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Abstract. We study the reverse mathematics and computability-the-
oretic strength of (stable) Ramsey’s Theorem for pairs and the related
principles COH and DNR. We show that SRT2

2 implies DNR over RCA0

but COH does not, and answer a question of Mileti by showing that
every computable stable 2-coloring of pairs has an incomplete ∆0

2 infinite
homogeneous set. We also give some extensions of the latter result, and
relate it to potential approaches to showing that SRT2

2 does not imply
RT2

2.

1. Introduction

In this paper we establish some results on the reverse mathematics and
computability-theoretic strength of combinatorial principles related to Ram-
sey’s Theorem for pairs. This topic has attracted a large amount of recent
research (see for instance [2, 4, 9, 10]), but certain basic questions still re-
main open.

For a set X, let [X]2 = {Y ⊂ X | |Y | = 2}. A 2-coloring of [N]2 is a
function from [N]2 into {0, 1}. A set H ⊆ N is homogeneous for a 2-coloring
C of [N]2 if C is constant on [H]2. Ramsey’s Theorem for pairs (RT2

2) is the
statement in the language of second-order arithmetic that every 2-coloring
of [N]2 has an infinite homogeneous set. A 2-coloring C of [N]2 is stable if
for each x ∈ N there exists a y ∈ N and a c < 2 such that C({x, z}) = c for
all z > y. Stable Ramsey’s Theorem for pairs (SRT2

2) is RT2
2 restricted to

stable colorings.
It follows from work of Jockusch [5, Theorem 5.7] that if n > 2 then

Ramsey’s Theorem for n-tuples is equivalent to arithmetical comprehension
(ACA0), but Seetapun [11] showed that RT2

2 does not imply ACA0. (All
implications and nonimplications discussed here are over the standard base
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theory RCA0 of reverse mathematics. For background on reverse mathe-
matics and discussions of many of the techniques used below, see Simpson
[12].)

A long-standing open question in reverse mathematics is whether RT2
2 im-

plies Weak König’s Lemma (WKL0), the statement that every computable
infinite binary tree has an infinite path. (That WKL0 does not imply
RT2

2 follows from a result of Jockusch [5, Theorem 3.1] discussed below.)
As is well-known, WKL0 is equivalent to the statement that for each set
A, there is a 0, 1-valued function function f that is diagonally noncom-
putable relative to A (where a total function f is diagonally noncomputable
if ∀e (f(e) 6= Φe(e)).) A natural way to weaken this statement is to drop
the requirement that f be 0, 1-valued, and allow it to take arbitrary values
in ω; the corresponding axiom system has been named DNR. In Section 2
we show that RT2

2 implies DNR over RCA0. In other words, whereas we do
not know whether RT2

2 implies WKL0, we have a partial result toward this
implication. In fact, we show that the possibly weaker system SRT2

2 already
implies DNR. It is not known whether SRT2

2 is strictly weaker than RT2
2; we

will discuss this question further below.
An infinite set X is cohesive for a family R0, R1, . . . of sets if for each i,

one of X ∩ Ri or X ∩ Ri is finite. COH is the principle stating that every
family of sets has a cohesive set. Having seen that RCA0+SRT2

2 ` DNR, and
recalling that RT2

2 is equivalent over RCA0 to SRT2
2 + COH (see [2, Lemma

7.11] and [9, Corollary A.1.4]), we proceed to compare COH and DNR. As
noted by Cholak, Jockusch, and Slaman [2, Lemma 9.14], even WKL0 does
not imply COH, so certainly DNR does not imply COH. We establish that
COH does not imply DNR in Section 3. This result was independently and
simultaneously obtained by Hirschfeldt and Shore [4, Corollary 2.21], and
as we will see, the main ideas of the proof were already present in [2].

Jockusch [5, Theorem 3.1] constructed a computable 2-coloring of [N]2

with no ∆0
2 infinite homogeneous set. On the other hand, computable stable

2-colorings always have ∆0
2 infinite homogeneous sets. Indeed, the problem

of finding an infinite homogeneous set for a computable stable 2-coloring is
essentially the same as the problem of finding an infinite subset of either
A or A for a ∆0

2 set A. More precisely, we have the following. If A is
∆0

2 then there is a computable stable 2-coloring C of [N]2 such that if H is
homogeneous for C then H ⊆ A or H ⊆ A. Conversely, if C is a computable
stable 2-coloring of [N]2 then there is a ∆0

2 set A such that any infinite set
B with B ⊆ A or B ⊆ A computes an infinite homogeneous set for C. (See
[5, Proposition 2.1] and [2, Lemma 3.5], or [9, Claim 5.1.3].)

Cholak, Jockusch, and Slaman [2, Theorem 3.1] showed that every com-
putable 2-coloring of [N]2 has a low2 infinite homogeneous set, and sug-
gested the possibility of separating SRT2

2 and RT2
2 by showing that every

computable stable 2-coloring of [N]2 has a low infinite homogeneous set.
Such a result, if relativizable, would allow us to build an ω-model of SRT2

2

consisting entirely of low sets, which would therefore not be a model of RT2
2.
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(An ω-model of second-order arithmetic is one whose first-order part is stan-
dard, and such a model is identified with its second-order part.) However,
Downey, Hirschfeldt, Lempp, and Solomon [3] constructed a computable
stable 2-coloring of [N]2 with no low infinite homogeneous set.

Mileti [9, Theorem 5.3.7] showed that for each X <T 0′ there is a com-
putable stable 2-coloring of [N]2 with no X-computable infinite homogeneous
set. (He also showed that this is true for any low2 set X.)

In light of these results, Mileti [9, Question 5.3.8] asked whether there is
an infinite ∆0

2 set A such that every infinite ∆0
2 subset of A or A is complete

(i.e., has degree 0′); in other words, whether there is a computable stable
2-coloring of [N]2 such that any ∆0

2 infinite homogeneous set is complete.
Hirschfeldt gave a negative answer to this question; this previously unpub-
lished result appears as Corollary 4.10 below. In Theorem 4.5, we modify
the proof of this result to show that, in fact, if C0, C1, . . . >T 0 are uniformly
∆0

2, then for every ∆0
2 set A there is a ∆0

2 subset X of either A or A such
that ∀i (Ci 
T X). In proving that RT2

2 does not imply ACA0, Seetapun
[11] showed that if C0, C1, . . . >T 0 then every 2-coloring of [N]2 has an
infinite homogeneous set that does not compute any of the Ci. Our result
can be seen as a ∆0

2 analogue of this theorem. The restriction to stable
colorings is of course necessary in this case, since as mentioned above, there
are 2-colorings of pairs with no ∆0

2 infinite homogeneous set.
There is still a large gap between the negative answer to Mileti’s question

and the result of Downey, Hirschfeldt, Lempp, and Solomon [3] mentioned
above. In particular, we would like to know the answer to the following
question.

Question 1.1. Let A be ∆0
2. Must there be an infinite subset of either A

or A that is both ∆0
2 and low2?

A relativizable positive answer to this question would lead to a separation
between SRT2

2 and RT2
2, since it would allow us to build an ω-model of RCA0

+ SRT2
2 that is not a model of RT2

2, as we now explain. We begin with the ω-
model M0 consisting of the computable sets. Let C0 be a stable 2-coloring
of [N]2 in M0. Assuming a positive answer to Question 1.1, we have an
infinite homogeneous set H0 for C0 that is both ∆0

2 and low2. Note that H ′
0

is low over 0′ and c.e. over 0′.
Now let M1 be the ω-model consisting of the H0-computable sets, and

let C1 be a stable 2-coloring of [N]2 in M1. Again assuming a (relativizable)
positive answer to Question 1.1, we have an infinite homogeneous set H1 for
C1 such that H0 ⊕H1 is both ∆0

2 in H0 and low2. As before, (H0 ⊕H1)′ is
low over 0′. It may no longer be c.e. over 0′, but it is 2-CEA over 0′ (that
is, it is c.e. in and above a set that is itself c.e. in and above 0′).

Now let M2 be the ω-model consisting of the H0 ⊕H1-computable sets,
and continue in this way, making sure that for every i and every stable 2-
coloring C of [N]2 in Mi, we have Cj = C for some j. Let M =

⋃
iMi. By

construction, M is an ω-model of RCA0 + SRT2
2, and for every set X in
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M, we have that X ′ is low over 0′ and m-CEA over 0′ for some m. By the
extension of Arslanov’s Completeness Criterion given by Jockusch, Lerman,
Soare, and Solovay [6], no such X can have PA degree over 0′ (that is, X
cannot be the degree of a nonstandard model of arithmetic with an extra
predicate for 0′). However, Jockusch and Stephan [8, Theorem 2.1] showed
that a degree contains a p-cohesive set (that is, a set that is cohesive for the
collection of primitive recursive sets) if and only if its jump is PA over 0′.
Thus M is not a model of COH, and hence not a model of RT2

2.
Note that to achieve the separation described above, it would be enough

to show (in a relativizable way) that every ∆0
2 set A has a subset of either it

or its complement that is both ∆0
2 and lown for some n (which may depend

on A). However, we do not even know whether every ∆0
2 set has a subset of

either it or its complement that is both ∆0
2 and nonhigh.

The ultimate refutation of this approach to separating SRT2
2 and RT2

2

would be to build a computable stable 2-coloring of [N]2 for which the jump
of every infinite homogeneous set has PA degree over 0′. (Without the
condition of stability, such a coloring was built by Cholak, Jockusch, and
Slaman [2, Theorem 12.5].) Indeed, such a construction (if relativizable)
would show that every ω-model of RCA0 + SRT2

2 is a model of RT2
2, as

we now explain. Suppose that such stable colorings exist, and let M be an
ω-model of RCA0 + SRT2

2. Relativizing the result of Jockusch and Stephan
[8, Theorem 2.1] on p-cohesive sets mentioned above, we can show that M
is a model of COH. But as mentioned above, SRT2

2 + COH is equivalent to
RT2

2 over RCA0, so M is a model of RT2
2.

2. SRT2
2 implies DNR

The proof that SRT2
2 implies DNR over RCA0 is naturally given in two

parts: first we show that each ω-model of SRT2
2 is a model of DNR, and

then that we can in fact carry out the proof of this implication in RCA0,
that is, using only Σ0

1-induction.

2.1. The argument for ω-models. A set A is effectively bi-immune if
there is a computable function f such that for each e, if We ⊆ A or We ⊆ A,
then |We| < f(e).

Lemma 2.1. There is an effectively bi-immune set A 6T 0′. In fact, we
can choose the function f witnessing the bi-immunity of A to be defined by
f(e) = 3e + 2.

Proof. We build A in stages, via a 0′-computable construction. At each
stage we decide the value of A(n) for at most three n’s. At stage e, we check
whether We has at least 3e + 2 many elements. If so, then there are at least
two elements n0, n1 ∈ We at which we have not yet decided the value of A.
Let A(n0) = 0 and A(n1) = 1. In any case, if A(e) is still undefined then let
A(e) = 0. �
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We also need the following lemma, which follows immediately from the
equivalence mentioned above between finding homogeneous sets for com-
putable stable colorings and finding subsets of ∆0

2 sets or their complements.
A Turing ideal is a subset of 2ω closed under Turing reduction and join. A
subset of 2ω is a Turing ideal if and only if it is an ω-model of RCA0.

Lemma 2.2. A Turing ideal I is an ω-model of SRT2
2 if and only if for

each set A, if A 6T C ′ for some C ∈ I, then there is an infinite B ∈ I such
that either B ⊆ A or B ⊆ A.

We can now prove the implication between SRT2
2 and DNR for ω-models.

Theorem 2.3. Each ω-model of SRT2
2 is a model of DNR.

Proof. Let I be a Turing ideal that is an ω-model of SRT2
2. We show that I

contains a diagonally noncomputable function. The proof clearly relativizes
to get a function that is diagonally noncomputable relative to X for any
X ∈ I.

Let A be as in Lemma 2.1. By Lemma 2.2, there is an infinite B ∈ I such
that B is a subset of A or A. By the choice of A, for all e, if We ⊆ B then
|We| < 3e + 2.

Let g be such that Wg(e) is the set consisting of the first 3e + 2 many
elements of B (in the usual ordering of ω). For any e, if We = Wg(e) then
We ⊆ B, and so |We| < 3e+2. But |Wg(e)| = 3e+2, so this is a contradiction.
Thus ∀e (We 6= Wg(e)).

Now let f be a computable function such that Wf(e) = WΦe(e) if Φe(e)↓,
and Wf(e) = ∅ otherwise. Then h = g ◦f is diagonally noncomputable, since
it is total and for each e, if Φe(e)↓ then Wh(e) 6= Wf(e) = WΦe(e). But h is
also computable in B, and hence belongs to I. �

2.2. The proof-theoretic argument. We now simply need to analyze
the above proof to ensure that Σ0

1-induction suffices to carry it out. The
formal analog of Lemma 2.2 is the statement that SRT2

2 is equivalent to
the following principle, called D2

2: For every 0, 1-valued function d(x, s), if
lims d(x, s) exists for all x, then there is an infinite set B and a j < 2
such that lims d(x, s) = j for all x ∈ B. The equivalence of SRT2

2 and D2
2

over RCA0 is claimed in [2, Lemma 7.10]. However, the argument indicated
there for the D2

2 → SRT2
2 direction appears to require Π0

1-bounding, which
is not provable in RCA0. It is unknown whether D2

2 → SRT2
2 is provable in

RCA0. Fortunately, we need only the other direction, since we are starting
with the assumption that SRT2

2 holds. This direction is proved as in [2,
Lemma 7.10], and we reproduce the proof here for the reader’s convenience.
Work in RCA0 + SRT2

2. Let a function d(x, s) be given that satisfies the
hypothesis of D2

2. Give the pair {x, s} with x < s the color d(x, s). The
infinite homogeneous set produced by SRT2

2 for this stable coloring satisfies
the conclusion of D2

2.

Theorem 2.4. RCA0 ` SRT2
2 → DNR.
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Proof. Given the existence of a set A as in Lemma 2.1 (or more precisely,
of a function d(x, s) such that A(x) = lims d(x, s)), the definition of the
diagonally noncomputable function h given in the proof of Theorem 2.3 can
clearly be carried out using D2

2 and Σ0
1-induction.

So the only part of the proof of Theorem 2.3 we need to consider more
carefully is the construction of A and the satisfaction of all bi-immunity
requirements. More precisely, fix a model M of RCA0 + SRT2

2. Within that
model, we have an enumeration of the M-c.e. sets W0,W1, . . . (where the
indices range over all elements of the first-order part ofM). We need to show
the existence of a function d(x, s) in M such that lims d(x, s) exists for all
x, and for every We, if there is a j < 2 such that ∀x ∈ We (lims d(x, s) = j),
then |We| < 3e+2. (We will actually be able to use 2e+2 instead of 3e+2.)

We can build d in much the same way as we built A, but we need to be
more careful because we no longer have access to an oracle for 0′. So we
need a computable construction to replace the 0′-computable construction
in the proof of Lemma 2.2. Let Re be the eth bi-immunity requirement.

In this construction, Re may control up to two numbers n0
e and n1

e at any
point in the construction. At stage t = 〈e, s〉, if |We,s| > 2e + 2, then for
each i < 2 such that ni

e is undefined, define ni
e to be different from each nj

e′

for e′ 6 e, and undefine all nj
e′ for e′ > e. In any case, for each n, if n = nj

k
for some j and k, then let d(n, t) = j, and otherwise let d(n, t) = 0.

It is now easy to check (in RCA0) that limt d(n, t) exists for all n, since
for each n, either n is never controlled by a requirement, in which case
d(n, t) = 0 for all t, or there is a stage t at which n is controlled by Re for
some e. In the latter case, since control of a number can only pass to stronger
requirements, there are at most e many u > t such that d(n, u+1) 6= d(n, u).

The last thing we need to check is that each Re is satisfied. It follows
by induction that for each e, there are at most 2e many numbers that are
ever controlled by any Re′ with e′ < e, and thus there is a stage ve by which
all such numbers have been controlled by such requirements. (This is an
instance of Π0

1-induction, which holds in RCA0 (see Simpson [12, Lemma
3.10]), using a formula saying that for all finite sequences of size 2e + 1 of
distinct elements and for all t, it is not the case that each element of the
sequence has been controlled by some Re′ with e′ < e by stage t.) So if
|We| > 2e + 2, then picking a stage t = 〈e, s〉 > ve such that |We,s| > 2e + 2,
the ni

e must be defined at stage t, and will never be undefined at a later
stage, so limu d(ni

e, u) = i. Thus Re is satisfied. �

3. COH does not imply DNR

In this section we show that COH does not imply DNR over RCA0. We first
recall a connection between diagonally noncomputable functions and special
Π0

1 classes.

Definition 3.1. For n > 1 and A ∈ 2ω, a Π0
n subclass of 2ω is A-special if

it has no A-computable members. A class is special if it is ∅-special.
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Theorem 3.2 (Jockusch and Soare [7, Corollary 1.3]). If A computes an
element of a special Π0

2 class, then A computes an element of a special Π0
1

class.

Corollary 3.3. Any diagonally noncomputable function computes an ele-
ment of a special Π0

1 class.

Proof. Consider the special Π0
2 class

{A | ∀x, t∃y ∃s > t [〈x, y〉 ∈ A ∧ ¬(Φx,s(x)↓= y)]∧
∀x, a, b [(〈x, a〉 ∈ A ∧ 〈x, b〉 ∈ A) → a = b]}.

It is easy to check that any diagonally noncomputable function computes
an element of this class. The corollary now follows from Theorem 3.2. �

We now consider the relationship between cohesiveness and special Π0
1

classes.

Lemma 3.4 (Cholak, Jockusch and Slaman [2, Lemma 9.16]). Let A ∈ 2ω,
let P be an A-special Π0

1 class, and let R0, R1, . . . 6T A. Then there is an
~R-cohesive set G that does not compute any element of P .

This lemma is proved using Mathias forcing with A-computable condi-
tions. We will use two results about Mathias forcing, but since we will not
work with this notion directly, we refer to [2, Section 9], [1, Section 6], and
[4, Section 2] for the relevant definitions. Analyzing the proof of Lemma
3.4, we immediately obtain the following result.

Corollary 3.5 (to the proof of Lemma 3.4). There is an m ∈ ω such that
if G is m-A-generic for Mathias forcing with A-computable conditions, then
G is cohesive with respect to any collection of sets ~R 6T A.

It is clear that Lemma 3.4 generalizes to deal with all Π0
1 classes at once;

this is proved directly in [1, Lemma 6.3].

Lemma 3.6 (Binns, Kjos-Hanssen, Lerman, and Solomon [1, Lemma 6.3]).
Let P be a Π0

1 class and let A be a set. Let G be 3-A-generic for Mathias
forcing with A-computable conditions. If P is A-special, then P is (G⊕A)-
special.

We are now ready to establish the result in the section heading.

Theorem 3.7. There is an ω-model of RCA0 +COH that is not a model of
DNR.

Proof. Let m > 3 be as in Corollary 3.5. Let A0 = ∅, and inductively let
An+1 be An ⊕Gn, where Gn is m-An-generic for Mathias forcing with An-
computable conditions. Let I be the Turing ideal generated by {An | n ∈ ω}.

Let M be the ω-model determined by I. If ~R ∈ I is a collection of
sets then ~R 6T An for some n. By Corollary 3.5, Gn is ~R-cohesive. Since
Gn ∈ I, it follows that M is a model of COH.
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On the other hand, if B computes a diagonally noncomputable function,
then by Corollary 3.3, there is a special Π0

1 class P such that B computes
an element of P . In other words, P is not B-special. However, if B ∈ I
then B 6T An for some n. By Lemma 3.6 and induction, P is An-special,
and hence P is B-special. So if B computes a diagonally noncomputable
function, then B /∈ I. Thus M is not a model of DNR. �

So DNR separates SRT2
2 from COH. That is, SRT2

2 implies DNR, whereas
COH does not.

4. Degrees of homogeneous sets for stable colorings

In this section we give our negative answer to Mileti’s question mentioned
in the introduction. We will need two auxiliary results. One is an extension
of the low basis theorem noted by Linda Lawton (unpublished).

Theorem 4.1 (Lawton). Let T be an infinite, computable, computably
bounded tree, and let C0, C1, . . . >T 0 be uniformly ∆0

2. Then T has an
infinite low path P such that ∀i (Ci 
T P ), and an index of such a P can be
0′-computed from an index of T .

This theorem is proved by forcing with Π0
1 classes, and lowness is achieved

just as in the usual proof of the low basis theorem. Steps are interspersed
to guarantee cone avoidance, which is possible by the following lemma.

Lemma 4.2. Let C be a noncomputable set and let Q be a nonempty com-
putably bounded Π0

1 class. Let Φ be a Turing reduction. Then Q has a
nonempty Π0

1 subclass R such that Φf 6= C for all f ∈ R. Furthermore,
there is a fixed procedure that computes an index of R from indices of Q and
Φ and an oracle for C ⊕ 0′.

Proof. Let U be a computable tree with Q = [U ]. For each n, let Un be
the set of strings σ in U such that Φσ(n) is either undefined or has a value
other than C(n). (Here we use the convention that computations with string
oracles σ run for at most |σ| steps.) Then Un is a computable tree, and an
index of it can be computed from a C-oracle. Note that Un is infinite for some
n, since otherwise C is computable. Furthermore, {n | Un is infinite } 6T

C⊕0′, since C can compute an index of Un as a computable tree, and then 0′

can determine whether Un is infinite by asking whether it contains a string
of every length. Let R = [Un] for the least n with Un infinite. �

Below, we will use the following relativized form of Theorem 4.1, which
can be proved in the same way: Let L be a low set. Let T be an infinite,
L-computable, L-computably bounded tree, and let C0, C1, . . . 
T L be
uniformly ∆0

2. Then T has an infinite low path P such that ∀i (Ci 
T P ),
and an index of such a P can be 0′-computed from indices of L and T .

The other result we will use below is that if C0, C1, . . . >T 0 are uniformly
∆0

2 and the complement A of the ∆0
2 set A has no infinite ∆0

2 subset Y such
that ∀i (Ci 
T Y ), then A cannot be too sparse.
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Definition 4.3. An infinite set Z is hyperimmune if for every computable
increasing function f , there is an n such that the interval [f(n), f(n + 1))
contains no element of Z.

If Z is not hyperimmune, then a computable f such that [f(n), f(n +
1)) ∩ Z 6= ∅ is said to witness the non-hyperimmunity of Z.

Proposition 4.4. Let A be ∆0
2. Let C0, C1, . . . be uniformly ∆0

2 and let L be
an infinite ∆0

2 set such that Ci 
T L for all i. If A ∩ L is L-hyperimmune,
then there is an infinite ∆0

2 set Y ⊆ A such that ∀i (Ci 
T Y ).

Proof. We build Y by finite extensions; that is, we define γ0 ≺ γ1 ≺ · · · and
let Y =

⋃
i γi.

For a string σ and a set X, we write σ < X to mean that {n < |σ| |
σ(n) = 1} ⊆ X.

Begin with γ0 defined as the empty sequence. At stage s = 〈e, i〉, given
the finite binary sequence γs < A ∩ L, we 0′-computably search for either

(1) an m and extensions γsσ0 and γsσ1 such that Φγsσ0
e (m)↓6= Φγsσ1

e (m)↓
and γsσk < A ∩ L for k = 0, 1; or

(2) an m such that for all extensions γs0mσ < L, either Φγs0mσ
e (m)↑ or

Φγs0mσ
e (m)↓6= Ci(m).

We claim one of these must be found. Suppose not. Then for every
m we can find an extension γs0mσ0 < L such that Φγs0mσ0

e (m) ↓= Ci(m).
Since Ci 
T L, there must be infinitely many m for which there is also
an extension γs0mσ1 < L such that Φγs0mσ1

e (m) ↓6= Ci(m). So we can L-
computably enumerate an infinite set M such that for each m ∈ M , there
are γs0mσk < L for k = 0, 1 such that Φe(γs0mσ0) ↓6= Φe(γs0mσ1) ↓. Let
m ∈ M . Since we are assuming that case 1 above does not hold, there must
be a k such that γs0mσk 6< A∩L. So letting lm be the maximum of |γs0mσk|
for k = 0, 1, we are guaranteed the existence of an element of A ∩ L in the
interval [m, lm). Now we can find m0,m1, . . . ∈ M such that mj+1 > lmj ,
and define f(j) = mj . Then f is a witness to the non-L-hyperimmunity of
A ∩ L, contrary to hypothesis.

So one of the two cases above must eventually hold. If case 1 holds, let k
be such that Φγsσk

e (m) 6= Ci(m) and define γ′
s = γsσk. If case 2 holds, define

γ′
s = γs0m. In either case, let γs+1 < A ∩ L be an extension of γ′

s such that
γs+1(j) = 1 for some j > |γs|. Such a string must exist since γ′

s < A∩L and
A ∩ L is infinite (as otherwise A ∩ L would be cofinite within L, and hence
not L-hyperimmune). This definition ensures that ΦY

e 6= Ci. �

We are now ready to prove the main result of this section.

Theorem 4.5. Let A be ∆0
2 and let C0, C1, . . . >T 0 be uniformly ∆0

2. Then
either A or A has an infinite ∆0

2 subset X such that Ci 
T X for all i.

Proof. Assume that A has no infinite ∆0
2 subset Y such that Ci 
T Y for all

i. We use Proposition 4.4 to build an infinite ∆0
2 set X such that Ci 
T X for
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all i, via a 0′-computable construction satisfying the following requirements:

Re,i : ΦX
e total ⇒ ∃n (ΦX

e (n) 6= Ci(n)).

We first discuss how to satisfy the single requirement R0,0. By Proposition
4.4 (with L = ω), A is not hyperimmune. Suppose we have a computable
function f witnessing the non-hyperimmunity of A. Let the computable,
computably bounded tree T̂ consist of the nodes (m0, . . . ,mk−1) with f(j) 6
mj < f(j + 1) for all j < k. Such a node represents a guess that mj ∈ A for
each j < k. Note that the choice of f ensures that T̂ has at least one path
along which all such guesses are correct.

Now prune T̂ as follows. For each node σ = (m0, . . . ,mk−1), if there are
nonempty F0, F1 ⊆ rng(σ) and an n such that ΦF0

0 (n)↓6= ΦF1
0 (n)↓ with uses

bounded by the largest element of F0 ∪ F1, then prune T̂ to ensure that σ
is not extendible to an infinite path. Note that we can do this pruning in
such a way as to end up with a computable tree T .

Now 0′ can determine whether T is finite. If so, then we can find a leaf
σ of T such that rng(σ) ⊂ A. There are nonempty F0, F1 ⊆ rng(σ) and an
n such that ΦF0

0 (n)↓6= ΦF1
0 (n)↓ with uses bounded by the largest element z

of F0 ∪ F1, so if we let k be such that ΦFk
0 (n) 6= C0(n) and define X so that

X � z + 1 = Fk � z + 1, then we ensure that ΦX
0 (n) 6= C0(n).

On the other hand, if T is infinite then by Theorem 4.1, 0′ can find a
low path P of T such that Ci 
T P for all i. There must be an n such
that either ΦY

0 (n) ↑ for every Y ⊆ rng(P ) or there is a Y ⊆ rng(P ) such
that ΦY

0 (n) ↓6= C0(n), since otherwise we could P -compute C0(n) for each
n by searching for a finite F ⊂ rng(P ) such that ΦF

0 (n) ↓. But by the
construction of T , this means that there is an n such that for every infinite
Y ⊆ rng(P ), either ΦY

0 (n) ↑ or ΦY
0 (n) ↓6= C0(n). So if we now promise to

make X ⊆ rng(P ), we ensure that ΦX
0 6= C0. Notice that we can make such

a promise because Ci 
T P for all i, and hence Ci 
T rng(P ) for all i (since
P is an increasing sequence), which implies that A ∩ rng(P ) is infinite.

Let us now consider how to satisfy another requirement, say R0,1. The
action taken to satisfy R0,0 results in either a finite initial segment of X being
determined, or a promise being made to keep X within a given infinite low
set that does not compute any of the Ci. We can handle both cases at once
by assuming that we have a number r1 and an infinite low set L1 containing
the finite set F1 of numbers less than r1 currently in X, such that Ci 
T L1

for all i. We want X � r1 = F1 and X ⊆ L1.
Suppose that we have an L1-computable function g witnessing the non-

L1-hyperimmunity of A ∩ L1. We can then proceed much as we did for
R0,0, but taking r1 and L1 into account, in the following way. We can
assume that g(0) > r1. Define T̂ to consist of the nodes (m0, . . . ,mk−1)
with g(j) 6 mj < g(j + 1) and mj ∈ L1 for all j < k. For each node
σ = (m0, . . . ,mk−1), if there are nonempty G0, G1 ⊆ rng(σ) and an n such
that ΦF1∪G0

1 (n)↓6= ΦF1∪G1
1 (n)↓ with uses bounded by the largest element of
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G0∪G1, then prune T̂ to ensure that σ is not extendible to an infinite path,
thus obtaining a new L1-computable tree T .

If T is finite then find a leaf σ of T such that rng(σ) ⊂ A ∩ L1. Then
there is a nonempty G ⊆ rng(σ) and an n such that ΦF1∪G

1 (n) ↓6= C0(n)
with use bounded by the largest element z of G, so if we define X such that
X � z + 1 = (F1 ∪G) � z + 1 then we ensure that ΦX

1 (n) 6= C0(n).
If T is infinite then 0′ can find a low path P of T . If we now promise

that all future elements of X will be in rng(P ), we ensure that ΦX
1 6= C0 as

before. Notice that we can make such a promise because rng(P ) ⊆ L1 and,
as before, A ∩ rng(P ) is infinite.

Thus we can satisfy R0,1, and the action we take results in a number r2

and an infinite low set L2 that does not compute any of the Ci (and contains
the finite set F2 of numbers less than r2 currently in X) such that we want
X � r2 = F2 and X ⊆ L2. In other words, we are in the same situation we
were in after satisfying R0,0, and we could now proceed to satisfy another
requirement as we did R0,1.

However, there is a crucial problem with proceeding in this way for all the
Re,i at once, which is that we know no 0′-computable way to determine the
witnesses to non-hyperimmunity required by the construction. The best we
can do is guess at them. That is, we have a 0′′-partial computable function
w such that if l is a lowness index for an infinite set L (that is, Φ0′

l = L′)
then ΦL

w(l) witnesses the non-L-hyperimmunity of A ∩ L.

We are now ready to describe our construction. We give our requirements
a priority ordering by saying that Re,i is stronger than Re′,i′ if 〈e, i〉 < 〈e′, i′〉.
All numbers added to X at a stage s of our construction will be greater than
s, thus ensuring that X 6T ∅′. Let Xs be the set of numbers added to X
by the beginning of stage s.

Throughout the construction, we run a 0′-approximation to w. Associated
with each Re,i are a number r〈e,i〉 and a low set L〈e,i〉 with lowness index l〈e,i〉
(all of which might change during the construction). If the approximation
to w(l〈e,i〉) changes, then for all 〈e′, i′〉 > 〈e, i〉 the strategy for Re′,i′ is
immediately canceled, Re′,i′ is declared to be unsatisfied, and r〈e′,i′〉, L〈e′,i′〉,
and l〈e′,i′〉 are reset to the current values of r〈e,i〉, L〈e,i〉, and l〈e,i〉, respectively.
It is important to note that the approximation to w continues to run during
the action of a strategy at a fixed stage. That is, we may find a change
in the approximation to some w(l〈e,i〉) with 〈e, i〉 6 〈e′, i′〉 in the middle of
a stage s at which we are trying to satisfy Re′,i′ . If this happens then we
immediately end the stage and cancel strategies as described above.

Initially, all requirements are unsatisfied. At the beginning of stage 0, for
every e, i, let r〈e,i〉 = 0 and L〈e,i〉 = ω, and let l〈e,i〉 be a fixed lowness index
for ω.

At stage s, let Re,i be the strongest unsatisfied requirement and proceed
as follows.
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We have a number r〈e,i〉 and a low set L〈e,i〉 with lowness index l〈e,i〉, such
that L〈e,i〉 contains Xs � r〈e,i〉, and Cj 
T L〈e,i〉 for all j. As before, we want
to ensure that X � r〈e,i〉 = Xs � r〈e,i〉 and X ⊆ L〈e,i〉. Let v be the current

approximation to w(li) and let g = Φ
L〈e,i〉
v . By shifting the values of g if

necessary, we can assume that g(0) > max(r〈e,i〉, s). Define T̂ to consist of
the nodes (m0, . . . ,mk−1) with g(j) 6 mj < g(j + 1) and mj ∈ L〈e,i〉 for all
j < k. Note that g may not be total, in which case T̂ is finite.

For each node σ = (m0, . . . ,mk−1), if there are nonempty G0, G1 ⊆ σ

and an n such that ΦX�ri∪G0
e (n)↓6= ΦX�ri∪G1

e (n)↓ with uses bounded by the
largest element of G0 ∪G1, then prune T̂ to ensure that σ is not extendible
to an infinite path, thus obtaining a new L〈e,i〉-computable tree T .

We want to 0′-effectively determine whether T is finite. More precisely,
the question we ask 0′ is whether the pruning process described above ever
results in all the nodes at some level of T̂ becoming non-extendible. A
positive answer means T is finite. If g is total then a negative answer means
T is infinite. However, if g is not total, so that T̂ is finite, we may still get a
negative answer, because the pruning process may get stuck waiting forever
for a level of T̂ to become defined.

If the answer to our question is positive, then look for a leaf σ of T such
that rng(σ) ⊂ A ∩ L〈e,i〉. If no such leaf exists, then either L〈e,i〉 is finite
or v 6= w(l〈e,i〉), so end the stage and cancel the strategies for R〈e′,i′〉 with
〈e′, i′〉 > 〈e, i〉 as described above. (That is, declare R〈e′,i′〉 to be unsatisfied,
and reset r〈e′,i′〉, L〈e′,i′〉, and l〈e′,i′〉 to the current values of r〈e,i〉, L〈e,i〉, and
l〈e,i〉, respectively.) Otherwise, there are a nonempty G ⊆ rng(σ) and an
n such that ΦX�ri∪G

e (n) ↓6= Ci(n) with use bounded by the largest element
of G. Let r〈e,i〉+1 be the largest element of G, let L〈e,i〉+1 = L〈e,i〉, and let
l〈e,i〉+1 = l〈e,i〉. Put every element of G into X.

If the answer to our question is negative, then use the relativized form of
Theorem 4.1 to 0′-effectively obtain a low path P of T such that Cj 
T P for
all j, and a lowness index l〈e,i〉+1 for L〈e,i〉+1 = X � ri ∪ rng(P ). If g is not
total, then the construction in the proof of Theorem 4.1 will still produce
such an L〈e,i〉+1 and l〈e,i〉+1, but L〈e,i〉+1 may be finite. (Which will of course
be a problem for weaker priority requirements, but in this case the strategy
for Re,i will eventually be canceled, and hence L〈e,i〉+1 will eventually be
redefined.) Let r〈e,i〉+1 = r〈e,i〉. Search for an element of A∩L〈e,i〉+1 greater
than max{r〈e′,i′〉 | 〈e′, i′〉 6 〈e, i〉} not already in X and put this number
into X. If L〈e,i〉+1 is infinite, such a number must be found. Otherwise,
such a number may not exist, but this situation can only happen if the
approximation to w(l〈e′,i′〉) at the beginning of stage s is incorrect for some
〈e′, i′〉 6 〈e, i〉, in which case the strategy for Re,i will be canceled, and the
stage ended as described above.

In either case, if the action of the strategy for Re,i has not been canceled,
then declare Re,i to be satisfied, and for 〈e′, i′〉 > 〈e, i〉, declare Re′,i′ to be
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unsatisfied, let r〈e′,i′〉+1 = r〈e,i〉+1, let L〈e′,i′〉+1 = L〈e,i〉+1, and let l〈e′,i′〉+1 =
l〈e,i〉+1.

This completes the construction. Since every element entering X at stage
s is in A and is greater than s, we have that X is a ∆0

2 subset of A. Further-
more, at each stage a number is added to X unless the strategy acting at
that stage is canceled, so once we show that every requirement is eventually
permanently satisfied, we will have shown that X is infinite.

Assume by induction that for all 〈e′, i′〉 < 〈e, i〉, the requirement Re′,i′ is
eventually permanently satisfied, and that r〈e,i〉, L〈e,i〉, and l〈e,i〉 eventually
reach a final value, for which L〈e,i〉 is infinite. Let s be the least stage by
which this situation obtains and the approximation to w(l〈e,i〉) has settled
to a final value v. Note that at stage s − 1, either the strategy for some
R〈e′,i′〉 with 〈e′, i′〉 < 〈e, i〉 acted, or the approximation to w(l〈e,i〉) changed,
so at the beginning of stage s, it must be the case that Re,i is the strongest
unsatisfied requirement. Thus at that stage the strategy for Re,i acts, and
the function g = Φ

L〈e,i〉
v it works with at that stage is in fact a witness to the

non-L〈e,i〉-hyperimmunity of A ∩ L〈e,i〉. Thus Re,i will become satisfied at
the end of the stage, and r〈e,i〉+1, L〈e,i〉+1, and l〈e,i〉+1 will not be redefined
after the end of the stage.

If the tree T built at stage s is finite, then a leaf σ of T is found such
that rng(σ) ⊂ A ∩ L〈e,i〉, and there are a nonempty G ⊆ rng(σ) and an n

such that Φ
X�r〈e,i〉∪G
e (n)↓6= Ci(n) with use bounded by the largest element

r〈e,i〉+1 of G. Since r〈e,i〉+1 is never again redefined, ΦX
e (n) 6= Ci(n), and

thus the requirement Re,i is satisfied. Furthermore, L〈e,i〉+1 is defined to be
L〈e,i〉 at this stage, and hence is infinite.

If T is infinite, then L〈e,i〉+1 is defined to contain the range of a path of
T , and hence is infinite. Furthermore, L〈e,i〉+1 is never redefined, and by
the way X is defined, X ⊆ A ∩ L〈e,i〉+1. There must be an n such that
either ΦY

e (n) ↑ for every Y ⊆ L〈e,i〉+1 or there is a Y ⊆ L〈e,i〉+1 such that
ΦY

0 (n) ↓6= Ci(n), since otherwise we could L〈e,i〉+1-compute Ci(n) for each
n by searching for a finite F ⊂ L〈e,i〉+1 such that ΦF

e (n) ↓. But by the
definition of T , this means that there is an n such that for every infinite
Y ⊆ L〈e,i〉+1, either ΦY

e (n) ↑ or ΦY
e (n) ↓6= Ci(n). So since X ⊆ L〈e,i〉+1, we

have ΦX
e 6= Ci, and hence the requirement Re,i is satisfied. �

Theorem 4.5 gives the negative answer to Mileti’s question mentioned
above.

Corollary 4.6 (Hirschfeldt). Every ∆0
2 set has an incomplete infinite ∆0

2

subset of either it or its complement. In other words, every computable stable
2-coloring of [N]2 has an incomplete ∆0

2 infinite homogeneous set.

We can improve on this result by using the following unpublished result
due to Jockusch.
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Proposition 4.7 (Jockusch). Let Z be hyperimmune. Then there is a 1-
generic G 6T Z ⊕ 0′ such that Z ⊆ G.

Proof. We build G by finite extensions; that is, we define γ0 ≺ γ1 ≺ · · · and
let G =

⋃
i γi. Let S0, S1, . . . be an effective listing of all c.e. sets of finite

binary sequences.
Begin with γ0 defined as the empty sequence. At stage i, given the finite

binary sequence γi, search for an extension α ∈ Si of γi1f(n). If one is found
then let f(n + 1) = |α|.

If f is total then, since Z is hyperimmune, there is an n such that the
interval [|γi| + f(n), |γi| + f(n + 1)) contains no element of Z. So Z ⊕ 0′-
computably search for either such an interval or for an n such that f(n + 1)
is undefined. In the first case, let α be as above and let γi+1 = α. In the
second case, let γi+1 = γi1f(n).

It is now easy to check by induction that Z ⊆ G and that G meets or
avoids each Si. �

Corollary 4.8. Let X ⊂ Y be such that X is Y -hyperimmune. Then there
are G, H 6T X ⊕ Y ′ such that

(1) H 6T G⊕ Y ,
(2) G is 1-generic relative to Y ,
(3) X ⊆ H ⊂ Y , and
(4) Y \H is infinite.

Proof. Let h(0) < h(1) < · · · be the elements of Y , and let Z = h−1(X).
By Proposition 4.7 relativized to Y , there is a G 6T Z ⊕ Y ′ such that G is
1-generic relative to Y and Z ⊆ G. Let H = h(G). Since h 6T Y and h is
increasing, we have H 6T G ⊕ Y , and X ⊆ H ⊂ Y by the definition of h.
Finally, Y \H = h(G), and hence is infinite. �

Corollary 4.9. Let A be a ∆0
2 set such that A has no infinite low subset,

and let L be low. Then A ∩ L is not L-hyperimmune.

Proof. Suppose that A ∩ L is L-hyperimmune. We can apply Corollary 4.8
to X = A ∩ L and Y = L to obtain G and H as above. Since A ∩ L and L′

are both ∆0
2, so is G. Since G is also 1-generic relative to L, and L is low,

G⊕L is low. But H ⊕L 6T G⊕L, and hence H ⊕L is low. Thus L \H is
an infinite low subset of A, which is a contradiction. �

Corollary 4.10 (Hirschfeldt). Let A be a ∆0
2 set such that A has no infinite

low subset. Then A has an incomplete infinite ∆0
2 subset.

Proof Sketch. The proof is similar to that of Theorem 4.5. Instead of work-
ing with the given sets Ci, we build a ∆0

2 set C while satisfying the require-
ments

Re : ΦX
e total ⇒ ∃n (ΦX

e (n) 6= C(n)).
At stage s, we work with the least unsatisfied requirement Ri. We have

a number ri and a low set Li with lowness index li, such that Li contains
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Xs � ri. We define T̂ as before. For each node σ = (m0, . . . ,mk−1), if
there is a nonempty G ⊆ σ such that ΦX�ri∪G

e (s)↓ with use bounded by the
largest element of G, then we prune T̂ to ensure that σ is not extendible to
an infinite path, thus obtaining a new Li-computable tree T .

If T is finite, then we look for a leaf σ of T and a G as above, let ri+1

be the largest element of G, define C(s) 6= ΦX�ri∪G
i (s), let Li+1 = Li, let

li+1 = li, and put every element of G into X.
If T is infinite, we 0′-effectively obtain a low path P of T and a lowness

index li+1 for Li+1 = X � ri ∪ rng(P ). We then let ri+1 = ri and C(s) = 0,
search for an element of A ∩ Li+1 greater than max{rj | j 6 i} not already
in X, and put this number into X.

The further details of the construction are as before, and the verification
that it succeeds in satisfying all the requirements is similar. �
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