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Abstract. We study the notion of computable categoricity of computable

structures, comparing it especially to the notion of relative computable cate-
goricity and its relativizations.

In particular, we show that every 1-decidable computably categorical struc-

ture is relatively ∆0
2-categorical, but that there is a computably categorical

structure that is not even relatively arithmetically categorical.

We also study the complexity of various index sets associated with com-

putable categoricity and relative computable categoricity, though the index set
complexity of the computably categorical structures remains open. Finally, we

introduce and study a variation of relative computable categoricity, comparing
it to both computable categoricity and relative computable categoricity and

its relativizations.

1. Introduction

This paper contributes to computable (effective) model theory, a subject devoted
to understanding structures with effective presentations. We recall that a structure
is computable if it has a presentation where the universe and atomic diagram are
computable. A very long-term program in computable model theory is to align
syntactic complexity of (aspects of) computable structures with computability-
theoretic properties. As an illustration of this program, we recall the notion of
computable categoricity.

Definition 1.1. A computable structure S is computably categorical if between any
two computable presentations A and B of S, there is a computable isomorphism.1

As is well-known, the countable dense linear order without endpoints is com-
putably categorical using Cantor’s back-and-forth argument. The model-theoretic
view is to try to put this computable categoricity result in some larger framework.
The idea is that perhaps there is some deeper explanation of this categoricity re-
sult. As it turns out, there is indeed such a deeper reason for countable dense linear
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orders: These structures have a certain kind of computable Scott formula (family),
making them relatively computably categorical, a strengthening of computable cat-
egoricity as follows.

Definition 1.2. A computable structure S is relatively computably categorical if
between any two (possibly noncomputable) presentations A and B of S, there is
an isomorphism computable in deg(A) ∪ deg(B), where we identify a presentation
with its atomic diagram; or, equivalently, if for any computable presentation A of S
and any (possibly noncomputable) presentation B of S, there is an isomorphism
computable in deg(B).

We now state the following classical result of Goncharov. It can be viewed as a
computable analog of the Scott Isomorphism Theorem.

Theorem 1.3 (Goncharov [10]). The following are equivalent for a computable
structure S:

(1) The structure S is relatively computably categorical.
(2) The structure S has a c.e. Scott family of existential formulas over some

fixed c ∈ S, i.e., a c.e. family Φ of existential formulas over some fixed
c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy
the same ϕ ∈ Φ then they are automorphic.

In other words, the orbits of S are effectively isolated by existential for-
mulas.

(3) The structure S has a c.e. family Φ of existential formulas over some fixed
c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy
the same ϕ ∈ Φ then they satisfy the same existential formulas.

In other words, the existential types of S are effectively isolated by exis-
tential formulas.

The program of aligning computational properties of structures with effective
syntactic properties goes back to the pioneering work of Goncharov (see [10]), Ash
and Nerode (see [4]) and others, and is the theme of a monograph by Ash and
Knight (see [2]).

Our paper sits squarely within this program. This paper is devoted to try-
ing to understand computable categoricity and the extent to which computable
categoricity aligns itself with effective infinitary Scott formulas via theorems like
Theorem 1.3.

Another goal of this paper is to relate computable categoricity to definability
in arithmetic. The fundamental results of Emil Post showed that computational
complexity (as measured by the jump operator) goes hand in hand with syntactic
definability (as measured by quantifier depth and arithmetical complexity). Post’s
Theorem says that the Σ0

n-sets are the sets many-one reducible to ∅(n), and the
∆0
n+1-sets are exactly the ∅(n)-computable sets. Thus we would anticipate that

there should be some alignment of arithmetic complexity with the syntactic defin-
ability (in arithmetic) of computable structures. A natural way to measure this is
via index sets. In this vein, a rather long-standing open problem in computable
model theory concerns the index set complexity of the computably categorical struc-
tures.

Question 1.4. What is the computational complexity of a computable structure
being computably categorical (in terms of Kleene’s arithmetical or analytical hier-
archy)?
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In this paper, we will establish the computational complexity of a computable
structure being relatively computably categorical. We also establish the computa-
tional complexity of a computable structure being isomorphic to a fixed computably
categorical or relatively computably categorical structure. Question 1.4 remains
quite opaque: An easy upper bound is Π1

1, since the definition of computable cat-
egoricity involves the existence of a classical isomorphism in the hypothesis. The
best-known lower bound was shown by Walker White.

Theorem 1.5 (White [15]). The index set of the computably categorical structures
is Π0

4-hard.

Our contributions to this question are not deep; but, hopefully, our methods will
ultimately lead to a solution to Question 1.4.

1.1. A First Summary. We start with our motivating questions:

• How does computable categoricity align itself with descriptive complexity
of the structure (in the language of the structure)?
• How does computable categoricity align itself with computational complex-

ity as measured by, for example, the index sets associated with the struc-
tures; that is, to definability in arithmetic?
• How are the considerations above affected by stronger effectivity consider-

ations about the structure, i.e., beyond simple computable presentability?
What happens if the structure is decidable or n-decidable for some n? Does
this make any difference?

Before we give the formal definitions needed for our results, we offer an informal
description of our findings. If we require 2-decidability, then computable cate-
goricity aligns itself with a c.e. Scott family of existential formulas in the sense of
Theorem 1.3 by another result of Goncharov (see Theorem 1.11). If we require
1-decidability, then computable categoricity aligns itself with a c.e. Scott family
of Σc2-formulas. The surprise is that computable categoricity with no extra decid-
ability does not align itself with the existence of a c.e. Scott family of formulas in
any finite level of the arithmetic hierarchy. This is the most difficult result of the
paper and uses technology not used before in computable model theory or effective
algebra.

1.2. Definitions and Our Results in More Detail. To state and demonstrate
our results, we will need some further definitions. Ash extended Theorem 1.3 from
relative computable categoricity to relative ∆0

α-categoricity.

Definition 1.6. A computable structure S is

(1) relatively ∆0
α-categorical if between any two (possibly noncomputable) pre-

sentations A and B of S, there is an isomorphism which is ∆0
α(A⊕B); or,

equivalently, if for any computable presentation A of S and any (possibly
noncomputable) presentation B of S, there is an isomorphism computable
in ∆0

α(B);
(2) relatively (hyper)arithmetically categorical if between any two (possibly

noncomputable) presentations A and B of S, there is an isomorphism which
is (hyper)arithmetical in deg(A) ∪ deg(B); or, equivalently, if for any com-
putable presentation A of S and any (possibly noncomputable) presenta-
tion B of S, there is an isomorphism (hyper)arithmetical in B.
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Note the following observation:

Proposition 1.7. A computable structure is relatively arithmetically categorical if
and only if it is relatively ∆0

n-categorical for some n < ω.
A computable structure is relatively hyperarithmetically categorical if and only if

it is relatively ∆0
α-categorical for some α < ωCK

1 .

We will sketch the proof of this proposition at the beginning of Section 4; it
follows from the proof of Theorem 1.9 below.

Ash then relativized Goncharov’s theorem using “computable Σα-formulas” (de-
noted as Σcα-formulas):

Definition 1.8 (Ash [1]). We define by recursion on computable ordinals α the
collections of Σcα- and Πc

α-formulas (in a computable language L). Each such for-
mula has only a finite number of free variables, though it may have infinitely many
bound variables.

(1) A Σc0- or Πc
0-formula is a quantifier-free first-order L-formula.

(2) A Σcα-formula, for computable α > 0, is (logically equivalent to) an infi-
nite c.e. disjunction of formulas of the form ∃xϕ(x, y) where each ϕ is a
Πc
β-formula for some β < α and y is the tuple of free variables.

(3) A Πc
α-formula, for computable α > 0, is (logically equivalent to) the nega-

tion of a Σcα-formula.

Theorem 1.9 (Ash [1]). The following are equivalent for a computable structure S:

(1) The structure S is relatively ∆0
α-categorical.

(2) The structure S has a Σ0
α-Scott family of Σcα-formulas over some fixed

c ∈ S, i.e., a Σ0
α-family Φ of Σcα-formulas over some fixed c ∈ S such that

each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy the same ϕ ∈ Φ
then they are automorphic.

In other words, the orbits of S are effectively isolated by Σcα-formulas.
(3) The structure S has a c.e. family Φ of Σcα-formulas over some fixed c ∈ S

such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy the
same ϕ ∈ Φ then they satisfy the same Σcα-formulas.

In other words, the Σcα-types of S are effectively isolated by Σcα-formulas.

One might at first guess that the notions of computable categoricity and relative
computable categoricity coincide (although Theorem 1.5 and Theorem 1.3 already
indicate that they cannot). However, if we add more computability-theoretic as-
sumptions, then the two notions do coincide. These assumptions are specified in
the following definitions.

Definition 1.10. A computable presentation A of a computable structure S is:

(1) decidable if the elementary diagram of A is computable;
(2) n-decidable if the Σn-elementary diagram of A (in the first-order language

of S) is computable.

If S is computably categorical, it is easy to see that some computable presen-
tation of S is decidable (n-decidable) if and only if every computable presentation
of S is decidable (n-decidable).

Goncharov showed that for 2-decidable structures, computable categoricity and
relative computable categoricity coincide.
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Theorem 1.11 (Goncharov [10]). A 2-decidable structure is computably categorical
if and only if it is relatively computably categorical.

The assumption of 2-decidability cannot be dropped completely, as observed by
Goncharov (see Theorem 4 of [11]); in fact, Kudinov showed that even 1-decid-
ability is not sufficient to ensure computable categoricity and relative computable
categoricity coincide.

Theorem 1.12 (Kudinov [12]). There is a 1-decidable structure that is computably
categorical but not relatively computably categorical.

Our first main theorem shows that Goncharov’s result “almost” holds for 1-de-
cidable structures:

Theorem 1.13. Any 1-decidable, computably categorical structure is relatively
∆0

2-categorical.

We will prove Theorem 1.13 in Section 2, and related results in Section 3.
The reader might perceive an emerging pattern here, namely, that weakening

the decidability hypothesis by a quantifier level increases the level of relative cate-
goricity by a jump. Thus, the natural guess would be that with 0-decidability (i.e.,
computable presentability), computable categoricity would imply relative ∆0

3-cate-
goricity. Alas, this attractive pattern is far from the truth. We show that without
the additional assumption of 1-decidability, the notions of computable categoricity
and relative computable categoricity are very different.

Theorem 1.14. There is a computably categorical structure which is not relatively
arithmetically categorical.

We will prove Theorem 1.14 in Section 4. To do this, we construct such a
structure with no Σ0

n-Scott family for any finite n. We suspect that this theorem
can be strengthened to answer the following question affirmatively:

Question 1.15. Is there a computably categorical structure that is not relatively
hyperarithmetically categorical?

In contrast to the concept of computable categoricity, relative computable cate-
goricity turns out to be relatively simple to classify in terms of its complexity: In
Section 5, we prove the following.

Theorem 1.16. The index set of the relatively computably categorical structures
is Σ0

3-complete.

In Section 5, we also examine the index set complexity of certain fixed com-
putably categorical and relatively computably categorical structures. In Section 6,
we introduce the related notion of relative computable categoricity above a degree
and examine its relationship with computable categoricity and relative computable
categoricity and its relativizations. Whilst these results are not particularly diffi-
cult, they do shed more light on this material.

We refer the reader to [2] for background on computable model theory and
effective algebra. Notation is more or less standard and generally follows [2] and [13].
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2. Every 1-Decidable Computably Categorical Structure is
Relatively ∆0

2-Categorical

In this section, we show that computable categoricity implies relative ∆0
2-cate-

goricity amongst 1-decidable structures. The crux of the proof is contained within
a lemma.

Definition 2.1. For a structure A and tuples a, p ∈ A, denote by Σn-tpp(a) the
set

Σn-tpp(a) := {ϕ(x, y) ∈ Σn : A |= ϕ(a, p)}

and denote by Σcn-tpp(a) the set

Σcn-tpp(a) := {ϕ(x, y) ∈ Σcn : A |= ϕ(a, p)},

where in both cases we consider only finitary (or infinitary, respectively) formulas
in the language of the structure.

Lemma 2.2. If A is computably categorical and 1-decidable, then there is a tuple
p ∈ A such that distinct Σ1-types over p are incomparable under inclusion, and for
any a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a

′), then Σc2-tpp(a) = Σc2-tpp(a
′).

Note here that for a tuple a, the (finitary, first-order) Σ1-type determines the
(computable infinitary) Σc1-type as well as the (classically infinitary) Σi1-type. (This
relationship, of course, fails at higher levels.)

Proof of Lemma 2.2. We build a computable presentation B isomorphic to A and
attempt to make B not computably isomorphic to A. The amount of B constructed
when we consider the computable function ϕe witnessingA and B being computably
isomorphic will determine the parameter p.

In order to ensure A and B are classically isomorphic, we build an isomorphism
F : B → A in a ∆0

2-manner. We build B by constructing its atomic diagram in
stages. At each stage s, we enumerate the next atomic sentence true about A into
the atomic diagram of B as determined by the isomorphism F (as approximated at
stage s).

Let {ψi}i∈ω be a computable enumeration of all Σ1-formulas in the language
of A.

Strategy Defeating ϕe: We fix a partial computable function ϕe : B → A and seek
to ensure that ϕe is not an isomorphism.

Let s0 be the stage at which this strategy is initialized. This strategy takes no
action until a stage s1 > s0 when Bs0 ⊆ domFs1 and As0 ⊆ rangeFs1 . We then let
b0 := Bs1 and restrain the strategy, in the sense that F � b0 cannot be changed by
this strategy. At every stage s after becoming active, before we enumerate the next
sentence into the atomic diagram of B, we look for an opportunity to change F
in such a way that it still extends to an isomorphism, but such that F ◦ ϕ−1e is
guaranteed not to be an automorphism of A (ensuring that if F is an isomorphism,
as it will be, then ϕe is not an isomorphism). We will find such opportunities if the
types do not obey the conclusion of the lemma.

Before describing the strategy, we note the following. For any stage t > s1,
suppose b is a tuple from the domain of Bt, and let δt(b0, b, f) be the atomic diagram
of Bt, where f := Bt\(b0 ∪ b). Suppose a ∈ A. At a stage s > s1, we can redefine F
to map b to a without changing F � b0 if and only if A |= ∃x

[
δs−1(Fs−1(b0), a, x)

]
.
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Here, we consider δs−1 instead of δs because when this strategy acts at stage s, we
have not yet enumerated the next sentence into the atomic diagram of B.

At a stage s > s1, we consider every triple (b, b
′
, d) with b, b

′ ∈ dom(ϕe,s) and

d ∈ dom(ϕe,s)\(b0 ∪ b). If this is the first stage at which we have considered this

triple, we use 1-decidability to determine if there is a tuple c ∈ A|d| such that

A |= ∃y
[
δs−1(Fs−1(b0), Fs−1(b

′
), c y)

]
,

i.e., we ask whether we can redefine F by putting Fs(b) := Fs−1(b
′
) and Fs(d) := c

while respecting the restraint. If there is no such c, we never consider this triple
again (since we cannot redefine F , there is no point in considering it further). If
there is such a c, we search for one and assign it to this triple. When we consider
this triple at future stages, this is the c to which we refer.

Then, for every triple (b, b
′
, d) being considered (along with its associated c), we

use 1-decidability to determine if

(1) A |=
[
ψi(Fs−1(b), Fs−1(d))⇐⇒ ¬ψi(Fs−1(b

′
), c)

]
for some i < s, i.e., we ask whether redefining F by putting Fs(b) := Fs−1(b

′
) and

Fs(d) := c might be useful. If so, fix some triple and some i0 < s for which (1)
holds. We use 1-decidability to determine whether

(2) A |=
[
ψi0(ϕe(b), ϕe(d))⇐⇒ ψi0(Fs−1(b), Fs−1(d))

]
,

i.e., we determine whether or not it is necessary to perform any action to prevent

F ◦ ϕ−1e from being an automorphism. If (2) holds, we put Fs(b) := Fs−1(b
′
) and

Fs(d) := c, and extend Fs such that As ⊆ rangeFs and Bs ⊆ domFs. If (2) fails, we
put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d), and extend Fs such that As ⊆ rangeFs
and Bs ⊆ domFs. Regardless of whether (2) holds or fails, we declare the strategy
complete.

If (1) fails for all triples being considered and all i < s, we repeat the above

process with ∃y δs in place of ψi. That is, for every triple (b, b
′
, d) and associated c

being considered, we use 1-decidability to determine if

(3) A |= ¬∃y
[
δs(Fs−1(b0), Fs−1(b

′
), c y)

]
,

i.e., we ask whether we will lose the ability to redefine F after we enumerate the
next atomic sentence into the diagram of B. If (3) fails for every triple, we will not
lose the ability to redefine F , so we leave F alone and take no further action for
this strategy at stage s.

If (3) holds for some triple, fix a triple for which it holds. We will lose the ability
to redefine F , so we use 1-decidability to determine if

(4) A |= ∃y
[
δs(ϕe(b0), ϕe(b), ϕe(d) y)

]
,

i.e., we determine whether or not it is necessary to perform any action to prevent

F ◦ ϕ−1e from being an automorphism. If (4) holds, we put Fs(b) := Fs−1(b
′
) and

Fs(d) := c and extend Fs such that As ⊆ rangeFs and Bs ⊆ domFs. If (4) fails, we
put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d), and extend Fs such that As ⊆ rangeFs
and Bs ⊆ domFs. Regardless of whether (4) holds or fails, we declare the strategy
complete.
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The strategy has two outcomes: wait and stop. Of course, these correspond to
whether the strategy has been declared completed.

Construction: We put these strategies on a tree, performing a straightforward
finite-injury argument in the usual manner. At each stage, the visited strategies
on the tree act in priority order. After they have acted, if no strategy defined Fs,
we define Fs by extending Fs−1 to include As and Bs in the range and domain,
respectively. Then the global strategy building B acts by taking the next atomic
sentence θs(a) true about A and enumerating θs(Fs(a)) into the atomic diagram
of B.

Verification: We verify F := lims Fs exists and is an isomorphism. Consequently,
there will be a (least) k such that ϕk : B → A is a computable isomorphism. Let σ
be the strategy for ϕk along the true path, and let b0 be the restraint of σ. We
show the desired relationships between the types of tuples of A using p := F (b0).

Claim 2.2.1. The function F := lims Fs exists and is an isomorphism.

Proof. The existence of F follows from the fact that, if a strategy redefines F on
an element (in either the domain or the range), then no lower-priority strategy can
redefine F on that element. Thus, by induction, the function F can change only
finitely many times on any element (in either the domain or the range).

By construction, the function F is surjective and respects atomic sentences.
Thus, it is injective (as equality is an atomic sentence) and so an isomorphism. �

Claim 2.2.2. If a strategy for defeating ϕe is along the true path and declared
complete, then ϕe is not an isomorphism.

Proof. Let (b, b
′
, d) be the triple we act for. Note that F (b) = Fs(b) and F (d) =

Fs(d).
If we act because of some ψi0 , then regardless of whether (2) holds, we have

A |=
[
ψi0(ϕe(b), ϕe(d))⇐⇒ ¬ψi0(Fs(b), Fs(d))

]
.

If we act because of δs, then regardless of whether (4) holds, we have

A |= ∃y
[
δs(ϕe(b0), ϕe(b), ϕe(d)y)

]
⇐⇒ ¬∃y

[
δs(Fs(b0), Fs(b), Fs(d)y)

]
.

Thus, in either case, we have that F ◦ ϕ−1e is not an automorphism. �

Claim 2.2.3. The Σ1-types over p are incomparable under inclusion.

Proof. Towards a contradiction, we suppose that there are a, a′ ∈ A with

(5) Σ1-tpp(a) ( Σ1-tpp(a
′).

Consider any stage s+ 1 at which σ is visited such that Fs(b) = a and Fs(b
′
) = a′

for some b, b
′ ∈ dom(ϕk,s). Then at such a stage, it will always be possible for σ to

define Fs+1(b) = a′.
Note that (5) is equivalent to Σ1-tp(p a) ( Σ1-tp(p a′). Since F ◦ ϕ−1k is an

automorphism, we have

Σ1-tp(ϕk(b0)ϕk(b)) ( Σ1-tp(p a′).

Fix a formula ψi true of p a′ but false of p a. Then at any stage s > i when the

strategy considers the triple (b0 b, b0 b
′
, ∅), it will redefine F (b) = a′ to defeat ϕk,

contrary to our choice of k. �
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Claim 2.2.4. For any tuples a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a
′) then Σc2-tpp(a) =

Σc2-tpp(a
′).

Proof. Suppose Σ1-tpp(a) = Σ1-tpp(a
′), or equivalently Σ1-tp(p a) = Σ1-tp(p a′).

By symmetry, it suffices to show

Σc2-tp(p a) ⊆ Σc2-tp(p a′).

Fix a formula ∃xχ(p a, x) ∈ Σc2-tp(p a) with χ ∈ Πc
1 and a witness g ∈ A so that

A |= χ(p a, g). We show ∃xχ(p a, x) ∈ Σc2-tp(p a′).

Consider a stage s > s1 when σ is visited, F (b) = a, F (b
′
) = a′ and F (d) = g

have converged, and b0, b, b
′
, d ∈ dom(ϕk,s). Since

A |= ∃x δs(p, a, g x),

from Σ1-tp(p a) = Σ1-tp(p a′), we have

A |= ∃c∃y δs(p, a′, c y).

Thus, there will be a c assigned to the triple (b0 b, b0 b
′
, d). Since σ is never declared

complete (by Claim 2.2.2), there is never a stage t > s when

A |= ¬∃y [δt(p, a
′, c y)] .

Thus σ will never lose the ability to define F (b) = a′ and F (d) = c.
If there were some ψi such that

A |= ψi(p a
′, c) ∧ ¬ψi(p a, g),

then at some stage when we consider ψi, the strategy σ would be able to defeat ϕk,
contrary to our choice of k.

Thus A |= χ(p a′, c). We conclude ∃xχ(p a′, x) ∈ Σc2-tp(p a′) as desired. �

This completes the proof of Lemma 2.2. �

We are now ready to prove the main theorem of this section:

Theorem 1.13. Any 1-decidable, computably categorical structure A is relatively
∆0

2-categorical.

Proof. Fix the parameters p from the above lemma.
For each a ∈ A, let χa(x) be the infinitary formula

χa(x) :=
∧

ψ∈Π1(p)

A|=ψ(a)

ψ(x),

i.e., the conjunction of all first-order Π1-formulas (with parameters from p) true
of a. As a consequence of 1-decidability, this is a Πc

1-formula.
We show that the family of formulas {χa(x)}a∈A constitutes a Scott family.

By Theorem 1.9, it suffices to show that they isolate the Σc2-types. We therefore
suppose A |= χa(a′) and show Σc2-tpp(a

′) = Σc2-tpp(a). If A |= χa(a′), then every

Π1-fact true of a is true of a′. Hence every Σ1-fact true of a′ is true of a, i.e.,

Σ1-tpp(a
′) ⊆ Σ1-tpp(a).

By Lemma 2.2, it follows that Σ1-tpp(a
′) = Σ1-tpp(a). By Lemma 2.2 again, this

implies that Σc2-tpp(a
′) = Σc2-tpp(a).

We conclude that the family of formulas {χa(x)}a∈A constitutes a Scott family
and so A is relatively ∆0

2-categorical. �
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3. Pushing on Isomorphisms and Results Related to Theorem 1.13

Theorem 1.13 raises questions about various ways in which the hypotheses can
be weakened or the conclusion strengthened. In the next section, we investigate
what happens when the 1-decidability hypothesis is weakened to just computability
of the structure; in this section, we explore a number of other variations. None of
the constructions are individually particularly difficult, so we only sketch their
proofs. However, these constructions and many of the later constructions rely on
the technique of pushing on isomorphisms. We illustrate this technique in isolation,
demonstrating the existence of a computably categorical structure S that is not
relatively computably categorical.

Theorem 3.1 (Goncharov [11, Theorem 4]). There is a computable structure A
that is computably categorical but not relatively computably categorical.

Proof. Before discussing the formal details, we informally discuss the requisite ideas.
The structure A will be a directed graph consisting of infinitely many finite con-
nected components. Each component will consist of either two, three, or four cycles
sharing only a single vertex v, termed the root vertex.

In order to prevent A from being relatively computably categorical, we diago-
nalize against all pairs (c,Φ), where c is a finite tuple of elements from the universe
of A and Φ is a c.e. family of existential formulas with parameters from c. We
create vertices v1 and v2 such that v1 and v2 are not automorphic, but Φ cannot
distinguish them.

In order to ensureA is computably categorical, we construct a partial computable
map fj from A to Bj (the jth (partial) directed graph). If A and Bj are isomorphic,
the map fj will be an isomorphism.

More formally, we meet the following requirements to prevent relative com-
putable categoricity:

Ri : The ith pair (ci,Φi) is not a Scott family for A.

We meet the following requirements to ensure computable categoricity:

Sj : If A ∼= Bj , then fj : A ∼= B is a computable isomorphism.

Strategy for Meeting Ri (In isolation): We take the following actions, being careful
to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a

loop of length 3`+ 1 to v1.
(3) For every formula ϕ(x, ci) := (∃y)[ψ(x, y, ci)] in Φi, search for a tuple a1 < s

such that A |= ψ(v1, a1, ci).
(4) If such a formula and tuple are found, attach a loop of length 3`+ 2 to v1

and a loop of length 3`+ 1 to v2.

These actions prevent (ci,Φi) from witnessing that A is relatively computably
categorical: If we never find a formula ϕ and tuple a1, then not every singleton
satisfies some ϕ ∈ Φi.

If we find a formula ϕ and tuple a1, let s be the stage at which these are found.
Then by construction, the component of v1 at stage s embeds into the component
of v2 at stage s+1, and the component of v2 at stage s embeds into the component
of v1 at stage s + 1. This can be extended to an embedding As ↪→ As+1 via
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the identity off these components, and notably this embedding maps v1 to v2 and
fixes ci elementalism.

Since ϕ is existential, we have

As |= ϕ(v1, c) =⇒ As+1 |= ϕ(v2, c)

=⇒ A |= ϕ(v2, c),

but v1 and v2 are not automorphic.

Strategy for Meeting Sj (in Isolation): As the construction of A proceeds, we
attempt to define fj so that it maps components in A to components in Bj . Finding
the image of a component in A is a two-step process: We identify root vertices in Bj
as those vertices having out-degree at least two (this is the sole purpose of the
loops of length two). While identifying root vertices in Bj , we also search for cycles
emanating from already identified root vertices in Bj . When we find a component
in Bj with the same lengths of cycles emanating from it as a component in A, we
map the root vertex and cycles appropriately.

Conflicts Between Strategies and Their Resolution: Unfortunately, our action to
defeat relative computable categoricity conflicts heavily with our action for com-
putable categoricity. Trying to define a computable isomorphism betweenA and Bj ,
the naive approach would be to wait for the components to appear in A and Bj and
to define the isomorphism appropriately. If and when the components grow in A
or Bj , an opponent would have the opportunity to switch v1 and v2, killing our
computable isomorphism fj . As we need infinitely many pairs of components to
defeat relative computable categoricity, an opponent would have sufficiently many
opportunities to diagonalize against all computable functions.

The critical observation is that this opportunity to diagonalize can be pre-
vented by slowing down the construction: For the finitely many higher-priority
Ri-strategies (which build finitely many finite components), the Sj-strategy de-
fines the computable isomorphism fj nonuniformly. For the components built by
lower-priority Ri-strategies, we use the above-mentioned technique of pushing on
isomorphisms: The Sj-strategy will allow the lower-priority Ri-strategy to extend
its component in Step 4 only gradually as follows:

(4’a) Attach a loop of length 3`+ 2 to v1.
(4’b) Wait until this loop appears in Bj for every j < i for which A ∼= Bj .
(4’c) Attach a loop of length 3`+ 1 to v2.

In this way, the above problem cannot occur: At any time, we will be able to
distinguish v1 and v2 in Bj . Of course, it will likely be the case that A 6∼= Bj for
some j < i, in particular that some Bj with j < i does not have a loop of length
3` + 2. Hence, we may wait at Step 4’b unnecessarily (since we cannot effectively
know whether A ∼= Bj), causing Step 4’c not to be reached. This would cause our
diagonalization attempt against Φi to be unsuccessful.

The solution is to have Ri-strategies guess the outcomes of higher priority Sj-
strategies via a priority tree. Each Ri-strategy will have two outcomes: wait,
(indicating that the strategy is still searching for a formula ϕ and a tuple a1) and
act (indicating that the strategy has found the desired ϕ and a1). Each Sj-strategy
will have an infinite outcome ∞ (indicating that Sj believes A ∼= Bj) and finite
outcomes k for all k ∈ ω (counting the number of times Sj has taken outcome ∞).
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Full Strategy for Meeting Ri: We take the following actions, always being careful
to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a

loop of length 3`+ 1 to v1.
(3) For every formula ϕ(x) := (∃y)[ψ(x, y, ci)] in Φi, search for a tuple a1 < s

such that A |= ψ(v1, a1, ci).
(4) If such a formula and tuple are found, attach a loop of length 3`+ 2 to v1.
(5) Wait until the next stage at which the strategy is accessible.
(6) Attach a loop of length 3`+ 1 to v2.

While the strategy is searching at Step 3, it has outcome wait. Once it has
found a formula ϕ and a tuple a1, it has outcome act.

Full Strategy for Meeting Sj : Let σ on the priority tree be the Sj-strategy in
question. Let s be the current stage. Let k be the number of stages less than s at
which σ had outcome ∞.

We consider certain root vertices in A: For each τ ⊂ σ such that τ̂wait ⊆ σ,
we consider the root vertices created by τ ; for each τ ⊂ σ such that τ̂act ⊆ σ
and τ has reached Step 6, we consider the root vertices created by τ ; and for each
τ 6⊂ σ with τ incomparable with σ̂k, we consider the root vertices created by τ .

For each root vertex v in A we are considering, if fj(v) is not yet defined, we
search Bj,s for a root vertex u with a component identical to the component of v
and define fj(v) := u and then extend fj to an isomorphism of the components.
If fj(v) is defined, and the component of v appears identical to the component
of fj(v) in Bj,s, we extend fj to an isomorphism of the components, if it is not
already.

After this action, if for every vertex v we are considering, fj(v) is defined and fj
is an isomorphism of the components of v and fj(v), then σ has outcome ∞ at
stage s. Otherwise, it has outcome k.

Construction: We create a priority tree by devoting each level to one requirement
in some effective fashion. At stage s, we let all visited strategies of length at most s
act in order of priority.

Verification: Define the true path through the priority tree in the usual fashion.
We note the important fact that if the current path moves to the left of a node
on the priority tree that has already been visited, that node can never be visited
again.

It is immediate from the construction that A is a computable presentation.
We verify that it is both computably categorical and not relatively computably
categorical.

Claim 3.1.1. The structure A is computably categorical.

Proof. Fix an index j such that A ∼= Bj , and let σ be the Sj-strategy along the
true path. By assumption, the presentation Bj contains a component isomorphic to
every component of A, so σ will eventually define fj(v) for every vertex it considers.
For the components built by τ ⊂ σ, since σ is on the true path, these components
will never grow once σ begins considering them, so fj is correct on these.
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For the components built by strategies τ incomparable with σ, τ can never be
visited after σ begins considering them, and so they can never grow once they are
considered. So fj is correct on these.

For the components built by τ ⊇ σ̂∞, if τ has final outcome wait, then the
components never grow once σ begins considering them.

If τ adds the loop of length 3` + 2 to v1, then before τ added this loop, σ
defined fj(v1) to be an element of Bj with a loop of size 3`+ 1. After τ adds this
loop, σ will never again have outcome ∞ unless a loop of length 3` + 2 appears
attached to fj(v1), and if σ never again has outcome ∞, then v1 is the unique
vertex with a loop of size 3`+1. So the loop of length 3`+2 must appear on fj(v1).

If τ adds the loop of length 3`+ 1 to v2, σ must have outcome ∞ at some stage
after τ attached the loop of length 3`+ 2 to v1. So fj(v1) has a loop of size 3`+ 2
and one of size 3`, and fj(v2) has a loop of size 3`. Then there are only two loops of
size 3` in A, one with a loop of size 3`+2 and one without, so by elimination fj(v2)
must be the correct image of v2. So the loop of length 3`+1 must appear on fj(v2).

For the components built by τ ⊇ σ̂k for some k, if σ is considering this com-
ponent at stage s, then it has had outcome ∞ more than k many times by stage s.
So the components can never again grow once they are considered, so fj is correct
on these.

By the above, since fj is correct on every component on which it is defined, and
it will be defined on every component it considers, σ must have true outcome∞. So
by construction, every component is considered, and thus fj is an isomorphism. �

Claim 3.1.2. The structure A is not relatively computably categorical.

Proof. Fix an index i and let σ be the Ri-strategy along the true path. Then
either σ will wait forever at Step 3, or it will reach Step 6. In the former case,
the element v1 fails to satisfy any ϕ ∈ Φi. In the latter case, the nonautomorphic
elements v1 and v2 satisfy ϕ ∈ Φi. In either case, the family Φi is not a Scott
family. �

This concludes the proof of Theorem 3.1. �

Having illustrated the technique of pushing on isomorphisms, we return to The-
orem 1.13. One might think that a simpler way to prove it would be to relativize
Goncharov’s Theorem 1.11. After all, if A is 1-decidable, then relative to 0′, the
presentation A is 2-decidable. However, a relativized version of Goncharov’s Theo-
rem 1.11 would require a modified version of computable categoricity as a hypothesis
as follows:

Corollary 3.2. If A is a 1-decidable computable presentation of a structure S
with the property that for every ∆0

2-computable presentation B of S, there is a
∆0

2-computable isomorphism f : B ∼= A, then S is relatively ∆0
2-categorical.

We show that the hypothesis of “∆0
2-computable categoricity” in the above corol-

lary is not implied by computable categoricity:

Theorem 3.3. There is a 1-decidable, computably categorical structure S having a
computable presentation A and a ∆0

2-computable presentation B such that A and B
are not ∆0

2-isomorphic.

Proof. The structure S is an undirected graph. If we were not seeking S to be
computably categorical, the structure S could be built as the union of infinitely
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many substructures Si. Each Si would consist of roots vi,j for j ∈ ω ∪ {∞}. For
j ∈ ω, the root vi,j would have a loop of length p2ki for every k < j + 1 and one

of length p2j+1
i ; vi,∞ would have a loop of length p2ki for every k ∈ ω (here pi

is the ith prime). Thus, the substructure Si would consist of an (ω + 1)-chain of
components, with the finite components matching the infinite component for longer
and longer segments, yet each having a unique loop size to distinguish it from the
infinite component and other finite components.

Of course, taking A to be the standard presentation of S, we could build a
∆0

2-computable presentation B not isomorphic to A via any ∆0
2-isomorphism. This

could be done by using the substructure Si to diagonalize against the ith ∆0
2-func-

tion ϕi : A → B: When ϕi converges on vi,∞, we make its image in B be vi,j for
some large j ∈ ω.

As we are seeking a computably categorical structure, we alter the isomorphism
type of S to include the pushing on isomorphisms machinery. In particular, we build
a computable structure A, taking S to be its isomorphism type. As we are seeking
a 1-decidable structure, we use large loop sizes rather than powers of primes. After
constructing A, we build the ∆0

2-computable presentation B.
The construction of the components in A proceeds as expected.

Construction of a Component : Using increasing numbers of loops, we build accu-
mulation points in the Σc1-type space.

(1) Set k := 0. Create a root vertex vi,∞ and attach a loop of large size ni,0.
(2) Attach a loop of large size ni,k+1 to vi,∞.
(3) Wait until the next stage this strategy is visited (this allows higher-priority

isomorphism strategies to “push on isomorphisms”).
(4) Create a root vertex vi,k with attached loops of all sizes ni,0, . . . , ni,k. Also

attach a loop of distinct large size mi,k to vi,k.
(5) Increment k and return to Step 2.

Unfortunately, as described above, the resulting structure would not be 1-de-
cidable. For example, “Does vi,∞ have degree at least i?” is a Σ0

1-question, and
answering it would require knowing how many times we reach Step 2. Similarly,
“Are there at least i many loops of size ni,0?” is a Σ0

1-question that requires knowing
how many times we reach Step 4. As a remedy, instead of a single root vertex vi,∞,
we create an infinite collection of root vertices joined by infinitely many paths of
length 2 (that is, we create infinitely many copies of the vi,∞-component, with in-
finitely many paths of length 2 between every two copies of the root vertex). We
do the same for each root vertex vi,k, creating an infinite collection of root vertices
joined by infinitely many paths of length 2. Because of this, for any even size, there
will be a loop of that size attached to vi,j and to vi,∞. So we require that our
sizes ni,k and mi,k are always odd.

We create a tree of strategies as in the proof Theorem 3.1. Some levels will be de-
voted to Sj-strategies, which ensure that if Bj ∼= A, then there is some computable
isomorphism between them. Others will be devoted to Ri-strategies, which simply
perform the above construction of points (with the modifications discussed).

Verification of A: The structure S is computably categorical because of the pushing
on isomorphism technology already illustrated: An isomorphism strategy Sj of
higher priority than Ri can always distinguish the copy of vi,∞ in Bj by the ni,k+1

loop. Because Ri-strategies wait at Step 3, no vi,k with this loop will be created
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until the copy of vi,∞ in Bj has distinguished itself with a larger loop. Lower-priority
Sj-strategies non-uniformly know the image of vi,∞ in Bj . The image of vi,k can
always be uniquely identified by the loop of size mi,k.

Of course, the above is not quite correct, because we create infinite collections of
each vi,∞ and each vi,k. So rather than uniquely identifying the point vi,∞ or vi,k
in Bj , we uniquely identify the collection. Once the collection has been found,
however, a simple back-and-forth construction can construct the isomorphism.

Claim 3.3.1. The presentation A is 1-decidable.

Proof. It suffices to show that for any canonically given finite graph G, we can
effectively determine whether or not G occurs as an induced subgraph of A. For a
canonically given finite graph G, we wait until a stage s in the construction when
a loop of some size ni,k > |G| has been enumerated into the construction, and then
we answer whether or not G is an induced subgraph of A as follows.

First, we identify all simple loops in G of odd length. If any of these loops have
more than 1 vertex of degree greater than 2, we know that G is not an induced
subgraph of A. If any of these loops are of a size we have not yet used as some ni,k
or mi,k by stage s, then since our loop sizes are always chosen large, no loop of that
size will ever be used, and so we know G is not an induced subgraph of A.

Otherwise, every simple loop of odd length has size some ni,k or mi,k already
chosen during the construction. If some loop of size ni,k and some other loop of
size ni′,k′ with i 6= i′ are in the same component, then we know G is not an induced
subgraph of A. Similarly, if a loop of size ni,k is in the same component as a loop
of size mi′,k′ with i 6= i′ or k > k′, then we know that G is not an induced subgraph
of A. Also, if a loop of size mi,k is in the same component as a loop of size mi′,k′

with i 6= i′ or k 6= k′, then we know that G is not an induced subgraph of A.
Finally, if two distinct simple loops of odd length intersect, then we know that G
is not an induced subgraph of A.

Otherwise, call a vertex in G a root if it has degree greater than 2. Note that
any embedding of G as an induced subgraph of A must map the roots of G to roots
of A. Let G′ be the induced subgraph of G containing those vertices which are
roots and also those vertices which are not part of a simple loop of odd length. Any
embedding of G as an induced subgraph of A will give a two-coloring of G′ which
colors all the roots of G′ red and such that every vertex colored blue has degree at
most 2: Color a vertex red if it maps to a root of A, and blue otherwise.

Conversely, if G′ admits a two-coloring which colors all its roots red and such
that every vertex colored blue has degree at most 2, then G can be embedded into A
as an induced subgraph: For each component, if it contains a loop of size mi,k, then
map that component into the collection of copies of vi,k, mapping the red vertices
to roots in A; it the component does not contain a loop of size mi,k for any k, but
does contain one of size ni,k for some k, map the component into the collection of
copies of vi,∞, again mapping red vertices to roots in A; if the component contains
no simple loops of odd sizes, then map the component into the collection of copies
of v0,∞.

Thus we can decide if G is an induced subgraph of A by considering the finitely
many two-colorings of G′. �

Construction of B: We work in the presence of a 0′-oracle. We begin by simply
copying A, while simultaneously studying ∆0

2-functions from A to B. When a
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∆0
2-function ϕ` converges on some accumulation point vi,∞ ∈ A with i > `, we

may assume v′i,∞ := ϕ`(vi,∞) is a copy of vi,∞ in B (as otherwise we have won
against ϕ`). We use our oracle to determine if Ri will ever again reach Step 2
and then Step 4. If so, we pause the construction of v′i,∞ until this happens. We
make v′i,∞ the image of the new vi,k instead of vi,∞, defeating the function ϕ`.
Since we are requiring that i > `, our approximation to ϕ`(vi,∞) ∈ B reaches a
limit. �

Just as we relativized Goncharov’s result to 0′ to weaken the decidability re-
quirement, we can do the same for our Theorem 1.13:

Corollary 3.4. If a computable structure A is such that every ∆0
2-computable copy

is isomorphic via a ∆0
2-computable isomorphism, then A is relatively ∆0

3-categorical.

We have already seen that the hypothesis of “∆0
2-computable categoricity” in

the above corollary is not implied by computable categoricity. Here we show that
the implication can fail very badly:

Theorem 3.5. There is a computably categorical structure A such that every
noncomputable ∆0

2-degree computes a presentation B not isomorphic to A by any
∆0

2-isomorphism.

Proof. Our structure is a directed graph consisting of pairs of components. Each
pair will contain a larger component and a smaller component and be assigned a
distinct prime p. The larger component will be a vertex with loops of sizes pk for
all k ≤ r+2, while the smaller component will be a vertex with loops of sizes pk for
all k ≤ r. The parameter r will initially be 1, and will grow (possibly to infinity)
as the construction proceeds.

Let {Me}e∈ω be an enumeration of all partial computable structures, {Xi}i∈ω
an enumeration (of partial characteristic functions) of all ∆0

2-sets, and {gj}j∈ω an
enumeration of all partial ∆0

2-functions. We meet the following requirements:

Ne : Me
∼= A ⇒ ∃f ≤T ∅ [f :Me

∼= A]

Ri : Bi ≤T Xi and Bi ∼= A
Pi,j : Xi >T 0⇒ ¬[gj : A ∼= Bi]

Strategy for meeting Ne: This is a standard pushing on isomorphisms strategy.

Strategy for meeting Ri: Ri maintains a Turing functional Γi with Bi = ΓXii and
a bijection Fi mapping components of A to components of Bi. At every stage, Ri
grows the components of Bi to match the corresponding components in A. These
facts about new loops in Bi are enumerated into Γi with use k where pk is the size
of the loop.

If Xi changes to a new version, removing certain loops from Bi, we restore
those loops to Bi by enumerating new axioms for them into Γi. The exception
is if gj,s(x) ↓= Fi,s(x) for some root vertex x of the larger component of some
Pi,j-strategy, and the largest two loops attached to Fi,s(x) are removed: then we
instead take the opportunity to redefine Fi(x), interchanging the role of larger and
smaller components in Bi.
Strategy for meeting Pi,j : We initially choose an unused large prime p and begin
building (in A) the components for p. Let x ∈ A be the root vertex of the larger
component. The behavior of the strategy at stage s depends on whether gj,s(x)↓=
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Fi,s(x). If so, we increment r, adding a new loop to each of the two components.
If not, we do nothing.

Construction: We place the Ne- and Pi,j-strategies on a priority tree in the stan-
dard fashion. The Ri-strategies are not placed on the tree, but instead act at every
stage.

Verification: Clearly A is a total computable structure.

Claim 3.5.1. The Ne-strategies ensure their requirement.

Proof. This is the now-familiar “pushing on isomorphisms” argument: If Ne is of
higher priority than a pair being constructed, then the pair respects Ne’s isomor-
phism by only adding one loop at a time. If Ne is of lower priority than a pair of
components, then it nonuniformly knows which component is larger and which is
smaller. �

Claim 3.5.2. The Ri-strategies ensure their requirement.

Proof. If Xi is not a true ∆0
2-set, then Ri is trivially satisfied, so we assume that it

is. The use of the loops in Bi does not grow, so since Xi eventually stops changing
on initial segments, Bi eventually stops changing. Thus Bi is an Xi-computable
structure.

Furthermore, at every stage s, Fi,s : As → Bi,s is an isomorphism. Thus on all
components where Fi = lims Fi,s exists, A is isomorphic to Bi. The only compo-
nents at which this limit might not exist are components built by Pi,j-strategies
that infinitely often see gj,s(x) = Fi,s(x). But such components have their r grow to
infinity, and thus the larger and smaller components are identical. Thus it does not
matter which component maps to which, and we may extend Fi to an isomorphism
A ∼= Bi. �

Note that we cannot ask that Fi = lims Fi,s be a total isomorphism, because
then we would be unable to meet requirement Pi,j with gj = Fi.

Claim 3.5.3. The Pi,j-strategies ensure their requirement.

Proof. Assume Xi >T ∅ is a ∆0
2-set. Let x be the root vertex of the larger compo-

nent built by the Pi,j-strategy along the true path. If gj(x) = lims gj,s(x) does not
exist, the requirement is trivially satisfied, so assume gj(x) exists.

By standard ∆0
2-permitting, there is some stage after gj(x) has converged at

which the Ri-strategy has an opportunity to redefine Fi(x), and this change is
not permanently reverted by Xi returning to an earlier configuration. So by con-
struction, Fi(x) 6= gj(x), and the components built by the Pi,j-strategy are finite.
Thus gj cannot be an isomorphism. �

This completes the proof of Theorem 3.5. �

4. A Computably Categorical Structure Which is Not Relatively
Arithmetically Categorical

In this section, we prove our main result:

Theorem 1.14. There is a computably categorical structure which is not relatively
arithmetically categorical.
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First, however, we need the previously mentioned fact that relative arithmetic
categoricity is equivalent to relative ∆0

n-categoricity for some n ∈ ω.

Proposition 1.7. A structure is relatively arithmetically categorical if and only if
it is relatively ∆0

n-categorical for some n < ω.
A structure is relatively hyperarithmetically categorical if and only if it is rela-

tively ∆0
α-categorical for some α < ωCK

1 .

Proof (Sketch). Fix a computable presentation A of a relatively arithmetically cate-
gorical structure. The key observation is that the proof of Theorem 1.9 (as presented
in Theorem 10.14 of [2]) does not use the existence of an isomorphism π : B ∼= A
arithmetic in B for every presentation B isomorphic to A, but instead constructs a
particular generic presentation B0 and only uses the existence of such an isomor-
phism for this fixed presentation.

For this fixed presentation B0, there is an isomorphism π : B0 ∼= A arithmetic
in B0. Thus, there is a ∆0

n(B0)-isomorphism for some n < ω. From this, it follows
by the proof of Theorem 1.9 that there is a c.e. Scott family of Σcn-formulas for the
structure, and thus the structure is relatively ∆0

n-categorical.
A similar observation applies to A being relatively hyperarithmetically categor-

ical. �

We also set some notation on strings.

Definition 4.1. Fix a tree T ⊆ ω<ω. The cone in T above a string σ, denoted
as [σ], is the set of strings {τ ∈ T : σ ⊆ τ}. Strings σ, τ ∈ T are incomparable,
denoted as σ | τ , if neither σ ⊆ τ nor τ ⊆ σ.

Proof of Theorem 1.14. The structure A we construct is a directed graph. In order
to facilitate its construction, we build, for each n ∈ ω, a c.e. tree Tn ⊂ ω≤n of
height n external to the structure A. We effectively embed Tn (as a directed graph)
into A, denoting the image of a string σ ∈ Tn by zσ. We also attach (finitely or
infinitely many) cycles of various lengths to each vertex zσ. The structure A will
consist entirely of the embedded trees Tn and the cycles attached to these vertices.

We will construct the trees Tn so that, for those that are infinite, there will be
infinitely many j ∈ ω such that 〈j〉 has infinitely many extensions in Tn. Moreover,
if 〈j〉 and 〈j′〉 both have infinitely many extensions in Tn, then it will be the case
that the parameter-free Σcn−2-type of z〈j〉 will equal the parameter-free Σcn−2-type
of z〈j′〉. As z〈j〉 and z〈j′〉 will not be automorphic in A, this will ensure that there
is no parameter-free Σcn−2-formula which isolates the type of z〈j〉.

Terminology : We identify elements in A with their transitive closures (under the
“forward” direction of the directed graph relation). Thus we say an element is
infinite if its transitive closure is infinite, we say two elements are isomorphic if
their transitive closures are isomorphic, and so on.

Our construction will use three types of devices to mark elements: Leaf labels,
height labels, and temporary labels. Each type of device will make use of cycles
(loops), but we will partition ω so that no cycle length is used by two different sorts
of devices.

• Leaf labels will mark the “leaves” of the image of Tn.
• Height labels will mark elements in the image of Tn as coming from strings

of length m in Tn.
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• Temporary labels will be a collection (possibly finite, possibly infinite) of
loops, at most one of each finite size. At any finite stage, the largest loop
in a given temporary label will not occur in any other temporary label,
making distinct temporary labels non-isomorphic at this stage. However,
if two temporary labels both grow to be infinite, then they will be isomor-
phic in the limit since they will have the same collection of loops. (The
above is not quite correct, since some temporary labels will deliberately be
made identical to others, but is true of all temporary labels which are not
deliberately identical.)

As already indicated, for σ ∈ Tn, we let zσ denote the corresponding element
in A. Though there is ambiguity with this notation (as a string σ may belong
to various trees Tn for varying n), it will always be clear which tree Tn is under
discussion. Thus when we refer to zσ, we refer to the image of the string σ in Tn
within A.

For σ ∈ Tn, we let the retinue of σ be the set of vertices in A consisting of zσ
itself, the vertices in the temporary or height labels for zσ, as well as those vertices
in the leaf labels attached to zσ (if σ is a leaf in Tn). Let the retinue of Tn be the
union of the retinues of its elements.

Basic Structure of a Tree Tn: The constructions of the trees Tn are mostly in-
dependent, so we focus on a single n. The tree Tn will be a c.e. subtree of the
tree2

T̂n :=
{
σ ∈ ω≤n | σ 6= ∅ and (∀m < |σ| − 1) [σ(m) 6= σ(m+ 1)]

}
The tree Tn will be a proper subtree (or rather, subforest) of T̂n satisfying the
following properties:

(I) The element 〈0〉 and infinitely many elements 〈j〉 (for j > 0) are in Tn and
are infinite. Let Jn be the set of all j ∈ ω such that 〈j〉 is infinite.

(II) T̂n ∩ J≤nn ⊆ Tn.

(III) If σ̂〈j〉, σ̂〈k〉 ∈ T̂n ∩ J≤n−1n , then

[σ̂〈j〉]− [σ̂〈j〉̂〈k〉] ∼= [σ̂〈k〉]− [σ̂〈k〉̂〈j〉]
via the map σ̂〈j〉̂ρ 7→ σ̂〈k〉̂ρ.

(IV) The isomorphism in (III) extends to an isomorphism of the retinues.

These properties will ensure that the parameter-free Σcn−2-type of z〈j〉 equals the
parameter-free Σcn−2-type of z〈j′〉 for any j, j′ ∈ Jn. Because of the priority con-
struction later, only infinitely many of the trees will satisfy the above, but that will
suffice.

Basic Structure of Labels: In order to ensure our marking devices do not interfere
with each other, we effectively partition ω−{0, 1} into disjoint infinite computable
sets WL, WH , and WT . We further effectively partition WT into disjoint infi-
nite computable sets {W 〈j,α〉}j∈ω,α∈T , where T is the priority tree detailed in the
upcoming section “Strategies, Outcomes, and the Priority Tree”.

2Technically, the set of vertices T̂n forms a forest rather than a tree since T̂n does not contain
the empty string ∅. Throughout this proof, we abuse terminology and refer to such sets as trees

rather than forests.
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We effectively enumerate the set WL as WL := {wL0 < wL1 < . . . }. If σ ∈ Tn
is a leaf (this will be the case if and only if |σ| = n), we will attach a leaf label of
size wLσ(n−1) to zσ.

We effectively enumerate the set WH as WH := {wH0 < wH1 < . . . }. If σ ∈ Tn
has height m, we will attach a height label of size wH〈m,n〉 to zσ.

We effectively enumerate the sets W 〈j,α〉, for each j ∈ ω and α ∈ T (where

again T is the priority tree detailed later), as W 〈j,α〉 := {w〈j,α〉0 < w
〈j,α〉
1 < . . . }. A

temporary label will have a type 〈j, α〉, where j ∈ ω and α ∈ T . There will be a
single c.e. set S shared by all temporary labels throughout the construction. Let S
initially be empty.

A temporary label of type 〈j, α〉 is built at an element z by performing the
following steps, starting with k = 0:

(1) Attach a loop of size w
〈j,α〉
0 to z.

(2) Attach a loop of size w
〈j,α〉
k+1 to z.

(3) Enumerate w
〈j,α〉
k into S.

(4) For every m in S with m < w
〈j,α〉
k , if z does not already have a loop of

length m attached, add one.
(5) Increment k and return to Step 2.

We only perform a step of this construction when the strategies described below
indicate we should. Clearly, if an instance of a label acts infinitely many times, it
will have one loop of size m for every m ∈ S and nothing else. However, at every

finite stage, the label will be distinguished by the loop of size w
〈j,α〉
k+1 .

Before continuing, we note an important consequence of these marking devices.
In any computable presentation B isomorphic to A, the set of vertices that are
images of the trees Tn is computable. This is because, given a vertex x ∈ A,
either x has out-degree one and is part of a cycle with another vertex of the cycle
having out-degree at least two (in which case the vertex with out-degree at least
two is zσ for some σ and x is in the retinue of σ); or x has out-degree at least two,
including a cycle of some length wH〈m,n〉 (in which case x is in the image of Tn).

Moreover, given such a vertex zσ ∈ B, both n and |σ| can be effectively deter-
mined from the length of the cycle wH〈m,n〉.

Requirements: Let {B`}`∈ω be an effective enumeration of all (partial) computable
directed graphs. We have two sorts of requirements, for all n, ` ∈ ω:

Υn : The tree Tn satisfies properties (I), (II), (III), and (IV) above.
Φ` : If B` ∼= A, then f` : B` ∼= A for some computable function f`.

We will meet Φ` for every `, but will only meet infinitely many of the Υn.

Strategies, Outcomes, and the Priority Tree: The above requirements necessitate
the following three types of strategies:

Υn : These strategies are the main strategies for the Υn-requirement. Each will
try to build an infinite tree Tn satisfying (I), (II), (III), and (IV). This
strategy will have only one outcome.

Ξn,j : To each Υn-strategy, we attach a Ξn,j-strategy for each j ∈ ω, which will
try to place j into Jn, and if j ∈ Jn, will help ensure that Tn satisfies the
above properties. This strategy will have only one outcome.
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Φ` : This strategy will build a partial computable function f` so that f` : B` ∼= A
if B` ∼= A. It does so by utilizing the pushing on isomorphisms machinery:
By slowing down the construction below its “isomorphic” outcome ∞ and
tagging all elements created there with temporary tags, by permanently
tagging all elements created by strategies to the right of its “isomorphic”
outcome∞, and by nonuniformly building f` for the finitely many elements
created by strategies above and to the left of the strategy. In addition to
its “isomorphic” outcome ∞, a Φ`-strategy will also have infinitely many
finitary outcomes k (for k ∈ ω), denoting that the Φ`-strategy has k many
times taken the “isomorphic” outcome ∞.

We now effectively assign strategies to nodes of a priority tree T ⊂ ({∞}∪ω)<ω

(not to be confused with the trees Tn for n ∈ ω) with the following properties:

• Each level of the tree is entirely devoted to either Υ-, Ξ- or Φ-requirements;
• If a level is devoted to Φ-requirements, every node on that level is assigned

to the same Φ`-requirement.
• For every `, there is a level devoted to the Φ`-requirement;
• For every n and every j, there is precisely one node devoted to the Υn-re-

quirement and precisely one node devoted to the Ξn,j-requirement;
• There are infinitely many levels devoted to Υ-requirements;
• For every n, j, the Ξn,j-node is an extension of the Υn-node;
• For every Υn-node α ∈ T , there are infinitely many levels such that every

node on that level which extends α is a Ξn,j-node for some j;
• A Φ`-strategy α ∈ T has infinitely many immediate successors on T ,

namely, α̂〈∞〉 and α̂〈k〉 for all k ∈ ω, ordered α̂〈∞〉 <T · · · <T
α̂〈1〉 <T α̂〈0〉;
• An Υn- or Ξn,j-node α ∈ T has only one immediate successor on T , namely,
α̂〈∞〉; and
• If α ∈ T is a Υn-node, α̂〈∞〉 is the Ξn,0-node.

Note that our construction will have the feature that if a node is visited, and
then later a node to its left is visited, the original node will never be visited again.

The Υn-Strategy : This strategy merely serves as the top of the cone of strategies
on T building Tn. It performs no action and always takes the outcome ∞.

The Ξn,j-Strategy : For a Ξn,j-strategy α, let

Jα := {j′ | some γ ⊆ α is a Ξn,j′ -strategy}.

Note that Jα is finite and uniformly computable. The strategy α believes that
Jα ⊂ Jn, so α works to ensure the properties of Tn within T̂n ∩ J≤nα .

Let

Rα := {σ ∈ T̂n ∩ J≤nα | σ(k) = j for some k}.

The strategy α believes that the strings in Rα should be infinitely branching in Tn.
Furthermore, no strategy α′ ⊂ α believes any string in Rα should be infinitely
branching in Tn (since j /∈ Jα′).

The strategy α acts as follows:

(1) When α is first visited, it enumerates all of Rα into Tn. It also creates
corresponding elements zσ ∈ A for each σ ∈ Rα. Each new element zσ is
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given a height label of size wH〈|σ|,n〉 marking its height and the beginnings

of a temporary label of type 〈σ(|σ| − 1), α〉.
If |σ| = n, then zσ is also given a leaf label of size wLσ(n−1).

(2) Whenever α is visited, for every pair of strings (σ, ρ) with σ ∈ J<nα and

|ρ| > 0, and for all k, k′ ∈ Jα, if σ̂〈k〉̂ρ ∈ Tn and σ̂〈k′〉̂ρ ∈ T̂n\Tn,
then α enumerates σ̂〈k′〉̂ρ into Tn. It also creates a corresponding el-
ement zσ̂〈k′〉̂ρ in A with the appropriate height label and leaf label (if
appropriate) and a temporary label created by copying the entirety of the
temporary label of zσ̂〈k〉̂ρ.

(3) Whenever α is visited, for every string σ ∈ Rα, one step is taken in the
construction of the temporary label of type 〈j, α〉 for zσ.

The Φ`-strategy : This is the only type of strategy with more than one outcome. It
will have a Π0

2-outcome ∞ corresponding to the isomorphic outcome and infinitely
many finitary outcomes k (for k ∈ ω), to be discussed later. As we are only
measuring length of agreement on some parts of the structures, it is possible for
the true outcome of a Φ`-strategy to be ∞ even if B` 6∼= A.

Suppose B` is isomorphic to A. We would like to construct a computable iso-
morphism between them by running a back-and-forth argument, but in order for
this argument to succeed, we need to know more about B`. Suppose that, in a
computable fashion, we could identify each zσ ∈ B`. Then we would be able to
construct a computable isomorphism. The job of a Φ`-strategy α will be to tag the
elements of B` with this information for all but finitely many σ, with the remainder
being handled non-uniformly.

In what follows, we restrict our attention to the image of a tree Tn and all the
retinues of its elements. Note that the sets Rβ for β ⊂ α are finite and computable
uniformly in α. If α has true outcome ∞, then α must tag every element zσ except
for the finitely many σ in these Rβ .

Suppose that α has sufficiently high priority to halt the growth of the temporary
label attached to z〈j〉. Then whatever element in B` is tagged as z〈j〉, α can enforce
this map to be correct: Let β be the strategy which enumerated 〈j〉 into Tn. Then
the temporary label attached to z〈j〉 is the unique label attached to a vertex of

height 1 and containing a loop of size w
〈j,β〉
k . Suppose the element of B` tagged

as z〈j〉 also contains a loop of size w
〈j,β〉
k . Suppose the temporary label construction

performs Step (2) (attaching a loop of size w
〈j,β〉
k+1 ). Then α will not permit the

temporary label to perform Step (3) until such time as the element of B` which

is tagged as z〈j〉 gains a loop of size w
〈j,β〉
k+1 in its temporary label. If this never

happens, then necessarily A 6∼= B`. In this way, α maintains the isomorphism.
In general, if there is no τ ⊆ σ with τ ∈ Rβ for some β ⊂ α, then α has sufficient

priority to halt the growth of the temporary label attached to zτ for every τ ⊆ σ
and thus can inductively enforce that the element it tags as zτ is correct.

On the other hand, suppose for some τ ⊆ σ, τ ∈ Rβ for some β ⊂ α. Then we
cannot hope to computably tag zσ, as identifying zσ would entail identifying zτ ;
simply search for the predecessor of zσ permanently labeled as having height |τ |.
And we cannot computably tag zτ , as α does not have sufficiently high priority to
enforce this map.

For this reason, we will employ two sorts of tags: provisional and non-provisional.
Non-provisional tags will be tags for which we can enforce correctness and will
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consequently never need to move. Non-provisional tags are of the form zσ, for
some σ ∈ Tn. They indicate that the tagged element is the image of zσ in B`.

Provisional tags, on the other hand, may need to move if we have incorrectly
guessed the immediate predecessor of zσ. If we have guessed correctly, they will not
move. Provisional tags are of the form zb,ρ. They indicate that we currently guess
that the tagged element is the image in B` of zτ̂ρ for some τ of length b which we
do not have sufficiently high priority to control. There will be multiple instances
of every provisional tag, since there are multiple strings τ of length b for which
we lack the priority to control; we will then later, nonuniformly, determine the
correct images of these zτ , and then, uniformly from this information, the images
of the zτ̂ρ.

Let k be the number of times α has taken outcome ∞. Let

Iα :=
⋃

β|α̂〈k〉 Jβ .
We restrict our attention to σ ∈ Tn ∩ I≤nα with σ /∈ Rβ for any β ⊂ α. Let m be
size of the largest loop in the temporary label of zσ. There are four cases.

(1) If |σ| = 1, then we search for an element having a height label of size wH1,n
and with an attached temporary label containing a loop of size m. This
element is non-provisionally tagged as zσ.

(2) If |σ| > 1 and for every σ′ ⊆ σ, σ′ /∈ Rβ for any β ⊂ α, then we wait
until some element of the image of Tn in B` is non-provisionally tagged
as zσ− . We then search among the immediate successors of this element for
an element with an attached temporary label containing a loop of size m.
This immediate successor is non-provisionally tagged as zσ.

(3) If σ− ∈ Rβ for some β ⊂ α, then σ = σ−̂〈j〉. There are a finite number of
strings ρ with |ρ| = |σ−| and ρ ∈ Rγ for some γ ⊂ α. Let d be the number
of such ρ.

We search for d many distinct elements in the image of Tn in B` with
a height label of size wH|σ−|,n. For each such element, we wait until either

a child appears with a loop of size m in the attached temporary label
or we decide that we are in the wrong location. In the former case, we
provisionally tag the child as z|σ−|,〈j〉. In the latter case, we search for the

next element with a height label of size wH|σ−|,n and try again. Even once

we have provisionally tagged an element, we may decide that we are in the
wrong location, in which case we remove the provisional tag and try again.

There are two reasons why we might decide an element b is the wrong
location (here b is the element of height |σ−|): b or some predecessor of b
might be tagged with a provisional tag; or some element in the same con-
nected component as b might be tagged with a non-provisional tag.

(4) Otherwise, let σ = σ′̂τ with σ′ maximal such that σ′ ∈ Rβ for some β ⊂ α
(note that |τ | > 1). We again let d be the number of ρ with |ρ| = |σ′| and
ρ ∈ Rγ for some γ ⊂ α. We wait for d many elements with a height label
of size wH|σ−|,n to become provisionally tagged with z|σ′|,τ− , and for each

we search for a child of that element with a loop of size m in the attached
temporary label. We wait until either we find such an element or we decide
that the tag for z|σ′|,τ− was in the wrong location. In the former case, we
provisionally tag the child with z|σ′|,τ . In the latter case, we try again.
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Even once we have provisionally tagged an element, we may decide that we
are in the wrong location, in which case we remove the provisional tag and
try again.

At a stage t, if for all n the strategy α has dispensed a tag (provisional or
non-provisional) for every σ ∈ Tn ∩ I≤nα with σ /∈ Rβ for any β ⊂ α, and the
retinues of each of these tagged elements appear to be isomorphic to the retinues
of the corresponding zσ, then α has outcome ∞. Otherwise, it has outcome k, the
number of times α previously had outcome ∞.

Verification: Define the true path in the usual fashion. We verify that the struc-
ture A has the desired properties in a number of claims. The claims below verify
that the tree Tn is as advertised (Claims 4.2 through 4.22), the non-relative arith-
metic categoricity of A (Claims 4.23 through 4.27), and the computable categoricity
of A (Claims 4.28 through 4.38).

Claim 4.2. The set Tn is a tree, i.e., it is downwards closed except for the empty
string. Moreover, it is a subtree of T̂n.

Proof. We claim that Tn is downwards closed at every stage, proceeding by induc-
tion on stages.

If σ ∈ Rα and |σ| > 1, then either σ− ∈ Rα or σ− ∈ Rβ for some β ⊂ α. In
either case, when α is reached, the string σ− has been enumerated into Tn.

If σ̂〈k′〉̂ρ is enumerated into Tn because σ̂〈k〉̂ρ ∈ Tn, then by hypothesis
σ̂〈k〉̂ρ− ∈ Tn, and thus σ̂〈k′〉̂ρ− is enumerated into Tn if it was not already.

Strings only enter Tn by the action of some Ξn,j-strategy. These strategies
are careful not to enumerate the empty string, a string with consecutive identical
numbers in the string, or a string of length greater than n. �

Claim 4.3. Fix a Υn-strategy α along the true path. Let

J ′n := {j ≥ 0 | the Ξn,j-strategy is along the true path}.

Then J ′n = Jn (where Jn was defined in (I) of the “Basic Structure” section).

Proof. We have 0 ∈ J ′n since the Ξn,0-strategy attached to α is along the true path
if and only if α is. We therefore assume j > 0, showing j ∈ J ′n implies j ∈ Jn, and
j 6∈ J ′n implies j 6∈ Jn.

Suppose j ∈ J ′n. Then let β be the Ξn,j-strategy. Since β is on the true path,
there are arbitrarily many k such that a Ξn,k-strategy γ ⊃ β is visited during the
construction. The first time γ is visited, the string 〈j, k〉 is enumerated into Tn.
Thus j ∈ Jn.

Suppose j /∈ J ′n. Then let β be the Ξn,j-strategy. Since β is not on the true
path, there is some stage s0 after which β is never again visited. After s0, no
extension of 〈j〉 will be in Rγ for any γ visited, and thus no extension of 〈j〉 will
be enumerated into Tn. Thus the extensions of 〈j〉 in Tn are precisely the finitely
many it possessed at stage s0. So j /∈ Jn. �

Claim 4.4. Fix a Υn-strategy α along the true path. Then T̂n ∩ J≤nn ⊆ Tn.

Proof. If σ ∈ T̂n ∩ J≤nn , then σ ∈ Rβ for some β along the true path. When that β
is first visited, the string σ is enumerated into Tn. �
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Claim 4.5. Fix a Υn-strategy α along the true path. If σ̂〈j〉, σ̂〈k〉 ∈ T̂n∩J≤n−1n ,
then

[σ̂〈j〉]− [σ̂〈j〉̂〈k〉] ∼= [σ̂〈k〉]− [σ̂〈k〉̂〈j〉]
via the map σ̂〈j〉̂ρ 7→ σ̂〈k〉̂ρ, where the indicated isomorphisms are isomor-
phisms of the tree Tn.

Proof. Let β be a Ξn,∗-strategy along the true path such that σ̂〈j〉, σ̂〈k〉 ∈
J≤n−1β . Suppose σ̂〈j〉̂ρ ∈ [σ̂〈j〉] − [σ̂〈j〉̂〈k〉]. Let s be the stage at which

σ̂〈j〉̂ρ enters Tn. Let t > s be a stage at which β is visited. By action (2) of β,
σ̂〈k〉̂ρ will enter Tn at stage t if it has not already done so. Thus σ̂〈k〉̂ρ ∈
[σ̂〈k〉]. Since σ̂〈j〉̂ρ ∈ Tn, ρ(0) 6= j, and so σ̂〈k〉̂ρ ∈ [σ̂〈k〉]− [σ̂〈k〉̂〈j〉].

A symmetric argument applies to σ̂〈k〉̂ρ ∈ [σ̂〈k〉]− [σ̂〈k〉̂〈j〉]. �

Claim 4.6. Fix a Υn-strategy α. No string containing j can be enumerated into Tn
until the Ξn,j-strategy has been visited for the first time.

Proof. Immediate by induction on the order in which the Ξn,j-strategies are visited.
�

Claim 4.7. Suppose α is a Ξn,j-strategy. If α enumerates some σ̂〈k〉̂ρ into Tn
by action (2), then ρ /∈ J≤nβ for any Ξn,j′-strategy β comparable to α.

Proof. Suppose otherwise. Then no string containing ρ as a substring can be enu-
merated into Tn before the least such β is first visited. But then σ̂〈k〉̂ρ will be
enumerated into Tn by action (1) by the first time sup{α, β} is visited. �

Definition 4.8. For σ ∈ Tn, the tail of σ (denoted tail(σ)) is the maximal final
segment ρ of σ with ρ ∈ Rβ for some β.

The origin of σ (denoted origin(σ)) is the (unique) Ξn,j-strategy β with tail(σ) ∈
Rβ .

Note 4.9. If σ was enumerated into Tn by action (1) of strategy β, then tail(σ) = σ
and origin(σ) = β. By Claim 4.10 below, β is also the origin of all “copies” of σ
inserted via action (2).

Claim 4.10. Suppose α is a Ξ-strategy. If α enumerates some σ into Tn by ac-
tion (2), copying some τ already in Tn (which has entered Tn via either action (1)
or (2) of another strategy), then origin(σ) = origin(τ).

Proof. Let origin(τ) be a Ξn,j-strategy. Let m be greatest such that τ(m) = j
(necessarily in the tail of τ). Then α creates σ from τ by replacing some single
character τ(p) with some other character l. By assumption, τ � (p + 1) ∈ Rβ for
some β ⊆ α.

If p ≥ m, then origin(τ) ⊆ β, and so τ ∈ Rβ . Thus σ ∈ Rγ for some γ ⊆ α, and
so σ would have been enumerated into Tn by action (1) when γ was first visited,
contrary to hypothesis.

Thus p < m. Let ρ be such that τ = (τ � m)̂ρ. So ρ(0) = j and origin(ρ) =
origin(τ). Then ρ is a (not necessarily proper) final segment of tail(τ). ρ is also a
final segment of σ. From the maximality of tail(σ), ρ is a final segment of tail(σ),
and so origin(τ) = origin(ρ) ⊆ origin(σ).

If tail(σ) is a final segment of τ , then by the maximality of tail(τ), tail(σ) is a
final segment of tail(τ). So origin(σ) ⊆ origin(τ), as desired.
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Else, |tail(σ)| ≥ |σ| − p and |tail(τ)| ≥ |τ | − p− 1. If origin(τ) ( origin(σ), then
fix j′ such that origin(σ) is a Ξn,j′ -strategy. Then j′ occurs somewhere in tail(σ)
but not in tail(τ). Hence j′ occurs somewhere in σ � (p+1). Thus σ � (p+1) ∈ Rβ′
for some β′ extending origin(σ). So σ ∈ Rβ′ . But by assumption β′ ⊆ α. Thus σ
would have been enumerated into Tn by action (1) when origin(σ) was first visited,
contrary to hypothesis.

Hence origin(τ) = origin(σ). �

Claim 4.11. Suppose α is a Ξ-strategy. If α enumerates some σ into Tn by ac-
tion (2), then tail(σ) 6= σ.

Proof. If not, then σ would have already been enumerated into Tn by action (1) of
origin(σ). �

For a string σ0 ∈ Tn, σ0 may have been enumerated by some strategy α0 per-
forming action (2) and copying a string σ1 already in Tn. σ1 in turn may have been
enumerated by some strategy α1 performing action (2) and copying σ2. In this
fashion, we may generate a sequence σ0, σ1, . . . , σm, σm+1, with each string being
enumerated because a strategy copied the next. Of course, this process must ter-
minate in some σm+1 which was enumerated by action (1) of some strategy αm+1.
It would be helpful to track the strategy αm which performed the first copy in the
sequence, enumerating σm by copying σm+1. In particular, we would like to be able
to determine this strategy simply by examining σ0, without considering the history
of the construction. This is a little too much to hope for, but by examining σ0,
we can determine a strategy β ⊆ αm, which we call the pillager of σ0 and which is
incomparable with origin(σ0), which turns out to be good enough for our purposes.

Definition 4.12. If σ 6= tail(σ), then the pillager of σ (denoted as pillager(σ)) is
the unique Ξn,j-strategy where j is such that σ can be written as σ = σ′̂〈j〉̂tail(σ)
for some σ′.

Claim 4.13. If σ 6= tail(σ), then pillager(τ) and origin(τ) are incomparable.

Proof. By the maximality of the tail. �

Claim 4.14. Suppose α is a Ξ-strategy. If α enumerates some σ into Tn by ac-
tion (2), copying some τ already in Tn, and τ = tail(τ) or pillager(σ) 6= pillager(τ),
then pillager(σ) ⊆ α.

Proof. If τ = tail(τ), then the final position before the tail of σ (the position which
determines pillager(σ)) is the position changed by the action of α. So pillager(σ) ⊆
α.

If pillager(σ) 6= pillager(τ) and |tail(σ)| ≤ |tail(τ)|, then by the maximality of
tail(σ), the position before the tail of σ is the position changed by the action of α.
So pillager(σ) ⊆ α.

If pillager(σ) 6= pillager(τ) and |tail(σ)| > |tail(τ)|, then by the maximality
of tail(τ), the position before the tail of τ is the position changed by the action
of α. So the position before the tail of σ is earlier. So by the assumption of
action (2), the character before the tail of σ is in Jα. Thus pillager(σ) ⊆ α. �

Claim 4.15. If σ ∈ Tn and σ 6= tail(σ), then let t be the stage at which σ was
enumerated into Tn. Then there are stages s0 < s1 ≤ t such that origin(σ) was
visited at stage s0 and pillager(σ) was visited at stage s1.
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Proof. Proof by induction on t. Some strategy α created σ by copying some string τ
through action (2) at stage t.

If τ = tail(τ), then origin(σ) = origin(τ) was visited at some stage s0 when τ
was enumerated into Tn. By Claim 4.14, pillager(σ) was visited at stage t. Thus
we can take s1 = t.

If τ 6= tail(τ) and pillager(σ) 6= pillager(τ), then a simple induction using
Claim 4.10 shows that origin(σ) = origin(τ) was visited at some stage s0 before the
stage when τ was enumerated into Tn. By Claim 4.14, pillager(σ) was visited at
stage t. Thus we can take s1 = t.

If τ 6= tail(τ) and pillager(σ) = pillager(τ), then the result follows immediately
from the inductive hypothesis applied to τ . �

Claim 4.16. Suppose α is a Ξ-strategy. If α enumerates some σ into Tn by ac-
tion (2), copying some τ already in Tn, and τ 6= tail(τ), and origin(τ) has been
visited between the enumerations of τ and σ into Tn, then pillager(σ) = pillager(τ).

Proof. Let t be the stage at which τ was enumerated into Tn, and let s0 < s1 ≤ t
be the stages from Claim 4.15 applied to τ . By assumption, there is some stage
s2 > t at which origin(τ) is visited. Thus origin(τ) was visited both before and
after pillager(τ), and by Claim 4.13, the two are incomparable. Thus origin(τ)
must be to the left of pillager(τ) in the priority tree, and so pillager(τ) can never
again be visited after stage s2. In particular, pillager(τ) cannot be visited at the
stage at which σ is enumerated, and so pillager(τ) 6⊆ α. Thus the final character
before the tail of τ (the character which determines pillager(τ)) is not in Jα, and so
the single character α replaces must occur before that one. Thus tail(σ) = tail(τ)
and the final character in σ before tail(σ) is the same as the character in τ . So
pillager(σ) = pillager(τ). �

Claim 4.17. Suppose α is a Ξ-strategy. If α enumerates some σ into Tn by ac-
tion (2), copying some τ already in Tn, then σ(|σ| − 1) = τ(|τ | − 1).

Proof. Immediate by construction since else σ would have been enumerated into Tn
by action (1). �

Claim 4.18. If σ ∈ Tn, then σ(|σ| − 1) ∈ Jorigin(σ).

Proof. Immediate by Claim 4.17 and induction on the number of times action (2)
was performed before σ was added to Tn, using Claim 4.10. �

Definition 4.19. If α is a Ξn,j-strategy and k ∈ Jα with k 6= j, the canonical
label of type 〈k, α〉 is the temporary label attached to z〈j,k〉. The canonical label of
type 〈j, α〉 is the temporary label attached to z〈j〉.

Claim 4.20. Suppose σ ∈ Tn at stage s.
If σ = tail(σ), then the temporary label attached to σ at stage s is identical to

the canonical label of type 〈σ(|σ| − 1), origin(σ)〉 at stage s.
If σ 6= tail(σ), and t ≤ s is the last stage at which pillager(σ) is visited, then

the temporary label attached to σ at stage s is identical to the canonical label of
type 〈σ(|σ| − 1), origin(σ)〉 at stage t.

Proof. We perform induction on the number of applications of action (2).
If σ = tail(σ), then σ was enumerated by action (1) of origin(σ). Thus its label

was created at the same time as the canonical label of its type, and both labels
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grow by one step precisely at the stages when origin(σ) is visited. This proves the
first part of the claim.

If σ 6= tail(σ), then σ was enumerated by action (2) of some strategy α copying
some τ already in Tn. Let s′ ≤ s be the stage at which σ was enumerated into Tn.

If τ = tail(τ), then by the first part of the claim, the temporary label attached
to τ (and thus the temporary label attached to σ) is identical to the appropri-
ate canonical label at stage s′. Furthermore, s′ is a stage at which pillager(σ) is
visited by Claim 4.14. Since, by Claim 4.13, pillager(σ) and origin(σ) are incom-
parable, origin(σ) cannot be visited between stages s′ and t. Thus the canonical
label cannot grow at all by stage t (and by construction, the temporary label at-
tached to σ never grows). So the temporary label attached to σ is identical to the
appropriate canonical label at stage t.

If τ 6= tail(τ), let t′ ≤ s′ be the greatest stage such that pillager(τ) was visited
at stage t′.

If pillager(σ) = pillager(τ) then, by construction, the temporary label attached
to σ is identical to the temporary label attached to τ , and by the inductive hy-
pothesis, this is equal to the appropriate canonical label at stage t′. Since, by
Claim 4.13, pillager(σ) and origin(σ) are incomparable, origin(σ) cannot be visited
between stages t′ and t. Thus the canonical label cannot grow at all by stage t (and
by construction the temporary label attached to σ never grows). So the temporary
label attached to σ is identical to the appropriate canonical label at stage t.

If pillager(σ) 6= pillager(τ), then, by Claim 4.16, origin(τ) was not visited be-
tween stages t′ and s′. By the inductive hypothesis, the temporary label attached
to σ is identical to the temporary label attached to τ , which is identical to the
appropriate canonical label at stage t′. But since origin(τ) is not visited, this is
identical to the canonical label at stage s′. Furthermore, pillager(σ) is visited at
stage s′. So origin(σ) cannot be visited between stages s′ and t, so the canonical la-
bel cannot grow. So the temporary label attached to σ is identical to the canonical
label at stage t. This proves the second part of the claim. �

Claim 4.21. Fix a Υn-strategy α along the true path. The isomorphism constructed
in Claim 4.5 extends to isomorphisms of the retinues.

Proof. It suffices to show that the temporary labels attached to σ̂〈j〉̂ρ and
σ̂〈k〉̂ρ are identical where |ρ| > 0. Without loss of generality, the Ξn,j-strategy
is an extension of the Ξn,k-strategy. Call these strategies αj and αk, respectively.

If ρ ∈ J<ωn , then σ̂〈j〉̂ρ ∈ Rβj and σ̂〈k〉̂ρ ∈ Rβk for some strategies βj , βk
along the true path. So the temporary labels attached to each will be grown infin-
itely often, and thus they will both consist of a single loop of every size in S.

If |tail(σ̂〈j〉̂ρ)| < |ρ|, then tail(σ̂〈k〉̂ρ) = tail(σ̂〈j〉̂ρ), and so we have
origin(σ̂〈j〉̂ρ) = origin(σ̂〈k〉̂ρ) and pillager(σ̂〈j〉̂ρ) = pillager(σ̂〈k〉̂ρ).
By Claim 4.20, the temporary labels are identical.

If tail(σ̂〈k〉̂ρ) = σ̂〈k〉̂ρ and ρ 6∈ J<ωn , then the character which deter-
mines origin(σ̂〈k〉̂ρ) must occur somewhere in ρ. Therefore, origin(σ̂〈k〉̂ρ) =
origin(σ̂〈j〉̂ρ). If tail(σ̂〈j〉̂ρ) = σ̂〈j〉̂ρ, then by Claim 4.20, both temporary
labels are identical to the canonical label at all stages. If tail(σ̂〈j〉̂ρ) 6= σ̂〈j〉̂ρ,
then αj = pillager(σ̂〈j〉̂ρ), so by Claim 4.20 the temporary labels are identical
to the canonical label at any stage at which αj is visited.

If |tail(σ̂〈j〉̂ρ)| ≥ |ρ| and tail(σ̂〈k〉̂ρ) 6= σ̂〈k〉̂ρ, then |tail(σ̂〈k〉̂ρ)| ≥
|ρ|. But then both pillager(σ̂〈j〉̂ρ) and pillager(σ̂〈k〉̂ρ) are on the true path.
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Since origin and tail are incomparable, origin(σ̂〈j〉̂ρ) is not on the true path,
and thus the character defining the origin must occur somewhere in ρ. Therefore,
origin(σ̂〈k〉̂ρ) = origin(σ̂〈j〉̂ρ). Then at any stage when the longer of the two
pillagers is visited, both temporary labels are identical to the canonical label by
Claim 4.20. So in the limit, the two labels are the same. �

Claim 4.22. Fix a Υn-strategy α along the true path. The tree Tn satisfies prop-
erties (I)-(IV).

Proof. By Claims 4.3, 4.4, 4.5, and 4.21. �

Next, we show that the types behave as previously claimed.

Claim 4.23. Fix a Υn-strategy α along the true path.
If σ, τ ∈ Tn of the same length differ in a single coordinate k < n − 1, and

σ � (k + 1), τ � (k + 1) ∈ Jk+1
n , then the retinue of σ is isomorphic to the retinue

of τ .

Proof. By Property (IV) of Tn (verified in Claim 4.22), there is an isomorphism

[σ � (k + 1)]− [σ � (k + 1)̂〈τ(k)〉]→ [τ � (k + 1)]− [τ � (k + 1)̂〈σ(k)〉],
and this isomorphism extends to the retinues.

If σ and τ have length k + 1, then they are in the domain and range of this
isomorphism, respectively. Otherwise, since σ(k + 1) = τ(k + 1), it must be the
case that σ(k + 1) 6= τ(k) and τ(k + 1) 6= σ(k). Thus σ and τ are again in the
domain and range, respectively. �

Claim 4.24. Fix a Υn-strategy α along the true path.
Let u1, . . . , um′ , v1, . . . , vm ∈ A and σ1, . . . , σm ∈ Tn where v` is in the retinue

of σ` and u` 6∈ retinue(Tn) for all `. Suppose that k < n − 1 and j, j′ ∈ Jn such
that if |σ`| ≥ k + 1 and σ` � (k + 1) ∈ Jk+1

n , then j′ 6∈ {σ`(k − 1), σ`(k), σ`(k + 1)}
(ignoring those σ`(k − 1) or σ`(k + 1) which are not defined).

Let τ` be obtained from σ` by replacing any j in the kth place by j′ unless σ` �
(k + 1) /∈ Jk+1

n . More precisely, let τ1, . . . , τm ∈ Tn be defined as follows:

τ`(i) :=


σ`(i) if i 6= k,

σ`(i) if σ`(i) 6= j,

σ`(i) if σ` � (i+ 1) /∈ J i+1
n ,

j′ otherwise.

Using Claim 4.23, let w` be the natural image of v` in the retinue of τ`.
Then Σcn−k−2-type(u, v) = Σcn−k−2-type(u,w).

Proof. We proceed by induction on the complexity of types.
For Σ0-types, this is trivial.
Let ϕ(y, z) = ∃x ψ(y, z, x) with ψ a Πc

p-formula with p < n− k− 2, and suppose

A |= ϕ(u, v). Then let u′, v′ be such that A |= ψ(u, v, u′v′), with u′ 6∈ Ui and
v′ ∈ Ui, and let σ′ be such that the various v′ are in the retinue of the various σ′.
By the inductive hypothesis, if σ′` � (k + 1) ∈ Jk+1

n , we may assume that j′ 6∈
{σ`(k − 1), σ`(k), σ`(k + 1)} (by employing the inductive hypothesis three times
with three large values from Jn). (Since n− k − 2 > 0, k + 1 < n− 1.)

Then let τ ′ correspond to σ′ in the same fashion as τ corresponds to σ (if
σ′` � (k + 1) ∈ Jk+1

n , all j at coordinate k are replaced with j′). Let w′ be the
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natural images of the v′ in the retinues of the τ ′. Then by the inductive hypothesis,
A |= ψ(u,w, u′w′). Thus A |= ϕ(u,w).

The proof of the other direction is symmetric. �

Now we show that A is not relatively arithmetically categorical.

Claim 4.25. For distinct j, j′ ∈ ω, if σ̂〈j〉, σ̂〈j′〉 ∈ Tn, then there is no embed-
ding [σ̂〈j〉] ↪→ [σ̂〈j′〉] that extends to an embedding of the retinues.

Proof. Towards a contradiction, let f be such an embedding. Let k < n be greatest
such that for some τ , τ(k) 6= f(τ)(k). Fix such a string τ , where we assume without
loss of generality that |τ | = k+1. If k = n−1 (i.e., if |τ | = n), then zτ has a leaf loop
of size wLτ(k) whereas zf(τ) has a leaf loop of size wLf(τ)(k). As these sizes are distinct,

the embedding f cannot extend to an embedding of the retinues. If k < n−1 (i.e., if
|τ | < n), then by maximality of k, we must have f(τ̂〈f(τ)(k)〉) = f(τ)̂〈f(τ)(k)〉.
But f(τ)̂〈f(τ)(k)〉 6∈ Tn since it repeats a character in the kth and (k + 1)st

positions. �

Claim 4.26. The structure A has no non-trivial self-embeddings.

Proof. Let f : A → A be an embedding. Every point in A which is a zσ for some σ
has out-degree strictly greater than 1 (from its temporary label and height label,
if nothing else), while all other points all have out-degree exactly 1. Thus f must
map every zσ to some zτ . Moreover, by examining the height labels, it must be
the case that σ and τ belong to the same tree Tn. Hence f induces embeddings
f : Tn → Tn for each n ∈ ω.

By Claim 4.25, it follows that f must be the identity on Tn. As the retinue of
any σ ∈ Tn has no non-trivial self-embeddings (loops are always of distinct sizes),
this implies f is the identity. �

Claim 4.27. For every n, the structure A does not have a c.e. Scott family of
Σcn-formulas. Thus, the structure A is not relatively arithmetically categorical.

Proof. Fix n. Suppose X were a family of Σcn-formulas with parameters c. Fix
n′ ≥ n + 2 such that the Υn′ -strategy is along the true path and the retinue
of Tn′ is disjoint from c. Choose j ∈ Jn′ with j 6= 0. Then by Claim 4.24, we have
Σcn′ -type(c, z〈0〉) = Σcn′ -type(c, z〈j〉). Thus for any formula ϕ ∈ X, A |= ϕ(c, z〈0〉)↔
ϕ(c, z〈j〉). But by Claim 4.26, z〈0〉 and z〈j〉 are not in the same orbit. Thus X is
not a Scott family.

It follows from Proposition 1.7 that A is not relatively arithmetically categorical.
�

Finally, we show that A is computably categorical.

Claim 4.28. If σ ∈ Tn was enumerated at stage s, tail(σ) 6= σ, α is a Ξn,j-strategy
and j appears in σ outside tail(σ), let t0 < s be the first stage at which origin(σ)
was visited, t1 > t0 be least such that pillager(σ) was visited at stage t1 (t1 exists by
Claim 4.15), and t2 ≤ s be greatest such that α was visited at stage t2. Then t1 ≤ t2.

Proof. By induction on the number of applications of action (2).
If some β enumerates σ into Tn at stage s by copying some τ , let τ(m) be the

character that was changed to create σ.
If |tail(σ)|+m+1 ≥ |σ| (this includes the base case τ = tail(τ) since then tail(σ)

begins right after σ(m)), then j and the character which determines the pillager
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of σ occurs within σ � (m+ 1). Since σ � (m+ 1) ∈ Rβ , α ⊆ β and pillager(σ) ⊆ β.
Thus t1 ≤ s = t2.

Otherwise, by the maximality of tails, tail(σ) = tail(τ), and the last characters
before the tails of σ and τ are the same. So we have pillager(σ) = pillager(τ) and
origin(σ) = origin(τ). If j occurs in τ outside of tail(τ) (i.e., in particular, j is not
the character replaced), we have by the inductive hypothesis (applied to τ in place
of σ) that t1 ≤ t2. Otherwise, j = σ(m). Then j ∈ Jβ , and so α ⊆ β. Thus t2 = s,
while t1 ≤ s by the inductive hypothesis (applied to τ in place of σ and τ(0) in
place of j). �

Claim 4.29. If σ̂〈j〉 ∈ Tn at stage s, let m be largest such that there is a loop
of size m in the temporary label attached to zσ̂〈j〉 at stage s. Then zσ̂〈j〉 is the
unique child of zσ with a loop of size m in its temporary label at stage s. (Or, for
σ = 〈〉, z〈j〉 is the unique height-1 element with a loop of size m.)

Proof. By Claim 4.20, there was a stage at which m was the size of the largest loop
in the canonical label of type 〈j, origin(σ̂〈j〉)〉. By the construction of temporary
labels, m ∈ W 〈j,origin(σ̂〈j〉)〉. Also by the construction of temporary labels, a
temporary label of any type other than 〈j, origin(σ̂〈j〉)〉 can only gain a loop of
size m after some temporary label of type 〈j, origin(σ̂〈j〉)〉 enumerates m into S.
This can only happen after that temporary label has added a loop of some size
bigger than m. By Claim 4.20, when this happens, the canonical label will have a
loop of a size larger than m.

If σ̂〈j〉 = tail(σ̂〈j〉), then we have by Claim 4.20 that the temporary label
attached to zσ̂〈j〉 will be identical to the canonical label of type 〈j, origin(σ̂〈j〉)〉,
and so m is the size of the largest loop in the canonical label at stage s. By the
above, no label of a type other than 〈j, origin(σ̂〈j〉)〉 has a loop of size m at stage s.
Every sibling of zσ̂〈j〉 has a label of a type other than 〈j, origin(σ̂〈j〉)〉.

Otherwise, consider any other σ̂〈k〉 ∈ Tn at stage s. There are three possibili-
ties.

If |tail(σ̂〈j〉)| = |tail(σ̂〈k〉)|, then note that pillager(σ̂〈j〉) = pillager(σ̂〈k〉).
Let t be the last stage at which this common pillager was visited. By Claim 4.20,
m is the largest loop attached to the canonical label of type 〈j, origin(σ̂〈j〉)〉
at stage t, and by the construction of temporary labels, the canonical label of
type 〈k, origin(σ̂〈k〉)〉 does not possess a loop of size m at stage t. By Claim 4.20
again, the temporary label attached to zσ̂〈k〉 does not have a loop of size m at
stage s.

If |tail(σ̂〈j〉)| < |tail(σ̂〈k〉)|, then since |tail(σ̂〈j〉)| > 0, the final j is not the
character which determines pillager(σ̂〈j〉). Thus the character which determines
this pillager is contained in tail(σ̂〈k〉), and so pillager(σ̂〈j〉) ⊆ origin(σ̂〈k〉). If
the temporary label attached to zσ̂〈k〉 has a loop of size m, then the canonical label
of type 〈k, origin(σ̂〈k〉)〉 has a loop of size m. Let t be the stage at which this
loop was added to the canonical label. Then at stage t, origin(σ̂〈k〉) was visited,
and thus pillager(σ̂〈j〉) was visited. However, by the construction of temporary
labels, if a label of type other than 〈j, origin(σ̂〈j〉)〉 has a loop of size m at stage t,
then the canonical label of type 〈j, origin(σ̂〈j〉)〉 must have a loop of size greater
than m at stage t. By Claim 4.20, the temporary label attached to zσ̂〈j〉 would
then have a loop of size greater than m, contradicting our choice of m.
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If |tail(σ̂〈j〉)| > |tail(σ̂〈k〉)|, then let σ̂〈j〉 = σ′̂〈p〉̂tail(σ̂〈j〉). Then
pillager(σ̂〈j〉) is a Ξn,p-strategy, and p appears in σ̂〈k〉 outside tail(σ̂〈k〉). If
the temporary label attached to zσ̂〈k〉 has a loop of size m, then at some stage t0,
the canonical label of type 〈k, origin(σ̂〈k〉)〉 gained a loop of this size. This is
a stage at which origin(σ̂〈k〉) is visited. Furthermore, by Claim 4.20, since this
loop of size m occurs in the temporary label attached to zσ̂〈k〉, pillager(σ̂〈k〉)
must be visited at some stage t1 > t0. Then by Claim 4.28, at some stage t2 with
t1 ≤ t2 ≤ s, pillager(σ̂〈j〉) is visited. However, at stage t0 (and thus at stage t2),
since the canonical label of type 〈k, origin(σ̂〈k〉)〉 has a loop of size m, the canoni-
cal label of type 〈j, origin(σ̂〈j〉)〉 will have a loop of size greater than m, and thus
by Claim 4.20, at stage s the loop attached to zσ̂〈j〉 will have a loop of size greater
than m, contradicting our choice of m. �

Definition 4.30. If A ∼= B`, let f be the unique isomorphism f : A → B`. Let α
be the Φ`-strategy along the true path.

We call a non-provisional tag zσ correctly placed if the tagged element is f(zσ).
We call a provisional tag zm,τ correctly placed if there is some σ with |σ| = m

and σ ∈ Rβ for some β ⊂ α such that the tagged element is f(zσ̂τ ).

Claim 4.31. If a Φ`-strategy α is along the true path and B` ∼= A, then every
non-provisional tag is correctly placed.

Proof. We proceed by induction on the length of the σ being tagged.
If the tag is never placed, then zσ has a loop of some fixed size m in its temporary

label which does not occur in f(zσ), contradicting B` ∼= A.
If the tag is incorrectly placed, then by Claim 4.25, there must be some non-

provisional tag zρ with ρ ⊆ σ that either α will fail to place, or eventually the
retinues will cease appearing isomorphic. Either way, α will have true outcome k
for some finite k. Thus the temporary label will never grow, and zσ will be the only
child of zσ− with a loop of size m for some fixed m.

By construction, the element tagged as zσ has a loop of size m, and by the induc-
tive hypothesis, the tag zσ− is correctly placed. Since B` ∼= A and by Claim 4.29,
the tagged element is the only one of its siblings to have a loop of size m.

Thus any embedding of A into B` must send zσ to the tagged element, so the
element tagged as zσ must be the correct element. �

Claim 4.32. If a Φ`-strategy α is along the true path, and zm,τ is a provisional
tag that α seeks to place, then for any σ0, σ1 ∈ Tn with |σ0| = |σ1| = m and σ0, σ1
each in Rβ for some β ⊂ α, at any stage when α is visited, the temporary labels
attached to zσ0̂τ and zσ1̂τ are identical.

Proof. By construction of the temporary tags, τ(0) ∈ Rγ for some γ incomparable
to α̂〈k〉 (where k is the current finite outcome of α). Thus β ⊆ γ, or β and γ are
incomparable; so origin(τ) = origin(σ0̂τ) = origin(σ1̂τ).

If |tail(τ)| < |τ |, then we have tail(τ) = tail(σ0̂τ) = tail(σ1̂τ) and pillager(τ) =
pillager(σ0̂τ) = pillager(σ1̂τ). So the temporary labels are always identical by
Claim 4.20.

If tail(τ) = τ , then the characters determining pillager(σ0̂τ) and pillager(σ1̂τ)
are in σ0 and σ1, respectively. Thus both of these pillagers are initial segments of α,
and so are visited at any stage at which α is visited. At such a stage, by Claim 4.20,
the temporary labels are identical. �
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Claim 4.33. If a Φ`-strategy α is along the true path and B` ∼= A, then any
provisional tag not correctly placed is eventually moved.

Proof. Suppose otherwise. Let b0 ∈ B` have least height such that b0 gains a
provisional tag which is not correctly placed and never moved.

If the tag in question is zm,τ , then b0 = f(zσ̂τ ′) for some σ and τ ′ with |σ| = m,
|τ ′| = |τ |, σ ∈ Rβ for some β ⊂ α, and such that τ and τ ′ differ only in the final
character. The placement of the zm,ρ tags with τ ⊂ ρ gives a partial embedding

[σ̂τ ] ↪→ [σ̂τ ′].
By Claim 4.25, there is no such total embedding which extends to the retinues, so
either some zm,ρ tag is never placed, or for some ρ extending τ , the retinue of zσ̂ρ
will eventually cease appearing isomorphic to the retinue of the tagged element.
Either way, α will have true outcome k for some finite k.

When α takes on outcome k, let m be the size of the largest loop in the temporary
label attached to zσ̂τ for any (and by Claim 4.32, every) σ ∈ Rβ for some β ⊂ α.
Since origin(τ) is incomparable to α̂〈k〉, it will never be visited again. So this will
remain the largest loop size at all future stages. By Claim 4.29, this loop size is
not found in the temporary label attached to zσ̂τ ′ , but by construction it is in the
temporary label attached to b0, contradicting B` ∼= A. �

Claim 4.34. If a Φ`-strategy α is along the true path, B` ∼= A, and a provisional
tag is in the correct place at stage s or is placed on a sibling of the correct place,
then it is never moved.

Furthermore, if α is considering a correct b as part of case (3) of placing a
provisional tag, then it never discards that b.

Proof. Suppose otherwise. It suffices to consider tags of the form zm,〈j〉 for some j,
as tags of the form zm,τ with |τ | > 1 only move if the tag on their parent moves,
and if zm,τ is correctly placed, then the tag on its parent is correctly placed.

If a provisional tag zm,〈j〉 is correctly placed on an element b or is placed on
a sibling of b, then no non-provisional tag can occur in the connected component
of b. So the only reason the tag might move is that some predecessor of b gains
a provisional tag. By a well-foundedness argument, let b0 be the earliest element
in the tree of b which gains a provisional tag, and let zn,〈j〉 be the provisional tag.
Then this tag is incorrectly placed, but never moves. This contradicts Claim 4.33.

If α is considering a correct b as part of case (3) of placing a provisional tag, the
only reason it would discard that b is if b or some predecessor gains a provisional
tag. The argument then proceeds as above. �

Claim 4.35. If a Φ`-strategy α is along the true path and B` ∼= A, then a provi-
sional tag can never be placed on a sibling of the correct place.

Proof. By Claim 4.33 and Claim 4.34. �

Claim 4.36. If a Φ`-strategy α is along the true path and B` ∼= A, then for every
provisional tag zn,τ that α seeks to place, there is a stage at which zn,τ is correctly
placed.

Proof. By induction on the length of τ , where the tag in question is zn,τ .
Let {ρ0, . . . , ρd−1} be the collection of strings of length n in

⋃
β⊂αRβ . By

Claim 4.33 (for the base case |τ | = 1) or the inductive hypothesis, α will even-
tually be searching the children of {f(zρ0̂τ−), . . . , f(zρd−1̂τ−)} to place the tags.
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By Claim 4.34, these elements will not be discarded once they come under consid-
eration.

Once these elements are selected for consideration, let m be the loop size cur-
rently being searched for. Until the tag zn,τ is placed, α will never have outcome∞.
Thus the temporary labels will never grow, and so this size will remain unchanged
until the tag is placed. This size does occur on zρî〈j〉 for every i < d; so, since f is
an isomorphism, it does occur on a child of f(zρi) for every i < d, and so the tag
will eventually be placed. By Claim 4.35, this tag is correctly placed. �

Claim 4.37. If a Φ`-strategy α is along the true path, and B` ∼= A, then α has
true outcome ∞.

Proof. Suppose not. Let k be the true outcome of α. Then by Claim 4.31 and
Claim 4.36, there is some stage s when all the tags are in the correct place and α
has outcome k. If α is charged with assigning a tag for σ, then the temporary label
attached to zσ cannot grow until α has outcome ∞ (and maybe not even then),
which by assumption will never happen again. Thus all these labels are finite.
Since B` ∼= A, eventually the corresponding labels in B` will appear isomorphic, at
which point α will have outcome ∞, contradicting our choice of k. �

Claim 4.38. If a Φ`-strategy α is along the true path, and B` ∼= A, then the unique
isomorphism f : A → B` is computable.

Proof. Fixing n, let Rn :=
⋃
β⊂αRβ , where β ranges over all such Ξn,j-strategies.

Note that Rn is finite, and is empty for all but finitely many n.
Non-uniformly, fix f(zσ) for every σ ∈ Rn. For every other σ ∈ Tn, wait un-

til α has dispensed a tag for zσ and the tagged element is an immediate successor
of f(zσ−) (if |σ| > 1). By Claim 4.31 or 4.36, eventually this will happen. By
Claim 4.31 or 4.35, the element so tagged is f(zσ). Thus f restricted to these
elements zσ is computable.

For a point x in the retinue of some σ, wait until f(zσ) is defined. Then x is a
part of a loop of some size m attached to zσ, and this loop is unique in having this
size. Wait until a loop of size m appears attached to f(zσ) and define the obvious
map.

So f restricted to the retinue of Tn is computable for each n, and furthermore,
this is uniformly so for all but finitely many n. Thus f is computable on A. �

This completes the proof of Theorem 1.14. �

5. Index Sets, Computable Categoricity, and Relative Computable
Categoricity

In this section, we study the complexity of index sets associated with com-
putably categorical structures and relatively computably categorical structures. In
particular, we show the index set complexity of relatively computably categorical
structures is Σ0

3-complete. We also show there is a fixed relatively computably
categorical structure whose index set is Σ0

3-complete and a computably categorical
structure whose index set is Π0

1-complete (within M).

Theorem 1.16. The index set of the relatively computably categorical structures
is Σ0

3-complete.
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Proof. From the equivalence of (1) and (3) in Theorem 1.3, relative computable
categoricity is easily seen to be Σ0

3.
For Σ0

3-hardness, we make use of (the proof of) Theorem 4.1 of [7]. There,
Downey and Montalbán showed that, given a Σ0

3-set S, there is a uniformly com-
putable sequence {Vi}i∈ω of vector spaces over Q such that Vi is finite-dimensional
if and only if i ∈ S. As it is easy to see that the finite-dimensional vector spaces
over Q are relatively computably categorical (any isomorphism is determined by the
image of the (finitely many) basis elements) and that the infinite-dimensional vector
spaces over Q are not (relatively) computably categorical, Σ0

3-hardness follows. �

If M is any structure, a priori its index set {i : M ∼= Mi} is Σ1
1 as it may

be rather difficult to tell whether or not M and Mi are isomorphic. When M is
computably categorical, it is much simpler as it suffices to check the computable
isomorphisms.

Proposition 5.1. If a computable structure M is computably categorical, then its
index set {i :M∼=Mi} is Σ0

3.

Proof. It suffices to note that M ∼= Mi if and only if there is an index e such
that ϕe is an isomorphism betweenM andMi, i.e., such that ϕe is total, injective,
surjective, and preserves the atomic diagram. These are Π0

2, Π0
1, Π0

2, and Π0
1,

respectively. �

Surprisingly, it is rather difficult to find a particular computably categorical
structure M whose index set is Σ0

3-hard. Natural candidates such as dense lin-
ear orders, equivalence structures with classes all of some fixed size, and infinite-
dimensional vector spaces over a fixed finite field all have Π0

2-index sets. Gen-
eralizing these examples slightly, any fixed computably categorical linear order,
equivalence structure, or vector space has an index set of the complete 1-degree of
d.c.e. sets over 0′.

Torsion-free abelian groups of rank 1 (or, equivalently, subgroups of the rationals)
do provide an example of a (relatively) computably categorical structureM whose
index set is Σ0

3-hard. The only algebraic background we require is Baer’s Theorem,
which can be found in any standard reference (see, e.g., Fuchs [8, 9]).

Theorem 5.2 (with Alexander Melnikov). Let G be the subgroup of (Q : +) gen-
erated by the set { 1p : p a prime}. Then G is relatively computably categorical, and

its index set {i : G ∼= Gi} is Σ0
3-complete.

Proof. We note G is relatively computably categorical. For if H1 and H2 are pre-
sentations of G, an isomorphism f : H1 → H2 can be defined by fixing a nonzero
element a ∈ H1 and its image b ∈ H2 under a classical isomorphism. Then to define
f(x) for an arbitrary x ∈ H1, it suffices to search for the rational number q such
that x = qa, search for the element y ∈ H2 such that y = qb, and let f(x) := y. This
is readily seen to be an isomorphism and is computable from deg(H1) ∨ deg(H2).

We also note that the index set {i : G ∼= Gi} is Σ0
3 by Proposition 5.1. We show

this index set is Σ0
3-hard by building, for every i, a c.e. subgroup Gi ≤ (Q,+) such

that G ∼= Gi if and only if i ∈ Cof. We then exploit the fact that from an index for
a c.e. subgroup of a computable group, one can effectively obtain an index for an
isomorphic computable group.
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Construction: Fix a computable relation R(i, x, y) satisfying

i ∈ Cof if and only if ∃x∃∞y R(i, x, y).

Let P ⊂ ω be the set of primes. We build a co-c.e. set Ai ⊆ P in stages, letting
Ai,s = {as0 < as1 < . . . } be its stage s approximation. At stage s, if R(i, x, s) holds
for some x < s, we choose x least such, and remove asx from Ai. We enumerate 1/asx
into Gi. We also close Gi under the group operations.

Verification: We argue that G ∼= Gi if and only if i ∈ Cof. If i ∈ Cof, choose x least
such that ∃∞y R(i, x, y). Then clearly |Ai| = x. Thus Ge is the subgroup generated
by { 1p : p 6∈ {a0, . . . , ax−1}}. By Baer’s Theorem, this is isomorphic to G.

If instead i 6∈ Cof, then for every x, let yx be least such that for all y > yx and
x′ ≤ x, the predicate R(i, x′, y) does not hold. Then ax = ayxx . Thus |Ai| = ∞,
and so G 6∼= Gi by Baer’s Theorem. �

Analyzing the opposite extreme, it is natural to ask how simple the index set of
a computably categorical structure can be. As determining whether an index is a
presentation of a structure can introduce artificial complexity, we restrict ourselves
to the class of nonempty computable models.

Definition 5.3. For any signature L, denote the class of all nonempty computable
models with signature L by M = ML. Note that we are taking a computable
structure to be a computable subset of ω with computable functions, relations, and
constants (total on the universe).

Proposition 5.4 (with Adam Day). There is an infinite computably categorical
structure M whose index set {i :M∼=Mi} is Π0

1-complete within M.

Proof. The signature L for our structureM has a unary function S, a binary func-
tion f , and constants 0 and 1. The unary function S will be the successor function.
The binary function f will satisfy (∀i ∈ M)(∀s ∈ M)

[
f(i, s) ∈ {0M, 1M}

]
. The

structureM := (M : S, f, 0, 1) will be such that the reduct (M : S, 0, 1) is (isomor-
phic to) the standard model (ω : S, 0, 1), where S is the successor function. The
function f will be used to ensure that an expansion N = (N : S, f, 0, 1) of the
theory of (ω : S, 0, 1) with a nonstandard universe can be easily distinguished as
being nonisomorphic toM. In particular, the construction will exploit our working
within M by building the structure M so that if Mi is to be isomorphic to M, it
must witness any element of itself being standard in an effectively bounded length
of time.

Fix an enumeration {Mi}i∈ω of all presentations of (candidate) structures in the

signature L. We denote by n̄M and n̄Mi the elements (Sn(0))
M

and (Sn(0))
Mi ,

respectively. We assume that at stage s, the element (s+ 1)
Mi

is not yet defined.
Note that it will be the case that n = n̄M, and that n̄Mi may not exist.

Construction: The universe M of M is ω. As already suggested, we define 0M

and 1M to be 0 ∈ ω and 1 ∈ ω, respectively, and define S(n) = n + 1 for each
n ∈ ω.

At each stage s, we define f(i, s) for all i ∈ ω. At stage s = 0, we define
f(i, 0) = 0 for all i ∈ ω. At stage s > 0, the definition of f(i, s) is, by default,
the value f(i, s − 1). The exception occurs if the structure Mi is challenging the
structure M at stage s, namely, when ı̄Mi and an element x exist in Mi such that
fMi (̄ıMi , x) is defined but x has not yet been seen to be standard. In this case,
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let x be the Gödel least such; the definition of f(i, s) is 1 if fMi (̄ıMi , x) = 0Mi

and 0 otherwise, and we say that fM is accepting the challenge by (i, x) starting at
stage s. If x is later seen to be standard inMi at a stage t, then we sayMi defeated
the challenge by (i, x) at stage t. Until the challenge by (i, x) is defeated, fM does
not accept a challenge from any (i, y) with x 6= y. If the challenge is defeated,
then fM accepts the challenge from the next Gödel least element from Mi that
presents a challenge.

Verification: By construction, the structure M is infinite and computable. More-
over, it is computably categorical as a consequence of ω under successor being
computably categorical. It therefore suffices to argue that the set

{i :M∼=Mi}
is Π0

1 in M. Fix an index i. As we are working in M, we may assume SMi and fMi

are total on Mi. For each stage s, we believeM andMi are isomorphic if and only
if

(1) there is no “trivial reason” to believe otherwise, i.e., SMi must appear to
be a successor function on Mi, f

Mi must take the value 0Mi or 1Mi , 0Mi

must not be the successor of any element in Mi, 1Mi must be S(0Mi), and
fMi (̄ıMi , n̄Mi) must equal fM(i, n), and

(2) if fM accepts the challenge by (i, x) starting at stage s, then we have
x ∈

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
.

We argue that if M 6∼= Mi then there is some stage after which we believe M
and Mi are not isomorphic. If M and Mi are not isomorphic for a trivial reason,
then we will eventually cease believing them to be isomorphic. IfM andMi are not
isomorphic for a nontrivial reason, then the structure Mi must have nonstandard
elements. So there is some nonstandard element x for which fM accepted the
challenge by (i, x) at some stage s, but Mi did not defeat the challenge by (i, x).
Then, once the elements

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
are defined, we cease believing M

and Mi to be isomorphic by our definition of f(i, s).
Conversely, if we believe that M and Mi are not isomorphic at some stage,

there are two possibilities. If we believe them not isomorphic for a trivial reason,
then certainly M 6∼= Mi. If we believe them not isomorphic because a challenge
by some (i, x) was accepted starting at stage s and x 6∈

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
, then

there are two cases. If x is a non-standard element ofMi, thenM 6∼=Mi. If x is a
standard element ofMi, then let t be the stage at which the challenge was defeated.

Then x ∈
{

(s+ 1)
Mi

, . . . , t̄Mi

}
. But by construction, fM(i, n) 6= fMi(i, x) for all

n ∈
{

(s+ 1)
Mi

, . . . , t̄Mi

}
. Thus M 6∼=Mi.

We conclude that the index set of M is Π0
1 in M. We observe that it is easily

seen to be Π0
1-complete: For a Π0

1 formula (∀s) [ϕ(n, s)], construct a structure Mn

by copying M until an s with ¬ϕ(n, s) is seen. At this time, make a “wrong”
definition of fMn , but preserve totality. �

6. Relative Categoricity Above a Degree d

The notions of computable categoricity and relative computable categoricity are
traditionally relativized (as in Definition 1.6) by allowing oracle access to a fixed
number of jumps over the presentations of the relevant models. Another method of
relativization would be to allow oracle access to a fixed degree. We explore this idea
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in this section. As the constructions are not particularly difficult and introduce no
significant new ideas (relying only on the pushing on isomorphisms machinery), we
only sketch their proofs.

Definition 6.1. Let d be a Turing degree. A computable structure S is relatively
computably categorical above d (or relatively ∆0

α-categorical above d, respectively) if
between any two presentationsA, B ≥T d of S, there is an isomorphism computable
in deg(A) ∪ deg(B) (or ∆0

α(deg(A) ∪ deg(B)), respectively).

Proposition 6.2. For a computable structure S, the following are equivalent:

(1) The structure S is relatively ∆0
α-categorical above d.

(2) Between any two presentations A and B of S, there is an isomorphism
computable in ∆0

α(deg(A) ∪ deg(B) ∪ d).

Proof. If S is trivial, i.e., if there is a tuple of elements such that every permuta-
tion of the universe that fixes this tuple pointwise is an automorphism, then the
equivalence is immediate. We therefore assume S is nontrivial.

For (1) implies (2), we use that the degree spectrum of a structure is upwards
closed (see Theorem 3.2 of [2]). From this, we have a presentation A′ and isomor-
phism g1 : A → A′ with deg(A′) = deg(A) ∪ d and deg(g1) ≤ deg(A) ∪ d; and
a presentation B′ and isomorphism g2 : B → B′ with deg(B′) = deg(B) ∪ d and
deg(g2) ≤ deg(B)∪d. By relative ∆0

α-categoricity above d, there is an isomorphism
f : A′ ∼= B′ with f ∈ ∆0

α((deg(A) ∪ d) ∪ (deg(B) ∪ d)). Then g−12 ◦ f ◦ g1 : A ∼= B
is an isomorphism and deg(g−12 ◦ f ◦ g1) ≤ ∆0

α(deg(A) ∪ deg(B) ∪ d).
The direction (2) implies (1) is immediate. �

For some classes of structures, there is no difference between relative computable
categoricity and relative computable categoricity above d (for any degree d).

Theorem 6.3. A linear order is relatively computably categorical above a degree d
if and only if it is relatively computably categorical.

A Boolean algebra is relatively computably categorical above a degree d if and
only if it is relatively computably categorical.

Proof. The proof that a (relatively) computably categorical linear order can possess
at most finitely many adjacencies succeeds in the presence of a d-oracle, as does
the proof that a (relatively) computably categorical Boolean algebra can possess at
most finitely many atoms. �

On the other hand, there are classes of structures where this notion does not
coincide with either computable categoricity or relative computable categoricity.

Theorem 6.4. For any nonzero c.e. degree d, there is a structure S that is rela-
tively computably categorical above d but not computably categorical.

Proof. Fix a c.e. set D ∈ d. The structure S we construct is a rigid undirected
graph.

Construction: The isomorphism type of S contains an “ω-spine”, i.e., a sequence
of vertices in order type ω. Emanating from the nth element of the spine is a path
of length 1 and a path of length 2 if n 6∈ D, and a path of length 2 and a path of
length 3 if n ∈ D.

Verification: Towards showing that S is relatively computably categorical above d,
fix presentations A and B of S. We show how deg(A) ∪ deg(B) ∪ d computes an
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isomorphism f : A → B. We non-uniformly know the initial elements of the spines
in A and B. The function f maps the ω-spines in the obvious way, noting the
ω-spines of A and B can be effectively found using deg(A) and deg(B). For the nth
element of the spine, if n ∈ D, the function f waits until both a path of length 2
and a path of length 3 appear in both A and B. Then it maps them as appropriate.
If n 6∈ D, the function f waits until both a path of length 1 and a path of length 2
appear in both A and B, mapping them appropriately. It is clear that f is an
isomorphism computable in deg(A) ∪ deg(B) ∪ d.

Towards showing that S is not computably categorical, we exhibit computable
copies A and B of S that are not computably isomorphic. For A, we construct the
ω-spine with a path of length 1 and a path of length 2 at every n ∈ ω. When we
see a number n enter D, we extend the path of length 1 at the nth element of the
ω-spine to be a path of length 3. For B, we construct the ω-spine with a path of
length 1 and a path of length 2 at every n ∈ ω. When we see a number n enter D,
we extend the path of length 1 at the nth element of the ω-spine to be a path of
length 2 and extend the path of length 2 at the nth element of the ω-spine to be a
path of length 3. The unique isomorphism π : A → B computes d as membership
of n in D can be determined by noting whether the initial path of length 1 in A is
mapped to the initial path of length 1 in B (in which case n 6∈ D) or not (in which
case n ∈ D). �

Remark 6.5. We note that Theorem 6.4 can easily be improved to all nonzero
d.c.e. degrees by exploiting the structures introduced by Csima, Franklin, and Shore
in [5].

Theorem 6.6. For any nonzero c.e. degree d, there is a computable structure S
that is computably categorical, relatively computably categorical above d, but not
relatively computably categorical.

Proof. Fix a c.e. setD ∈ d. The structure S is again an undirected graph containing
an ω-spine with two finite paths emanating from each vertex of the ω-spine. As
in Theorem 6.4, we attempt to increase the lengths of the paths emanating from
an element of the ω-spine when n enters D. Here, however, we must respect the
pushing on isomorphism machinery: If n enters D, we immediately increase the
path of length two to a path of length three; we do not increase the path of length
one to a path of length two until the higher priority isomorphism requirements
permit. Unlike in the proof of Theorem 3.1, diagonalization strategies do not claim
a location to work at until they are ready to act.

Construction: We construct a computable presentation A, taking S to be its
isomorphism type. The structure A contains an ω-spine. Emanating from the
nth element of the spine is a path of length one and a path of length two if n 6∈ D.
If and when n enters D, we extend the path of length two at the nth element of the
spine to a path of length three. Let an be the first element in the path of original
length two (i.e., the element which is adjacent to the nth element of the spine).

As in the proof of Theorem 3.1, we have a tree of strategies, some constructing
isomorphisms and some diagonalizing against Scott families. A strategy σ attempt-
ing to defeat a Scott family (ci, Xi) of existential formulas is ready to act at stage s
if:

(1) The strategy σ has not already acted.
(2) The strategy σ is accessible at stage s.
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(3) There is some n ∈ Ds, a previous stage t < s, and some ϕ ∈ Xi such that:
• n 6∈ Dt,
• At |= ϕ(an, ci), and
• the parameter ci is disjoint from the paths emanating from the nth

element of the spine.

A strategy that is ready to act acts by growing the path of length one emanating
from the nth element of the spine into a path of length two (if some other strategy
has not already done this).

Verification: As we build a computable structure, it is immediate that we have a
computably categorical structure as a consequence of the usage of the pushing on
isomorphism machinery. We therefore verify that it is not relatively computably
categorical and that it is relatively computably categorical above d.

Clearly if some strategy σ working to defeat (ci, Xi) acts at some stage, then
(ci, Xi) cannot be a Scott family for S: The formula ϕ holds of an element in the
path of length 3 and of an element in the path of length 2, despite the structure
being rigid. So if (ci, Xi) is a Scott family, then the strategy along the true path
working to defeat it never acts. Consequently, for any n ∈ D and ϕ ∈ Xi, we have
that As |= ϕ(an, ci) only if n ∈ Ds or some element of ci occurs in a path coming
out of n. Thus the computable function

n 7→ (µs) [(∀m ≤ n)(∃ϕ ∈ Xi,s) [As |= ϕ(am, ci)]]

is total and a finite modification of it majorizes the modulus of D, contradicting D
being non-computable.

The structure is relatively computably categorical above d as we can construct
a deg(A) ∪ deg(B) ∪ d-isomorphism between any two presentations A and B. Just
as in Theorem 6.4, we may non-uniformly map the ω-spines. For the nth element
of the ω-spine, we check whether n is in D. If it is, we wait to see a path of length
three in both A and B before mapping either path; if it is not, we wait only to see
a path of length two before mapping either path. In either case, we know that the
other path must be shorter (though we do not necessarily know its length), so our
mapping cannot be wrong. �

By changing the widgets attached to the elements of the ω-spine, we obtain a
similar theorem at the level of one jump higher.

Theorem 6.7. There is a computable structure S that is computably categorical,
relatively computably categorical above 0′′, but not relatively ∆0

2-categorical.

Proof. The structure S is again an undirected graph with an ω-spine. Unlike in the
proof of Theorem 6.4 and Theorem 6.6, the widgets emanating from the nth element
of the spine will be cliques (vertex sets with edges between every two vertices) rather
than paths. Depending on the behavior of the strategy controlling n, these cliques
will either both be infinite, or of finite sizes k and k + 2 for some k.

We construct a computable presentation A, taking S to be its isomorphism
type. For any Σc2-formula ψ, the statement “A |= ψ(x, c)” is effectively equivalent
to (∀∞y) [ϕ(x, c, y)], for some computable relation ϕ. We therefore diagonalize
against c.e. families of formulas of this form.

Strategy for Defeating a Family (Xi, ci): The strategy is assigned to work with
the nth element of the spine, for some n. We begin by constructing a clique of size
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one and a clique of size three emanating from this element. Let an be some point
in the larger clique and bn be some point in the smaller clique.

If σ is accessible at stage s, let t < s be the last stage at which σ was accessible
(with t := 0 if there is no such stage). Let (rs, ϕs) be the least pair (by Gödel num-
ber) such that rs ∈ ω, (∀∞y) [ϕs(x, ci, y)] ∈ Xi,s, and ϕs(an, ci, y) and ϕs(bn, ci, y)
both hold for all y with rs ≤ y < s. If (rt, ϕt) = (rs, ϕs), then σ does nothing at
stage s. Otherwise, the strategy σ grows each clique by one element (being careful
to never use elements of ci).

Construction: We place the strategies on a priority tree in the usual fashion, includ-
ing computable categoricity strategies which use the usual pushing on isomorphism
machinery. At every stage, we let all accessible strategies act in order of priority.

Verification: As we build a computable structure, it is immediate that we have
a computably categorical structure as a consequence of the usage of pushing on
isomorphisms. We therefore verify that it is not relatively ∆0

2-categorical and that
it is relatively computably categorical above 0′′.

Suppose towards a contradiction that (ci, Xi) is a Scott family of Σc2-formulas.
Let n be the number assigned to the strategy along the true path which diagonalizes
against (ci, Xi). If there is some formula ψ(x) = (∀∞y)ψ(x, y) in Xi with A |=
ψ(an, ci) ∧ ψ(bn, ci), then there is some Gödel least pair (r, ϕ) such that (∀y ≥
r)[ϕ(an, ci, y)∧ϕ(bn, ci, y)]. Then this pair will be (rs, ϕs) for all but finitely many s,
and thus the two cliques will be of finite, distinct sizes. Thus an and bn will not be
in the same orbit, contradicting (ci, Xi) being a Scott family.

If there is no such formula ψ, then for every pair (r, ϕ), there is some y > r such
that at least one of ϕ(an, ci, y) or ϕ(bn, ci, y) fails. So (r, ϕ) will not be (rs, ϕs)
for any s > y. So there are infinitely many stages at which the cliques attached
to n grow. So they will be infinite, and thus an and bn will be in the same orbit,
contradicting (ci, Xi) being a Scott family.

The structure is relatively computably categorical above 0′′ because 0′′ can de-
termine the eventual behavior of the strategy controlling n. Given two copies A
and B, if the two cliques at n are infinite, it does not matter which clique in A
maps to which in B, so a simple back-and-forth argument can construct an isomor-
phism. If the two cliques are finite, then 0′′ can determine when they have stopped
growing, and then we can wait for appropriately sized cliques in A and B before
defining our map. �

Theorem 6.8. There is a structure S that is computably categorical, relatively
∆0

2-categorical, and not relatively computably categorical above d for any degree d.

Proof. The structure built in the proof of Theorem 3.3 suffices. It is computably
categorical by construction. Since it is 1-decidable, by Theorem 1.13, it is relatively
∆0

2-categorical (it is also easy to exhibit a Scott family). For any degree d ≥ 0′,
the construction of B can be modified to produce a d-computable structure which
is not isomorphic to A by any d-computable isomorphism. This suffices as, fixing
an arbitrary degree d, the structure S will not be relatively computably categorical
above d⊕ 0′, and so not relatively computably categorical above d. �

7. Open Questions

We close by asking various questions that remain open. We start by reiterating
questions that were already asked in the introduction.
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Question 7.1. What is the index set complexity of the computably categorical
structures? Is it arithmetical?

Question 7.2. Is there a computably categorical structure that is not relatively
hyperarithmetically categorical?

In recent years, the degree of categoricity of a computable structure has received
increasing attention.

Definition 7.3. A computable structure S has degree of categoricity d if:

(1) Between any two computable presentations A and B of S, there is a d-com-
putable isomorphism π : A ∼= B.

(2) There exist computable presentations A and B of S such that every iso-
morphism π : A ∼= B computes d.

Question 7.4. What is the relationship between the class of structures that are
relatively computably categorical above a degree d and the class of structures having
degree of categoricity d?

References

[1] Christopher J. Ash, Categoricity in hyperarithmetical degrees, Ann. Pure Appl. Logic, 34(1):1–
14, 1987.

[2] Christopher J. Ash and Julia F. Knight, Computable structures and the hyperarithmetical

hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics, North-Holland
Publishing Co., Amsterdam, 2000.

[3] Christopher J. Ash, Julia F. Knight, and Theodore A. Slaman, Relatively recursive expansions.

II, Fund. Math., 142(2):147–161, 1993.
[4] Christopher J. Ash and Anil Nerode, Intrinsically recursive relations, Aspects of Effective

Algebra (John N. Crossley, ed.), Upside Down A Book Co., Yarra Glen, Vic., Australia (1981)

26-41.
[5] Barbara F. Csima, Johanna N.Y. Franklin, and Richard A. Shore, Degrees of Categoricity, in

preparation.

[6] Rodney G. Downey, Denis R. Hirschfeldt, and Bakhadyr M. Khoussainov, Uniformity in the
theory of computable structures, Algebra Logika, 42(5):566–593, 637, 2003.

[7] Rodney G. Downey and Antonio Montalbán, The isomorphism problem for torsion-free abelian

groups is analytic complete. J. Algebra, 320(6):2291–2300, 2008.
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