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Abstract. We establish that the isomorphism problem for the classes of com-
putable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent

semigroups is Σ1
1-complete, which is as complicated as possible. The method

we use is based on uniform effective interpretations of computable binary re-
lations into computable structures from the corresponding algebraic classes.

The notion of an isomorphism constitutes one of the most important equiva-
lence relations between structures for the same language. In this paper we give new
examples of natural classes of computable algebraic structures for which the isomor-
phism problem is Σ1

1-complete. We follow the general method used by Hirschfeldt,
Khoussainov, Shore, and Slinko [10]: For each of the classes K, we describe an ef-
fective uniform method that transforms a computable binary relation R ⊆ ω2 into
a computable model MR ∈ K so that (ω,R) ∼= (ω, S) is equivalent to MR

∼= MS .
In general, we consider a class K of countable structures which is closed under

isomorphism. We assume the universe of every structure is a subset of ω and
identify each structure with its atomic diagram. Thus, a structure is computable if
its atomic diagram is computable, and its computable index is a number e such that
φe, the e

th partial computable function, is the characteristic function of its atomic
diagram. We write Ae for the structure with a computable index e, provided
that φe describes the atomic diagram of a structure in the given language. We
let I(K) = {i | Ai ∈ K} denote the index set of computable structures in K,
although we typically write Ai ∈ K rather than i ∈ I(K). The following definition
was proposed by Goncharov and Knight in [7]. The isomorphism problem for the
computable structures in K is

{ (i, j ) | Ai,Aj ∈ K & Ai
∼= Aj}.

For a complexity class Γ, we say that a set X is Γ-complete if X is in Γ, and for
all Y in Γ, Y is m-reducible to X.

Various authors have established that the isomorphism problem is Σ1
1-complete

for several well-known classes of computable structures. The proof of the Σ1
1-

completeness of the isomorphism problem for computable abelian p-groups, trees,
Boolean algebras, linear orderings, and for arbitrary structures with at least one
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relation of arity at least 2 can be found in Goncharov and Knight [7]. The proof
for a general case, as well as for structures with a single binary relation, can be
found in Morozov [13, 12]. There are related results of Friedman and Stanley [6],
where the authors established Borel completeness for the classes of countable trees,
linear orderings, and fields of any fixed characteristic. Building upon Friedman’s
and Stanley’s result for fields, Calvert [3] proved that the isomorphism problem
for computable fields of any fixed characteristic, as well as for ordered real closed
fields, is Σ1

1-complete. Downey and Montalbán [5] proved that the isomorphism
problem for computable torsion-free Abelian groups is Σ1

1-complete. On the other
hand, Calvert [3] showed that the isomorphism problem for computable vector
spaces over a fixed infinite computable field, algebraically closed fields of a fixed
characteristic, and Archimedean real closed fields is Π0

3-complete. Calvert, Cenzer,
Harizanov and Morozov [4] showed that the isomorphism problem for computable
equivalence relations is Π0

4-complete.
In this paper we prove the following result, and in addition, we use the same

methods to give a new proof that the isomorphism problem for computable dis-
tributive lattices is Σ1

1-complete.

Theorem 1. For each of the following classes, the isomorphism problem for the
computable structures is Σ1

1-complete: nilpotent rings, 2-step nilpotent groups, and
nilpotent semigroups.

Although we use the same techniques as in [10], our results do not follow from
[10], since there the authors actually give constructions transforming a binary re-
lation R into a structure of the type (MR, ā), where MR ∈ K and ā ∈ M<ω,
and hence establish only the equivalence (ω,R) ∼= (ω, S) ⇔ (MR, ā) ∼= (MS , b̄).
However, we need to establish

(ω,R) ∼= (ω, S) ⇔ MR
∼= MS .

That is to say that our results establish definability without parameters, unlike [10].
In fact, a major effort in this paper is to refine and further develop transformations
in [10] so that we are able to eliminate all extra constants that they might introduce.

In each of the first three sections, we present an effective method for a uniform
transformation of a computable binary relation R into a computable structure MR

from a particular class and prove that all extra constants can be eliminated. In
Section 1, we consider nilpotent rings, in Section 2, we consider distributive lattices,
and in Section 3, we consider nilpotent semigroups. These codings are based on
unpublished methods of Rabin and Scott [14].

Because the isomorphism problems for computable linear orders and for com-
putable Boolean algebras are Σ1

1-complete and because linear orders and Boolean
algebras can be construed as distributive lattices, it follows that the corresponding
problem for distributive lattices is Σ1

1-complete. Therefore, the result on distribu-
tive lattices is not new. However, we have included our proof in Section 2 because
the construction method is substantially different from that used in Goncharov and
Knight [7]. The proof in [7] for linear orders uses the Kleene-Brouwer order on
trees and makes use of the nontrivial fact that every Harrison order is isomorphic
to ωCK

1 (1 + η) + α for some computable order α. Goncharov and Knight gave two
proofs for Boolean algebras. The first proof uses the interval algebra of a linear
order to obtain the result for Boolean algebras from the result for linear orders.
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The second proof constructs Boolean algebras directly from trees after some pre-
processing to put the trees in a suitable form.

In Section 4, we prove that the isomorphism problem for computable 2-step
nilpotent groups is Σ1

1-complete using the coding of a field F into a 2-step nilpotent
group H(F ) by Mal’cev [11]. Mal’cev’s coding used two parameters which we need
to remove for our application. Subsequently, the first and fourth authors of this
article developed a more detailed analysis of the connections between F and H(F )
with a group of coauthors in [1]. Therefore, there is some overlap between the
material in Section 4 and in [1], so we will refer to the reader to [1] for the proofs
of some algebraic facts used in our construction.

To conclude the introduction, note the following corollary of Theorem 1. We
write A ∼=h B if there exists a hyperarithmetical isomorphism from A onto B.

Corollary 1. In each of the following classes of structures: nilpotent rings, dis-
tributive lattices, 2-step nilpotent groups, and nilpotent semigroups, we have (1) −
(3):

(1) There are computable structures A and B such that A ∼= B but A ≁=h B.
(2) There exists a computable structure with Scott rank greater than or equal

to ωCK
1 .

(3) There exist a computable structure M with two tuples ā and b̄ of elements
from its domain of equal length such that (M, ā ) ∼= (M, b̄ ) but (M, ā ) ̸∼=h

(M, b̄ ).

Proof. (1) If A ∼= B would imply A ∼=h B for all computable structures A and B,
then

{ (i, j) | Ai
∼= Aj} = { (i, j) | ∃f [(f is hyperarithmetical) ∧ f : Ai

∼= Aj ]}.

This implies that the above set is Π1
1, which is a contradiction.

(2) If all the structures in the class had Scott rank less than ωCK
1 then all pairs

of isomorphic structures would be hyperarithmetically isomorphic (this could be
easily proven using the back-and-forth method and the Scott formulas for tuples as
in Barwise [2]), and we can use the same argument as in (1). This means that the
class K contains a structure of Scott rank at least ωCK

1 .
(3) This follows directly from (2) and Goncharov et al. [8]. □

1. Nilpotent rings

Let R be an arbitrary binary irreflexive and symmetric relation on ω. We will
transform such a computable relation R into a computable ring KR in a uniform
computable way. Moreover, we will have that (KR)

3 is the trivial ring, hence KR is
nilpotent. Let (Ri)i∈ω be a computable enumeration of such computable relations.
Consider the following “disjointness condition” on a binary relation R.

Condition D: For all l, t ∈ ω with l > 0 and 0 ⩽ t ⩽ l2, there exist two
disjoint l-element sets, I0 = {q0, . . . , ql−1} and I1 = {ql, . . . , q2l−1} such
that for every i, j ∈ I0 ∪ I1, if R(i, j) then (i ∈ I0 ⇔ j ∈ I1), and the
cardinality of the set R ∩ (I0 × I1) is t (and so the cardinality of the set
R ∩ ((I0 × I1) ∪ (I1 × I0)) is 2t).

Lemma 1. For every computable binary irreflexive and symmetric relation R, there
exists a uniform effective transformation into a computable binary irreflexive and
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symmetric relation R∗ such that R∗ satisfies Condition D and

(ω,R∗
i )

∼= (ω,R∗
j ) ⇔ (ω,Ri) ∼= (ω,Rj).

Proof. We describe a uniform procedure that given an algorithm recognizing an
irreflexive symmetric relation R ⊆ ω2 constructs a computable binary relation
R∗ ⊆ ω2 that satisfies the condition of the lemma.

We give an idea of the proof while omitting some details. Specifically, we extend
the relation R by attaching to each point v ∈ ω a separate copy of some fixed
computable rigid structure A satisfying Condition D so that every isomorphism
between the two structures R∗

i and R∗
j obtained this way takes ω to ω, and takes

each copy of the structure A we added in our construction to another such copy.
We assume that all copies of A we add are disjoint.

Here is an idea of what such a structure A might look like. We start with a
structure that is depicted in Pic. 1. Here, the bold dots denote elements of this
structure and the lines between them represent a binary symmetric relation.
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Pic. 1. The structure A. Initial stage.

To complete the construction of A, we just add new lines joining some elements
ui and dk so that we satisfy Condition D and still make our relation computable.
Thus, the desired elements qn in Condition D can be selected among these ui and
dk, respectively.

Next, we extend R to R∗ by attaching to each element v ∈ ω a new computable
copy Av of A by identifying this v and the element marked ∗ in the picture. Recall
that we assume that all structures Av are pairwise disjoint. Moreover, we have
ω ∩ Av = {v}. Thus, we have extended the initial relation R by adding new
elements and lines between them to obtain a new relation R∗. We can easily see
that all isomorphisms between structures of the type R∗ preserve structures of the
type Av, and that the conditions of the lemma are satisfied. We leave the remaining
details to the reader. □

Hence, we will assume that the computable irreflexive symmetric relation R is
chosen so that it satisfies Condition D.

Fix distinct elements a, b, c0, c1, . . . and let A = {a, b, c0, c1, . . .}. For an arbitrary
binary relation R ⊆ ω2, define a commutative ring KR, the elements of which are
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formal linear expressions of the form ma+ nb+
∑

i∈I zici, where m,n, zi ∈ Z, and
the commutative multiplication operation satisfies the following conditions:

(∀x)[ax = bx = 0] and cicj =

 b, if R(i, j),
a, if i = j,
0, otherwise.

We can easily see that for all x, y, z ∈ KR we have: (xy)z = x(yz) = 0. This implies
that KR is an associative and nilpotent ring.

Our goal is to prove that for any two relations R and S satisfying Condition D,
the isomorphism KR

∼= KS is equivalent to (ω,R) ∼= (ω, S). The first step is to
establish that the set {b,−b} is definable in KR.

Lemma 2. Let l > 0 and t be such that 0 ⩽ t ⩽ l2. Every element of the form
2la± 2tb is a square in KR.

Proof. We will use Condition D for l and t. Let I0 and I1 be as in the definition
of Condition D, and let I = I0 ∪ I1. Hence the cardinality of the set R ∩ I2 is 2t.
Assign the coefficients zi = −1 to all members of I0, and the coefficients zi = 1 to
all members of I1. Now,(∑

i∈I

zici

)2

= 2la+
∑

i,j∈I∧R(i,j)

(−1)b = 2la− 2tb.

If we set all coefficients to zi = 1, we obtain(∑
i∈I

zici

)2

= 2la+
∑

i,j∈I∧R(i,j)

b = 2la+ 2tb.

This completes the proof. □

Let d ∈ KR, d ̸= 0. We call the family

{y | (∃r, s ∈ Z)(r2 + s2 ̸= 0 & rd = sy)} − {0}
the direction of d and denote it by ⟨d⟩.

Note the following:

(1) For every k ̸= 0, we have ⟨d⟩ = ⟨kd⟩.
(2) For every d ∈ KR − {0}, the direction ⟨d⟩ is definable by the infinitary

formula φ(y, d) :

(y ̸= 0) ∧
∨

r,s∈Z&r2+s2 ̸=0

(rd = sy).

Lemma 3. If m ̸= 0, then the direction ⟨ma+ nb⟩ contains a nontrivial square.

Proof. Without loss of generality, assume that n ⩾ 0. Take an integer p > 0 so that
pn ⩽ (pm)2. By Lemma 2, the element 2pma+ 2pnb ∈ ⟨ma+ nb⟩ is a square. □

Lemma 4. The direction ⟨b⟩ contains no nontrivial squares.

Proof. Take an arbitrary element x = ma+ nb+
∑

i∈I zici and consider its square

x2 =

(
ma+ nb+

∑
i∈I

zici

)2

=

(∑
i∈I

zici

)2

=
∑
i∈I

z2i a+
∑

i,j∈I∧R(i,j)

zizjb. (1)



6 HARIZANOV, LEMPP, MCCOY, MOROZOV, AND SOLOMON

Hence, it follows that if x2 ̸= 0, then x2 has a nontrivial coefficient for a. Hence x2

does not belong to ⟨b⟩. □

Lemma 5. Let K2
R be a subring in KR generated by squares. Then b is defined in

KR, up to a nonzero coefficient from Z, by the following condition U(x):
x ̸= 0, x ∈ K2

R, and ⟨x⟩ is the unique direction that contains no nontrivial
squares.

Proof. Of course, K2
R is definable by a computable infinitary formula. Since all

squares are linear combinations of a and b, every element they generate can also be
presented in this form. It follows from Lemma 2 that 2b ∈ K2

R. Also, ⟨2b⟩ = ⟨b⟩.
By Lemma 3 and Lemma 4, ⟨b⟩ is the only direction of an element in K2

R which
contains no nontrivial square. □

The direction ⟨b⟩ is definable, and the property (∀y ∈ ⟨b⟩)[
∨

m∈Z(y = mx)]
defines the set {b,−b}. Hence the set {b,−b} is also definable in KR by some
computable infinitary formula (which can easily be written).

The next task is to distinguish the element a. It follows from (1) in the proof of
Lemma 4 that a is the only square element x such that for all m ∈ Z, x +mb is
not divisible by any natural number greater than 1. Since ±b is definable in KR,
a is definable in KR by a computable infinitary formula expressing the following
property:

∃y(x = y2) &
∧

m∈Z&n>1 ∀u(nu ̸= x+mb).

Thus, we have established the following

Lemma 6. The element b is definable, up to the coefficient ±1, in KR by an
infinitary computable formula. The element a is definable in KR by an infinitary
computable formula. □

Unfortunately, it is impossible to define the elements ci, although it is possible
to distinguish them up to some element of the form ma+nb. This follows from the
following two lemmas.

Lemma 7. Assume that (mi)i∈ω and (ni)i∈ω are sequences of integers. Then the
linear extension of the mapping given by

a 7→ a, b 7→ b, ci 7→ ci +mia+ nib

is an automorphism of KR. Thus, the family {ci | i ∈ ω} cannot be defined within
KR.

Proof. This is a routine check. □

Lemma 8. We have that x2 = a if and only if x = ±ci +ma+ nb for some i ∈ ω
and m,n ∈ Z.

Proof. It follows from (1) in the proof of Lemma 4. □

Lemma 9. For any relations Ri0 and Ri1 satisfying Condition D, we have that

KRi0

∼= KRi1
⇔ (ω,Ri0)

∼= (ω,Ri1).

Proof. The conclusion follows from how we recognize the elements ±ci, up to some
ma + nb, in KR for R ∈ {Ri0 , Ri1}. The property that elements of the form
±ci+ma+nb contain the same element ci is equivalent to the statement that their
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product equals ±a. The binary relations are definable from the ring structure by
the fact that

R(i, j) ⇔ (±ci +ma+ nb)(±cj +m′a+ n′b) ∈ {b,−b}. □

It remains to note that we can construct, uniformly in i, a computable structure
isomorphic to KRi

in order to establish the following

Theorem 2. The isomorphism problem for computable nilpotent rings is Σ1
1-com-

plete.

Remark. The same result can be obtained for rings with units. To do so,
consider the rings K1

R, the elements of which are the formal expressions

k +ma+ nb+
∑
i∈I

zici,

where k,m, n ∈ Z. We impose the same rules on a, b, and the ci as before. The
subring KR of K1

R can be defined within K1
R by the formula

x3 = 0.

Then we can use the above results.

2. Distributive lattices

We will now focus on the computable isomorphism problem for distributive lat-
tices by transforming a binary irreflexive and symmetric relation into a distributive
lattice. The idea of our proof is partly contained in an unpublished manuscript
by Rabin and Scott [14]. Consider a set S = A ∪ B, where A = {ai | i ∈ ω}
and B = {bi | i ∈ ω} are disjoint sets of distinct elements ai and bi, respectively.
Partition B into infinite sets Bx,y for a pair of different x, y ∈ ω so that the relation
{(x, y, n) | bn ∈ Bx,y} is computable, and the following conditions are satisfied:

B =
⋃

x,y∈ω& x ̸=y Bx,y,

{x, y} ≠ {z, t} ⇒ Bx,y ∩Bz,t = ∅,

Bx,y = Bz,t ⇔ {x, y} = {z, t}.
Let R be a given infinite binary irreflexive and symmetric relation on ω. Without
loss of generality, we may assume that the domain of R contains at least three
elements. Define a lattice LR as the lattice of subsets of A ∪ B generated by the
sets:

A,

{x} for all x ∈ A ∪B,

ux,y =def {ax, ay} ∪Bx,y for all x, y such that R(x, y).

Since the operations of this lattice are the usual set-theoretic intersection and union,
the lattice is distributive.

We will now show how to construct for a given computable relation R, a com-
putable isomorphic copy of LR. Notice first that every element of LR is a finite
union of intersections of generators. By examining all possible intersections, we
conclude that they can only be of the following types: A, finite subsets of A ∪ B
and ux,y. Thus every element of LR can be represented as the union of a finite
family of one-element sets, some sets ux,y, and possibly the set A. By omitting
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one-element sets that are contained in other sets in a union like this one, we obtain
the unique “canonical representation”of elements. Thus, it is possible to effectively
reduce every representation to a canonical one. Therefore, given a computable re-
lation R, we can construct, in a uniform effective manner, a computable lattice
isomorphic to LR.

We now show that the relation R can be recovered from LR. As usual, we call
the minimal nonzero elements atoms. In this case, atoms are exactly one-element
sets. Atoms can be distinguished by the following formula

at (x) = ∃!y [y ̸= x ∧ y ⩽ x].

We denote the least element by 0.

Lemma 10. There exists a first-order formula, which in every LR defines elements
that are nonzero unions of possibly some sets um,n and possibly A.

Proof. Consider the formula Q(x) which states:

x ̸= 0, and for each atom y ⩽ x, there is no least upper bound for
the family {z ⩽ x | z ∩ y = 0}.

The conclusion follows from the description of the elements of LR. □

Lemma 11. There exists a formula which defines A in every lattice LR.

Proof. Let the formula Q(x) be as in the proof of Lemma 10. Let Q∗(x) be the
formula which defines the minimal elements satisfying the formula Q(x).

Since the domain of R contains at least three elements, the element A can be
defined by the formula that asserts

Q∗(x) and for each y ̸= x such that Q∗(y), the element x ∩ y is
greater than exactly two atoms. □

Given Lemma 11, we can use A in further formulas.

Lemma 12. For all infinite Ri, Rj ⊆ ω2, the following equivalence holds:

LRi
∼= LRj ⇔ (ω,Ri) ∼= (ω,Rj).

Proof. To prove the statement, it suffices to establish that R is always definable
from LR. Indeed, R is isomorphic to the relation defined by the formula ψR(x, y) :

x, y ⩽ A ∧ x ̸= y ∧ ∃u [Q∗(u) ∧ u ̸= A ∧ x, y ⩽ u]. □

Since the computable isomorphism problem for infinite binary irreflexive and
symmetric relations on ω is Σ1

1-complete, we have proved the following theorem.

Theorem 3 (Goncharov and Knight). The computable isomorphism problem for
computable distributive lattices is Σ1

1-complete.

3. Nilpotent semigroups

We follow the same pattern as in Section 2. The reasoning is essentially the
same, but the construction is much easier. We will outline the transformation and
the proof.

Assume that an irreflexive and symmetric relation R ⊆ ω2 is given. The set of
elements of the semigroup SR is

{0, b} ∪ {ci | i ∈ ω}.
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These elements will form a commutative semigroup by satisfying the following mul-
tiplication rules:

cicj =

{
b, if R(i, j),
0, if ¬R(i, j),
bx = 0,

0x = 0 .

We note that every x ∈ SR satisfies x3 = 0. Thus, 0 is definable, and b is
definable as the only element x ̸= 0 that is a product. Moreover, the semigroup SR

is nilpotent. We now sketch an idea how to recover R from SR. The domain of the
relation will be {ci | i ∈ ω} = SR − {0, b}. The relation {(x, y) | xy = b} on this
domain is isomorphic to R. Thus, SRi0

∼= SRi1
is equivalent to (ω,Ri0)

∼= (ω,Ri1).
Hence we have the following result.

Theorem 4. The isomorphism problem for computable nilpotent semigroups is Σ1
1-

complete.

4. 2-step nilpotent groups

Our approach in this section is somewhat different. We modify Mal’cev’s cod-
ing of fields into 2-step nilpotent groups to obtain a computable transformation
without parameters that preserves isomorphisms. Since the isomorphism problem
for computable fields of any fixed characteristic is Σ1

1-complete, it follows that the
isomorphism problem for computable 2-step nilpotent groups is Σ1

1-complete.
For a field F , let H(F ) denote the multiplicative group of matrices

h(a, b, c) =

 1 a b
0 1 c
0 0 1

 ,

where a, b, c ∈ F . These groups are called Heisenberg groups and were studied by
Mal’cev [11], who established some of their properties.

It is straightforward to check that H(F ) is a 2-step nilpotent group with center
Z(H(F )) consisting of elements of the form h(0, 0, x). The field addition is con-
nected to the group multiplication by h(0, 0, α) ·h(0, 0, β) = h(0, 0, α+β). Mal’cev
showed how to recover the field multiplication using parameters for the noncom-
muting elements h(1, 0, 0) and h(0, 1, 0). To remove the use of these parameters,
we show they can be replaced by any pair of noncommuting elements.

A direct calculation shows that

[h(a0, b0, c0), h(a1, b1, c1)] = h

(
0, 0,

∣∣∣∣ a0 a1
b0 b1

∣∣∣∣) .
Therefore, [h(a0, b0, c0), h(a1, b1, c1)] ̸= 1 if and only if

∣∣∣∣ a0 a1
b0 b1

∣∣∣∣ ̸= 0 and for any

(a0, b0) ̸= (0, 0),

[h(a0, b0, c0), h(a1, b1, c1)] = 1 ⇔ ∃α
([

a1
b1

]
= α ·

[
a0
b0

])
.

The following lemma is the main technical tool to show that we can recover the
field multiplication in H(F ) using any pair of noncommuting elements. We refer
the reader to [1, Lemma 2.2] for a proof of this result.
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Lemma 13. Let w0 = h(a0, b0, c0) and w1 = h(a1, b1, c1) be such that [w0, w1] ̸= 1.

Let D =

∣∣∣∣ a0 a1
b0 b1

∣∣∣∣, x = h(0, 0, α · D), y = h(0, 0, β · D) and z = h(0, 0, γ · D).

Then

α · β = γ ⇔ ∃x′∃y′ ([x′, w0] = [y′, w1] = 1 ∧ (2)

[w0, y
′] = y ∧ [x′, w1] = x ∧ z = [x′, y′]).

Theorem 5 (Mal’cev, Morozov). Assume F0 and F1 are fields such that H(F0) ∼=
H(F1). Then F0

∼= F1.

Proof. Fix H(F0) ∼= H(F1). Let w0, w1 ∈ H(F0) be any pair of noncommuting
elements. (Note that such elements always exist, for instance Mal’cev’s parameters
w0 = h(0, 1, 0) and w1 = h(1, 0, 0) are noncommuting.) Define a model

F (H(F0), w0, w1) = (Z(H(F0)),⊕w0,w1 ,⊙w0,w1)

on the center Z(H(F0)) with the operations ⊕w0,w1 and ⊙w0,w1 defined by

x⊕w0,w1 y = x · y
x⊙w0,w1

y = z ⇔ ∃x′∃y′ ([x′, w0] = [y′, w1] = 1∧
∧ [w0, y

′] = y ∧ [x′, w1] = x ∧ z = [x′, y′]).

Let D be as in Lemma 13. The mapping φ0(α) = h(0, 0, α ·D) defines an isomor-
phism from F0 onto F (H(F0), w0, w1).

Let ψ : H(F0) → H(F1) be a group isomorphism and let vi = ψ(wi) for i < 2.
The elements v0 and v1 are noncommuting, so as above, we have an isomorphism
φ1 : F1 → F (H(F1), v0, v1). Clearly, ψ ↾ Z(H(F0)) is a field isomorphism from
F (H(F0), w0, w1) onto F (H(F1), v0, v1). Therefore, φ

−1
1 ◦ψ ◦φ0 is an isomorphism

from F0 onto F1. □

Now we are ready to prove Σ1
1-completeness of the isomorphism problem for com-

putable groups isomorphic to H(F ). For every computable field, we can uniformly
effectively construct a computable group GF isomorphic to H(F ). By Theorem 5,
the condition GFi

∼= GFj is equivalent to Fi
∼= Fj , and, since the isomorphism

problem for computable fields of a fixed characteristic is Σ1
1-complete, we have our

final theorem.

Theorem 6. The isomorphism problem for computable 2-step nilpotent groups is
Σ1

1-complete.
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