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Abstra
t

Let G be a 
omputable ordered abelian group. We show that the 
omputable di-

mension of G is either 1 or !, that G is 
omputably 
ategori
al if and only if it has

�nite rank, and that if G has only �nitely many Ar
himedean 
lasses, then G has a


omputable presentation whi
h admits a 
omputable basis.

1 Introdu
tion

In this arti
le, we examine 
ountable ordered abelian groups from the perspe
tive of 
om-

putable algebra. We begin with the de�nition and some examples of ordered abelian groups.

De�nition 1.1. An ordered abelian group is a pair (G;�

G

), where G is an abelian group

and �

G

is a linear order on G su
h that if a �

G

b, then a+ g �

G

b + g for all g 2 G.

The simplest examples of ordered abelian groups are the additive groups Z and Q with

their usual orders. Another example is

P

!

Z, the restri
ted sum of ! many 
opies of Z.

The elements of this group are fun
tions g : N ! Z with �nite support. To 
ompare two

distin
t elements g and h, �nd the least n su
h that g(n) 6= h(n) and set g < h if and only if

g(n) < h(n).

An abelian group is orderable if and only if it is torsion free. Therefore, all groups in this

arti
le are torsion free. Also, sin
e we 
onsider only 
omputable groups (de�ned below), all

groups in this arti
le are 
ountable.
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One of the fundamental problems in 
omputable algebra is to determine whi
h 
lassi
al

theorems are e�e
tively true. That is, we ask whether a 
lassi
al theorem holds when all the

algebrai
 obje
ts are required to be 
omputable. To illustrate this perspe
tive, 
onsider the

following two 
lassi
al theorems of �eld theory: every �eld has an algebrai
 
losure, and a

�eld is orderable if and only if it is formally real. Rabin ([15℄) proved that the �rst theorem

is e�e
tively true, and Metakides and Nerode ([13℄) proved that the se
ond theorem is not

e�e
tively true. That is, every 
omputable �eld has a 
omputable algebrai
 
losure, but there

are 
omputable formally real �elds whi
h do not have a 
omputable order.

To apply the te
hniques of 
omputability theory to a 
lass of algebrai
 stru
tures, we

must �rst 
ode these stru
tures into the natural numbers. In the 
ase of ordered abelian

groups, this means that we 
hoose a 
omputable set G � N of group elements along with a


omputable fun
tion +

G

: G � G ! G and a 
omputable relation �

G

� G � G whi
h obey

the axioms for an ordered abelian group. The triple (G;+

G

;�

G

) is 
alled a 
omputable

ordered abelian group. For simpli
ity, we often drop the subs
ripts on +

G

and �

G

, and

we abuse notation by referring to the 
omputable ordered abelian group as G. If H is an

abstra
t ordered abelian group and G is a 
omputable ordered group su
h that H

�

=

G, then

G is 
alled a 
omputable presentation of H. The intuition is that G is a 
oding of H into

the natural numbers to whi
h we 
an apply the te
hniques of 
omputability theory.

For 
ompleteness, we give a more general de�nition of a 
omputable stru
ture, whi
h

agrees with the de�nition above for the 
lass of ordered abelian groups. The most general

de�nition, whi
h allows the possibility of in�nite languages, is not needed here.

De�nition 1.2. An algebrai
 stru
ture A with �nitely many fun
tions and relations is 
om-

putable if the domain of the stru
ture and ea
h of the fun
tions and relations is 
omputable.

A 
omputable presentation of a stru
ture B is a 
omputable stru
ture A whi
h is isomor-

phi
 to B.

In this arti
le, we 
onsider only abstra
t ordered abelian groups whi
h have some 
om-

putable presentation. Noti
e that this in
ludes the examples given above, as well as most

naturally o

urring 
ountable examples. That is, it takes some work to build a 
ountable

ordered group that has no 
omputable presentation.

If an abstra
t ordered abelian group H has a 
omputable presentation, then it will have

many di�erent 
omputable presentations. One of the goals of 
omputable algebra is to study

how the e�e
tive properties of H depend upon the 
hosen presentation or 
oding. Consider

the following example. Downey and Kurtz ([2℄) proved that there is a 
omputable torsion

free abelian group whi
h has no 
omputable order and also no 
omputable basis. Therefore,

the theorem stating that every torsion free abelian group has both an order and a basis is

not e�e
tively true. In their proof, Downey and Kurtz gave a 
ompli
ated 
oding of

P

!

Z

whi
h diagonalized against the existen
e of a 
omputable order. However, it is 
lear that

if the group

P

!

Z is 
oded in a \ni
e" way, then it will have a 
omputable basis and the

lexi
ographi
 order des
ribed above will be 
omputable.

The next reasonable question to ask is if every torsion free abelian group whi
h has a


omputable presentation also has one whi
h admits a 
omputable basis and a 
omputable

order. The answer turns out to be yes, as shown for a basis in Dobritsa ([1℄) and for an
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order (whi
h is a trivial 
onsequen
e of Dobritsa's work) in Solomon ([19℄). Therefore, if a


omputable torsion free abelian group does not have a 
omputable basis or a 
omputable

order, then it is a 
onsequen
e of the 
oding as opposed to a fundamental property of the

abstra
t isomorphism type of the group.

Unfortunately, Dobritsa's methods do not in general preserve orders. However, we will

prove that an analogue of Dobritsa's result does hold for a wide 
lass of 
omputable ordered

abelian groups. (The terms from ordered group theory are de�ned after the introdu
tion.)

Theorem 1.3. If G is a 
omputable Ar
himedean ordered group, then G has a 
omputable

presentation whi
h admits a 
omputable basis.

Theorem 1.4. If G is a 
omputable ordered abelian group with �nitely many Ar
himedean


lasses, then G has a 
omputable presentation whi
h admits a 
omputable nonshrinking basis.

The 
omputable ordered abelian groups whi
h are the least a�e
ted by issues of 
oding are

those for whi
h there is a 
omputable isomorphism between any two 
omputable presentations.

Su
h groups are 
alled 
omputably 
ategori
al. More generally, we look at 
omputable

stru
tures up to 
omputable isomorphism. That is, we regard two 
omputable stru
tures as

equivalent if there is a 
omputable isomorphism between them. This intuition motivates the

following de�nition.

De�nition 1.5. Let A be a 
omputable stru
ture. The 
omputable dimension of A is the

number of 
omputable presentations of A up to 
omputable isomorphism. If the 
omputable

dimension of A is 1, then A is 
alled 
omputably 
ategori
al or autostable.

A 
onsiderable amount of work has been done on the question of whi
h 
omputable di-

mensions o

ur in various 
lasses of algebrai
 stru
tures.

Theorem 1.6 ([3℄, [6℄, [8℄, [12℄, [13℄, [14℄, [16℄). Every 
omputable linear order, Boolean

algebra, abelian group, algebrai
ally 
losed �eld, and real 
losed �eld has 
omputable dimension

1 or !.

For several of these 
lasses of stru
tures, there are algebrai
 
onditions whi
h separate

the 
omputably 
ategori
al stru
tures from those whi
h have 
omputable dimension !. For

example, a 
omputable linear order is 
omputably 
ategori
al if and only if it has �nitely many

su

essive pairs of elements, and a 
omputable Boolean algebra is 
omputably 
ategori
al if

and only if it has �nitely many atoms.

These examples, unfortunately, give a pi
ture that is too simple to hold in general. The

following theorem shows that for other 
lasses of algebrai
 stru
tures, there exist 
omputable

stru
tures whi
h have �nite 
omputable dimensions other than 1.

Theorem 1.7 ([3℄, [10℄). For ea
h 1 � n � !, the following 
lasses of algebrai
 stru
tures


ontain examples whi
h have 
omputable dimension exa
tly n: partially ordered sets, graphs,

latti
es, and nilpotent groups.

The 
lass of ordered abelian groups is interesting from the perspe
tive of 
omputable

dimension be
ause these groups have both an addition fun
tion and an ordering relation. Of
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the examples listed above, only Boolean algebras have both fun
tions and an ordering, but

for Boolean algebras, the order is de�nable from the meet and join. Furthermore, Gon
harov

has proved two general theorems, the Unbounded Models Theorem and the Bran
hing Models

Theorem (see [4℄), stating 
onditions under whi
h all 
omputable stru
tures from a parti
ular


lass of stru
tures must have dimension 1 or !. For ordered abelian groups, neither of these

theorems appears to apply. However, our main result, Theorem 1.8, shows that 
omputable

ordered abelian groups must have 
omputable dimension 1 or !. Theorems 1.3 and 1.4 will

be established during the proof of Theorem 1.8.

Theorem 1.8. Every 
omputable ordered abelian group has 
omputable dimension 1 or !.

Furthermore, su
h a group is 
omputably 
ategori
al if and only if it has �nite rank.

If G has �nite rank, then 
learly G is 
omputably 
ategori
al. In fa
t, not only are any

two 
omputable presentations of G 
omputably isomorphi
, every isomorphism between two


omputable presentations is 
omputable. It remains to show that if G has in�nite rank, then

the 
omputable dimension of G is !. We use the following theorem from 
omputable model

theory to simplify our work.

Theorem 1.9 ([9℄). If a 
ountable model A has two 
omputable presentations, A

1

and A

2

,

whi
h are �

0

2

but not 
omputably isomorphi
, then A has 
omputable dimension !.

We split the proof of Theorem 1.8 into three 
ases. Sin
e the interplay between the group

stru
ture and the ordering 
an be quite 
ompli
ated, we have to introdu
e new algebra in

ea
h 
ase to handle the internal 
ombinatori
s.

Theorem 1.10. If G is a 
omputable ordered abelian group with in�nitely many Ar
himedean


lasses, then G has 
omputable dimension !.

Theorem 1.11. If G is a 
omputable Ar
himedean ordered group, then G has 
omputable

dimension 1 or !. Furthermore, G is 
omputably 
ategori
al if and only if G has �nite rank.

Theorem 1.12. If G is a 
omputable abelian ordered group with �nitely many Ar
himedean


lasses, then G has 
omputable dimension 1 or !. Furthermore, G is 
omputably 
ategori
al

if and only if G has �nite rank.

In Se
tion 2, we present some ba
kground material in ordered abelian group theory. In

in Se
tion 3, we present the algebra ne
essary to prove Theorem 1.10, and we give the proof

in Se
tion 4. In Se
tions 5 and 6, we des
ribe the 
omputability theory and the algebra,

respe
tively, used in the proofs of Theorems 1.11 and 1.3. We prove Theorems 1.11 and 1.3

in Se
tion 7 and we prove Theorems 1.12 and 1.4 in Se
tion 8.

The notation is standard and follows [17℄ for 
omputability theory, and both [11℄ and [5℄

for ordered abelian groups. The term 
omputable always means Turing 
omputable and we

use '

e

, e 2 !, to denote an e�e
tive list of the partial 
omputable fun
tions. If we designate

a number n as \large" during a 
onstru
tion, let n be the least number whi
h is larger than

any number used in the 
onstru
tion so far.
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2 Ordered abelian groups

In this se
tion, we introdu
e several useful 
on
epts from the theory of ordered groups.

De�nition 2.1. Let G be an ordered group. The absolute value of g 2 G, denoted by jgj,

is whi
hever of g or �g is positive. For g; h 2 G, we say g is Ar
himedean equivalent

to h, denoted g � h, if there exist n;m 2 N with n;m > 0, su
h that jgj �

G

jnhj and

jhj �

G

jmgj. If g 6� h and jgj < jhj, g is Ar
himedean less than h, denoted g � h. G is

an Ar
himedean group if g � h for every g; h 2 G n f0

G

g.

The Ar
himedean 
lasses of G are the equivalen
e 
lasses under �. Although te
hni
ally

0

G

forms its own Ar
himedean 
lass, we typi
ally ignore this 
lass and 
onsider only the

nontrivial Ar
himedean 
lasses.

In Se
tion 5, we give a full dis
ussion of H�older's Theorem, but we state it here sin
e it is

used in the proof of Lemma 3.5.

H�older's Theorem. If G is an Ar
himedean ordered group, then G is isomorphi
 to a sub-

group of the naturally ordered additive group R.

De�nition 2.2. Let G be a torsion free abelian group. The elements g

0

; : : : ; g

n

2 G are

linearly independent if, for all 


0

; : : : ; 


n

2 Z, the equality




0

g

0

+ 


1

g

1

+ � � �+ 


n

g

n

= 0

implies that 


i

= 0 for all i. An in�nite set is linearly independent if every �nite subset is

independent. A maximal linearly independent set is 
alled a basis, and the 
ardinality of any

basis is 
alled the rank of G.

If a torsion free abelian group is divisible, then it forms a ve
tor spa
e over Q . In this


ase, these de�nitions agree with the 
orresponding terms for a ve
tor spa
e. Noti
e that if

g and h are in di�erent Ar
himedean 
lasses, then they are independent. Therefore, if G has

in�nitely many Ar
himedean 
lasses, then G has in�nite rank.

De�nition 2.3. If X = fx

i

ji 2 Ng is a basis for G, then ea
h g 2 G, g 6= 0

G

, satis�es a

dependen
e relation (or equation) of the form

�g = 


0

x

0

+ � � �+ 


n

x

n

where � 2 N , � 6= 0, and ea
h 


i

2 Z. A dependen
e relation is 
alled redu
ed if � > 0 and

the greatest 
ommon divisor of � and the nonzero 


i


oeÆ
ients is 1.

Obviously, any dependen
e relation 
an be transformed into a redu
ed one by dividing.

Suppose g and h both satisfy the equation �y = 


0

x

0

+ � � � + 


n

x

n

. Then, �(g � h) = 0

G

,

and sin
e we 
onsider only torsion free groups, g = h. Therefore, any dependen
e relation

(regardless of whether x

0

; : : : ; x

n

are independent) has at most one solution. It will also be

important that in redu
ed equation, the 
oeÆ
ient � is required to be positive.
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De�nition 2.4. For any X � G, we de�ne the span of X to be the set of solutions to the

redu
ed equations �y = 


0

x

0

+


1

x

1

+ � � �+


k

x

k

, where ea
h x

i

2 X. The span of X is denoted

by Span(X).

The notion of t-independen
e will be used to approximate a basis during the 
onstru
tions.

De�nition 2.5. The elements g

0

; : : : ; g

n

are t-independent if for all 


0

; : : : ; 


n

2 Z with

j


i

j � t, 


0

g

0

+ � � � 


n

g

n

= 0

G

implies that ea
h 


i

= 0. The elements g

0

; : : : ; g

n

are t-

dependent if they are not t-independent.

De�nition 2.6. A subgroup H is 
onvex if for all x; y 2 H and all g 2 G, x � g � y implies

that g 2 H.

If H is a 
onvex subgroup of G, then there is a natural order on the quotient group G=H.

The indu
ed ordered on G=H is de�ned by a+H �

G=H

b+H if and only if a+H = b+H

or a+H 6= b+H and a < b. In Se
tion 8, we will use the fa
t that a+H <

G=H

b+H implies

that a <

G

b.

3 Algebra for Theorem 1.10

Throughout Se
tions 3 and 4, G denotes a 
omputable ordered abelian group with in�nitely

many Ar
himedean 
lasses.

De�nition 3.1. B � G has the nonshrinking property if for all fb

1

; : : : ; b

n

g � B with

b

1

� � � � � b

n

, and for all x 2 Span(b

1

; : : : ; b

n

), if x 6= 0

G

, then x � b

1

. A basis with the

nonshrinking property is 
alled a nonshrinking basis.

We �rst establish, none�e
tively, the existen
e of a nonshrinking basis.

Lemma 3.2. For any (possibly �nite) independent set B = fb

1

; b

2

; : : :g, there is an in-

dependent set with the nonshrinking property B

0

= fb

0

1

; b

0

2

; : : :g su
h that for every i,

Span(b

1

; : : : ; b

i

) = Span(b

0

1

; : : : ; b

0

i

).

Proof. Set b

0

0

= b

0

. For n > 0, 
onsider all sums of the form 


0

b

0

0

+ � � � + 


n�1

b

0

n�1

+ 


n

b

n

,

where 


i

2 Z and 


n

6= 0. These sums 
an lie in at most n+ 1 di�erent Ar
himedean 
lasses,

so there is a least Ar
himedean 
lass whi
h 
ontains one of these elements. Set b

0

n

to be any

of these sums whi
h lies in this least Ar
himedean 
lass. Sin
e 


n

6= 0, b

n

2 Span(b

0

0

; : : : ; b

0

n

).

To verify that B

0

has the nonshrinking property, assume that b

0

i

1

� � � � � b

0

i

n

with

i

1

< � � � < i

n

. Suppose there is an x 2 Span(b

0

i

1

; : : : ; b

0

i

n

) su
h that x 6= 0

G

and x � b

0

i

1

.

Then, x satis�es a redu
ed equation of the form �x = 


i

1

b

0

i

1

+ � � � + 


i

n

b

0

i

n

. Without loss of

generality, assume that 


i

n

6= 0. By our 
onstru
tion of B

0

, b

0

i

n


an be expressed as a sum of

b

0

1

; : : : ; b

0

i

n

�1

; b

i

n

in whi
h the 
oeÆ
ient of b

i

n

is not zero. Repla
e b

0

i

n

in the equation for x

by this sum and noti
e that the 
oeÆ
ient of b

i

n

is not zero. Therefore, when b

0

i

n

was 
hosen,

�x was one of the other elements 
onsidered, 
ontradi
ting our 
hoi
e of b

0

i

n

.

The following two lemmas follow dire
tly from Lemma 3.2 and De�nition 3.1.
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Lemma 3.3. Any �nite independent set with the nonshrinking property 
an be extended to a

nonshrinking basis.

Lemma 3.4. If B is a nonshrinking basis and fb

1

; : : : ; b

n

g � B with b

1

/ b

2

/ � � � / b

n

, then

for all x 2 Span(b

1

; : : : ; b

n

), if x 6= 0

G

, then b

1

/ x.

The reason for working with a nonshrinking bases is that there are no \large" elements

whi
h 
ombine with other \large" elements to be
ome \small". To be more spe
i�
, suppose

B is a nonshrinking basis and x � y are represented by the redu
ed equations �x =

P

i2I




i

b

i

and �y =

P

j2J

d

j

b

j

. Sin
e �; � > 0, x � y if and only if ��x � ��y. To determine

if x � y, it suÆ
es to 
ompare the sums from the expressions ��x =

P

i2I

(�


i

)b

i

and

��y =

P

j2J

(�d

j

)b

j

. Let X = fb

k

jk 2 I [ Jg and let Y be the set of all k su
h that b

k

2 X

and b

k

is an element of the largest Ar
himedean 
lass o

urring among the members of X.

De�ne x

0

=

P

i2I\Y

(�


i

)b

i

and y

0

=

P

j2J\Y

(�d

j

)b

j

. Be
ause B is a nonshrinking basis,

x

0

� b

k

and y

0

� b

k

for all k 2 Y . Therefore, x

0

< y

0

implies that x < y. On the other

hand, if x

0

= y

0

, then we 
an 
ompare the parts of the sums for �x and �y generated by the

basis elements in the se
ond greatest Ar
himedean 
lass in X. Assuming that x 6= y, we must

eventually �nd a largest Ar
himedean 
lass within X for whi
h the sums for ��x and ��y

restri
ted to the basis elements in X in this 
lass disagree. Then x < y if and only if the

restri
ted sum for ��x is less than the restri
ted sum for ��y.

We prove a sequen
e of lemmas, 
ulminating in the main 
ombinatorial lemma needed for

the proof of Theorem 1.10. Our eventual goal is to show that if we have a �nite set G

s

� G

with subsets C; P � G

s

satisfying parti
ular 
onditions, then there is a map Æ : G

s

! G

whi
h preserves + and <, whi
h is the identity on P , and whi
h 
ollapses the elements of C

to a single Ar
himedean 
lass. This property will allow us to diagonalize against 
omputable

isomorphisms.

Lemma 3.5. Let g

1

; : : : ; g

k

be elements in the least nontrivial Ar
himedean 
lass of G su
h

that g

i

� g

j

� g

i

for all 1 � i 6= j � k. There is a map ' : fg

1

; : : : ; g

k

g ! Z su
h that for all

1 � x; y; z � k, g

x

+ g

y

= g

z

if and only if '(g

x

) + '(g

y

) = '(g

z

) and g

x

< g

y

if and only if

'(g

x

) � '(g

y

). Furthermore, if g

x

> 0

G

, then '(g

x

) > 0.

Proof. Consider the Ar
himedean subgroup H = fg 2 Gjg � g

1

_ g = 0

G

g, let b

1

; : : : ; b

n

2 H

be independent positive elements su
h that ea
h g

i

is dependent on fb

1

; : : : ; b

n

g, and let t be

su
h that ea
h g

i

is a
tually t-dependent on fb

1

; : : : ; b

n

g. Ea
h g

i

satis�es a unique redu
ed

equation �g

i

= �

1

b

1

+ � � � + �

n

b

n

in whi
h 0 < � � t and ea
h j�

i

j � t. Applying H�older's

Theorem, �x an isomorphism  : H ! R su
h that  (b

1

) = 1 and assume  (b

i

) = r

i

for

1 < i � n.

Look at all sums of the form �

1

+ �

2

r

2

+ � � �+ �

n

r

n

in whi
h ea
h �

i

2 Z and j�

i

j � 2t

3

.

Be
ause r

1

; : : : ; r

n

are independent, the sums 
orresponding to di�erent 
hoi
es of 
oeÆ
ients

are di�erent. Let q 2 Q , q > 0, be stri
tly less than the di�eren
e between any two distin
t

sums of this form, let q

0

2 Q be su
h that 0 < q

0

< q=9nt

3

, and pi
k q

2

; : : : ; q

n

2 Q su
h that

jr

i

� q

i

j � q

0

.

Next, we prove four 
laims about sums involving the numbers r

i

and q

i

. Fix arbitrary

distin
t sequen
es h�

1

; : : : ; �

n

i, h�

1

; : : : ; �

n

i, and h


1

; : : : ; 


n

i su
h that ea
h �

i

; �

i

; 


i

2 Z and

j�

i

j; j�

i

j; j


i

j � t

3

.
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Our �rst 
laim is that for su
h sequen
es,

�

1

+ �

2

r

2

+ � � �+ �

n

r

n

< �

1

+ �

2

r

2

+ � � �+ �

n

r

n

, �

1

+ �

2

q

2

+ � � �+ �

n

q

n

< �

1

+ �

2

q

2

+ � � �+ �

n

q

n

:

This 
laim follows be
ause

j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

)j � nt

3

q

0

� q=9;

j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)j � nt

3

q

0

� q=9;

and j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)j > q:

Our se
ond 
laim is that for all sequen
es as above, we have

(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) + (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) = (


1

+ 


2

r

2

+ � � �+ 


n

r

n

)

, (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

) + (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

) = (


1

+ 


2

q

2

+ � � �+ 


n

q

n

):

Sin
e 1; r

2

; : : : ; r

n

are independent, we have that the top equality holds if and only if 


i

= �

i

+�

i

for ea
h i. Therefore, the ()) dire
tion is 
lear. To establish the (() dire
tion, assume that

the bottom equality holds but the top does not. We get a 
ontradi
tion by 
onsidering the

inequalities used to prove the �rst 
laim, together with the following inequalities:

j(


1

+ 


2

r

2

+ � � �+ 
r

n

)� (


1

+ 


2

q

2

+ � � �+ 
q

n

)j � q=9;

and j[(�

1

+ �

1

) + (�

2

+ �

2

)r

2

+ � � �+ (�

n

+ �

n

)r

n

℄� (


1

+ 


2

r

2

+ � � �+ 
r

n

)j > q:

To verify the last inequality, noti
e that j�

i

+ �

i

j � 2t

3

.

Letm be the least 
ommon multiple of the denominators of the redu
ed fra
tions q

2

; : : : ; q

n

.

Let m

0

= m � t!, and de�ne p

1

= m

0

, p

2

= m

0

q

2

; : : : ; p

n

= m

0

q

n

. Noti
e that p

i

2 Z and t!

divides p

i

for ea
h i.

Our third 
laim is that

�

1

+ �

2

r

2

+ � � �+ �

n

r

n

< �

1

+ �

2

r

2

+ � � �+ �

n

r

n

, �

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

< �

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

:

This 
laim follows from the �rst 
laim be
ause

�

1

p

1

+ � � �+ �

n

p

n

= m

0

(�

1

+ �

2

q

2

+ � � �+ �

n

q

n

)

and �

1

p

1

+ � � �+ �

n

p

n

= m

0

(�

1

+ �

2

q

2

+ � � �+ �

n

q

n

):

Our fourth (and �nal) 
laim is that

(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) + (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) = (


1

+ 


2

r

2

+ � � �+ 


n

r

n

)

, (�

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

) + (�

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

) = (


1

p

1

+ 


2

p

2

+ � � �+ 


n

p

n

):

This 
laim follows from the se
ond 
laim just as the third 
laim follows from the �rst 
laim.

8



For ea
h g

i

, 
onsider the unique redu
ed equation �g

i

= �

1

b

1

+ � � � + �

n

b

n

. Sin
e  is a

homomorphism, the equation �x = �

1

+ �

2

r

2

� � �+ �

n

r

n

has the unique solution x =  (g

i

) in

R. Be
ause t! divides ea
h p

i

and 0 < � � t, we have that

u

i

= �

1

p

1

�

+ � � �+ �

n

p

n

�

2 Z:

De�ne ' by '(g

i

) = u

i

.

To verify that ' has the appropriate properties, �x x; y; z between 1 and k. There are

positive numbers �, �, and 
, and integer sequen
es h�

1

; : : : ; �

n

i, h�

1

; : : : ; �

n

i, and h


1

; : : : ; 


n

i

with the absolute value of all numbers bounded by t su
h that

�g

x

= �

1

b

1

+ � � �+ �

n

b

n

; �g

y

= �

1

b

1

+ � � �+ �

n

b

n

; and 
g

z

= 


1

b

1

+ � � �+ 


n

b

n

:

Be
ause G is torsion free, g

x

+ g

y

= g

z

if and only if ��
g

x

+ ��
g

y

= ��
g

z

. Sin
e the


oeÆ
ients in the sums for ��
g

x

, ��
g

y

, and ��
g

z

are all bounded by t

3

, all four 
laims

apply to these sums. The following 
al
ulation proves that addition is preserved under '.

g

x

+

G

g

y

= g

z

, ��
g

x

+

G

��
g

y

= ��
g

z

, �
(�

1

p

1

+ � � �+ �

n

p

n

) +

Z

�
(�

1

p

1

+ � � �+ �

n

p

n

) = ��(


1

p

1

+ � � �+ 


n

p

n

)

, 1=�(�

1

p

1

+ � � ��

n

p

n

) +

Z

1=�(�

1

p

1

+ � � �+ �

n

p

n

) = 1=
(


1

p

1

+ � � �+ 


n

p

n

)

, u

x

+

Z

u

y

= u

z

, '(g

x

) +

Z

'(g

y

) = '(g

z

)

The following equivalen
es prove that < is preserved under '.

g

x

< g

y

, ��g

x

< ��g

y

, �(�

1

p

1

+ � � �+ �

n

p

n

) < �(�

1

p

1

+ � � �+ �

n

p

n

)

, 1=�(�

1

p

1

+ � � �+ �

n

p

n

) < 1=�(�

1

p

1

+ � � �+ �

n

p

n

)

, u

x

< u

y

, '(g

x

) < '(g

y

)

Finally, the fa
t that g

x

> 0

G

if and only if '(g

x

) > 0 is similar.

Lemma 3.6. Let g

1

; : : : ; g

k

be nonidentity elements su
h that g

i

� g

j

and g

i

� g

j

� g

i

for

all 1 � i 6= j � k. There is a map ' : fg

1

; : : : ; g

k

g ! Z su
h that for all 1 � x; y; z � k,

g

x

+ g

y

= g

z

implies that '(g

x

) + '(g

y

) = '(g

z

), and g

x

< g

y

implies that '(g

x

) < '(g

y

).

Furthermore, g

x

> 0

G

if and only if '(g

x

) > 0.

Proof. If fg

1

; : : : ; g

k

g are in the least nontrivial Ar
himedean 
lass, then we have the stronger

result of Lemma 3.5. Otherwise, let N = fg 2 Gjg � g

1

g be the subgroup of elements

Ar
himedean less than g

1

. The elements g

1

+ N; : : : ; g

k

+ N are in the least nontrivial

Ar
himedean 
lass of G=N . Also, if g

x

6= g

y

, then g

x

� g

y

� g

x

and so g

x

� g

y

62 N . Therefore

if x 6= y, then g

x

+N 6= g

y

+N , so Lemma 3.5 applies to the elements g

1

+N; : : : ; g

k

+N in

G=N . The lemma now follows from the fa
t that g

x

< g

y

implies g

x

+N < g

y

+N and that

g

x

+ g

y

= g

z

implies g

x

+N + g

y

+N = g

z

+N .

Lemma 3.7. Let C = fg

1

; : : : ; g

m

g be su
h that g

1

/ g

i

/ g

m

for ea
h i. There is a map

Æ : C ! G su
h that for all u; v; w 2 C, we have
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1. Æ(u) � g

m

,

2. u+ v = w implies Æ(u) + Æ(v) = Æ(w), and

3. u < v implies Æ(u) < Æ(v).

Proof. First, �x a nonshrinking basis B for G and let fb

1

; : : : ; b

k

g � B be su
h that C �

Span(b

1

; : : : ; b

k

) and b

i

/ g

m

for ea
h i. Let t be su
h that j
j < t for all 
oeÆ
ients 
 used

in the redu
ed equations for elements of C relative to fb

1

; : : : ; b

k

g. Thus, every element of C

satis�es a unique redu
ed equation of the form �x = 


1

b

1

+ � � � + 


k

b

k

, with � < t and ea
h

j


i

j < t.

Se
ond, divide fb

1

; : : : ; b

k

g (by possibly renumbering the indi
es) into fb

1

; : : : ; b

j

g [

fb

j+1

; : : : ; b

k

g where g

1

/ b

i

/ g

m

for all i � j and b

i

� g

1

for all i > j. Let A = fb

1

; : : : ; b

j

g.

Without loss of generality, assume that A � C (by expanding C if ne
essary). Let C

0

be the

set of elements of G 
orresponding to the sums

P

j

i=1




i

b

i

for every 
hoi
e of 
oeÆ
ients with

j


i

j � t

3

.

Sin
e C is �nite, it interse
ts a �nite number r of Ar
himedean 
lasses. Further partition

A (again renumbering the indi
es if ne
essary) into

b

1

� � � � � b

d

1

� b

d

1

+1

� � � � � b

d

2

� b

d

2

+1

� � � � b

d

r�1

+1

� � � � � b

j

:

For notational 
onvenien
e, let d

0

= 0, d

r

= j. Therefore, ea
h Ar
himedean 
lass within

C is generated by b

d

y�1

+1

; : : : ; b

d

y

for some 0 < y � r. Let A

y

= fb

d

y�1

+1

; : : : ; b

d

y

g and

D

y

= Span(A

y

)\ (C [C

0

). When we have to verify statements for ea
h D

y

, we will typi
ally

verify it for D

1

and note that the proofs for the other D

y

are the same up to a 
hange in

subs
ripts.

The point of this notation is to think of dividing C [ C

0

into various 
ategories. Ea
h

D

y

has the property that all of its elements are Ar
himedean equivalent and, be
ause our

basis is nonshrinking, the di�eren
e between any two distin
t elements still lies in the same

Ar
himedean 
lass. Therefore, Lemma 3.6 
an be applied to ea
h D

y

. We will �x the images

of these elements under Æ �rst.

There are also elements x 2 Span(A) su
h that x 62 D

y

for any y. Ea
h b

i

2 A is in some

D

y

set, so Æ(b

i

) is already de�ned. Therefore, we 
an use the fa
t that the elements in Span(A)

are all solutions of equations over A to de�ne the images of the elements of Span(A)� [D

y

.

Finally, there are the elements that involve the basis elements fb

j+1

; : : : ; b

k

g, and we �x the

images of these elements last.

We begin by applying Lemma 3.6 to ea
h D

y

to de�ne maps '

y

: D

y

! Z su
h that for

all u; v; w 2 D

y

u+ v = w ) '

y

(u) + '

y

(v) = '

y

(w);

u < v ) '

y

(u) < '

y

(v); and u > 0

G

, '

y

(u) > 0:

(1)

Next, we de�ne a map ' : [D

y

! Z su
h that for all u; v; w 2 [D

y

,

u+ v = w) '(u) + '(v) = '(w)

u � v ) '(u) � '(v); and u > 0

G

, '(u) > 0:

(2)
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We de�ne ' on ea
h D

y

by indu
tion on y, verifying at ea
h step that Equation (2) holds.

For x 2 D

1

, set '(x) = t!'

1

(x). It is 
lear from Equation (1) that Equation (2) holds for all

u; v; w 2 D

1

. Let M

1

be su
h that M

1

> j'(x)j for all x 2 D

1

.

For x 2 D

2

, set '(x) = M

1

t!'

2

(x). De�ne M

2

su
h that M

2

> j'(x

1

)j + j'(x

2

)j for all

x

1

2 D

1

and x

2

2 D

2

. To see that ' satis�es Equation (2), let u; v; w 2 D

1

[D

2

. If u+v = w,

then either u; v; w 2 D

1

or u; v; w 2 D

2

, so Equation (1) implies that + is preserved. Similarly,

if u; v 2 D

1

or u; v 2 D

2

, then it is 
lear that < is preserved. Consider u 2 D

1

and v 2 D

2

.

Then, u < v implies that either u; v are both positive or else u is negative and v is positive.

In the �rst 
ase, '

1

(u) and '

2

(v) are both positive, so '(u) < '(v) follows from the fa
t that

'(u) < M

1

. In the se
ond 
ase, '

1

(u) is negative and '

2

(v) is positive, so '(u) < '(v). The


ases for u 2 D

2

and v 2 D

1

are similar.

We pro
eed by indu
tion. For all x 2 D

y

, set '(x) = M

y�1

t!'

y

(x) and de�ne M

y

su
h

that M

y

> j'(x

1

)j+ � � �+ j'(x

y

)j for all 
hoi
es of x

i

2 D

i

. The veri�
ation that Equation (2)

holds is similar to the 
ase of y = 2 done above. Also, the fa
t that for all x 2 [D

y

, x > 0

G

if and only if '(x) > 0 follows from the fa
t that this holds for ea
h '

y

.

Fix h 2 G su
h that h � g

m

and h is positive. We begin to de�ne the map Æ by setting

Æ(x) = '(x)h+ x for all x 2 [D

y

. In parti
ular, Æ(b

i

) is now de�ned for all b

i

2 A.

To give an equivalent de�nition for Æ(x), assume x 2 D

1

and x satis�es the redu
ed

equation �x = �

1

b

1

+ � � � + �

d

1

b

d

1

. By the proof of Lemma 3.5 and the fa
t that b

i

2 D

1

for 1 � i � d

1

, we have �'

1

(x) = �

1

'

1

(b

1

) + � � � + �

d

1

'

1

(b

d

1

). Multiplying by t! shows

�'(x) = �

1

'(b

1

) + � � �+ �

d

1

'(b

d

1

), whi
h gives us

�Æ(x) = �'(x)h+ �x =

= (�

1

'(b

1

) + � � �+ �

d

1

'(b

d

1

))h + (�

1

b

1

+ � � �+ �

d

1

b

d

1

) =

= �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

):

Therefore, on
e we have de�ned Æ(b

i

) = '(b

i

)h + b

i

, we 
an de�ne Æ(x) to be the unique

solution to

�x = �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

):

(By the 
al
ulations above, this equation does have a solution.) The same 
al
ulations with

di�erent subs
ripts give analogous results for ea
h D

y

.

Before 
ontinuing with the de�nition of Æ, we verify that for all u; v; w 2 ([D

y

) \ C

0

,

u+ v = w) Æ(u) + Æ(v) = Æ(w) and u < v ) Æ(u) < Æ(v):

To see that < is preserved, noti
e that u < v implies that '(u) < '(v), whi
h in turn implies

that Æ(u) = '(u)h + u < '(v)h + v = Æ(v). To see that + is preserved, it is easiest to

use the de�nition of Æ in terms of solutions of equations. Without loss of generality assume

that u; v; w 2 D

1

. Sin
e they are also in C

0

, they satisfy equations u = �

1

b

1

+ � � � + �

d

1

b

d

1

,

v = �

1

b

1

+ � � �+ �

d

1

b

d

1

, and w = 


1

b

1

+ � � �+ 


d

1

b

d

1

. If u+ v = w, then �

i

+ �

i

= 


i

for ea
h

i � d

1

. Therefore,

�

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

) + �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

) = 


1

Æ(b

1

) + � � �+ 


d

1

Æ(b

d

1

);
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and hen
e Æ(u) + Æ(v) = Æ(w). The same argument works for any D

y

with the appropriate

index substitutions.

Next, 
onsider x 2 Span(A), write �x = �

1

b

1

+ � � �+�

j

b

j

as a redu
ed equation, and re
all

that 0 < � < t. De�ne '(x) as the solution to �x = �

1

'(b

1

) + � � �+ �

j

'(b

j

). The fa
t that

t! divides ea
h '(b

i

) guarantees that '(x) 2 Z. If x 2 D

y

, this de�nition agrees with value of

'(x) we have already assigned. Set Æ(x) = '(x)h+x, and as above, noti
e that this de�nition

is equivalent to de�ning Æ(x) as the solution to �z = �

1

Æ(b

1

) + � � � + �

j

Æ(b

j

). Be
ause this

equation is equivalent to

�z = (�

1

'(b

1

) + � � �+ �

j

'(b

j

))h+ (�

1

b

1

+ � � �+ �

j

b

j

);

and be
ause � divides ea
h '(b

i

) as well as �

1

b

1

+� � �+�

j

b

j

, this equation does have a solution.

Again, we verify some properties before �nishing the de�nition of Æ. We have now de�ned

Æ for all elements of C

0

. The argument that for all u; v; w 2 C

0

,

u+ v = w) Æ(u) + Æ(v) = Æ(w) and u < v ) Æ(u) < Æ(v)

is essentially the same as for ([D

y

)\C

0

. Also, we verify that for all x 2 Span(A), x > 0

G

if and

only if '(x) > 0. Fix x and suppose it satis�es the redu
ed equation �x = �

1

b

1

+ � � �+ �

j

b

j

.

Consider the largest Ar
himedean 
lass with nonzero terms in �

1

b

1

+ � � �+�

j

b

j

. Let z be the

element of C

0

whi
h is the restri
tion of the sum �

1

b

1

+� � �+�

j

b

j

to the terms from this largest

Ar
himedean 
lass. Be
ause our basis is nonshrinking, z lies in this largest Ar
himedean 
lass,

and hen
e it determines whether x is positive or not. Therefore, x > 0

G

if and only if z > 0

G

.

Sin
e z 2 D

y

for some y, we have already veri�ed that z > 0

G

if and only if '(z) > 0. Finally,

sin
e '(z) is a multiple of M

y�1

and M

y�1

is larger than any sum of images of elements

of smaller Ar
himedean 
lasses under ', we have that '(z) determines the sign of '(x).

Altogether, these equivalen
es imply that x > 0

G

if and only if '(x) > 0.

To �nish the de�nition of Æ, 
onsider a remaining element g

i

and assume g

i

is a solution

to the redu
ed equation �z = 


1

b

1

+ � � � + 


j

b

j

+ 


j+1

b

j+1

+ � � � + 


k

b

k

. Sin
e g

i

62 Span(A),

there must be at least one 


i

6= 0 for i > j. De�ne Æ(g

i

) to be the solution to

�z = 


1

Æ(b

1

) + � � �+ 


j

Æ(b

j

) + 


j+1

b

j+1

+ � � �+ 


k

b

k

:

As above, this equation does have a solution. Also, this de�nition for Æ agrees with our earlier

de�nitions in the 
ase that g

i

2 [D

y

or g

i

2 Span(A). Therefore, it 
an be taken as the �nal

de�nition 
overing all 
ases.

It remains to verify the properties of Æ. First, we show that for all g

i

2 C, Æ(g

i

) � h

and hen
e Æ(g

i

) � g

m

. Suppose g

i

> 0

G

satis�es �g

i

= �

1

b

1

+ � � � + �

k

b

k

, and 
onsider

z = �

1

b

1

+ � � � + �

j

b

j

2 C

0

. If g

i

> 0

G

, then z > 0

G

, and hen
e '(z) > 0. Sin
e Æ(z) =

'(z)h + z, we have Æ(z) > '(z)h, and sin
e z / g

m

, it follows that Æ(z) � h. Be
ause

�

j+1

b

j+1

+ � � �+ �

k

b

k

� g

1

, we get Æ(z) + �

j+1

b

j+1

+ � � � + �

k

b

k

� h. Dividing by � 
annot


hange the Ar
himedean 
lass, so Æ(g

i

) � h. The argument for g

i

< 0

G

is similar.

Se
ond, we 
he
k that < is preserved. Assume g

i

satis�es the equation above and g

j

satis�es �g

j

= �

1

b

1

+ � � �+ �

k

b

k

. If g

i

< g

j

, then ��g

i

< ��g

j

sin
e � and � are positive. We
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therefore have

�(�

1

b

1

+ � � �+ �

j

b

j

) + �(�

j+1

b

j+1

+ � � �+ �

k

b

k

)

< �(�

1

b

1

+ � � �+ �

j

b

j

) + �(�

j+1

b

j+1

+ � � �+ �

k

b

k

):

We 
laim that this implies that �(�

1

b

1

+ � � � + �

j

b

j

) � �(�

1

b

1

+ � � � + �

j

b

j

). If not, then

�(�

1

b

1

+ � � �+�

j

b

j

) > �(�

1

b

1

+ � � �+�

j

b

j

). Sin
e our basis is nonshrinking, both of these sums

are Ar
himedean greater than the parts involving b

j+1

; : : : ; b

k

. Therefore, �(�

1

b

1

+� � �+�

j

b

j

) >

�(�

1

b

1

+ � � �+ �

j

b

j

) implies that ��g

i

> ��g

j

, whi
h is a 
ontradi
tion.

There are now two 
ases to 
onsider. If �(�

1

b

1

+ � � � + �

j

b

j

) = �(�

1

b

1

+ � � � + �

j

b

j

),

then ��g

i

< ��g

j

implies that �(�

j+1

b

j+1

+ � � � + �

k

b

k

) < �(�

j+1

b

j+1

+ � � � + �

k

b

k

). Also,

sin
e the elements x = �(�

1

b

1

+ � � � + �

j

b

j

) and y = �(�

1

b

1

+ � � � + �

j

b

j

) are in C

0

, we

have that x = y implies Æ(x) = Æ(y). However, ��Æ(g

i

) = Æ(x) + �(�

j+1

b

j+1

+ � � � + �

k

b

k

)

and ��Æ(g

j

) = Æ(y) + �(�

j+1

b

j+1

+ � � � + �

k

b

k

). Therefore, ��Æ(g

i

) < ��Æ(g

j

) and hen
e

Æ(g

i

) < Æ(g

j

).

The se
ond 
ase is when �(�

1

b

1

+ � � �+ �

j

b

j

) < �(�

1

b

1

+ � � �+ �

j

b

j

). In this 
ase, with x

and y as above, x < y and so Æ(x) < Æ(y). However, Æ(x); Æ(y) � h and so are Ar
himedean

greater than b

j+1

; : : : ; b

k

. Therefore, ��Æ(g

i

) < ��Æ(g

j

) and Æ(g

i

) < Æ(g

j

).

Last, we 
he
k that + is preserved. Let g

i

and g

j

satisfy redu
ed sums as above and let g

l

satisfy 
g

l

= 


1

b

1

+ � � �+ 


k

b

k

. If g

i

+ g

j

= g

l

, then ��
g

i

+ ��
g

j

= ��
g

l

. Sin
e our basis

is nonshrinking,

�
(�

1

b

1

+ � � ��

j

b

j

) + �
(�

1

b

1

+ � � ��

j

b

j

) = ��(


1

b

1

+ � � �


j

b

j

)

and �
(�

j+1

b

j+1

+ � � ��

k

b

k

) + �
(�

j+1

b

j+1

+ � � ��

k

b

k

) = ��(


j+1

b

j+1

+ � � �


k

b

k

):

The terms in the top equation are in C

0

, so the addition is preserved by Æ. The terms in

the bottom sum are not moved by Æ. Therefore, ��
Æ(g

i

) + ��
Æ(g

j

) = ��
Æ(g

l

) and so

Æ(g

i

) + Æ(g

j

) = Æ(g

l

).

The following lemma expresses the main 
ombinatorial fa
t needed to do the diagonaliza-

tion in the proof of Theorem 1.10.

Lemma 3.8. Let G

s

� G be a �nite set with two subsets P = fp

1

; : : : ; p

n

g � G

s

(
alled the

prote
ted elements) and C = fg

1

; : : : ; g

m

g � G

s

(
alled the 
ollapsing elements). Assume that

the elements of C satisfy g

1

/ g

i

/ g

m

for ea
h i. Let G

0

= fg 2 Gjg

1

/ g / g

m

g. Assume

that G

s

\ G

0

= C and Span(P ) \ G

0

= ;. Then, there is a map Æ : G

s

! G su
h that the

following 
onditions hold.

1. For all x 2 Span(P ) \G

s

, Æ(x) = x.

2. For all 1 � i � m, Æ(g

i

) � g

m

.

3. For all x; y; z 2 G

s

, x+ y = z implies Æ(x)+ Æ(y) = Æ(z) and x < y implies Æ(x) < Æ(y).

Proof. Apply Lemma 3.2 to get P

0

= fp

0

1

; : : : ; p

0

n

g su
h that P is independent, has the non-

shrinking property, and satis�es Span(p

1

; : : : ; p

n

) = Span(p

0

1

; : : : ; p

0

n

). Let B = fb

i

ji 2 !g be

a nonshrinking basis for G that extends P

0

.
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Run the 
onstru
tion of Lemma 3.7 using the basis B to obtain Æ : C ! G. We use the

same notation as in the proof of Lemma 3.7. That is, by possibly renumbering the indi
es in

B, we assume that j < k are su
h that C � Span(b

1

; : : : ; b

k

), g

1

/ b

i

/ g

m

for all i � j, and

b

i

� g

1

for all j < i � k. Furthermore, let l > k be su
h that G

s

� Span(b

1

; : : : ; b

l

).

To extend Æ toG

s

, write x 2 G

s

as the solution to the redu
ed equation �x = 


1

b

1

+� � �+


l

b

l

and de�ne Æ(x) to be the solution to

�z = 


1

Æ(b

1

) + � � �+ 


j

Æ(b

j

) + 


j+1

b

j+1

+ � � �+ 


l

b

l

:

The veri�
ation that this equation has a solution and that + and < are preserved under Æ

is essentially the same as in Lemma 3.7. Therefore, we restri
t ourselves to showing that

< is preserved. By possibly in
reasing k and renumbering indi
es, we 
an assume that

b

k+1

; : : : ; b

l

� g

m

. Suppose u; v 2 G

s

satisfy the redu
ed equations �u = �

1

b

1

+ � � �+�

l

b

l

and

�v = �

1

b

1

+� � �+�

l

b

l

. If u < v, then ��u < ��v, and so �(�

1

b

1

+� � �+�

l

b

l

) < �(�

1

b

1

+� � �+�

l

b

l

).

We now split into 
ases. Let x = �(�

k+1

b

k+1

+ � � �+�

l

b

l

) and y = �(�

k+1

b

k+1

+ � � �+�

l

b

l

).

Noti
e that Æ does not move x or y and also, sin
e our basis is nonshrinking, that g

m

� x; y.

Therefore, if x < y, then ��Æ(u) < ��Æ(v) sin
e the parts of the sums for Æ(u) and Æ(v)

whi
h are distin
t from x and y generate elements whi
h are / g

m

. Similarly, if y < x, then

��u > ��v, whi
h is a 
ontradi
tion. If x = y, then to determine whi
h of ��Æ(u) and ��Æ(v)

is larger, we examine ��Æ(u)� x and ��Æ(v)� y. In this 
ase, we are ba
k within the realm

of Lemma 3.7 and the argument there applies.

It remains to 
he
k that Æ(x) = x for all x 2 Span(P ) \ G

s

. Let x 2 Span(P ). Be
ause

Span(P

0

) [ G

0

= ;. We 
an assume without loss of generality that the elements of P

0

are

among the basis elements b

j+1

; : : : ; b

l

. Therefore, x 
an be written in the form

�x = 


j+1

b

j+1

+ � � �+ 


l

b

l

sin
e the other basis elements are not needed to generate x. The de�nition of Æ shows that

Æ(x) = x as required.

4 Proof of Theorem 1.10

This se
tion is devoted to a proof of Theorem 1.10. Fix a 
omputable ordered abelian group

G whi
h has in�nitely many Ar
himedean 
lasses. By Theorem 1.9, it suÆ
es to build a


omputable ordered abelian group H with a �

0

2

isomorphism f : H ! G, and to meet the

requirements

R

e

: '

e

: G! H is not an isomorphism:

In this 
ontext, an isomorphism must preserve order as well as addition.

We use ! for the elements of H. At stage s of the 
onstru
tion, we have a �nite initial

segment of !, denoted H

s

, and a map f

s

: H

s

! G, with range G

s

. We de�ne the operations

on H by x+ y = z if and only if there is an s su
h that f

s

(x)+ f

s

(y) = f

s

(z) and x � y if and

only if there is an s su
h that f

s

(x) � f

s

(y). To insure that these operations are well de�ned
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and 
omputable, we require that for all s

f

s

(x) + f

s

(y) = f

s

(z)) 8t � s (f

t

(x) + f

t

(y) = f

t

(z))

and f

s

(x) � f

s

(y)) 8t � s (f

t

(x) � f

t

(y)):

We let f = lim

s

f

s

. To insure that f is well de�ned and �

0

2

, we also meet the requirements

S

e

: lim

s

f

s

(e) exists:

The priority on these requirements is R

0

< S

0

< R

1

< S

1

< � � � .

The strategy for S

e

is to make f

s+1

(e) = f

s

(e). The strategy for R

e

is to pi
k witnesses

w

e;0

and w

e;1

from G

s

whi
h 
urrently look like w

e;0

6� w

e;1

. R

e

then waits for '

e

(w

e;0

) # and

'

e

(w

e;1

) #. If it looks like '

e

(w

e;0

) 6� '

e

(w

e;1

) (whi
h we measure by looking at the elements

f

s

('

e

(w

e;0

)) and f

s

('

e

(w

e;1

))), then we apply Lemma 3.8 to 
hange the map f

s

to a map

f

s+1

whi
h for
es f

s+1

('

e

(w

e;0

)) � f

s+1

('

e

(w

e;1

)). This a
tion may move the images of all

the elements in H

s

whi
h are between the Ar
himedean 
lasses for '

e

(w

e;0

) and '

e

(w

e;1

). R

e

then wants to restri
t any other R

i

requirement from 
hanging f

t

('

e

(w

e;0

)) or f

t

('

e

(w

e;1

)) at

a later stage.

There are some obvious 
on
i
ts between the requirements. R

e

needs to 
hange the images

of 
ertain elements, but it doesn't know whi
h elements until the witnesses w

e;i

stabilize and

the fun
tions '

e

(w

e;i

) 
onverge. Both R

e

and S

e

want to restrain other requirements from

moving parti
ular elements. To see how to resolve these 
on
i
ts 
onsider R

0

; S

0

, and R

1

. R

0


an a
t whenever it wants to, and on
e R

0

has a
ted, S

0

is 
an prevent f

s

(0) from 
hanging

ever again. R

1


annot 
hange f

s

(0), f

s

('

0

(w

0;0

)), or f

s

('

0

(w

0;1

)). The span of these three

elements, however, 
an interse
t at most three Ar
himedean 
lasses. Therefore, we give R

1

8 witnesses, w

1;i

for i � 7. If '

1

(w

1;i

) # for all i � 7, and f

s

('

1

(w

1;i

)) 6� f

s

('

1

(w

1;j

)) for

i 6= j, then by the Pigeonhole Prin
iple there must be two witnesses w

1;i

and w

1;j

for whi
h

f

s

('

1

(w

1;i

))� f

s

('

1

(w

1;j

)) and

Span(f

s

(0); f

s

('

0

(w

0;0

)); f

s

('

0

(w

0;1

))) \ fg 2 G

s

jf

s

('

1

(w

1;i

) / g / f

s

('

1

(w

1;j

))g = ;:

Thus, by Lemma 3.8, there is a way to prote
t 0; f

s

('

0

(w

0;0

)), and f

s

('

0

(w

0;1

)) while for
ing

f

s+1

('

1

(w

1;i

)) � f

s+1

('

1

(w

1;j

)).

In general, we de�ne a fun
tion �(e) and let R

e

have �(e) many witnesses. Let �(0) = 2

and �(e + 1) = 2(e + 1 +

P

i�e

�(i)) + 2. There are e + 1 S

i

requirements (ea
h with one

number to prote
t) of higher priority than R

e+1

, and ea
h R

i

with i � e has �(i) witnesses to

prote
t. Therefore, there are e + 1 +

P

i�e

�(i) many numbers prote
ted by requirements of

higher priority than R

e+1

and the span of these numbers interse
ts at most e+ 1+

P

i�e

�(i)

many Ar
himedean 
lasses. �(e) is de�ned to be the smallest number of witnesses that will

guarantee R

e+1

has some pair that 
an be 
ollapsed to the same Ar
himedean 
lass without

moving the elements prote
ted by the higher priority requirements.

De�nition 4.1. Let F � G be a �nite set. For x; y 2 F , we de�ne

x �

s

y , 9u; v � s (u; v > 0 ^ ujxj � jyj ^ vjyj � jxj):

If x 6�

s

y and jxj � jyj, then x�

s

y.
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The following lemma follows immediately from this de�nition.

Lemma 4.2. For all x; y 2 G, x � y , 9s(x �

s

y), x �

s

y ) 8t � s (x �

t

y), and

x� y , 8s(x�

s

y).

Constru
tion

Stage 0: Let H

0

= f0g, G

0

= f0

G

g, and f

0

(0) = 0

G

.

Stage s+ 1: The �rst step is to de�ne what appear to be the !-least representatives for the

Ar
himedean 
lasses. De�ne a

s

i

2 G

s

by indu
tion on i until every x 2 G

s

, x 6= 0

G

, satis�es

x �

s

a

s

i

for some a

s

i

. Let a

s

0

be the !-least stri
tly positive element in G

s

. Let a

s

i+1

be the

!-least element of G

s

su
h that a

s

i+1

6�

s

a

s

j

for all j � i. Let A

s

be the set of the a

s

i

.

The se
ond step is to assign witnesses to the R

e

requirements by indu
tion on e. We


ontinue to assign witnesses until the elements of A

s

are all taken. By indu
tion on e we

assign R

e

�(e) many witnesses, w

s

e;i

for i < �(e), whi
h are 
hosen from A

s

in in
reasing

!-order and whi
h are removed from A

s

on
e they are 
hosen. For ea
h R

e

whi
h has a full

set of witnesses, R

e

is a
tive if either R

e

did not have a full set of witnesses at the previous

stage, or one of R

e

's witnesses has 
hanged, or R

e

has the same witnesses and was a
tive at

the end of the previous stage. Otherwise, R

e

is not a
tive.

We say that R

e

needs attention if R

e

is a
tive, '

e;s

(w

s

e;i

) # for all i < �(e), and

f

s

('

e;s

(w

s

e;i

)) 6�

s

f

s

('

e;s

(w

s

e;j

)) for all i 6= j. Consider the least e su
h that R

e

needs at-

tention. (If no R

e

needs attention, then pro
eed as if the sear
h pro
edure below ended

be
ause of option (1).) Run the following two sear
h pro
edures 
on
urrently.

1. Sear
h for some i 6= j for whi
h f

s

('

e;s

(w

s

e;i

)) � f

s

('

e;s

(w

s

e;j

)).

2. Sear
h for some i 6= j and a map Æ : G

s

! G su
h that

(a) Æ(x) = x for all x = f

s

(k) with k < e and all x = f

s

('

k;s

(w

s

k;l

)) with k < e,

l < �(k), and '

k;s

(w

s

k;l

) #.

(b) For all x; y; z 2 G

s

, x + y = z implies Æ(x) + Æ(y) = Æ(z), and x < y implies

Æ(x) < Æ(y).

(
) Æ(f

s

('

e;s

(w

s

e;i

))) � Æ(f

s

('

e;s

(w

s

e;j

))).

At least one of these sear
h pro
edures must terminate (see the veri�
ation below).

If the sear
h in (1) terminates �rst, then let n

G

be the !-least element of G � G

s

and

let n

H

be the !-least number not in H

s

. De�ne G

s+1

= G

s

[ fn

G

g, H

s+1

= H

s

[ fn

H

g,

f

s+1

(x) = f

s

(x) for all x 2 H

s

, and f

s+1

(n

H

) = n

G

.

If the sear
h in (2) terminates �rst, then let fg

1

; : : : ; g

m

g = G

s

� range(Æ), let n

G

be the

!-least element in G� (G

s

[ range(Æ)), and let r

1

; : : : ; r

m+1

be the m+1 !-least numbers not

in H

s

. De�ne H

s+1

= H

s

[ fr

1

; : : : ; r

m+1

g, G

s+1

= G

s

[ range(Æ) [ fn

G

g, f

s+1

(x) = Æ(x) for

all x 2 H

s

, f

s+1

(r

i

) = g

i

for i � m, and f

s+1

(r

m+1

) = n

G

. De
lare R

e

to be not a
tive, and

for all R

i

with i > e, if R

i

is not a
tive, de
lare it to be a
tive. We say that R

e

a
ted at stage

s + 1.

End of 
onstru
tion
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Lemma 4.3. The following properties hold of this 
onstru
tion.

1.

S

s

G

s

= G.

2. For all s and all x; y; z 2 H

s

, if f

s

(x) + f

s

(y) = f

s

(z), then f

s+1

(x) + f

s+1

(y) = f

s+1

(z),

and if f

s

(x) < f

s

(y), then f

s+1

(x) < f

s+1

(y).

3. If g

1

; : : : ; g

s

are the !-least elements of G, then fg

1

; : : : ; g

s

g � G

s+1

.

Lemma 4.4. For ea
h i, lim

s

a

s

i

= a

i

exists and for all i 6= j, a

i

6� a

j

.

Proof. Let s be su
h that there are i+1 distin
t Ar
himedean 
lasses represented among the

�rst s (in terms of N) elements of G. These elements are all in G

s+1

, and so a

s

0

; : : : ; a

s

i

are

all permanently de�ned and have rea
hed limits at stage s + 1. To see that a

i

6� a

j

, suppose

a

i

� a

j

and i < j. Then, there is an s su
h that a

i

�

s

a

j

and so 8t � s (a

i

�

t

a

j

). Without

loss of generality, a

s

i

= a

i

has already rea
hed its limit. Therefore, for every t � s, a

t

j

6= a

j

,

whi
h is a 
ontradi
tion.

Lemma 4.5. For ea
h e 2 ! and i < �(e), lim

s

w

s

e;i

= w

e;i

exists, and for all he; ii 6= he

0

; i

0

i,

w

e;i

6� w

e

0

;i

0

.

Proof. Immediate from Lemma 4.4.

Lemma 4.6. One of the two 
on
urrent sear
h pro
edures must terminate.

Proof. Assume that the sear
h in (1) never terminates. Then, f

s

('

e

(w

s

e;i

)) 6� f

s

('

e

(w

s

e;j

))

for i 6= j. Let P be the set 
onsisting of f

s

(k) for k < e and all f

s

('

k;s

(w

s

k;l

)) for k < e,

l < �(k), and for whi
h '

k;s

(w

s

k;l

) #. Noti
e that Span(P ) interse
ts at most e+1+

P

k<e

�(k)

many Ar
himedean 
lasses. Therefore, by the Pigeonhole Prin
iple, there must be i 6= j

su
h that f

s

('

e

(w

s

e;i

)) � f

s

('

e

(w

s

e;i

)) and for all x 2 Span(P ), either x � f

s

('

e

(w

s

e;i

)) or

f

s

('

e

(w

s

e;j

))� x. Let C = fg 2 G

s

jf

s

('

e

(w

s

e;i

)) / g / f

s

('

e

(w

s

e;j

))g and apply Lemma 3.8 to

see the existen
e of a map Æ with the required properties.

Lemma 4.7. Ea
h R

e

requirement a
ts at most �nitely often and is eventually satis�ed.

Proof. The proof pro
eeds by indu
tion on e. Let s be a stage su
h that all R

i

with i < e

have 
eased to a
t and w

t

e;i

= w

e;i

for all t � s and i < �(e). The lemma is trivial if '

e

(w

e;i

) "

for some i. Therefore, assume '

e;s

(w

e;i

) # for all i. Suppose f

s

('

e

(w

e;i

)) �

s

f

s

('

e

(w

e;j

)) for

some i 6= j. Then, sin
e R

e

does not a
t, sin
e no requirement of higher priority a
ts and

sin
e no requirement of lower priority 
an 
hange either f

s

('

e

(w

e;i

)) or f

s

('

e

(w

e;j

)), we have

that for all t � s, f

t

('

e

(w

e;i

)) = f

s

('

e

(w

e;i

)) and f

t

('

e

(w

e;j

)) = f

s

('

e

(w

e;j

)). Therefore,

f('

e

(w

e;i

)) = f

s

('

e

(w

e;i

)), and f('

e

(w

e;j

)) = f

s

('

e

(w

e;j

)). It follows that '

e

(w

e;i

) � '

e

(w

e;j

)

in H, but w

e;i

6� w

e;j

in G, so R

e

is satis�ed.

If f

s

('

e

(w

e;i

)) 6�

s

f

s

('

e

(w

e;j

)) for all i 6= j, then R

e

a
ts at stage s+1. Either R

e

dis
overs

that f

s

('

e

(w

e;i

)) � f

s

('

e

(w

e;j

)) for some i 6= j, in whi
h 
ase R

e

does not a
t and is satis�ed

as above, or else R

e

�nds an appropriate Æ. In that 
ase, f

s+1

('

e

(w

e;i

)) � f

s+1

('

e

(w

e;j

)) and

R

e

is de
lared not a
tive. Sin
e no requirement of higher priority ever a
ts again and no

witness w

e;i


hanges again, we have that R

e

never a
ts again. Therefore, R

e

is satis�ed as

above.
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Lemma 4.8. Ea
h S

e

requirement is satis�ed.

Proof. Let s be a stage su
h that all requirements R

i

with i � e have stopped a
ting. No

requirement is allowed to 
hange f

s

(e) after this stage, and hen
e S

e

is satis�ed.

5 E�e
tive H�older's Theorem

In this se
tion, we turn to the e�e
tive algebra we need to prove Theorems 1.11 and 1.3. In

Se
tions 5, 6, and 7, G denotes a 
omputable Ar
himedean ordered group with in�nite rank.

H�older's Theorem 
hara
terizes the Ar
himedean ordered groups.

H�older's Theorem. If G is an Ar
himedean ordered group, then G is isomorphi
 to a sub-

group of the naturally ordered additive group R.

Noti
e that H�older's Theorem implies that every Ar
himedean ordered group is abelian.

It is possible to give an e�e
tive proof of H�older's Theorem (see [18℄ for the details of su
h a

proof). To des
ribe the e�e
tive version of H�older's Theorem formally, we need the following

de�nitions. The �rst de�nition says that a 
omputable real number is one whi
h has a


omputable dyadi
 expansion.

De�nition 5.1. A 
omputable real is a 
omputable sequen
e of rationals x = hq

k

jk 2 Ni

su
h that 8k8i ( jq

k

� q

k+i

j � 2

�k

). Let y = hq

0

k

jk 2 Ni be another real. We say x = y if

jq

k

� q

0

k

j � 2

�k+1

for all k. Similarly, x < y if there is a k su
h that q

k

+ 2

�k+1

< q

0

k

. (Noti
e

that the latter 
ondition is �

0

1

.)

The next de�nition formalizes the notion of a 
omputable ordered subgroup of the reals.

Sin
e reals are se
ond order obje
ts (that is, they are in�nite sequen
es of rationals), we

spe
ify a 
omputable subgroup by uniformly 
oding a 
ountable sequen
e of reals su
h that

we 
an 
ompute the sum and the order relation of two reals in the sequen
e e�e
tively in the

indi
es of these elements.

De�nition 5.2. A 
omputable ordered subgroup of R (indexed by a 
omputable set

X) is a 
omputable sequen
e of 
omputable reals A = hr

n

jn 2 Xi together with a partial


omputable fun
tion +

A

: X �X ! X, a partial 
omputable binary relation �

A

on X, and

a distinguished number i 2 X su
h that

1. r

i

= 0

R

.

2. n +

A

m = p if and only if r

n

+

R

r

m

= r

p

.

3. n �

A

m if and only if r

n

�

R

r

m

.

4. (X;+

A

;�

A

) satis�es the ordered group axioms with i as the identity element.

E�e
tive H�older's Theorem. If G is a 
omputable Ar
himedean ordered abelian group,

then G is isomorphi
 to a 
omputable ordered subgroup of R, indexed by G, for whi
h +

A

and

�

A

are exa
tly +

G

and �

G

.
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To prove this version of H�older's Theorem, one builds a uniform sequen
e of 
omputable

reals r

g

, for g 2 G, su
h that r

g

+

R

r

h

= r

g+h

and r

g

�

R

r

h

if and only if g �

G

h. We will use

this 
orresponden
e to give us a measure of distan
e in G. Noti
e that while the 
omputable

ordered subgroup of the reals here is not a 
omputable group in the ordinary sense (sin
e

the elements are se
ond order obje
ts), there still is a sense in whi
h the isomorphism is


omputable. For ea
h g 2 G, we 
an uniformly 
ompute the 
orresponding real r

g

. Therefore,

we 
an think of the isomorphism as e�e
tively giving us an index for the Turing ma
hine


omputing the dyadi
 expansion of the 
orresponding real in su
h a way that both the addition

fun
tion and the order relation are e�e
tive in these indi
es.

The proof of Proposition 5.3 
an be found in [11℄.

Proposition 5.3. If rank(G) > 1 and G is Ar
himedean, then G is dense in the sense that

for every g < h, there is an x su
h that g < x < h.

If fa; bg is independent, then the element x from Proposition 5.3 
an be taken to be a

linear 
ombination 


1

a + 


2

b in whi
h both 


1

and 


2

are nonzero.

Proposition 5.4. Let G be a subgroup of (R;+) with rank � 2. For every r 2 R with r > 0,

there is an h 2 G with h 2 (0; r). Noti
e, r 2 R, but it need not be in G.

Proof. Let g 2 G be su
h that g > 0. By Proposition 5.3, there is an x 2 G su
h that

0 < x < g, and hen
e, either x 2 (0; g=2) or g � x 2 (0; g=2). Thus, there is an h 2 G su
h

that h 2 (0; g=2). Repeat this argument to get elements in (0; g=4), (0; g=8), and so on, until

an element appears in (0; r).

Proposition 5.5. Let G be a subgroup of (R;+) with rank � 2. For every r

1

�

R

r

2

, there is

an h 2 G with h 2 (r

1

; r

2

). Noti
e, r

1

; r

2

2 R, but they need not be in G.

Proof. Let d = r

2

� r

1

and let g 2 G be su
h that g 2 (0; d). Then, sin
e R is Ar
himedean

ordered, there is an m 2 N su
h that r

1

< mg < r

2

. Setting h = mg proves the theorem.

If fa; bg is independent, then by the 
omments following Proposition 5.3, we 
an assume

that the h in Proposition 5.4 and 5.5 has the form h = 


1

a + 


2

b with 


1

; 


2

6= 0.

Proposition 5.6. Let G be a subgroup of (R;+) with in�nite rank, B = fb

0

; : : : ; b

m

g � G

be a linearly independent set, X = fx

0

; : : : ; x

n

g � G be any set of nonidentity elements, and

d 2 R with d > 0. Then there are elements a

i

2 G, for 0 � i � n, su
h that fb

0

; : : : ; b

m

; (x

0

+

a

0

); : : : ; (x

n

+ a

n

)g is linearly independent and for ea
h i, ja

i

j < d. Furthermore, we 
an

require that for any �xed p 2 N, p 6= 0, ea
h a

i

is divisible by p in G.

Proof. It is enough to 
onsider a single element x

0

2 G, and pro
eed by indu
tion. If x

0

is independent from B, then let a

0

= 0

G

. Otherwise, let b 2 G be su
h that fb

0

; : : : ; b

m

; bg

is linearly independent. By Proposition 5.4, there are 
oeÆ
ients 


1

; 


2

2 Z (whi
h we 
an

assume are both nonzero) su
h that 


1

b + 


2

b

0

2 (0; d=p). Let a

0

= 


1

pb + 


2

pb

0

. Clearly, a

0

is divisible by p in G, ja

0

j < d, and fb

0

; : : : ; b

m

; (x

0

+ a

0

)g is linearly independent (sin
e we

assumed that 


1

6= 0).
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To prove Theorem 1.11, it suÆ
es, by Theorem 1.9, to build a 
omputable ordered group

H whi
h is �

0

2

isomorphi
 but not 
omputably isomorphi
 to G. We build H in stages so

that at ea
h stage we have a �nite set H

s

and a map f

s

: H

s

! G with range G

s

. Assuming

that lim

s

f

s

(x) 
onverges for ea
h x, the Limit Lemma shows that f = lim

s

f

s

is �

0

2

. During

the 
onstru
tion, we meet the requirements

R

e

: '

e

: H ! G is not an isomorphism:

Noti
e that we are treating '

e

as a map from H to G.

We de�ne +

H

and �

H

as before: a+

H

b = 
 if and only if 9s (f

s

(a) +

G

f

s

(b) = f

s

(
)), and

a <

H

b if and only if 9s (f

s

(a) �

G

f

s

(b)). To insure that these operations are well-de�ned and


omputable, we guarantee that

f

s

(a) + f

s

(b) = f

s

(
) ) 8t � s (f

t

(a) + f

t

(b) = f

t

(
)) (3)

and f

s

(a) �

G

f

s

(b) ) 8t � s (f

t

(a) �

G

f

t

(b)): (4)

To defeat a single requirement R

e

, our strategy is to guess a basis for G. The inverse

image under f of su
h a basis will be a basis for H. The strategy for R

e

pro
eeds as follows.

1. Pi
k two elements a

s

e

and b

s

e

from our guess at the basis for H. We will settle on

longer and longer initial segments of a basis, so eventually, R

e

will 
hoose two linearly

independent elements. Without loss of generality, we assume a

s

e

<

H

b

s

e

.

2. Do nothing until a stage t � s o

urs for whi
h '

e;t

(a

t

e

) #, '

e;t

(b

t

e

) #, and '

e

(a

t

e

) <

G

'

e

(b

t

e

). If these 
al
ulations do not appear, then '

e

is not an isomorphism from H to

G, so R

e

is satis�ed.

3. De�ne f

t+1

(b

e

) 6= f

t

(b

e

) su
h that for some large n;m 2 N , we have n'

e

(a

t

e

) <

G

m'

e

(b

t

e

)

and mf

t+1

(b

t

e

) <

G

nf

t+1

(a

t

e

). In this 
ase, we have also satis�ed R

e

. The algebra behind

the de�nition of f

t+1

is dis
ussed in Se
tion 6.

The general idea for Step 3 is to �x an e�e
tive map  : G! R, whi
h we use to measure

distan
es in G. We want to move the image of b

t

e

just enough to make the diagonalization

possible, but not so far as to upset the order or addition relations de�ned to far. Propositions

5.4 and 5.6 will allow us to diagonalize as long as f

s

(a

t

e

) and f

s

(b

t

e

) really are independent.

Therefore, we initiate a sear
h pro
ess for an appropriate new image of b

t

e

, whi
h, to keep

the requirements R

e

and R

i

from interfering with ea
h other, we require to be in the span

of f

s

(a

t

e

) and f

s

(b

t

e

). Either we �nd an appropriate image, or we �nd a dependen
e relation

between a

t

e

and b

t

e

. In the latter 
ase, we know that the witnesses for R

e

are bound to 
hange.

The injury in this 
onstru
tion is �nite. On
e the higher priority requirements have 
eased

to a
t, R

e


an use the next two linearly independent elements to diagonalize.

6 Algebra for Theorems 1.11 and 1.3

From the des
ription in the previous se
tion, it should be 
lear that when we 
hange the

image of a basis element b

t

e

, we need to make sure that we preserve both the addition and
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ordering fa
ts spe
i�ed so far in H. To preserve the addition fa
ts, we use the notion of an

approximate basis for a �nite subset G

0

of G.

Before giving the formal de�nition of an approximate basis, we give some motivation

for the 
onditions whi
h o

ur in the de�nition. Suppose G

0

is a �nite subset of G and

B = fb

0

; : : : ; b

k

g is an independent set whi
h spans G

0

. Then, ea
h g 2 G

0

satis�es a unique

redu
ed relation of the form �y = 


0

b

0

+ � � � + 


k

b

k

. Furthermore, if g, h, and g + h 2 G

0

,

then the redu
ed relation satis�ed by g + h 
an be found by adding the relations for g

and h, and dividing by the greatest 
ommon divisor of the nonzero 
oeÆ
ients. That is, if

�g = 


0

b

0

+ � � � + 


k

b

k

and �h = d

0

b

0

+ � � �d

k

b

k

, then g + h is the solution to the redu
ed

version of

��y = (�


0

+ �d

0

)b

0

+ � � �+ (�


k

+ �d

k

)b

k

:

At ea
h stage of the 
onstru
tion, we will guess at an independent subset of G, and our

guess at ea
h stage will be an approximate basis. We want our guesses to have these two

properties of an a
tual independent set. Therefore, assume that G

0

is the �nite subset of G

whi
h is the range of the partial isomorphism f

s

we have de�ned at stage s.

To imitate the �rst property, we want our approximate basis X

s

= fx

s

0

; : : : ; x

s

k

g at stage

s to be t-independent, where t is large enough that ea
h element g 2 G

0

is the solution to a

unique redu
ed dependen
e relation of the form

�y = 


0

x

s

0

+ 


1

x

s

1

+ � � �+ 


k

x

s

k

;

where ea
h 
oeÆ
ient has absolute value � t. Noti
e that if g is the solution to more than one

relation of this form, then we know X

s

is not independent. Sin
e there is some independent

set whi
h spans G

0

, there must be a set whi
h is t

0

-independent (for some t

0

) and whi
h does

have this uniqueness property.

As new elements enter H during the 
onstru
tion, they will be assigned redu
ed de-

penden
e relations. If h enters H at stage s and is assigned the redu
ed relation �y =




0

x

0

+ � � � + 


k

x

k

, then for every stage t � s, we will de�ne f

t

(h) to be the unique solution

to �y = 


0

x

t

0

+ � � � 


k

x

t

k

(where x

t

0

; : : : ; x

t

k

is an initial segment of our approximate basis at

stage t). Therefore, the se
ond property we want X

s

to have is that if g, h, and g + h are all

in G

0

, then the dependen
e relation for g + h relative to the approximate basis is the sum of

the dependen
e relations for g and h, as des
ribed above. This property will guarantee that

Equation (3) holds. The key point is that if g + h satis�es some other redu
ed dependen
e

relation, then, as above, we know that X

s

is not independent, and therefore, there must be

another set with the required properties.

By the 
omments above, if X

s

is independent and spans G

0

, then it will have both of

these properties. It follows that every �nite G

0

has an approximate basis and that during

the 
onstru
tion we 
an add additional requirements on the level of independen
e of an

approximate basis, su
h as requiring that it be at least s-independent at stage s.

De�nition 6.1. Let G

0

be a �nite subset of G. An approximate basis for G

0

with weight

t > 0 is a �nite sequen
e X = hx

0

; : : : ; x

k

i su
h that

1. fx

0

; : : : ; x

k

g is t-independent,
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2. every g 2 G

0

[ X satis�es a unique redu
ed dependen
e relation of the form �y =




0

x

0

+ � � � 


k

x

k

with 0 < � � t and j


i

j � t, and

3. for every g; h 2 G

0

[X with g + h 2 G

0

[X, if g and h satisfy the redu
ed dependen
e

relations �g = 


0

x

0

+ � � �+ 


k

x

k

and �h = d

0

x

0

+ � � �+ d

k

x

k

with �, �, j


i

j, and jd

i

j � t,

then the redu
ed 
oeÆ
ients in

��(g + h) = (�


0

+ �d

0

)x

0

+ � � �+ (�


k

+ �d

k

)x

k

have absolute value less that t.

We use sequen
es to represent approximate bases to emphasize the fa
t that their elements

are ordered. We will abuse notation, however, and simply treat them as sets, with the

understanding that the set fx

0

; : : : ; x

k

g is really the ordered sequen
e hx

0

; : : : ; x

k

i. Also,

whenever we refer to g 2 G

0

satisfying a redu
ed equation of an approximate basis of weight

t, we assume that the absolute value of all the 
oeÆ
ients is bounded by t.

Returning to the des
ription of the 
onstru
tion, at stage s we have an approximate basis

X

s

= fx

s

0

; : : : ; x

s

k

s

g for G

s

whi
h is t

s

-independent. Ea
h h whi
h enters H at stage s is

assigned a redu
ed dependen
e relation �y = 


0

x

0

+ � � �+ 


k

s

x

k

s

with �; j


i

j � t

s

. For every

t � s, we de�ne f

t

(h) so that

�f

t

(h) = 


0

x

t

0

+ � � �+ 


k

s

x

t

k

s

:

The properties of an approximate basis guarantee that Equation (3) holds.

However, it is not 
lear that Equation (4) will hold or that the relation �y = 


0

x

t

0

+ � � �+




k

s

x

t

k

s

will have a solution unless we do something to insure that our 
hoi
es for approximate

bases at stages s and t � s �t together in a ni
e way. Therefore, we introdu
e the notion of


oheren
e between approximate bases.

De�nition 6.2. Let G

0

� G

1

be �nite subsets of G, with approximate bases X

0

=

fx

0

0

; : : : ; x

0

k

0

g of weight t

0

and X

1

= fx

1

0

; : : : ; x

1

k

1

g with weight t

1

, respe
tively. We say that

X

1


oheres with X

0

if the following 
onditions are met.

1. k

0

� k

1

and t

0

� t

1

.

2. For ea
h i � k

0

, if fx

0

0

; : : : ; x

0

i

g is linearly independent, then x

1

j

= x

0

j

for every j � i.

3. If g 2 G

0

satis�es the redu
ed equation �y = 


0

x

0

0

+ � � �+ 


k

0

x

0

k

0

, then there is a solution

to �y = 


0

x

1

0

+ � � �+ 


k

0

x

1

k

0

in G.

4. If g <

G

h 2 G

0

satisfy the redu
ed sums �y = 


0

x

0

0

+ � � � + 


k

0

x

0

k

0

and �z = d

0

x

0

0

+

� � � + d

k

0

x

0

k

0

, respe
tively, then the solutions g

0

; h

0

2 G, respe
tively, to the equations

�y = 


0

x

1

0

+ � � �+ 


k

0

x

1

k

0

and �z = d

0

x

1

0

+ � � �+ d

k

0

x

1

k

0

satisfy g

0

<

G

h

0

.

Lemma 6.3. Let G

0

� G

1

be �nite subsets of G, and let X

0

be an approximate basis for G

0

.

There exists an approximate basis X

1

for G

1

whi
h 
oheres with X

0

.
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Proof. Sin
e we are not yet worried about e�e
tiveness issues, we 
an assume by H�older's

Theorem that G � R. If X

0

is linearly independent, then we 
an extend it to a set X

1

whi
h

is linearly independent and spans G

1

. Su
h a set X

1

satis�es the 
onditions in De�nition 6.2.

Therefore, assume that X

0

is not linearly independent and that i < k

0

is su
h that

fx

0

0

; : : : ; x

0

i

g is linearly independent, but fx

0

0

; : : : ; x

0

i+1

g is not. Let d

0

be the minimum distan
e

between any pair g 6= h 2 G

0

, and let d = d

0

=(3t

0

k

0

).

Apply Proposition 5.6 with B = fx

0

0

; : : : ; x

0

i

g, X = fx

0

i+1

; : : : ; x

0

k

0

g, d as above, and

p = t

0

!. We obtain a

i+1

; : : : ; a

k

0

su
h that fx

0

0

; : : : ; x

0

i

; (a

i+1

+x

0

i+1

); : : : ; (a

k

0

+x

0

k

0

)g is linearly

independent, and, for ea
h j with i + 1 � j � k

0

, t

0

! divides a

j

and ja

j

j < d.

For 0 � j � i, set x

1

j

= x

0

j

, and for i+1 � j � k

0

, set x

1

j

= a

j

+x

0

j

. Sin
e Y = fx

1

0

; : : : ; x

1

k

0

g

is linearly independent, we let X

1

be a �nite linearly independent set that extends Y and that

spans G

1

. Clearly, X

1

is an approximate basis for G

1

and satis�es Conditions 1 and 2 of

De�nition 6.2.

To see that X

1

satis�es Condition 3, �x an arbitrary g 2 G

0

, and suppose �g = 


0

x

0

0

+

� � �+ 


k

0

x

0

k

0

is a redu
ed dependen
e relation with �; j


i

j � t

0

. Then,

�y = 


0

x

1

0

+ � � �+ 


k

0

x

1

k

0

= (


0

x

0

0

+ � � �+ 


k

0

x

0

k

0

) + (


i+1

a

i+1

+ � � �+ 


k

0

a

k

0

):

Sin
e � � t

0

and t

0

! divides ea
h of the a

j

in G, the equation �y = 


0

x

1

0

+ � � �+ 


k

0

x

1

k

0

has a

solution g

0

2 G.

To see that X

1

satis�es Condition 4, we 
onsider the distan
e between the solutions g 2 G

0

and g

0

2 G

1

to the dependen
e relation above. Sin
e ea
h j


j

j � t

0

, ja

j

j < d, and there are at

most k

0

of the a

j

's, we have

j�g � �g

0

j � j


i+1

a

i+1

+ � � �+ 


k

a

k

j � k

0

t

0

d � d

0

=3:

Furthermore, sin
e � > 0 2 N , jg � g

0

j � j�g � �g

0

j � d

0

=3. Suppose h 2 G

0

with h 6= g

satis�es �h = d

0

x

0

0

+ � � � + d

k

0

x

0

k

0

and h

0

2 G

1

is the solution to �y = d

0

x

1

0

+ � � � + d

k

0

x

1

k

0

.

An identi
al argument shows that jh � h

0

j � d

0

=3. Combining the fa
ts that jg � hj � d

0

,

jg � g

0

j � d

0

=3, and jh� h

0

j � d

0

=3, it is 
lear that g <

G

h implies g

0

<

G

h

0

.

It remains to �x an e�e
tive method for �nding bases whi
h 
ohere. The algorithm below

is not the most obvious one, but it has properties whi
h will be important in our proof.

Suppose G

0

� G

1

are �nite subsets of G. Let X

0

= fx

0

; x

1

; � � � ; x

k

0

g be an approximate

basis for G

0

whi
h is t

0

-independent. We �nd an approximate basis X

1

for G

1

whi
h 
oheres

with X

0

in three phases.

In the �rst phase, we guess (until we �nd eviden
e to the 
ontrary) that X

0

is linearly

independent. We perform the following two tasks 
on
urrently.

1. Sear
h for a dependen
e relation among the elements of X

0

.

2. Sear
h for a Y su
h that X

0

[ Y is an approximate basis for G

1

whi
h 
oheres with X

0

as follows. Begin with n = t

0

+ 1 and i = 0.

(a) Let y

i

be the N-least element of G su
h that X [ fy

0

; : : : ; y

i

g is n-independent.

Che
k if this set spans G

1

using 
oeÆ
ients with absolute value � n. If so, then

pro
eed to (b), and if not, repeat (a) with i set to i + 1.
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(b) Che
k if X

0

[fy

0

; : : : ; y

i

g satis�es Condition 3 from De�nition 6.1. If it does, then

it 
oheres with X

0

and we end the algorithm. If it is not an approximate basis,

then return to (a) with n set to n+ 1 and i = 0.

This phase will terminate, sin
e if X

0

is linearly independent, then, at worst, we re-

peat (a) and (b) until we pi
k elements y

0

<

N

� � � <

N

y

i

whi
h are the N-least su
h that

fx

0

; : : : ; x

k

0

; y

0

; : : : ; y

i

g is a linearly independent and spans G

1

. This set 
oheres with X

0

. If

this phase ends be
ause we �nd an approximate basis in Step 2, then the algorithm termi-

nates. However, if this phase ends be
ause we �nd a dependen
e relation in Step 1, then we

pro
eed to the se
ond phase with the knowledge that X

0

is not linearly independent.

For the se
ond phase, assume that we know fx

0

; : : : ; x

i+1

g is n-dependent, but fx

0

; : : : ; x

i

g

is n-independent. We sear
h for elements y

i+1

through y

k

0

from whi
h to 
onstru
t elements

whi
h play the role of the a

j

's in the proof of Lemma 6.3. Before starting this phase, �x

a 
omputable embedding  : G ! R, let d

0

be any positive real less than the minimum of

j (g � h)j, where g 6= h range over G

0

, and set d = d

0

=3k

0

t

0

.

1. For i + 1 � j � k

0

, pi
k y

j

2 G to be the N-least su
h that fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is

n-independent.

2. Che
k the following �

0

1


onditions 
on
urrently.

(a) Sear
h for a dependen
e relation among fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

k

0

g. If we dis
over

that fx

0

; : : : ; x

j+1

g is dependent, then restart Phase 2 with fx

0

; : : : ; x

j

g. If we

dis
over that fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is dependent for some j, then we return to

Step 1 of this phase, set n to be large, and repi
k y

i+1

through y

k

0

.

(b) For ea
h i + 1 � j � k

0

, sear
h for 
oeÆ
ients b

j

; d

j

6= 0 su
h that, for a

i+1

=

b

i+1

t

0

!x

i

+ d

i+1

t

0

!y

i+1

and a

j

= b

j

t

0

!y

j�1

+ d

j

t

0

!y

j

(for j > i + 1), we have  (a

j

) 2

(0; d). If we �nd su
h a

j

, then end Phase 2.

Determining if  (a

j

) 2 (0; d) is a �

0

1

fa
t, so by dove-tailing our 
omputations, we 
an

e�e
tively perform the sear
h in (b). This phase will terminate, sin
e on
e fx

0

; : : : ; x

i

g has

shrunk to a linearly independent set (by �nitely many dis
overies of dependen
e relations

in (a)), we know that there are linearly independent y

j

's and 
oeÆ
ients b

j

; d

j

, with the

required properties. By 
ontinually 
hoosing the N-least elements whi
h look independent,

we eventually �nd su
h elements.

We verify two properties of X

0

= fx

0

; : : : ; x

i

; x

i+1

+a

i+1

; : : : ; x

k

0

+a

k

0

g. First, as in Lemma

6.3, if �y = 


0

x

0

+ � � �+ 


k

0

x

k

0

, with �; j


i

j � t

0

, has a solution g 2 G

0

, then

�y = 


0

x

0

+ � � �+ 


i

x

i

+ 


i+1

(x

i+1

+ a

i+1

) + � � �+ 


k

0

(x

k

0

+ a

k

0

)

has a solution in g

0

2 G. Se
ond, j (g)�  (g

0

)j � d

0

=3, also as in Lemma 6.3. Therefore, if

g < h 2 G

0

and g

0

; h

0

are the solutions to the dependen
e relations for g and h, respe
tively,

with x

i+1

; : : : ; x

k

0

repla
ed by x

i+1

+a

i+1

; : : : ; x

k

0

+a

k

0

, then g

0

< h

0

. Therefore, any extension

of X

0

whi
h is an approximate basis for G

1

will 
ohere with X

0

.

To �nd su
h an extension, we use a sear
h similar to Phase 1. Perform the following two

tasks 
on
urrently.
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1. Sear
h for a dependen
e relation among the elements of X

0

. If we �nd su
h a relation,

then either fx

0

; : : : ; x

i

g is dependent, in whi
h 
ase we return to the beginning of Phase

2 with a shorter initial segment of X

0

, or else fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is dependent for

some j � k

0

. In this 
ase, we return to Step 1 of Phase 2 with fx

0

; : : : ; x

i

g and repi
k

y

i+1

through y

k

0

with n 
hosen to be large.

2. Sear
h for a Y su
h that X

0

[ Y is an approximate basis for G

1

whi
h 
oheres with X

0

as follows. Set m to be large and i = 0.

(a) Let w

i

be the N-least element of G su
h that X

0

[ fw

0

; : : : ; w

i

g is m-independent.

Che
k if this set spans G

1

using 
oeÆ
ients with absolute value � m. If so, then

pro
eed to (b), and if not, repeat (a) with i set to i + 1.

(b) Che
k if X

0

[ fw

0

; : : : ; w

i

g satis�es Condition 3 from De�nition 6.1. If it does,

then, by the 
omments above, it 
oheres with X

0

, and we end the algorithm. If it

is not an approximate basis, then return to (a) with m set to m + 1.

This phase must terminate sin
e we 
an return to Phase 2 only �nitely often without

pi
king a linearly independent set fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

k

0

g. From here, it is 
lear that we

will eventually pi
k a spanning set for G

1

with the 
orre
t level of independen
e.

We 
ould easily have added requirements that the approximate basis X

1

has a spe
i�ed

higher level of independen
e or a larger size. We summarize this dis
ussion with the following

lemma.

Lemma 6.4. Let G be a 
omputable Ar
himedean ordered group with in�nite rank, G

0

� G

1

be �nite subsets of G, and X

0

be a t

0

-independent approximate basis for G

0

of size k

0

. For

any m;n with t

0

< m and k

0

< n, we 
an e�e
tively �nd an approximate basis X

1

for G

1

whi
h 
oheres with X

0

, whi
h is at least m-independent, and whi
h has size at least n.

It remains to dis
uss the diagonalization pro
ess for an R

e

requirement. Re
all that R

e

has two witnesses, a

e

and b

e

2 H

s

su
h that f

s

(a

e

) and f

s

(b

e

) are elements of our approximate

basis X

s

(of weight t

s

) for G

s

, where G

s

is the image of H

s

under f

s

. Also, we have a �xed map

 : G! R. If we want to diagonalize for R

e

at stage s, then we sear
h for an element x in the

subgroup generated by t

s

!f

s

(a

e

) and t

s

!f

s

(b

e

) su
h that  (x) is suÆ
iently 
lose to 0 in R and

x meets the diagonalization strategy dis
ussed at the end of Se
tion 5. (We will provide the

exa
t bounds for  (x) and the exa
t diagonalization properties during the 
onstru
tion when

we have established the ne
essary notation.) If we �nd an appropriate x, then we repla
e

f

s

(b

e

) in our approximate basis by f

s

(b

e

)�x. As above, the fa
t that t

s

! divides x allows us to

solve the ne
essary equations in G to preserve addition and the fa
t that  (x) is suÆ
iently


lose to 0 guarantees that the new solutions have the same ordering relations as ones from

G

s

. However, sin
e we have introdu
ed large multiples of f

s

(a

e

) and f

s

(b

e

), it need not be the


ase that X

0

= (X

s

� ff

s

(b

e

)g) [ ff

s

(b

e

)� xg is still t

s

-independent.

We handle this situation as follows. If we are diagonalizing for R

e

, assume that

X

s

= ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

); f

s

(y

1

); : : : ; f

s

(y

k

)g:
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Every element g 2 G

s

is the solution to a unique redu
ed dependen
e relation over X

s

with


oeÆ
ients whose absolute value is bounded by t

s

. We want to �nd a new approximate basis

X

0

s

(of weight � t

s

) for some subset G

0

s

of G su
h that we have met our diagonalization

requirements and su
h that all the equations whi
h were satis�ed by some g 2 G

s

over X

s

are also satis�ed by some g

0

2 G

0

s

over X

0

s

. Noti
e that addition is automati
ally preserved

be
ause g

1

+ g

2

= g

3

in G

s

if and only if the de�ning equations for g

1

, g

2

, and g

3

satisfy this

additive relationship. Therefore, if g

0

1

, g

0

2

, and g

0

3

are the solutions in G

0

s

to the equations for

g

1

, g

2

, and g

3

over X

0

s

, we must have g

0

1

+ g

0

2

= g

0

3

. Lastly, we want that < is preserved in the

sense that if g < h in G

s

, then g

0

< h

0

holds in G

0

s

.

Therefore, we perform two sear
hes 
on
urrently. First, we sear
h for a dependen
e rela-

tion among ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)g. If we �nd su
h a dependen
e relation, we know

that the witnesses a

e

and b

e

are going to 
hange, so there is no need to diagonalize at this

point. Se
ond, we sear
h for nonzero 
oeÆ
ients 


1

and 


2

and for elements u

1

; : : : ; u

k

of G

su
h that

1.  (


1

t

s

!f

s

(a

e

) + 


2

t

s

!f

s

(b

e

)) is as 
lose to 0 as we want it to be and meets our diagonal-

ization strategy (and we set x = 


1

t

s

!f

s

(a

e

) + 


2

t

s

!f

s

(b

e

)), and

2. t

s

! divides ea
h u

i

and  (u

i

) is as 
lose to 0 as we want it to be, and

3. X

0

s

= ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)�x; f

s

(y

1

)+u

1

; : : : ; f

s

(y

k

)+u

k

g is t

0

s

independent

for some t

0

s

� 2(t

s

)

3

, and

4. for every g 2 G

s

, the equation satis�ed by g over X

s

has a solution g

0

over X

0

s

(and we

let G

0

s

be the set of solutions to these equations), and

5. < is preserved in the sense mentioned above.

Assuming that ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)g is independent, Propositions 5.4 and 5.5 will

tell us that we 
an �nd an appropriate x and Proposition 5.6 will tell us that we 
an �nd

appropriate u

i

elements.

Now, we de�ne f

0

s

: H

s

! G

0

s

on the approximate basis X

0

s

by f

0

s

(a

i

) = f

s

(a

i

) for i � e,

f

0

s

(b

i

) = f

s

(b

i

) for i < e, f

0

s

(b

e

) = f

s

(b

e

)�x, and f

0

s

(y

i

) = f

s

(y

i

)+u

i

. We 
an extend this map

a
ross H

s

by mapping h 2 H

s

to the solution over X

0

s

for the equation de�ning f

s

(h) over X

s

.

The map f

0

s

preserves all the ordering and addition fa
ts about H

s

.

To see that X

0

s

is an approximate basis for G

0

s

, we need to 
he
k Condition (3) of De�nition

6.1. Therefore, assume that g; h 2 G

s

satisfy the equations

�g = 


0

f

s

(a

0

) + 


1

f

s

(b

0

) + � � �+ 


2e

f

s

(a

e

) + 


2e+1

f

s

(b

e

) + 


2e+2

f

s

(y

1

) + � � �+ 


2e+1+k

f

s

(y

k

)

�h = d

0

f

s

(a

0

) + d

1

f

s

(b

0

) + � � �+ d

2e

f

s

(a

e

) + d

2e+1

f

s

(b

e

) + d

2e+2

f

s

(y

1

) + � � �+ d

2e+1+k

f

s

(y

k

)

over X

s

with j


i

j; jd

i

j � t

s

and 0 < �; � � t

s

. Let g

0

; h

0

be the solutions to these equations over

X

0

s

, and suppose g

0

+ h

0

2 G

0

s

. Then, sin
e G

0

s

is exa
tly the set of solutions to the equations

(over X

0

s

) for the elements g 2 G

s

, we know that g

0

+ h

0

satis�es an equation of the form


(g

0

+ h

0

) = l

0

f

0

s

(a

0

) + � � �+ l

2e+1

f

0

s

(b

e

) + l

2e+2

f

0

s

(y

1

) + � � �+ l

2e+1+k

f

0

s

(y

k

) (5)
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with jl

i

j � t

s

and 0 < 
 � t

s

. However, summing the equations for g and h, we see that g

0

+h

0

also satis�es

��(g

0

+ h

0

) = (�


0

+ �d

0

)f

s

(a

0

) + � � �+ (�


2e+1+k

+ �d

2e+1+k

)f

s

(y

k

): (6)

We need to show that Equations (6) and (5) are equivalent when redu
ed. If we multiply

Equation (5) by �� and Equation (6) by 
, we obtain two equations for ��
(g

0

+ h

0

). Ea
h

of these equations has its 
oeÆ
ients bounded by 2(t

s

)

3

, and sin
e X

0

s

is 2(t

s

)

3

independent,

these equations must have equal 
oeÆ
ients. Therefore, they remain the same when redu
ed.

This 
ompletes the proof that X

0

s

is an approximate basis for G

0

s

.

To �nish the stage, we let X

s+1

be an approximate basis for G

s

[ G

0

s

whi
h 
oheres

with the basis ff

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

); f

0

s

(y

1

); : : : ; f

0

s

(y

k

)g for G

0

s

. We 
an assume

that f

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

) forms an initial segments of X

s+1

, sin
e otherwise there

must be a dependen
e relation between f

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

).

For ea
h h 2 H

s

, the dependen
e relation de�ning f

s

(h) over X

s

has a solution over X

0

s

,

and hen
e it has a solution in G over X

s+1

. Let G

00

s

be the set of solutions to the equations

for h 2 H

s

over X

s+1

.

We let G

s+1

= G

s

[G

0

s

[G

00

s

[X

s+1

and we expand H

s

to H

s+1

by adding jG

s+1

nG

s

j many

new elements. To de�ne the map f

s+1

on H

s+1

, we �rst 
onsider f

s+1

(h) for h 2 H

s

. We know

that f

s

(h) satis�es a redu
ed equation over X

s

and that this equation has a solution in G

s+1

over X

s+1

. Therefore, we de�ned f

s+1

(h) to be the solution to this equation in G

s+1

. For

the new elements in H

s+1

, we map these elements to the elements of G

s+1

whi
h are not hit

by elements of H

s

under f

s+1

. Ea
h of the new elements in H

s+1

is assigned the dependen
e

relation satis�ed by f

s+1

(h) over X

s+1

.

The �nal thing to noti
e is that sin
e f

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

) forms an initial seg-

ments of X

s+1

, we have that f

s+1

(a

e

) = f

s

(a

e

) and f

s+1

(b

e

) = f

s

(b

e

) � x. Hen
e, we have

diagonalized as we wanted.

7 Proof of Theorems 1.11 and 1.3

At stage s of the 
onstru
tion, we will have an approximate basis X

s

= fx

s

0

; : : : ; x

s

k

s

g � G,

with k

s

� 2s, whi
h is t

s

-independent, with t

s

> s. If h enters H at stage s + 1, then h

is assigned a redu
ed dependen
e relation of the form �y = 


0

x

0

+ � � � + 


k

s+1

x

k

s+1

. We say

that g 2 G satis�es this relation relative to the approximate basis X

t

, with t � s + 1, if

�g = 


0

x

t

0

+ � � �+ 


k

s+1

x

t

k

s+1

. Ea
h requirement R

e

, with e � s, has two distin
t witnesses, a

s

e

and b

s

e

, su
h that f

s

(a

s

e

) 2 X

s

and f

s

(b

s

e

) 2 X

s

. R

e

does not need attention at stage s if

any of the following 
onditions hold:

1. '

e;s

(a

s

e

) " or '

e;s

(b

s

e

) ", or

2. for some 0 < m; n < s, m'

e;s

(b

s

e

) #�

G

n'

e;s

(a

s

e

) # and nf

s

(a

s

e

) <

G

mf

s

(b

s

e

), or

3. for some 0 < m; n < s, m'

e;s

(a

s

e

) #�

G

n'

e;s

(b

s

e

) # and nf

s

(b

s

e

) <

G

mf

s

(a

s

e

), or

4. R

e

was de
lared satis�ed at some stage t < s and both a

s

e

and b

s

e

are the same as a

t

e

and

b

t

e

.
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R

e

requires attention at stage s if none of these 
onditions hold.

Constru
tion

Stage 0: Fix a 
omputable embedding  : G ! R. Set H

0

= f0g, f

0

(0) = 0

G

, and X

0

= ;.

Assign 0 2 H the empty redu
ed dependen
e relation.

Stage s + 1: Assume we have de�ned H

s

and f

s

: H

s

! G, with G

s

= range(f

s

). We have

a set X

s

� G

s

whi
h is an approximate basis for G

s

, whi
h is t

s

-independent and whi
h has

size k

s

� 2s. Ea
h element h 2 H

s

has been assigned a redu
ed dependen
e relation of the

form �y = 


0

x

0

+ � � �+ 


i

x

i

for some i � k

s

. We split the stage into four steps.

Step 1 : Let g be the N-least element of G not in G

s

. Let X

0

s

= fx

0

0;s

; : : : x

0

k

0

s

;s

g be an

approximate basis for G

s

[ fgg whi
h 
oheres with X

s

, whi
h has size k

0

s

� 2(s + 1), and

whi
h is t

0

s

-independent, for some t

0

s

> (s+1). Be
ause X

0

s


oheres with X

s

, every dependen
e

relation assigned to an element h 2 H

s

has a solution over X

0

s

. Let G

0

s


ontain G

s

, fgg, X

0

s

,

and the solution to the dependen
e relation for ea
h h 2 H

s

over X

0

s

. Let n = jG

0

s

n G

s

j,

let h

1

; : : : h

n

be the n least elements of N not in H

s

, and let H

0

s

= H

s

[ fh

1

; : : : ; h

n

g. De�ne

f

0

s

: H

0

s

! G

0

s

as follows. For h 2 H

s

, f

0

s

(h) is the solution to the dependen
e for h over X

0

s

.

For h

i

, 1 � i � n, let f

0

s

(h

i

) map to the elements of G

0

s

not in the image of H

s

under f

0

s

.

Ea
h new h

i

2 H

0

s

is assigned the redu
ed dependen
e relation �y = 


0

x

0

+ � � �+ 


k

0

s

x

k

0

s

with

�; j


j

j � t

0

s

su
h that

�f

0

s

(h

i

) = 


0

x

0

0;s

+ 


1

x

0

1;s

+ � � �+ 


k

0

s

x

0

k

0

s

;s

:

Step 2 : De�ne the witnesses for R

e

with e � s by setting a

s+1

e

and b

s+1

e

to be the elements of

H

0

s

su
h that f

0

s

(a

s+1

e

) = x

0

2e;s

and f

0

s

(b

s+1

e

) = x

0

2e+1;s

. Che
k if any R

e

requires attention. If

so, let R

e

be the least su
h requirement and go to Step 3. Otherwise, pro
eed to Step 4.

Step 3 : In this step we do the a
tual diagonalization. First, 
al
ulate a safe distan
e to move

the image of b

s+1

e

. Set d

0

2 R to be su
h that d

0

> 0 and

d

0

� minf j (f

0

s

(h))�  (f

0

s

(g))j j h 6= g 2 H

0

s

g:

We 
an �nd su
h a d

0

e�e
tively sin
e H

0

s

is �nite. Set d = d

0

=(3t

0

s

(1 + k

0

s

)).

Se
ond, we sear
h for an appropriate x 2 G to set f

s+1

(b

s+1

e

) = f

0

s

(b

s+1

e

)� x. We say that

x diagonalizes for R

e

if there are n;m > 0 su
h that either

nf

0

s

(a

s+1

e

) <

G

m(f

0

s

(b

s+1

e

)� x) and n'

s

e

(a

s+1

e

) �

G

m'

s

e

(b

s+1

e

)

or nf

0

s

(a

s+1

e

) >

G

m(f

0

s

(b

s+1

e

)� x) and n'

s

e

(a

s+1

e

) �

G

m'

s

e

(b

s+1

e

):

We sear
h 
on
urrently for

1. elements x; u

2e+2

; : : : ; u

k

0

s

in G su
h that

(a) x has the form 


1

t

0

s

!f

0

s

(a

s+1

e

) + 


2

t

0

s

!f

0

s

(b

s+1

e

) with 


1

; 


2

6= 0 su
h that  (x) 2 (0; d),

and x diagonalizes for R

e

, and

(b) t

0

s

! divides ea
h u

i

in G and j (u

i

)j < d, and
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(
) X

00

s

= ff

0

s

(a

s+1

0

); f

0

s

(b

s+1

0

); : : : ; f

0

s

(a

s+1

e

); f

0

s

(b

s+1

e

)� x; f

0

s

(x

0

2e+2

) + u

2e+2

; : : : ; f

0

s

(x

0

k

0

s

) +

u

k

0

s

g is at least 2(t

0

s

)

3

independent, or

2. n;m 2 N su
h that nf

0

s

(a

s+1

e

) <

G

mf

0

s

(b

s+1

e

) and n'

e;s

(a

s+1

e

) �

G

m'

e;s

(b

s+1

e

), or

3. n;m 2 N su
h that nf

0

s

(b

s+1

e

) <

G

mf

0

s

(a

s+1

e

) and n'

e;s

(b

s+1

e

) �

G

m'

e;s

(a

s+1

e

), or

4. a dependen
e relation among ff

0

s

(a

s+1

0

); f

0

s

(b

s+1

0

); : : : ; f

0

s

(a

s+1

e

); f

0

s

(b

s+1

e

)g in G.

This pro
ess terminates (see Lemma 7.1). Furthermore, if we found X

00

s

, then be
ause t

0

s

!

divides all the elements we are adding to the approximate basis elements, this set has the

property that ea
h dependen
e relation assigned to an h 2 H

0

s

has a solution over X

00

s

. Also,

be
ause j (u

i

)j < d and  (x) < d, these solutions preserve < in the sense des
ribed at the

end of Se
tion 6 (see Lemma 7.3).

If the pro
ess terminates with Conditions 2, 3, or 4, then skip to Step 4. Otherwise, we

de�ne f

s+1

using x and the u

i

. For every h 2 H

0

s

, there is a solution to the dependen
e relation

for h over X

00

s

. Therefore, we 
an de�ne G

00

s

as the set of solutions to the dependen
e relations

assigned to h 2 H

0

s

. As explained at the end of Se
tion 6, be
ause X

00

s

is 2(t

0

s

)

3

independent, it

is an approximate basis for G

00

s

. Let X

s+1

be an approximate basis for G

0

s

[G

00

s

whi
h 
oheres

with the approximate basis X

00

s

for G

0

s

. Let G

s+1

= G

0

s

[G

00

s

[X

s+1

and let H

s+1


ontain H

0

s

plus jG

s+1

n G

0

s

j many new elements. De�ne f

s+1

: H

s+1

! G

s+1

as follows. For h 2 H

0

s

,

set f

s+1

(h) to be the solution to the dependen
e relation for h over X

s+1

. Map the elements

h 2 H

s+1

nH

0

s

to the elements of G

s+1

whi
h are not in the image of H

0

s

under f

s+1

and assign

to ea
h su
h h the redu
ed dependen
e relation satis�ed by f

s+1

(h) over X

s+1

. Pro
eed to

stage s+ 2.

Step 4 : If we arrived at this step, then there is no diagonalization to be done. De�ne f

s+1

= f

0

s

,

X

s+1

= X

0

s

, H

s+1

= H

0

s

, G

s+1

= G

0

s

, k

s+1

= k

0

s

, and t

s+1

= t

0

s

. If we arrived at Step 4 be
ause

Condition 2 or 3 was satis�ed in the sear
h pro
edure in Step 3, then de
lare R

e

satis�ed.

Pro
eed to stage s+ 2.

End of Constru
tion

To prove the 
onstru
tion works, we verify the following lemmas.

Lemma 7.1. The sear
h pro
edure in Step 3 of stage s+ 1 terminates.

Proof. Ea
h 
ondition in the sear
h pro
edure is �

0

1

. Therefore, it suÆ
es to show that if

Conditions 2, 3, and 4 do not hold, then Condition 1 does hold.

Suppose Conditions 2, 3, and 4 are not true. Be
ause Condition 4 does not hold, f

0

s

(a

s+1

e

)

and f

0

s

(b

s+1

e

) are linearly independent. Therefore, by Proposition 5.4, there are n;m 2 N su
h

that jm (f

0

s

(b

s+1

e

))�n (f

0

s

(a

s+1

e

))j <

R

d. Fix su
h n;m, and without loss of generality, assume

that n (f

0

s

(a

s+1

e

)) <

R

m (f

0

s

(b

s+1

e

)) (the 
ase for the reverse inequality follows by a similar

argument). Be
ause  is an embedding, nf

0

s

(a

s+1

e

) <

G

mf

0

s

(b

s+1

e

), and be
ause Condition 2

does not hold, n'

e;s

(a

s+1

e

) <

G

m'

e;s

(b

s+1

e

).
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Sin
e t

0

s

!f

0

s

(a

s+1

e

) and t

0

s

!f

0

s

(b

s+1

e

) are linearly independent, we use Proposition 5.5 to 
on-


lude that there are nonzero 


1

and 


2

su
h that

m (f

0

s

(b

s+1

e

))� n (f

0

s

(a

s+1

e

))

m

<

R




1

t

0

s

 (f

0

s

(a

s+1

e

)) + 


2

t

0

s

 (f

0

s

(b

s+1

e

)) <

R

d

m

:

We set x = 


1

t

0

s

f

0

s

(a

s+1

e

) + 


2

t

0

s

f

0

s

(b

s+1

e

), and note that mf

0

s

(b

s+1

e

) � nf

0

s

(a

s+1

e

) <

G

mx,  (x) 2

(0; d), and t

0

s

! divides x in G. Furthermore, sin
e 


2

6= 0, f

0

s

(b

s+1

e

) � x is independent from

f

0

s

(a

s+1

e

). Finally, to see that x diagonalizes for R

e

:

0 <

R

m (f

0

s

(b

s+1

e

))� n (f

0

s

(a

s+1

e

)) <

R

m (x)

) mf

0

s

(b

s+1

e

)�mx <

G

nf

0

s

(a

s+1

e

);

whi
h implies that m(f

s

(b

s+1

e

)� x) <

G

nf

s

(a

s+1

e

) as required.

Finally, Proposition 5.6 implies that elements u

2e+2

; : : : ; u

k

0

s

exist with the required level

of independen
e.

Lemma 7.2. Ea
h h 2 H is assigned a unique redu
ed dependen
e relation of the form

�y = 


0

x

0

+ � � �+ 


n

x

n

. Furthermore, if h 2 H

s

and x

s

0

; : : : ; x

s

n

are the initial elements of X

s

,

then this relation has a solution in G.

Proof. The �rst time an approximate basis is 
hosen after h enters H, h is assigned a unique

redu
ed dependen
e relation. If h 2 H

s

nH

s�1

, then f

s

(h) satis�es a dependen
e relation of

the form �y = 


0

x

s

0

+ 


1

x

s

1

+ � � �+ 


k

s

x

s

k

s

with �; j


i

j � t

s

. We show by indu
tion that for all

u � s this equation has a solution in G. Noti
e that if u � s, then jX

u

j � jX

s

j, so there are

enough approximate basis elements in X

u

for this equation to make sense. Assume that the

equation has a solution at stage u, and we 
onsider it at stage u+ 1.

X

0

u


oheres with X

u

, so �y = 


0

x

0

0;u

+ 


1

x

0

1;u

+ � � �+ 


k

s

x

0

k

s

;u

has a solution. If we do not

diagonalize at stage u + 1, then X

u+1

= X

0

u

, and we are done. If we do diagonalize at stage

u+1, then our 
onditions on X

00

u

guarantee that the equation has a solution over X

00

u

. We then


hoose X

u+1

so that it 
oheres with X

00

u

, and hen
e the equation has a solution over X

u+1

.

Lemma 7.3. Suppose s + 1 is a stage at whi
h we diagonalize, and a <

G

b 2 G

0

s

satisfy the

dependen
e relations �y = 


0

x

0

0;s

+ � � �+ 


k

x

0

k;s

and �y = d

0

x

0

0;s

+ � � �+ d

k

x

0

k;s

. If a

00

; b

00

2 G

are the solutions to �y = 


0

x

s+1

0

+ � � �+ 


k

x

s+1

k

and �y = d

0

x

s+1

0

+ � � �+d

k

x

s+1

k

, then a

00

<

G

b

00

.

Proof. At stage s+ 1, we set d

0

to be <

R

the least distan
e between any pair  (h) and  (g),

with h 6= g 2 G

0

s

, and we set d = d

0

=(3t

s+1

(1 + k

0

s

)). Let a

0

and b

0

be the solutions to the

equations for a and b over X

00

s

. We �rst show that a

0

< b

0

.

IfX

00

s

= fx

00

0;s

; : : : ; x

00

k

0

s

;s

g, then by our restri
tions on  (x) and  (u

i

), we have that j (x

0

i;s

)�

 (x

00

i;s

)j � d for ea
h i. Therefore, sin
e � > 0,

j (a)�  (a

0

)j � j (�a)�  (�a

0

)j � (k

0

s

+ 1)t

0

s

d = d

0

=3:

Similarly, j (b)� (b

0

)j � d

0

=3. However, sin
e j (a)� (b)j � d

0

, we have that  (a

0

) <  (b

0

)

and hen
e, a

0

< b

0

.

Finally, sin
e X

s+1


oheres with X

00

s

, we know that a

0

< b

0

implies that a

00

< b

00

, as

required.
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Lemma 7.4. For ea
h s 2 N, ea
h a; b; 
 2 H

s

and ea
h t � s, we have

f

s

(a) + f

s

(b) = f

s

(
)) f

t

(a) + f

t

(b) = f

t

(
)

and f

s

(a) � f

s

(b)) f

t

(a) � f

t

(b):

Proof. First, we 
he
k that addition is preserved. If a and b are assigned the dependen
e

relations �y = 


0

x

0

+ � � � + 


k

x

k

and �y = d

0

x

0

+ � � � + d

k

x

k

, respe
tively, then by the

de�nition of an approximate basis, 
 is assigned the redu
ed version of

��(g + h) = (�


0

+ �d

0

)x

0

+ � � �+ (�


k

+ �d

k

)x

k

:

At every stage t after the assignment of these dependen
e relations, f

t

(a), f

t

(b), and f

t

(
) are

de�ned to be the solutions of these relations relative to X

t

. Therefore, f

t

(a) +

G

f

t

(b) = f

t

(
).

Se
ond, we 
he
k that the ordering is preserved. Assume that a; b 2 G

s

are su
h that

f

s

(a) <

G

f

s

(b). We show by indu
tion on t � s that f

t

(a) <

G

f

t

(b). Sin
e X

0

t+1


oheres with

X

t

, we know that if a

0

; b

0

2 G are the solutions to the dependen
e relations assigned to a and

b, respe
tively, relative to the basis X

0

t+1

, then a

0

<

G

b

0

. If we do not diagonalize at stage

t+1, then X

t+1

= X

0

t+1

, so we are done. If we do diagonalize, then we apply Lemma 7.3.

Lemma 7.5. Ea
h approximate basis element x

s

i

rea
hes a limit, and the set of these limits

forms a basis for G. Furthermore, ea
h witness a

s

e

and b

s

e

rea
hes a limit and ea
h requirement

R

e

is eventually satis�ed.

Proof. It is 
lear that if the elements x

s

i

rea
h limits, then they will form a basis for G.

Therefore, sin
e ea
h x

s

i

is eventually 
hosen to be an a

s

e

or a b

s

e

, it suÆ
es to show by indu
tion

on e that a

s

e

and b

s

e

rea
h limits and that ea
h R

e

requirement is eventually satis�ed. Sin
e

a

s

0

= x

s

0

is always de�ned to be the �rst nonidentity element in G, this element never 
hanges,

and hen
e rea
hes a limit a

0

.

Consider b

s

0

= x

s

1

. Let y be the N least element of G su
h that fa

0

; zg is independent.

Sin
e our algorithm for 
hoosing a 
oherent basis always 
hooses the N least elements it 
an,

we eventually �nd a stage when we re
ognize that fa

s

0

; b

s

0

g is dependent and we pi
k y

1

to

be z in Phase 2 of the 
oherent basis algorithm. From this stage on, whenever we run this

algorithm, we 
hoose y

1

to be z, so eventually by Proposition 5.6 we will �nd an appropriate

linear 
ombination of b

s

0

and z and set b

s+1

0

to be this linear 
ombination. Sin
e b

s+1

0

is now

independent from a

0

, it will not 
hange again unless R

0

diagonalizes.

On
e b

s

0

has rea
hed a limit, R

0

is guaranteed to win if it ever 
hooses to diagonalize.

This is be
ause on
e fa

s

0

; b

s

0

g is independent, the sear
h pro
edure in Step 3 
annot end in

Condition 4. If R

0

never wants to diagonalize, then R

0

is satis�ed for trivial reasons. If R

0

does diagonalize, then b

s

0


hanges one last time, but it remains independent of a

0

and hen
e

will never 
hange again.

We 
an now 
onsider the 
ase for e + 1. Assume we have passed a stage su
h that

a

s

0

; b

s

0

; : : : ; a

s

e

; b

s

e

have all rea
hed their limits and no requirement R

i

, with i � e, ever

wants to a
t again. As above, let z

1

and z

2

be the N least elements of G su
h that

fa

s

0

; b

s

0

; : : : ; a

s

e

; b

s

e

; z

1

; z

2

g is independent. It is possible that the a
tion of diagonalization for

a higher priority requirement will have made a

s

e+1

and b

s

e+1

independent from the elements
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above. If not, then the algorithm for pi
king a 
oherent basis eventually �nds that they are

dependent and rede�nes a

s

e+1

to be a linear 
ombination with z

1

and rede�nes b

s

e+1

to be a

linear 
ombination with z

2

. After this point, a

s

e+1

will never 
hange again, and b

s

e+1

will only


hange if R

e+1

wants to a
t. As above, if R

e+1

ever wants to a
t, then it is guaranteed to

win be
ause the sear
h in Step 3 
annot end in Condition 4. Therefore, R

e+1

is eventually

satis�ed and b

s

e+1

rea
hes a limit.

Lemma 7.6. For ea
h s and ea
h h 2 H

s

, the sequen
e f

t

(h) for t � s rea
hes a limit.

Proof. Suppose h 2 H

s

and h is assigned the relation �y = 


0

x

0

+ � � � + 


k

x

k

. For t � s,

f

t

(h) is the solution to this equation over X

t

. Therefore, on
e ea
h x

t

i

rea
hes a limit, so does

f

t

(h).

This ends the proof of Theorem 1.11. To �nish the proof of Theorem 1.3, we need one

more lemma.

Lemma 7.7. H admits a 
omputable basis.

Proof. For i 2 N , de�ne d

i

to be the element assigned the redu
ed equation y = x

s

i

and let f

be the pointwise limit of f

s

. Then, f(d

i

) = lim

s

x

s

i

= x

i

. Sin
e fx

i

ji 2 Ng is a basis for G,

fd

i

ji 2 Ng is a basis for H.

8 Proofs of Theorems 1.12 and 1.4

For this se
tion, we �x a 
omputable ordered abelian group G with in�nite rank whi
h is not

Ar
himedean, but has only �nitely many Ar
himedean 
lasses. Assume G has r nontrivial

Ar
himedean 
lasses and �x positive representatives �

1

; : : : ;�

r

for these 
lasses. Sin
e every

nonidentity element g 2 G satis�es g � �

i

for a unique i, we 
an e�e
tively determine the

Ar
himedean 
lass of ea
h g.

For ea
h 1 � i � r, let L

i

be the 
omputable subgroup fg 2 Gjg � �

i

g. Also, let E

i

be the

least nontrivial Ar
himedean 
lass of the quotient group G=L

i

. Sin
e E

i

is an Ar
himedean

ordered group (with the indu
ed order), we 
an �x maps  

i

: E

i

! R by H�older's Theorem.

Sin
e G has in�nite rank, at least one of the E

i

groups must have in�nite rank. We will say

that �

i

represents an in�nite rank Ar
himedean 
lass if E

i

has in�nite rank. Otherwise,

�

i

represents a �nite rank Ar
himedean 
lass.

The key to proving Theorems 1.12 and 1.4 is to �nd the 
orre
t analogues of Propositions

5.4 and 5.6 and Lemma 6.3. On
e we have these results, the arguments presented in Se
tions

6 and 7 
an be used with minor 
hanges.

De�nition 8.1. A �nite subset G

0

� G is 
losed under Ar
himedean di�eren
es if for

all g; h 2 G

0

su
h that g � h but g � h 6� g, we have g � h 2 G

0

.

Lemma 8.2. If G

0

� G is �nite, then there is a �nite set G

0

0

su
h that G

0

� G

0

0

and G

0

0

is


losed under Ar
himedean di�eren
es.
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Proof. Start with the largest Ar
himedean 
lass o

urring in G

0

and 
ompare all pairs of

elements in this 
lass. For ea
h pair su
h that g � h and g � h 6� g, add g � h to G

0

.

Considering ea
h Ar
himedean 
lass inG

0

in de
reasing order, we 
lose G

0

under Ar
himedean

di�eren
es by adding only �nitely many elements.

De�nition 8.3. X � G is nonshrinking if for all x

0

� � � � � x

n

2 X and 
oeÆ
ients




0

; : : : ; 


n

with at least one 


i

6= 0, we have 


0

x

0

+ � � �+ 


n

x

n

� x

0

. X is t-nonshrinking if

this property holds with the absolute values of the 
oeÆ
ients bounded by t.

Theorem 8.4. There is a nonshrinking basis for G.

Proof. For ea
h 1 � i � r, �x a set B

i

of elements b

i

j

su
h that ea
h b

i

j

� �

i

and the set of

elements b

i

j

+ L

i

is a basis for E

i

. The fa
t that the b

i

j

elements are independent modulo L

i

means that for any 
oeÆ
ients 


1

; : : : ; 


k

with at least one 


j

6= 0, we have

(


1

b

i

1

+ � � �+ 


k

b

i

k

) + L

i

6= L

i

and hen
e 


1

b

i

1

+ � � �+ 


k

b

i

k

62 L

i

. Sin
e ea
h b

i

j

� �

i

, this implies that 


1

b

i

1

+ � � �+ 


k

b

i

k

� �

i

.

Therefore, B

i

is nonshrinking.

It remains to show that B =

S

1�i�r

B

i

is a basis for G. First, B is independent sin
e ea
h

B

i

is independent and nonshrinking. Se
ond, to see that B spans G, let g 2 G be su
h that

g � �

i

. For some 
hoi
e of 
oeÆ
ients �; 


1

; : : : ; 


k

and elements b

i

1

; : : : ; b

i

k

, we 
an write

�g + L

i

= (


1

b

i

1

+ � � �+ 


k

b

i

k

) + L

i

:

Therefore, 


1

b

i

1

+ � � � + 


k

b

i

k

� �g � �

i

. If this element is equal to 0

G

, then we are done.

Otherwise, we 
an repeat this pro
ess with 


1

b

i

1

+ � � �+ 


k

b

i

k

��g. Sin
e there are only �nitely

many Ar
himedean 
lasses, this pro
ess must stop and show that some multiple of g is a

linear 
ombination of elements of B.

De�nition 8.5. Let G

0

� G be �nite. X

0

is a approximate nonshrinking basis for G

0

with weight t

0

if X

0

is an approximate basis for G

0

with weight t

0

and X

0

is t

0

-nonshrinking.

As before, an approximate nonshrinking basis is a sequen
e, but we abuse notation and

treat it as a set. Furthermore, we think of X

0

as broken down into Ar
himedean 
lasses, and

we treat X

0

as a sequen
e of sequen
es, hX

1

0

; : : : ; X

r

0

i, where X

i

0

is the sequen
e of elements

x 2 X

0

for whi
h x � �

i

.

De�nition 8.6. If G

0

� G

1

are �nite subsets and X

0

= fx

0

0

; : : : ; x

0

k

0

g is an approx-

imate nonshrinking basis for G

0

of weight t

0

, then the approximate nonshrinking basis

X

1

= fx

1

0

; : : : ; x

1

k

1

g for G

1

of weight t

1


oheres with X

0

if

1. Conditions 1, 3, and 4 from De�nition 6.2 hold, and

2. for ea
h Ar
himedean 
lass X

i

0

inside X

0

, if X

i

0

= fx

0

i

0

; : : : ; x

0

i

l

g and j is su
h that

fx

0

i

0

; : : : ; x

0

i

j

g is independent, but fx

0

i

0

; : : : ; x

0

i

j+1

g is not, then fx

0

i

0

; : : : ; x

0

i

j

g � X

1

.

We 
an now give the analogues of Propositions 5.4 and 5.6 and of Lemma 6.3.
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Proposition 8.7. Let fb

0

; b

1

g � G be independent and nonshrinking su
h that b

0

� b

1

� �

i

.

Then, for any d > 0 2 R, there are nonzero 
oeÆ
ients 


0

; 


1

su
h that

j 

i

((


0

b

0

+ L

i

) + (


1

b

1

+ L

i

))j < d:

Proof. This lemma is a dire
t 
onsequen
e of Proposition 5.4.

Proposition 8.8. Let B = fb

0

; : : : ; b

m

g � G be independent and nonshrinking su
h that

b

j

� �

i

for ea
h j, and assume that �

i

represents an in�nite rank Ar
himedean 
lass. Let

X = fx

0

; : : : ; x

n

g � G be su
h that x

j

� �

i

for ea
h j, and �x d > 0 2 R and p > 0 2 N.

There are elements a

0

; : : : ; a

n

2 G su
h that

1. fb

0

; : : : ; b

m

; x

0

+ a

0

; : : : ; x

n

+ a

n

g is independent and nonshrinking, and

2. for ea
h j, (p divides a

j

), (x

j

+ a

j

� �

i

), and j 

i

(a

j

+ L

i

)j < d.

Proof. As in Proposition 5.6, we prove this lemma for x

0

and then pro
eed by indu
tion. If

B [fx

0

g is independent and nonshrinking, then let a

0

= 0

G

. Otherwise, there are 
oeÆ
ients




0

; : : : ; 


m

; � with � > 0 su
h that 


0

b

0

+ � � � + 


m

b

m

+ �x

0

= y � �

i

. Solving for �x

0

gives

�x

0

= y � 


0

b

0

� � � � � 


m

b

m

.

Sin
e �

i

represents an in�nite rank Ar
himedean 
lass, we 
an �x a b � �

i

su
h that

fb

0

+ L

i

; : : : ; b

m

+ L

i

; b + L

i

g is independent in G=L

i

. Clearly, B [ fbg is independent, but

by the argument in Theorem 8.4, it is also nonshrinking. Next, we apply Proposition 8.7

to get nonzero 
oeÆ
ients 


0

; 


1

su
h that j 

i

((


0

b

0

+ L

i

) + (


1

b + L

i

))j < d=p and we let

a

0

= p


0

b

0

+ p


1

b.

To see that B [ fx

0

+ a

0

g is independent and nonshrinking, suppose there are 
oeÆ
ients

d

0

; : : : ; d

m

; � su
h that d

0

b

0

+ � � �+ d

m

b

m

+ �(x

0

+ a

0

) = z � �

i

. Sin
e B is independent and

nonshrinking, we know � 6= 0. Multiplying by � and performing several substitutions, we get

�d

0

b

0

+ � � �+ �d

m

b

m

+ ��x

0

+ ��a

0

= �z � �

i

;

�d

0

b

0

+ � � �+ �d

m

b

m

+ �(y � 


0

b

0

� � � � � 


m

b

m

) + ��(p


0

b

0

+ p


1

b) = �z; and

(�d

0

� �


0

+ ��p


1

)b

0

+ (�d

1

+ �


1

)b

1

+ � � �+ (�d

m

� �


m

)b

m

+ ��p


1

b = �z � �y� �

i

:

Sin
e ��p


1

6= 0, the bottom equation 
ontradi
ts the fa
t that B [ fbg is independent and

nonshrinking.

Lemma 8.9. Let G

0

� G

1

be �nite sets and assume that G

0

is 
losed under Ar
himedean

di�eren
es. Let X

0

be an approximate nonshrinking basis for G

0

with weight t

0

. There exists

an approximate nonshrinking basis X

1

for G

1

whi
h 
oheres with X

0

.

Proof. If X

0

is independent and nonshrinking, then let X

1

be any independent nonshrinking

extension of X

0

whi
h spans G

1

. If X

0

is either not independent or not nonshrinking, then

we begin by partitioning X

0

into Ar
himedean 
lasses. For simpli
ity of notation, assume

that there are only two Ar
himedean 
lasses in X

0

. The general 
ase follows by a similar

argument, whi
h is sket
hed after the 
ase of two Ar
himedean 
lasses. LetX

0

= fb

1

; : : : ; b

l

g[

fe

1

; : : : ; e

m

g, where b

i

� �

b

and e

i

� �

e

for Ar
himedean representatives �

b

� �

e

.
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Se
ond, 
onsider ea
h Ar
himedean 
lass in X

0

and separate out the initial segment whi
h

is independent and nonshrinking. That is,

X

0

= fb

1

; : : : ; b

i

g [ fb

i+1

; : : : ; b

l

g [ fe

1

; : : : ; e

j

g [ fe

j+1

; : : : ; e

m

g;

where fb

0

; : : : ; b

i

g is independent and nonshrinking, but fb

0

; : : : ; b

i+1

g is not (and similarly

for e

j

). Let d > 0 2 R be less than the minimum of all the following 
onditions:

1. j 

b

(x+ L

b

)j for x 2 G

0

, x � �

b

, and

2. j 

b

(x+ L

b

)�  

b

(y + L

b

)j for x; y 2 G

0

with x � y � �

b

and x + L

b

6= y + L

b

, and

3. j 

e

(x + L

e

)j for x 2 G

0

with x � �

e

, and

4. j 

e

(x + L

e

)�  

e

(y + L

e

)j for x; y 2 G

0

with x � y � �

e

and x + L

e

6= y + L

e

.

Let d

0

= d=(3t

0

(l +m)).

Apply Proposition 8.8 with B = fb

1

; : : : ; b

i

g,  

b

, d

0

, t

0

!, and X = fb

i+1

; : : : ; b

l

g to get

fa

i+1

; : : : ; a

l

g. Also, apply Proposition 8.8 with B = fe

1

; : : : ; e

j

g,  

e

, d

0

, t

0

!, and X =

fe

j+1

; : : : ; e

m

g to get fa

0

j+1

; : : : ; a

0

m

g. Let

Y = fb

1

; : : : ; b

i

g [ fb

i+1

+ a

i+1

; : : : ; b

l

+ a

l

g [ fe

1

; : : : ; e

j

g [ fe

j+1

+ a

0

j+1

; : : : ; e

m

+ a

0

m

g:

Sin
e Y is independent and nonshrinking, we 
an extend it to X

1

whi
h is independent,

nonshrinking, spans G

1

, and for whi
h jX

1

j � jX

0

j. Clearly, X

1

is an approximate non-

shrinking basis for G

1

. To see that X

1


oheres with X

0

, noti
e that X

1

is t

1

-independent and

t

1

-nonshrinking for arbitrarily large t

1

. Also, the fa
t that t

0

! divides ea
h a

k

and a

0

k

shows

that every equation over X

0

whi
h de�nes an element of G

0

has a solution over X

1

.

To 
he
k the last 
ondition, suppose g < h 2 G

0

satisfy the redu
ed equations

�y = 


1

b

1

+ � � �+ 


l

b

l

+ 


l+1

e

1

+ � � �+ 


l+m

e

m

and

�y = d

1

b

1

+ � � �+ d

l

b

l

+ d

l+1

e

1

+ � � �+ d

l+m

e

m

;

respe
tively. Let g

0

; h

0

2 G be the solutions to these equations over X

1

, that is, with (b

i+1

+

a

i+1

) through (b

l

+ a

l

) in pla
e of b

i+1

through b

1

, and (e

j+1

+ a

0

j+1

) through (e

m

+ a

0

m

) in

pla
e of e

j+1

through e

m

.

We need to show that g

0

< h

0

. There are several 
ases to 
onsider. First, suppose g � �

b

and h � �

e

. g < h implies that h > 0

G

, and g � �

b

implies that the 
oeÆ
ients 


l+1

; : : : ; 


l+m

are all 0. Therefore, g

0

� �

b

, and similarly, h

0

� �

e

. We 
laim that h > 0

G

implies that

h

0

> 0

G

. To see this fa
t, noti
e

�h� �h

0

= d

i+1

a

i+1

+ � � �+ d

l

a

l

+ d

l+j+1

a

0

j+1

+ � � �+ d

l+m

a

0

m

:

Therefore, j 

e

((�h��h

0

)+L

e

)j � (l+m)t

0

d

0

� d=3. Sin
e j 

e

(h+L

e

)j > d and j 

e

((h�h

0

)+

L

e

)j � j 

e

((�h � �h

0

) + L

e

)j, we have that  

e

(h

0

+ L

e

) > 0. The de�nition of the quotient

order and the fa
t that  

e

is an embedding imply that h

0

> 0

G

. Putting these fa
ts together,
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we have that g

0

� �

b

� �

e

� h

0

and h

0

> 0

G

, and therefore g

0

< h

0

. A similar analysis applies

when g � �

e

and h � �

b

.

It remains to 
onsider the 
ase when g � h. Assume g � h � �

e

and 
onsider the


ase when g � h � �

e

. In this 
ase, g + L

e

6= h + L

e

, so g + L

e

< h + L

e

, and hen
e

 

e

(g + L

e

) <  

e

(h + L

e

). By 
al
ulations similar to those above and those in Lemma 6.3

involving our 
hoi
e of d

0

, we have that  

e

(g

0

+L

e

) <  

e

(h

0

+L

e

). Therefore g

0

+L

e

< h

0

+L

e

,

whi
h implies g

0

< h

0

.

If g � h � �

e

, but h� g � �

e

, then sin
e G

0

is 
losed under Ar
himedean di�eren
es, we

know that h � g 2 G

0

and sin
e g < h, we have 0

G

< h� g. Again, by our 
hoi
e of d, this

means that 0

G

< h

0

� g

0

, and so g

0

< h

0

.

Finally, if g � h � �

b

, then sin
e G

0

is 
losed under Ar
himedean di�eren
es and �

b

represents the smallest Ar
himedean 
lass in G

0

, we know g � h � �

b

. The analysis for the


ase when g � h � �

e

applies in this 
ase as well.

We now sket
h the general 
ase. Suppose there are k Ar
himedean 
lasses in X

0

. We

partition X

0

into Ar
himedean 
lasses, X

0

= fb

1

1

; : : : ; b

1

n

1

g [ � � � [ fb

k

1

; : : : ; b

k

n

k

g 
orresponding

to the representatives �

b

1

; : : : ;�

b

k

. Next, for ea
h j � k, we separate out the initial segment

of fb

j

1

; : : : ; b

j

n

j

g whi
h is independent and nonshrinking, fb

j

1

; : : : ; b

j

m

j

g [ fb

j

m

j

+1

; : : : ; b

j

n

j

g. We

�x d > 0 2 R, as above, whi
h is less that the minimum for all j � k of

1. j 

b

j

(x + L

b

j

)j for x 2 G

0

, x � �

b

j

, and

2. j 

b

j

(x+L

b

j

)�  

b

j

(y+L

b

j

)j for ea
h x; y 2 G

0

with x � y � �

b

j

and x+ L

b

j

6= y+ L

b

j

.

Let d

0

= d=3t

0

(n

1

+� � �+n

k

). For ea
h j � k, we apply Proposition 8.8 to get fa

j

m

j

+1

; : : : ; a

j

n

j

g.

Let Y = [

j�k

fb

j

1

; : : : ; b

j

m

j

; b

j

m

j

+1

+a

j

m

j

+1

; : : : ; b

j

n

j

+a

j

n

j

g. Sin
e Y is independent and nonshrink-

ing, we 
an extend it to X

1

whi
h is independent, nonshrinking, and spans G

1

. As above,

our de�nition of d

0

implies that if h 2 G

0

is positive and satis�es a redu
ed equation over X

0

,

then the solution h

0

to the same equation over X

1

is also positive. The proof that X

1


oheres

with X

0

now breaks into 
ases exa
tly as above.

Now that we have the appropriate repla
ements for Propositions 5.4 and 5.6 and Lemma

6.3, we sket
h the remainder of the argument. There is a sear
h pro
edure to make Lemma

8.9 e�e
tive just as in Se
tion 6, ex
ept when we sear
h for dependen
e relations, we also

sear
h for sums whi
h shrink in terms of the Ar
himedean 
lasses.

For our given group G, we build H and a �

0

2

isomorphism f : H ! G in stages as before.

We again meet the requirements

R

e

: '

e

: H ! G is not an isomorphism

by diagonalization. The �rst 
hange in the 
onstru
tion is to use approximate nonshrink-

ing bases instead of just approximate bases. These insure that our basis at the end of the


onstru
tion is nonshrinking.

The se
ond 
hange is to �x the part of the basis for the �nite rank Ar
himedean 
lasses

at stage 0. For ea
h �

i

whi
h represents a �nite rank Ar
himedean 
lass, let n

i

= rank(E

i

),

where E

i

is the subgroup of G=L

i


onsisting of the least nontrivial Ar
himedean 
lass. Pi
k
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a set B

i

whi
h is independent, nonshrinking, has size n

i

, and su
h that for all x 2 B

i

, x � �

i

.

Pla
e these elements in the approximate nonshrinking basis at stage 0. Sin
e these elements

are in fa
t independent and nonshrinking, they will remain in all approximate nonshrinking

bases 
hosen later in the 
onstru
tion.

The third 
hange is to �x the least i su
h that �

i

represents an in�nite rank Ar
himedean


lass. We perform the diagonalization to meet R

e

using approximate basis elements whi
h

are � �

i

. Just as Proposition 5.4 is used in Lemma 7.1 to perform the diagonalization,

Proposition 8.7 is used here.

With these 
hanges, the proofs for Theorems 1.12 and 1.4 pro
eed just as those for The-

orems 1.11 and 1.3.
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