn, and a copy Cn can be initialized by a copy Cm with m < n. 

Each copy will first try to show that lim.rw(i,s) # limv w(i,v) for its 

candidate i. If W won't let us reset rW ( i, s ), we have indirect restraint on 

W, which, combined with our restraint on A, helps us show that <r>WGlA(i) 

is fixed and less than the ~ (i) defined by us. 

Copy Cn thus proceeds as follows: 

(i) pick a new candidate i (for lim8 rw (i, s) j lim,, l!l(i, v)), 

(ii) pick the least j for which ~ is undefined, 

(iii) start setting rw (i, s) = 0 (until (iv) holds) at each stage s, 

(iv) wait for w(i, v0 ) l= 0 for some v0 and <[>WGlA(j) l (at some stage si, 

say), 

(v) impose A-restraint on A~ (ip(j) + 1), 

(vi) start setting rW (i, s) = 1 with ry(i, s) = 1p(i) (until (vii) or (x) holds) 

at each stage s, 

26 



(vii) if W8 ~ ('P(.i) + 1) =f W81 ~ ('P(j) + 1) then immediately reset 

rw ( i, s') = 0 for s1 < s1 < s, cancel the A-restraint, and go to 

(iii), 

(viii) wait for w(i,v1) = 1 for some v1 > v0 (at some stage s 2, say), 

(ix) set i1(j) > <I>WEllA(j) and start copy Cn+l (with different i and j), 

(Notice that we now have a squeeze on W. If W changes we can 

reset our r while his W has a flip; if W does not change we have 

another witness j towards showing that q>WEllA does not dominate 

L'.1.) 

(x) if w. ~ ('P(j) + 1) =I w.I ~ ('P(j) + 1) then initialize copies Cm (for 

m > n), reset rw (i, s') = 0 for s1 < s' < s, cancel the A-restraint, 

and go to (ii) (looking for a new vo greater than the current v1). 

Here, all copies work on the same A, r, and L'.1. 

To ensure that r is total and that the limits exist, we use the same con­

vention as in the previous section (described just before the basic module). 

We always pick the least j for which L1 is undefined in order to ensure that 

L1 is total if we pick infinitely many J·. 

Let no= liminf8 { n I copy Cn waiting for (iv) or (viii) at stages} (pos­

sibly no = oo ). The possible outcomes of the basic module are as follows: 

(a) no = oo: Then each time a copy acts for the last time, it finds some 

J. such that A (j) > q>WEllA(J') l, and therefore there are infinitely 

many such J
0 

witnessing that W E9 A is not high via <I>. 

(b) no < oo: We distinguish the following cases: 

(b1) copy Cn0 acts finitely often (and therefore so does the whole module): 

Then Cn0 gets stuck at (iv) or (viii), and it is not the case that 

lim. rw (i, s) = limv w(i, v). 

27 



(b2) copy Cno goes infinitely often through (x): Then lirnv w(i, v) does 

not exist where i is the eventual candidate of Cn0 since we force 

infinitely many w-flips. 

(b3) copy Cno goes finitely often through (x), but infinitely often through 

(vii): Then <I>WEllA(i) is not defined for the eventual candidate j of 

Cn
0

, and therefore <I>WEllA is not total. 

There are two problems with putting this module on a tree. Firstly, 

the restraint tends to infinity under outcome (a). But most of all, the 

natural ordering for the outcomes would be of order type w + 2 (namely, 

(b2) for no = 0 < (b3) for no = 0 < (b2) for no = 1 < (b3) for no = 1 < 
· · · < (a) < (b1)), which would be cumbersome to organize on a tree. 

On the other hand, each positive strategy for Pe acts at most once, and 

each copy of the above module can live with finite injury. So we will spread 

out the copies as separate strategies without giving up their coordination 

described above. We will use a linear priority ranking of these strategies 

combined with the method of W-true stages and the "hat trick", so called 

because of its original notation. For this, we tacitly assume that when 

cpWEllA(x)[s- 1] ! and some x < \O(x)[s -1] enters W or A at stages, then 

<I>W$A(x) is undefined at stage s. Call s a W-true stage if some x enters 

W at stage s and W8 ~ x = W ~ x. Then the A-restraint of each copy of a 

strategy has a finite limit on W-true stages. 

The construction will thus "look like" a finite injury argument. However, 

to figure how each requirement Rw:1> w became satisfied will require a 0 111
-, , 

oracle; in fact, it has to since the question of whether W EB A is high via 

dominating functional <I> is Il4-complete and thus the way in which each 

Rw: 1> "' becomes satisfied constitutes a E3-complete statement. , , ,., 

The Full Construction. Fix an effective 1-1 correspondence 

28 



Wchange2 

pick new i E /,,, 
let j =min{ j' I .6.(i') i }, 
let r = 0, let v1 = -1, 
set rw(i,s) = o,_7(i,s) = 0 

reset rw (i, s') = 0, 
set 'Y(i,s') = 0 

for s1 ~ s' ~ s, 

let r = 0 

let j =min{ j' I .6.(j') j }, 
scrap [W, <!>, w, m] form> n 

Diagram 3. Copy Cn 

(3v > vi) 
[w(i, v) = o 11 

<f>W$A (j) l] 

y 

let r = \O(i), 
let Vo = v, 
let SJ = s, 
set rw(i,s) = 1, 
set 'Y( i, s) = \O{i) 

(3v > vo) 

[w(i,v) = 1] 

let v1 = v, let s 2 = s, 

n 

set l::.(j) = <f>W6lA (j) + 1, 

start copy [W,<!>, W,n+ 1] 



( -, -, -, - ) between w and all quadruples (W, il>, if!, n) where W is 

a recursively enumerable set, iI> and if! are functionals, and n is an inte­

ger. (Assume here that always (W,il>,'l!,n) < (W,il>,'l!,n+ 1).) This 

correspondence will yield our priority ranking between strategies. We will 

denote a strategy a by [W, il>, W, n] to specify that a works as the nth copy 

in the basic module for Rw<I> if!· 
' ' 

The r will be common to all strategies with the same W and il>, so fix 

effectively for each a an infinite recursive set of integers Ia such that 

(10) LJ Ia= w 
a= [W, il>, 'l!, n] 

for some \I!, n 

for each pair (W, il>). A will be common to all strategies working on the 

same Rw<r> w· The r and the A are never discarded even when individual 
' ' 

strategies are scrapped. 

The module for a strategy a = [W, il>, W, n] now acts as described in 

Diagram 3. 

Here, vo and v1 are the "stages" at which the opponent establishes 

w(i,v1) = j (for J. = 0,1). The current stage is denoted bys. The A­

restraint imposed by a is denoted by r. To start a means to let it go from 

init to start. To scrap it means to put it into init and to set its restraint 

· to 0. To initialize a = [W, CI>, \I!, n] is to scrap all [W, il>, W, m] for m > n 

and, if n = 0 or [W, il>, w, n - 1] is in hold, to start a. 

At stage O, the strategy control lets Ao = 0, starts all strategies 

[W,il>,w,O], and defines rw(x,O) = 0 with 'l'(x,0) = 0 for all x and all 

wand r. 
30 



At a stage s > O, the strategy control proceeds in three steps: 

1) Action for Pe: If there is some e such that 

(11) As n We,s = 0 &(3x E w[el)[x >max{ r(a) I #a< e} & x E We,s], 

(where r (a) is the restraint imposed by a and #a = ( W, <I>, W, n) is the 

code number of a) then for the least such e, put the least such x into A 

and initialize all a with #a > e. 

2) For each triple (W, <I>, w), do the following: First check whether there 

is a strategy a= [W, <l>, W, nj in waitl or hold such that W8 ~ \O(f) -j. W81 ~ 

\O(i). If so let the least such a go from Wchangel or Wchange2 to waitO 

(depending on whether a was in waitl or hold, respectively). Otherwise 

let the unique [W, <T>, W, n] that is not in init or hold act according to the 

flow chart. 

3) The strategy control (re)defines rW (x, s1) = rW (x, s1 
- 1) for all W 

and r with same use for all x and all s' < s for which r is now undefined. 

The Verification. We proceed in several lemmas: 

LEMMA 1 (CONVERGENCE LEMMA). For each pair (W,<T>), rrw,<l>) is 

total, and for all x, lim. rrw,<l>) (x, s) exists. 

PROOF: I' W ( x, s) is defined at the end of each stage s1 > s (by step 3 of 

the construction). 'l'(x,s) increases at most once, so W-changes can make 

rw ( x, s) undefined at most finitely often. As for the limit, note that for 

all x, s, rw(x,s) < rw(x,s+ 1) < 1. (So lim.rw(-,s) is actually El_V.) 

¢> 

LEMMA 2 (FINITE INJURY LEMMA). Action is taken for each Pe at 

most once, and thus each a is scrapped at m~st finitely often under step 1 

of the construction. ¢> 

31 



Define a stage s > 0 to be W -true if W ~ x = W8 ~ x for some x E 

W8 - Ws-1· Let T be the (infinite) set of W-true stages. Note that, by the 

hat trick, 

(12) illWffiA(x)[s] ! &s E T&A8 ~(<p8 (x)+1) =A~ (\Os(x) + 1) 

===} illWffiA(x) ! . 

LEMMA 3 (FINITE RESTRAINT/Pe-STRATEGY LEMMA). For any 

strategy a, limsET r[s] < oo exists. {Thus each Pe is satisfied.) 

PROOF: By Lemma 2, let c;, = [W, ill, W,n] not be scrapped under step l of 

the construction after stages', say. Suppose for some so ET with so > s', 

r[s0] > 0. Then illWffiA(i(,B)) ! at all stages s > s1 for all ,B = [W, ill, w, m] 

- ·· with m < n via W-correct computations, which are also A-correct by the 

A-restraint and our assumption on s'. Thus in this case r[so] = lim8 r[s] < 
oo exists. Otherwise liminf8 r[s] = IimsET r[s] = 0. (/ 

Now we fix W, ill, and Wand distinguish the four possible cases for the 

outcome of the strategies [W, ill, W, n]. 

LEMMA 4 (FINITE OUTCOME LEMMA). Suppose there are only finitely 

many stages at which any of the strategies [W,ill,W,n] (for fixed W, ill, 

and W) changes states. Then it is not the case that lim, rW ( - , s) = 
limv w(-,v). 

PROOF: Let no be the unique n such that c;, = [W, ill, W, n] is eventually . 
not in init or hold. Then c;, must be stuck in waitO or waitl. Therefore 

not lims rw (i, s) = limv w(i, v) for the eventual candidate i of C<. (/ 

LEMMA 5 (FLIP LEMMA). Suppose that for some n, c;, = [W, ill, W, nj is 

scrapped finitely often and goes through Wchange2 infinitely often. Then 

limv W(i,v) does not exist for the eventual candidate i of c;,. 

32 



PROOF: Let a not be scrapped after stage s1
, say. Then the parameters 

v0 and v1 increase to infinity, and each time they increase, w(i, va) = 0 or 

W ( i, vi) = 1 is established. <> 

LEMMA 6 (PARTIAL <I> LEMMA). Suppose that for some n, a 

[W, <l>, W, n] is scrapped finitely often and changes states infinitely often, 

but goes through Wchange2 only finitely often. Then <I>W$A is partial. 

PROOF: Suppose that a is not scrapped or goes through Wchange2 after 

stage s1
, say. Then a from now on always goes through Wchangel with 

the same J
0

, so q>W$A(J
0

) I. <> 

LEMMA 7 (NONDOMINANCE LEMMA). Suppose that, for fixed W, <I>, 

and W, no single [W, <I>, W, n] changes states infinitely often, but that there 

are infinitely many stages at which some [W, <I>, w, n] changes states. Then 

/),, is total and not dominated by <I>W(!)A. {Thus WEB A is not high via <I!) 

PROOF: First of all, /),, is total since we always pick the least i for which /),, 

is currently undefined and since each [W, <I!, W, n] is eventually in hold. But 

each time some [W, <I!, W, n] reaches hold for the last time, b,,(i) > <I>W(!)A(i) 

is established for its current i, and this is pn:served by the A-restraint. <> 

Lemmas 2 and 4 through 7 establish the theorem. <> 

REFERENCES 

[BMta] M. Bickford and C.F. Mills, Lowness properties of r.e. sets, (to appear). 

[Jo85] C. G. Jocksuch, Genericity for recursively enumerable sets, in "Recursion The­

ory Week, Lecture Notes in Mathematics 1141," Ebbinghaus, Miiller and Sacks, eds., 

Springer-Verlag, Berlin, 1985, pp. 203-232. 

[La66] A.H. Lachlan, Lower Bounds for Pai'rs of Recursively Enumerable Degrees, Proc. 

London Math. Soc. 16 (1966), 537-569. 

33 



[Ma66] D.A. Martin, Classes of Recursively Enumerable Sets and Degrees of Unsolv­

ability, Zeitschrift f. math. Logik und Grundlagen d. Math. 12 (1966), 295-310. 

[Ms82] W. Maass, Recursively enumerable generic sets, Jour. Sym. Logic 47 (1982), 

809-823. 

[Sa63a] G.E. Sacks, On the degrees less than 01
, Annals of Mathematics 108 (1963), 

211-231. 

[Sa63b] , Recursive Enumerability and the Jump Operator, Trans. Amer. 

Math. Soc. 108 (1963), 223-239. 

[Sa64] , The Recursively Enumerable Degrees Are Dense, Annals of Math-

ematics 80 (1964), 300-312. 

[Shta] R.A. Shore, A Non-Inversion Theorem for the Jump Operator, Annals of Pure 

and Applied Logic (to appear). 

[So85] R.I. Soare, Tree Arguments in Recursion Theory and the 0111 -Priority Method 

in Recursion Theory, in "Proceedings of Symposia in Pure Mathematics No. 42," 

Amer. Math. Soc., Providence, pp. 53-106. 

[Sota] , "Recursively Enumerable Sets and Degrees," Springer-Verlag, Hei-

delberg (to appear). 

[SS82] R.I. Soare and M. Stob, Relative Recursive Enumerability, in "Proceedings 

of the Herbrand Symposium Logic Colloquium '81," Ed. J. Stern, North Holland, 

Amsterdam, pp. 299-324. 

Yale University, New Haven, CT 06520 

University of Chicago, Chicago, IL 60637 

34 


