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Abstrat

Let G be a omputable ordered abelian group. We show that the omputable di-

mension of G is either 1 or !, that G is omputably ategorial if and only if it has

�nite rank, and that if G has only �nitely many Arhimedean lasses, then G has a

omputable presentation whih admits a omputable basis.

1 Introdution

In this artile, we examine ountable ordered abelian groups from the perspetive of om-

putable algebra. We begin with the de�nition and some examples of ordered abelian groups.

De�nition 1.1. An ordered abelian group is a pair (G;�

G

), where G is an abelian group

and �

G

is a linear order on G suh that if a �

G

b, then a+ g �

G

b + g for all g 2 G.

The simplest examples of ordered abelian groups are the additive groups Z and Q with

their usual orders. Another example is

P

!

Z, the restrited sum of ! many opies of Z.

The elements of this group are funtions g : N ! Z with �nite support. To ompare two

distint elements g and h, �nd the least n suh that g(n) 6= h(n) and set g < h if and only if

g(n) < h(n).

An abelian group is orderable if and only if it is torsion free. Therefore, all groups in this

artile are torsion free. Also, sine we onsider only omputable groups (de�ned below), all

groups in this artile are ountable.
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supported by the Russian Foundation for Basi Researh grant 99-01-00485, Lempp's researh was partially

supported by NSF grant DMS-9732526, and Solomon's researh was partially supported by NSF Fellowship

DMS-0071586. The primary mathematis subjet lassi�ation is 03D and the seondary lassi�ation is 06F.
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One of the fundamental problems in omputable algebra is to determine whih lassial

theorems are e�etively true. That is, we ask whether a lassial theorem holds when all the

algebrai objets are required to be omputable. To illustrate this perspetive, onsider the

following two lassial theorems of �eld theory: every �eld has an algebrai losure, and a

�eld is orderable if and only if it is formally real. Rabin ([15℄) proved that the �rst theorem

is e�etively true, and Metakides and Nerode ([13℄) proved that the seond theorem is not

e�etively true. That is, every omputable �eld has a omputable algebrai losure, but there

are omputable formally real �elds whih do not have a omputable order.

To apply the tehniques of omputability theory to a lass of algebrai strutures, we

must �rst ode these strutures into the natural numbers. In the ase of ordered abelian

groups, this means that we hoose a omputable set G � N of group elements along with a

omputable funtion +

G

: G � G ! G and a omputable relation �

G

� G � G whih obey

the axioms for an ordered abelian group. The triple (G;+

G

;�

G

) is alled a omputable

ordered abelian group. For simpliity, we often drop the subsripts on +

G

and �

G

, and

we abuse notation by referring to the omputable ordered abelian group as G. If H is an

abstrat ordered abelian group and G is a omputable ordered group suh that H

�

=

G, then

G is alled a omputable presentation of H. The intuition is that G is a oding of H into

the natural numbers to whih we an apply the tehniques of omputability theory.

For ompleteness, we give a more general de�nition of a omputable struture, whih

agrees with the de�nition above for the lass of ordered abelian groups. The most general

de�nition, whih allows the possibility of in�nite languages, is not needed here.

De�nition 1.2. An algebrai struture A with �nitely many funtions and relations is om-

putable if the domain of the struture and eah of the funtions and relations is omputable.

A omputable presentation of a struture B is a omputable struture A whih is isomor-

phi to B.

In this artile, we onsider only abstrat ordered abelian groups whih have some om-

putable presentation. Notie that this inludes the examples given above, as well as most

naturally ourring ountable examples. That is, it takes some work to build a ountable

ordered group that has no omputable presentation.

If an abstrat ordered abelian group H has a omputable presentation, then it will have

many di�erent omputable presentations. One of the goals of omputable algebra is to study

how the e�etive properties of H depend upon the hosen presentation or oding. Consider

the following example. Downey and Kurtz ([2℄) proved that there is a omputable torsion

free abelian group whih has no omputable order and also no omputable basis. Therefore,

the theorem stating that every torsion free abelian group has both an order and a basis is

not e�etively true. In their proof, Downey and Kurtz gave a ompliated oding of

P

!

Z

whih diagonalized against the existene of a omputable order. However, it is lear that

if the group

P

!

Z is oded in a \nie" way, then it will have a omputable basis and the

lexiographi order desribed above will be omputable.

The next reasonable question to ask is if every torsion free abelian group whih has a

omputable presentation also has one whih admits a omputable basis and a omputable

order. The answer turns out to be yes, as shown for a basis in Dobritsa ([1℄) and for an
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order (whih is a trivial onsequene of Dobritsa's work) in Solomon ([19℄). Therefore, if a

omputable torsion free abelian group does not have a omputable basis or a omputable

order, then it is a onsequene of the oding as opposed to a fundamental property of the

abstrat isomorphism type of the group.

Unfortunately, Dobritsa's methods do not in general preserve orders. However, we will

prove that an analogue of Dobritsa's result does hold for a wide lass of omputable ordered

abelian groups. (The terms from ordered group theory are de�ned after the introdution.)

Theorem 1.3. If G is a omputable Arhimedean ordered group, then G has a omputable

presentation whih admits a omputable basis.

Theorem 1.4. If G is a omputable ordered abelian group with �nitely many Arhimedean

lasses, then G has a omputable presentation whih admits a omputable nonshrinking basis.

The omputable ordered abelian groups whih are the least a�eted by issues of oding are

those for whih there is a omputable isomorphism between any two omputable presentations.

Suh groups are alled omputably ategorial. More generally, we look at omputable

strutures up to omputable isomorphism. That is, we regard two omputable strutures as

equivalent if there is a omputable isomorphism between them. This intuition motivates the

following de�nition.

De�nition 1.5. Let A be a omputable struture. The omputable dimension of A is the

number of omputable presentations of A up to omputable isomorphism. If the omputable

dimension of A is 1, then A is alled omputably ategorial or autostable.

A onsiderable amount of work has been done on the question of whih omputable di-

mensions our in various lasses of algebrai strutures.

Theorem 1.6 ([3℄, [6℄, [8℄, [12℄, [13℄, [14℄, [16℄). Every omputable linear order, Boolean

algebra, abelian group, algebraially losed �eld, and real losed �eld has omputable dimension

1 or !.

For several of these lasses of strutures, there are algebrai onditions whih separate

the omputably ategorial strutures from those whih have omputable dimension !. For

example, a omputable linear order is omputably ategorial if and only if it has �nitely many

suessive pairs of elements, and a omputable Boolean algebra is omputably ategorial if

and only if it has �nitely many atoms.

These examples, unfortunately, give a piture that is too simple to hold in general. The

following theorem shows that for other lasses of algebrai strutures, there exist omputable

strutures whih have �nite omputable dimensions other than 1.

Theorem 1.7 ([3℄, [10℄). For eah 1 � n � !, the following lasses of algebrai strutures

ontain examples whih have omputable dimension exatly n: partially ordered sets, graphs,

latties, and nilpotent groups.

The lass of ordered abelian groups is interesting from the perspetive of omputable

dimension beause these groups have both an addition funtion and an ordering relation. Of
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the examples listed above, only Boolean algebras have both funtions and an ordering, but

for Boolean algebras, the order is de�nable from the meet and join. Furthermore, Gonharov

has proved two general theorems, the Unbounded Models Theorem and the Branhing Models

Theorem (see [4℄), stating onditions under whih all omputable strutures from a partiular

lass of strutures must have dimension 1 or !. For ordered abelian groups, neither of these

theorems appears to apply. However, our main result, Theorem 1.8, shows that omputable

ordered abelian groups must have omputable dimension 1 or !. Theorems 1.3 and 1.4 will

be established during the proof of Theorem 1.8.

Theorem 1.8. Every omputable ordered abelian group has omputable dimension 1 or !.

Furthermore, suh a group is omputably ategorial if and only if it has �nite rank.

If G has �nite rank, then learly G is omputably ategorial. In fat, not only are any

two omputable presentations of G omputably isomorphi, every isomorphism between two

omputable presentations is omputable. It remains to show that if G has in�nite rank, then

the omputable dimension of G is !. We use the following theorem from omputable model

theory to simplify our work.

Theorem 1.9 ([9℄). If a ountable model A has two omputable presentations, A

1

and A

2

,

whih are �

0

2

but not omputably isomorphi, then A has omputable dimension !.

We split the proof of Theorem 1.8 into three ases. Sine the interplay between the group

struture and the ordering an be quite ompliated, we have to introdue new algebra in

eah ase to handle the internal ombinatoris.

Theorem 1.10. If G is a omputable ordered abelian group with in�nitely many Arhimedean

lasses, then G has omputable dimension !.

Theorem 1.11. If G is a omputable Arhimedean ordered group, then G has omputable

dimension 1 or !. Furthermore, G is omputably ategorial if and only if G has �nite rank.

Theorem 1.12. If G is a omputable abelian ordered group with �nitely many Arhimedean

lasses, then G has omputable dimension 1 or !. Furthermore, G is omputably ategorial

if and only if G has �nite rank.

In Setion 2, we present some bakground material in ordered abelian group theory. In

in Setion 3, we present the algebra neessary to prove Theorem 1.10, and we give the proof

in Setion 4. In Setions 5 and 6, we desribe the omputability theory and the algebra,

respetively, used in the proofs of Theorems 1.11 and 1.3. We prove Theorems 1.11 and 1.3

in Setion 7 and we prove Theorems 1.12 and 1.4 in Setion 8.

The notation is standard and follows [17℄ for omputability theory, and both [11℄ and [5℄

for ordered abelian groups. The term omputable always means Turing omputable and we

use '

e

, e 2 !, to denote an e�etive list of the partial omputable funtions. If we designate

a number n as \large" during a onstrution, let n be the least number whih is larger than

any number used in the onstrution so far.
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2 Ordered abelian groups

In this setion, we introdue several useful onepts from the theory of ordered groups.

De�nition 2.1. Let G be an ordered group. The absolute value of g 2 G, denoted by jgj,

is whihever of g or �g is positive. For g; h 2 G, we say g is Arhimedean equivalent

to h, denoted g � h, if there exist n;m 2 N with n;m > 0, suh that jgj �

G

jnhj and

jhj �

G

jmgj. If g 6� h and jgj < jhj, g is Arhimedean less than h, denoted g � h. G is

an Arhimedean group if g � h for every g; h 2 G n f0

G

g.

The Arhimedean lasses of G are the equivalene lasses under �. Although tehnially

0

G

forms its own Arhimedean lass, we typially ignore this lass and onsider only the

nontrivial Arhimedean lasses.

In Setion 5, we give a full disussion of H�older's Theorem, but we state it here sine it is

used in the proof of Lemma 3.5.

H�older's Theorem. If G is an Arhimedean ordered group, then G is isomorphi to a sub-

group of the naturally ordered additive group R.

De�nition 2.2. Let G be a torsion free abelian group. The elements g

0

; : : : ; g

n

2 G are

linearly independent if, for all 

0

; : : : ; 

n

2 Z, the equality



0

g

0

+ 

1

g

1

+ � � �+ 

n

g

n

= 0

implies that 

i

= 0 for all i. An in�nite set is linearly independent if every �nite subset is

independent. A maximal linearly independent set is alled a basis, and the ardinality of any

basis is alled the rank of G.

If a torsion free abelian group is divisible, then it forms a vetor spae over Q . In this

ase, these de�nitions agree with the orresponding terms for a vetor spae. Notie that if

g and h are in di�erent Arhimedean lasses, then they are independent. Therefore, if G has

in�nitely many Arhimedean lasses, then G has in�nite rank.

De�nition 2.3. If X = fx

i

ji 2 Ng is a basis for G, then eah g 2 G, g 6= 0

G

, satis�es a

dependene relation (or equation) of the form

�g = 

0

x

0

+ � � �+ 

n

x

n

where � 2 N , � 6= 0, and eah 

i

2 Z. A dependene relation is alled redued if � > 0 and

the greatest ommon divisor of � and the nonzero 

i

oeÆients is 1.

Obviously, any dependene relation an be transformed into a redued one by dividing.

Suppose g and h both satisfy the equation �y = 

0

x

0

+ � � � + 

n

x

n

. Then, �(g � h) = 0

G

,

and sine we onsider only torsion free groups, g = h. Therefore, any dependene relation

(regardless of whether x

0

; : : : ; x

n

are independent) has at most one solution. It will also be

important that in redued equation, the oeÆient � is required to be positive.
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De�nition 2.4. For any X � G, we de�ne the span of X to be the set of solutions to the

redued equations �y = 

0

x

0

+

1

x

1

+ � � �+

k

x

k

, where eah x

i

2 X. The span of X is denoted

by Span(X).

The notion of t-independene will be used to approximate a basis during the onstrutions.

De�nition 2.5. The elements g

0

; : : : ; g

n

are t-independent if for all 

0

; : : : ; 

n

2 Z with

j

i

j � t, 

0

g

0

+ � � � 

n

g

n

= 0

G

implies that eah 

i

= 0. The elements g

0

; : : : ; g

n

are t-

dependent if they are not t-independent.

De�nition 2.6. A subgroup H is onvex if for all x; y 2 H and all g 2 G, x � g � y implies

that g 2 H.

If H is a onvex subgroup of G, then there is a natural order on the quotient group G=H.

The indued ordered on G=H is de�ned by a+H �

G=H

b+H if and only if a+H = b+H

or a+H 6= b+H and a < b. In Setion 8, we will use the fat that a+H <

G=H

b+H implies

that a <

G

b.

3 Algebra for Theorem 1.10

Throughout Setions 3 and 4, G denotes a omputable ordered abelian group with in�nitely

many Arhimedean lasses.

De�nition 3.1. B � G has the nonshrinking property if for all fb

1

; : : : ; b

n

g � B with

b

1

� � � � � b

n

, and for all x 2 Span(b

1

; : : : ; b

n

), if x 6= 0

G

, then x � b

1

. A basis with the

nonshrinking property is alled a nonshrinking basis.

We �rst establish, none�etively, the existene of a nonshrinking basis.

Lemma 3.2. For any (possibly �nite) independent set B = fb

1

; b

2

; : : :g, there is an in-

dependent set with the nonshrinking property B

0

= fb

0

1

; b

0

2

; : : :g suh that for every i,

Span(b

1

; : : : ; b

i

) = Span(b

0

1

; : : : ; b

0

i

).

Proof. Set b

0

0

= b

0

. For n > 0, onsider all sums of the form 

0

b

0

0

+ � � � + 

n�1

b

0

n�1

+ 

n

b

n

,

where 

i

2 Z and 

n

6= 0. These sums an lie in at most n+ 1 di�erent Arhimedean lasses,

so there is a least Arhimedean lass whih ontains one of these elements. Set b

0

n

to be any

of these sums whih lies in this least Arhimedean lass. Sine 

n

6= 0, b

n

2 Span(b

0

0

; : : : ; b

0

n

).

To verify that B

0

has the nonshrinking property, assume that b

0

i

1

� � � � � b

0

i

n

with

i

1

< � � � < i

n

. Suppose there is an x 2 Span(b

0

i

1

; : : : ; b

0

i

n

) suh that x 6= 0

G

and x � b

0

i

1

.

Then, x satis�es a redued equation of the form �x = 

i

1

b

0

i

1

+ � � � + 

i

n

b

0

i

n

. Without loss of

generality, assume that 

i

n

6= 0. By our onstrution of B

0

, b

0

i

n

an be expressed as a sum of

b

0

1

; : : : ; b

0

i

n

�1

; b

i

n

in whih the oeÆient of b

i

n

is not zero. Replae b

0

i

n

in the equation for x

by this sum and notie that the oeÆient of b

i

n

is not zero. Therefore, when b

0

i

n

was hosen,

�x was one of the other elements onsidered, ontraditing our hoie of b

0

i

n

.

The following two lemmas follow diretly from Lemma 3.2 and De�nition 3.1.
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Lemma 3.3. Any �nite independent set with the nonshrinking property an be extended to a

nonshrinking basis.

Lemma 3.4. If B is a nonshrinking basis and fb

1

; : : : ; b

n

g � B with b

1

/ b

2

/ � � � / b

n

, then

for all x 2 Span(b

1

; : : : ; b

n

), if x 6= 0

G

, then b

1

/ x.

The reason for working with a nonshrinking bases is that there are no \large" elements

whih ombine with other \large" elements to beome \small". To be more spei�, suppose

B is a nonshrinking basis and x � y are represented by the redued equations �x =

P

i2I



i

b

i

and �y =

P

j2J

d

j

b

j

. Sine �; � > 0, x � y if and only if ��x � ��y. To determine

if x � y, it suÆes to ompare the sums from the expressions ��x =

P

i2I

(�

i

)b

i

and

��y =

P

j2J

(�d

j

)b

j

. Let X = fb

k

jk 2 I [ Jg and let Y be the set of all k suh that b

k

2 X

and b

k

is an element of the largest Arhimedean lass ourring among the members of X.

De�ne x

0

=

P

i2I\Y

(�

i

)b

i

and y

0

=

P

j2J\Y

(�d

j

)b

j

. Beause B is a nonshrinking basis,

x

0

� b

k

and y

0

� b

k

for all k 2 Y . Therefore, x

0

< y

0

implies that x < y. On the other

hand, if x

0

= y

0

, then we an ompare the parts of the sums for �x and �y generated by the

basis elements in the seond greatest Arhimedean lass in X. Assuming that x 6= y, we must

eventually �nd a largest Arhimedean lass within X for whih the sums for ��x and ��y

restrited to the basis elements in X in this lass disagree. Then x < y if and only if the

restrited sum for ��x is less than the restrited sum for ��y.

We prove a sequene of lemmas, ulminating in the main ombinatorial lemma needed for

the proof of Theorem 1.10. Our eventual goal is to show that if we have a �nite set G

s

� G

with subsets C; P � G

s

satisfying partiular onditions, then there is a map Æ : G

s

! G

whih preserves + and <, whih is the identity on P , and whih ollapses the elements of C

to a single Arhimedean lass. This property will allow us to diagonalize against omputable

isomorphisms.

Lemma 3.5. Let g

1

; : : : ; g

k

be elements in the least nontrivial Arhimedean lass of G suh

that g

i

� g

j

� g

i

for all 1 � i 6= j � k. There is a map ' : fg

1

; : : : ; g

k

g ! Z suh that for all

1 � x; y; z � k, g

x

+ g

y

= g

z

if and only if '(g

x

) + '(g

y

) = '(g

z

) and g

x

< g

y

if and only if

'(g

x

) � '(g

y

). Furthermore, if g

x

> 0

G

, then '(g

x

) > 0.

Proof. Consider the Arhimedean subgroup H = fg 2 Gjg � g

1

_ g = 0

G

g, let b

1

; : : : ; b

n

2 H

be independent positive elements suh that eah g

i

is dependent on fb

1

; : : : ; b

n

g, and let t be

suh that eah g

i

is atually t-dependent on fb

1

; : : : ; b

n

g. Eah g

i

satis�es a unique redued

equation �g

i

= �

1

b

1

+ � � � + �

n

b

n

in whih 0 < � � t and eah j�

i

j � t. Applying H�older's

Theorem, �x an isomorphism  : H ! R suh that  (b

1

) = 1 and assume  (b

i

) = r

i

for

1 < i � n.

Look at all sums of the form �

1

+ �

2

r

2

+ � � �+ �

n

r

n

in whih eah �

i

2 Z and j�

i

j � 2t

3

.

Beause r

1

; : : : ; r

n

are independent, the sums orresponding to di�erent hoies of oeÆients

are di�erent. Let q 2 Q , q > 0, be stritly less than the di�erene between any two distint

sums of this form, let q

0

2 Q be suh that 0 < q

0

< q=9nt

3

, and pik q

2

; : : : ; q

n

2 Q suh that

jr

i

� q

i

j � q

0

.

Next, we prove four laims about sums involving the numbers r

i

and q

i

. Fix arbitrary

distint sequenes h�

1

; : : : ; �

n

i, h�

1

; : : : ; �

n

i, and h

1

; : : : ; 

n

i suh that eah �

i

; �

i

; 

i

2 Z and

j�

i

j; j�

i

j; j

i

j � t

3

.
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Our �rst laim is that for suh sequenes,

�

1

+ �

2

r

2

+ � � �+ �

n

r

n

< �

1

+ �

2

r

2

+ � � �+ �

n

r

n

, �

1

+ �

2

q

2

+ � � �+ �

n

q

n

< �

1

+ �

2

q

2

+ � � �+ �

n

q

n

:

This laim follows beause

j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

)j � nt

3

q

0

� q=9;

j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)j � nt

3

q

0

� q=9;

and j(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)� (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

)j > q:

Our seond laim is that for all sequenes as above, we have

(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) + (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) = (

1

+ 

2

r

2

+ � � �+ 

n

r

n

)

, (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

) + (�

1

+ �

2

q

2

+ � � �+ �

n

q

n

) = (

1

+ 

2

q

2

+ � � �+ 

n

q

n

):

Sine 1; r

2

; : : : ; r

n

are independent, we have that the top equality holds if and only if 

i

= �

i

+�

i

for eah i. Therefore, the ()) diretion is lear. To establish the (() diretion, assume that

the bottom equality holds but the top does not. We get a ontradition by onsidering the

inequalities used to prove the �rst laim, together with the following inequalities:

j(

1

+ 

2

r

2

+ � � �+ r

n

)� (

1

+ 

2

q

2

+ � � �+ q

n

)j � q=9;

and j[(�

1

+ �

1

) + (�

2

+ �

2

)r

2

+ � � �+ (�

n

+ �

n

)r

n

℄� (

1

+ 

2

r

2

+ � � �+ r

n

)j > q:

To verify the last inequality, notie that j�

i

+ �

i

j � 2t

3

.

Letm be the least ommon multiple of the denominators of the redued frations q

2

; : : : ; q

n

.

Let m

0

= m � t!, and de�ne p

1

= m

0

, p

2

= m

0

q

2

; : : : ; p

n

= m

0

q

n

. Notie that p

i

2 Z and t!

divides p

i

for eah i.

Our third laim is that

�

1

+ �

2

r

2

+ � � �+ �

n

r

n

< �

1

+ �

2

r

2

+ � � �+ �

n

r

n

, �

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

< �

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

:

This laim follows from the �rst laim beause

�

1

p

1

+ � � �+ �

n

p

n

= m

0

(�

1

+ �

2

q

2

+ � � �+ �

n

q

n

)

and �

1

p

1

+ � � �+ �

n

p

n

= m

0

(�

1

+ �

2

q

2

+ � � �+ �

n

q

n

):

Our fourth (and �nal) laim is that

(�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) + (�

1

+ �

2

r

2

+ � � �+ �

n

r

n

) = (

1

+ 

2

r

2

+ � � �+ 

n

r

n

)

, (�

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

) + (�

1

p

1

+ �

2

p

2

+ � � �+ �

n

p

n

) = (

1

p

1

+ 

2

p

2

+ � � �+ 

n

p

n

):

This laim follows from the seond laim just as the third laim follows from the �rst laim.
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For eah g

i

, onsider the unique redued equation �g

i

= �

1

b

1

+ � � � + �

n

b

n

. Sine  is a

homomorphism, the equation �x = �

1

+ �

2

r

2

� � �+ �

n

r

n

has the unique solution x =  (g

i

) in

R. Beause t! divides eah p

i

and 0 < � � t, we have that

u

i

= �

1

p

1

�

+ � � �+ �

n

p

n

�

2 Z:

De�ne ' by '(g

i

) = u

i

.

To verify that ' has the appropriate properties, �x x; y; z between 1 and k. There are

positive numbers �, �, and , and integer sequenes h�

1

; : : : ; �

n

i, h�

1

; : : : ; �

n

i, and h

1

; : : : ; 

n

i

with the absolute value of all numbers bounded by t suh that

�g

x

= �

1

b

1

+ � � �+ �

n

b

n

; �g

y

= �

1

b

1

+ � � �+ �

n

b

n

; and g

z

= 

1

b

1

+ � � �+ 

n

b

n

:

Beause G is torsion free, g

x

+ g

y

= g

z

if and only if ��g

x

+ ��g

y

= ��g

z

. Sine the

oeÆients in the sums for ��g

x

, ��g

y

, and ��g

z

are all bounded by t

3

, all four laims

apply to these sums. The following alulation proves that addition is preserved under '.

g

x

+

G

g

y

= g

z

, ��g

x

+

G

��g

y

= ��g

z

, �(�

1

p

1

+ � � �+ �

n

p

n

) +

Z

�(�

1

p

1

+ � � �+ �

n

p

n

) = ��(

1

p

1

+ � � �+ 

n

p

n

)

, 1=�(�

1

p

1

+ � � ��

n

p

n

) +

Z

1=�(�

1

p

1

+ � � �+ �

n

p

n

) = 1=(

1

p

1

+ � � �+ 

n

p

n

)

, u

x

+

Z

u

y

= u

z

, '(g

x

) +

Z

'(g

y

) = '(g

z

)

The following equivalenes prove that < is preserved under '.

g

x

< g

y

, ��g

x

< ��g

y

, �(�

1

p

1

+ � � �+ �

n

p

n

) < �(�

1

p

1

+ � � �+ �

n

p

n

)

, 1=�(�

1

p

1

+ � � �+ �

n

p

n

) < 1=�(�

1

p

1

+ � � �+ �

n

p

n

)

, u

x

< u

y

, '(g

x

) < '(g

y

)

Finally, the fat that g

x

> 0

G

if and only if '(g

x

) > 0 is similar.

Lemma 3.6. Let g

1

; : : : ; g

k

be nonidentity elements suh that g

i

� g

j

and g

i

� g

j

� g

i

for

all 1 � i 6= j � k. There is a map ' : fg

1

; : : : ; g

k

g ! Z suh that for all 1 � x; y; z � k,

g

x

+ g

y

= g

z

implies that '(g

x

) + '(g

y

) = '(g

z

), and g

x

< g

y

implies that '(g

x

) < '(g

y

).

Furthermore, g

x

> 0

G

if and only if '(g

x

) > 0.

Proof. If fg

1

; : : : ; g

k

g are in the least nontrivial Arhimedean lass, then we have the stronger

result of Lemma 3.5. Otherwise, let N = fg 2 Gjg � g

1

g be the subgroup of elements

Arhimedean less than g

1

. The elements g

1

+ N; : : : ; g

k

+ N are in the least nontrivial

Arhimedean lass of G=N . Also, if g

x

6= g

y

, then g

x

� g

y

� g

x

and so g

x

� g

y

62 N . Therefore

if x 6= y, then g

x

+N 6= g

y

+N , so Lemma 3.5 applies to the elements g

1

+N; : : : ; g

k

+N in

G=N . The lemma now follows from the fat that g

x

< g

y

implies g

x

+N < g

y

+N and that

g

x

+ g

y

= g

z

implies g

x

+N + g

y

+N = g

z

+N .

Lemma 3.7. Let C = fg

1

; : : : ; g

m

g be suh that g

1

/ g

i

/ g

m

for eah i. There is a map

Æ : C ! G suh that for all u; v; w 2 C, we have
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1. Æ(u) � g

m

,

2. u+ v = w implies Æ(u) + Æ(v) = Æ(w), and

3. u < v implies Æ(u) < Æ(v).

Proof. First, �x a nonshrinking basis B for G and let fb

1

; : : : ; b

k

g � B be suh that C �

Span(b

1

; : : : ; b

k

) and b

i

/ g

m

for eah i. Let t be suh that jj < t for all oeÆients  used

in the redued equations for elements of C relative to fb

1

; : : : ; b

k

g. Thus, every element of C

satis�es a unique redued equation of the form �x = 

1

b

1

+ � � � + 

k

b

k

, with � < t and eah

j

i

j < t.

Seond, divide fb

1

; : : : ; b

k

g (by possibly renumbering the indies) into fb

1

; : : : ; b

j

g [

fb

j+1

; : : : ; b

k

g where g

1

/ b

i

/ g

m

for all i � j and b

i

� g

1

for all i > j. Let A = fb

1

; : : : ; b

j

g.

Without loss of generality, assume that A � C (by expanding C if neessary). Let C

0

be the

set of elements of G orresponding to the sums

P

j

i=1



i

b

i

for every hoie of oeÆients with

j

i

j � t

3

.

Sine C is �nite, it intersets a �nite number r of Arhimedean lasses. Further partition

A (again renumbering the indies if neessary) into

b

1

� � � � � b

d

1

� b

d

1

+1

� � � � � b

d

2

� b

d

2

+1

� � � � b

d

r�1

+1

� � � � � b

j

:

For notational onveniene, let d

0

= 0, d

r

= j. Therefore, eah Arhimedean lass within

C is generated by b

d

y�1

+1

; : : : ; b

d

y

for some 0 < y � r. Let A

y

= fb

d

y�1

+1

; : : : ; b

d

y

g and

D

y

= Span(A

y

)\ (C [C

0

). When we have to verify statements for eah D

y

, we will typially

verify it for D

1

and note that the proofs for the other D

y

are the same up to a hange in

subsripts.

The point of this notation is to think of dividing C [ C

0

into various ategories. Eah

D

y

has the property that all of its elements are Arhimedean equivalent and, beause our

basis is nonshrinking, the di�erene between any two distint elements still lies in the same

Arhimedean lass. Therefore, Lemma 3.6 an be applied to eah D

y

. We will �x the images

of these elements under Æ �rst.

There are also elements x 2 Span(A) suh that x 62 D

y

for any y. Eah b

i

2 A is in some

D

y

set, so Æ(b

i

) is already de�ned. Therefore, we an use the fat that the elements in Span(A)

are all solutions of equations over A to de�ne the images of the elements of Span(A)� [D

y

.

Finally, there are the elements that involve the basis elements fb

j+1

; : : : ; b

k

g, and we �x the

images of these elements last.

We begin by applying Lemma 3.6 to eah D

y

to de�ne maps '

y

: D

y

! Z suh that for

all u; v; w 2 D

y

u+ v = w ) '

y

(u) + '

y

(v) = '

y

(w);

u < v ) '

y

(u) < '

y

(v); and u > 0

G

, '

y

(u) > 0:

(1)

Next, we de�ne a map ' : [D

y

! Z suh that for all u; v; w 2 [D

y

,

u+ v = w) '(u) + '(v) = '(w)

u � v ) '(u) � '(v); and u > 0

G

, '(u) > 0:

(2)
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We de�ne ' on eah D

y

by indution on y, verifying at eah step that Equation (2) holds.

For x 2 D

1

, set '(x) = t!'

1

(x). It is lear from Equation (1) that Equation (2) holds for all

u; v; w 2 D

1

. Let M

1

be suh that M

1

> j'(x)j for all x 2 D

1

.

For x 2 D

2

, set '(x) = M

1

t!'

2

(x). De�ne M

2

suh that M

2

> j'(x

1

)j + j'(x

2

)j for all

x

1

2 D

1

and x

2

2 D

2

. To see that ' satis�es Equation (2), let u; v; w 2 D

1

[D

2

. If u+v = w,

then either u; v; w 2 D

1

or u; v; w 2 D

2

, so Equation (1) implies that + is preserved. Similarly,

if u; v 2 D

1

or u; v 2 D

2

, then it is lear that < is preserved. Consider u 2 D

1

and v 2 D

2

.

Then, u < v implies that either u; v are both positive or else u is negative and v is positive.

In the �rst ase, '

1

(u) and '

2

(v) are both positive, so '(u) < '(v) follows from the fat that

'(u) < M

1

. In the seond ase, '

1

(u) is negative and '

2

(v) is positive, so '(u) < '(v). The

ases for u 2 D

2

and v 2 D

1

are similar.

We proeed by indution. For all x 2 D

y

, set '(x) = M

y�1

t!'

y

(x) and de�ne M

y

suh

that M

y

> j'(x

1

)j+ � � �+ j'(x

y

)j for all hoies of x

i

2 D

i

. The veri�ation that Equation (2)

holds is similar to the ase of y = 2 done above. Also, the fat that for all x 2 [D

y

, x > 0

G

if and only if '(x) > 0 follows from the fat that this holds for eah '

y

.

Fix h 2 G suh that h � g

m

and h is positive. We begin to de�ne the map Æ by setting

Æ(x) = '(x)h+ x for all x 2 [D

y

. In partiular, Æ(b

i

) is now de�ned for all b

i

2 A.

To give an equivalent de�nition for Æ(x), assume x 2 D

1

and x satis�es the redued

equation �x = �

1

b

1

+ � � � + �

d

1

b

d

1

. By the proof of Lemma 3.5 and the fat that b

i

2 D

1

for 1 � i � d

1

, we have �'

1

(x) = �

1

'

1

(b

1

) + � � � + �

d

1

'

1

(b

d

1

). Multiplying by t! shows

�'(x) = �

1

'(b

1

) + � � �+ �

d

1

'(b

d

1

), whih gives us

�Æ(x) = �'(x)h+ �x =

= (�

1

'(b

1

) + � � �+ �

d

1

'(b

d

1

))h + (�

1

b

1

+ � � �+ �

d

1

b

d

1

) =

= �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

):

Therefore, one we have de�ned Æ(b

i

) = '(b

i

)h + b

i

, we an de�ne Æ(x) to be the unique

solution to

�x = �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

):

(By the alulations above, this equation does have a solution.) The same alulations with

di�erent subsripts give analogous results for eah D

y

.

Before ontinuing with the de�nition of Æ, we verify that for all u; v; w 2 ([D

y

) \ C

0

,

u+ v = w) Æ(u) + Æ(v) = Æ(w) and u < v ) Æ(u) < Æ(v):

To see that < is preserved, notie that u < v implies that '(u) < '(v), whih in turn implies

that Æ(u) = '(u)h + u < '(v)h + v = Æ(v). To see that + is preserved, it is easiest to

use the de�nition of Æ in terms of solutions of equations. Without loss of generality assume

that u; v; w 2 D

1

. Sine they are also in C

0

, they satisfy equations u = �

1

b

1

+ � � � + �

d

1

b

d

1

,

v = �

1

b

1

+ � � �+ �

d

1

b

d

1

, and w = 

1

b

1

+ � � �+ 

d

1

b

d

1

. If u+ v = w, then �

i

+ �

i

= 

i

for eah

i � d

1

. Therefore,

�

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

) + �

1

Æ(b

1

) + � � �+ �

d

1

Æ(b

d

1

) = 

1

Æ(b

1

) + � � �+ 

d

1

Æ(b

d

1

);
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and hene Æ(u) + Æ(v) = Æ(w). The same argument works for any D

y

with the appropriate

index substitutions.

Next, onsider x 2 Span(A), write �x = �

1

b

1

+ � � �+�

j

b

j

as a redued equation, and reall

that 0 < � < t. De�ne '(x) as the solution to �x = �

1

'(b

1

) + � � �+ �

j

'(b

j

). The fat that

t! divides eah '(b

i

) guarantees that '(x) 2 Z. If x 2 D

y

, this de�nition agrees with value of

'(x) we have already assigned. Set Æ(x) = '(x)h+x, and as above, notie that this de�nition

is equivalent to de�ning Æ(x) as the solution to �z = �

1

Æ(b

1

) + � � � + �

j

Æ(b

j

). Beause this

equation is equivalent to

�z = (�

1

'(b

1

) + � � �+ �

j

'(b

j

))h+ (�

1

b

1

+ � � �+ �

j

b

j

);

and beause � divides eah '(b

i

) as well as �

1

b

1

+� � �+�

j

b

j

, this equation does have a solution.

Again, we verify some properties before �nishing the de�nition of Æ. We have now de�ned

Æ for all elements of C

0

. The argument that for all u; v; w 2 C

0

,

u+ v = w) Æ(u) + Æ(v) = Æ(w) and u < v ) Æ(u) < Æ(v)

is essentially the same as for ([D

y

)\C

0

. Also, we verify that for all x 2 Span(A), x > 0

G

if and

only if '(x) > 0. Fix x and suppose it satis�es the redued equation �x = �

1

b

1

+ � � �+ �

j

b

j

.

Consider the largest Arhimedean lass with nonzero terms in �

1

b

1

+ � � �+�

j

b

j

. Let z be the

element of C

0

whih is the restrition of the sum �

1

b

1

+� � �+�

j

b

j

to the terms from this largest

Arhimedean lass. Beause our basis is nonshrinking, z lies in this largest Arhimedean lass,

and hene it determines whether x is positive or not. Therefore, x > 0

G

if and only if z > 0

G

.

Sine z 2 D

y

for some y, we have already veri�ed that z > 0

G

if and only if '(z) > 0. Finally,

sine '(z) is a multiple of M

y�1

and M

y�1

is larger than any sum of images of elements

of smaller Arhimedean lasses under ', we have that '(z) determines the sign of '(x).

Altogether, these equivalenes imply that x > 0

G

if and only if '(x) > 0.

To �nish the de�nition of Æ, onsider a remaining element g

i

and assume g

i

is a solution

to the redued equation �z = 

1

b

1

+ � � � + 

j

b

j

+ 

j+1

b

j+1

+ � � � + 

k

b

k

. Sine g

i

62 Span(A),

there must be at least one 

i

6= 0 for i > j. De�ne Æ(g

i

) to be the solution to

�z = 

1

Æ(b

1

) + � � �+ 

j

Æ(b

j

) + 

j+1

b

j+1

+ � � �+ 

k

b

k

:

As above, this equation does have a solution. Also, this de�nition for Æ agrees with our earlier

de�nitions in the ase that g

i

2 [D

y

or g

i

2 Span(A). Therefore, it an be taken as the �nal

de�nition overing all ases.

It remains to verify the properties of Æ. First, we show that for all g

i

2 C, Æ(g

i

) � h

and hene Æ(g

i

) � g

m

. Suppose g

i

> 0

G

satis�es �g

i

= �

1

b

1

+ � � � + �

k

b

k

, and onsider

z = �

1

b

1

+ � � � + �

j

b

j

2 C

0

. If g

i

> 0

G

, then z > 0

G

, and hene '(z) > 0. Sine Æ(z) =

'(z)h + z, we have Æ(z) > '(z)h, and sine z / g

m

, it follows that Æ(z) � h. Beause

�

j+1

b

j+1

+ � � �+ �

k

b

k

� g

1

, we get Æ(z) + �

j+1

b

j+1

+ � � � + �

k

b

k

� h. Dividing by � annot

hange the Arhimedean lass, so Æ(g

i

) � h. The argument for g

i

< 0

G

is similar.

Seond, we hek that < is preserved. Assume g

i

satis�es the equation above and g

j

satis�es �g

j

= �

1

b

1

+ � � �+ �

k

b

k

. If g

i

< g

j

, then ��g

i

< ��g

j

sine � and � are positive. We
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therefore have

�(�

1

b

1

+ � � �+ �

j

b

j

) + �(�

j+1

b

j+1

+ � � �+ �

k

b

k

)

< �(�

1

b

1

+ � � �+ �

j

b

j

) + �(�

j+1

b

j+1

+ � � �+ �

k

b

k

):

We laim that this implies that �(�

1

b

1

+ � � � + �

j

b

j

) � �(�

1

b

1

+ � � � + �

j

b

j

). If not, then

�(�

1

b

1

+ � � �+�

j

b

j

) > �(�

1

b

1

+ � � �+�

j

b

j

). Sine our basis is nonshrinking, both of these sums

are Arhimedean greater than the parts involving b

j+1

; : : : ; b

k

. Therefore, �(�

1

b

1

+� � �+�

j

b

j

) >

�(�

1

b

1

+ � � �+ �

j

b

j

) implies that ��g

i

> ��g

j

, whih is a ontradition.

There are now two ases to onsider. If �(�

1

b

1

+ � � � + �

j

b

j

) = �(�

1

b

1

+ � � � + �

j

b

j

),

then ��g

i

< ��g

j

implies that �(�

j+1

b

j+1

+ � � � + �

k

b

k

) < �(�

j+1

b

j+1

+ � � � + �

k

b

k

). Also,

sine the elements x = �(�

1

b

1

+ � � � + �

j

b

j

) and y = �(�

1

b

1

+ � � � + �

j

b

j

) are in C

0

, we

have that x = y implies Æ(x) = Æ(y). However, ��Æ(g

i

) = Æ(x) + �(�

j+1

b

j+1

+ � � � + �

k

b

k

)

and ��Æ(g

j

) = Æ(y) + �(�

j+1

b

j+1

+ � � � + �

k

b

k

). Therefore, ��Æ(g

i

) < ��Æ(g

j

) and hene

Æ(g

i

) < Æ(g

j

).

The seond ase is when �(�

1

b

1

+ � � �+ �

j

b

j

) < �(�

1

b

1

+ � � �+ �

j

b

j

). In this ase, with x

and y as above, x < y and so Æ(x) < Æ(y). However, Æ(x); Æ(y) � h and so are Arhimedean

greater than b

j+1

; : : : ; b

k

. Therefore, ��Æ(g

i

) < ��Æ(g

j

) and Æ(g

i

) < Æ(g

j

).

Last, we hek that + is preserved. Let g

i

and g

j

satisfy redued sums as above and let g

l

satisfy g

l

= 

1

b

1

+ � � �+ 

k

b

k

. If g

i

+ g

j

= g

l

, then ��g

i

+ ��g

j

= ��g

l

. Sine our basis

is nonshrinking,

�(�

1

b

1

+ � � ��

j

b

j

) + �(�

1

b

1

+ � � ��

j

b

j

) = ��(

1

b

1

+ � � �

j

b

j

)

and �(�

j+1

b

j+1

+ � � ��

k

b

k

) + �(�

j+1

b

j+1

+ � � ��

k

b

k

) = ��(

j+1

b

j+1

+ � � �

k

b

k

):

The terms in the top equation are in C

0

, so the addition is preserved by Æ. The terms in

the bottom sum are not moved by Æ. Therefore, ��Æ(g

i

) + ��Æ(g

j

) = ��Æ(g

l

) and so

Æ(g

i

) + Æ(g

j

) = Æ(g

l

).

The following lemma expresses the main ombinatorial fat needed to do the diagonaliza-

tion in the proof of Theorem 1.10.

Lemma 3.8. Let G

s

� G be a �nite set with two subsets P = fp

1

; : : : ; p

n

g � G

s

(alled the

proteted elements) and C = fg

1

; : : : ; g

m

g � G

s

(alled the ollapsing elements). Assume that

the elements of C satisfy g

1

/ g

i

/ g

m

for eah i. Let G

0

= fg 2 Gjg

1

/ g / g

m

g. Assume

that G

s

\ G

0

= C and Span(P ) \ G

0

= ;. Then, there is a map Æ : G

s

! G suh that the

following onditions hold.

1. For all x 2 Span(P ) \G

s

, Æ(x) = x.

2. For all 1 � i � m, Æ(g

i

) � g

m

.

3. For all x; y; z 2 G

s

, x+ y = z implies Æ(x)+ Æ(y) = Æ(z) and x < y implies Æ(x) < Æ(y).

Proof. Apply Lemma 3.2 to get P

0

= fp

0

1

; : : : ; p

0

n

g suh that P is independent, has the non-

shrinking property, and satis�es Span(p

1

; : : : ; p

n

) = Span(p

0

1

; : : : ; p

0

n

). Let B = fb

i

ji 2 !g be

a nonshrinking basis for G that extends P

0

.
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Run the onstrution of Lemma 3.7 using the basis B to obtain Æ : C ! G. We use the

same notation as in the proof of Lemma 3.7. That is, by possibly renumbering the indies in

B, we assume that j < k are suh that C � Span(b

1

; : : : ; b

k

), g

1

/ b

i

/ g

m

for all i � j, and

b

i

� g

1

for all j < i � k. Furthermore, let l > k be suh that G

s

� Span(b

1

; : : : ; b

l

).

To extend Æ toG

s

, write x 2 G

s

as the solution to the redued equation �x = 

1

b

1

+� � �+

l

b

l

and de�ne Æ(x) to be the solution to

�z = 

1

Æ(b

1

) + � � �+ 

j

Æ(b

j

) + 

j+1

b

j+1

+ � � �+ 

l

b

l

:

The veri�ation that this equation has a solution and that + and < are preserved under Æ

is essentially the same as in Lemma 3.7. Therefore, we restrit ourselves to showing that

< is preserved. By possibly inreasing k and renumbering indies, we an assume that

b

k+1

; : : : ; b

l

� g

m

. Suppose u; v 2 G

s

satisfy the redued equations �u = �

1

b

1

+ � � �+�

l

b

l

and

�v = �

1

b

1

+� � �+�

l

b

l

. If u < v, then ��u < ��v, and so �(�

1

b

1

+� � �+�

l

b

l

) < �(�

1

b

1

+� � �+�

l

b

l

).

We now split into ases. Let x = �(�

k+1

b

k+1

+ � � �+�

l

b

l

) and y = �(�

k+1

b

k+1

+ � � �+�

l

b

l

).

Notie that Æ does not move x or y and also, sine our basis is nonshrinking, that g

m

� x; y.

Therefore, if x < y, then ��Æ(u) < ��Æ(v) sine the parts of the sums for Æ(u) and Æ(v)

whih are distint from x and y generate elements whih are / g

m

. Similarly, if y < x, then

��u > ��v, whih is a ontradition. If x = y, then to determine whih of ��Æ(u) and ��Æ(v)

is larger, we examine ��Æ(u)� x and ��Æ(v)� y. In this ase, we are bak within the realm

of Lemma 3.7 and the argument there applies.

It remains to hek that Æ(x) = x for all x 2 Span(P ) \ G

s

. Let x 2 Span(P ). Beause

Span(P

0

) [ G

0

= ;. We an assume without loss of generality that the elements of P

0

are

among the basis elements b

j+1

; : : : ; b

l

. Therefore, x an be written in the form

�x = 

j+1

b

j+1

+ � � �+ 

l

b

l

sine the other basis elements are not needed to generate x. The de�nition of Æ shows that

Æ(x) = x as required.

4 Proof of Theorem 1.10

This setion is devoted to a proof of Theorem 1.10. Fix a omputable ordered abelian group

G whih has in�nitely many Arhimedean lasses. By Theorem 1.9, it suÆes to build a

omputable ordered abelian group H with a �

0

2

isomorphism f : H ! G, and to meet the

requirements

R

e

: '

e

: G! H is not an isomorphism:

In this ontext, an isomorphism must preserve order as well as addition.

We use ! for the elements of H. At stage s of the onstrution, we have a �nite initial

segment of !, denoted H

s

, and a map f

s

: H

s

! G, with range G

s

. We de�ne the operations

on H by x+ y = z if and only if there is an s suh that f

s

(x)+ f

s

(y) = f

s

(z) and x � y if and

only if there is an s suh that f

s

(x) � f

s

(y). To insure that these operations are well de�ned
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and omputable, we require that for all s

f

s

(x) + f

s

(y) = f

s

(z)) 8t � s (f

t

(x) + f

t

(y) = f

t

(z))

and f

s

(x) � f

s

(y)) 8t � s (f

t

(x) � f

t

(y)):

We let f = lim

s

f

s

. To insure that f is well de�ned and �

0

2

, we also meet the requirements

S

e

: lim

s

f

s

(e) exists:

The priority on these requirements is R

0

< S

0

< R

1

< S

1

< � � � .

The strategy for S

e

is to make f

s+1

(e) = f

s

(e). The strategy for R

e

is to pik witnesses

w

e;0

and w

e;1

from G

s

whih urrently look like w

e;0

6� w

e;1

. R

e

then waits for '

e

(w

e;0

) # and

'

e

(w

e;1

) #. If it looks like '

e

(w

e;0

) 6� '

e

(w

e;1

) (whih we measure by looking at the elements

f

s

('

e

(w

e;0

)) and f

s

('

e

(w

e;1

))), then we apply Lemma 3.8 to hange the map f

s

to a map

f

s+1

whih fores f

s+1

('

e

(w

e;0

)) � f

s+1

('

e

(w

e;1

)). This ation may move the images of all

the elements in H

s

whih are between the Arhimedean lasses for '

e

(w

e;0

) and '

e

(w

e;1

). R

e

then wants to restrit any other R

i

requirement from hanging f

t

('

e

(w

e;0

)) or f

t

('

e

(w

e;1

)) at

a later stage.

There are some obvious onits between the requirements. R

e

needs to hange the images

of ertain elements, but it doesn't know whih elements until the witnesses w

e;i

stabilize and

the funtions '

e

(w

e;i

) onverge. Both R

e

and S

e

want to restrain other requirements from

moving partiular elements. To see how to resolve these onits onsider R

0

; S

0

, and R

1

. R

0

an at whenever it wants to, and one R

0

has ated, S

0

is an prevent f

s

(0) from hanging

ever again. R

1

annot hange f

s

(0), f

s

('

0

(w

0;0

)), or f

s

('

0

(w

0;1

)). The span of these three

elements, however, an interset at most three Arhimedean lasses. Therefore, we give R

1

8 witnesses, w

1;i

for i � 7. If '

1

(w

1;i

) # for all i � 7, and f

s

('

1

(w

1;i

)) 6� f

s

('

1

(w

1;j

)) for

i 6= j, then by the Pigeonhole Priniple there must be two witnesses w

1;i

and w

1;j

for whih

f

s

('

1

(w

1;i

))� f

s

('

1

(w

1;j

)) and

Span(f

s

(0); f

s

('

0

(w

0;0

)); f

s

('

0

(w

0;1

))) \ fg 2 G

s

jf

s

('

1

(w

1;i

) / g / f

s

('

1

(w

1;j

))g = ;:

Thus, by Lemma 3.8, there is a way to protet 0; f

s

('

0

(w

0;0

)), and f

s

('

0

(w

0;1

)) while foring

f

s+1

('

1

(w

1;i

)) � f

s+1

('

1

(w

1;j

)).

In general, we de�ne a funtion �(e) and let R

e

have �(e) many witnesses. Let �(0) = 2

and �(e + 1) = 2(e + 1 +

P

i�e

�(i)) + 2. There are e + 1 S

i

requirements (eah with one

number to protet) of higher priority than R

e+1

, and eah R

i

with i � e has �(i) witnesses to

protet. Therefore, there are e + 1 +

P

i�e

�(i) many numbers proteted by requirements of

higher priority than R

e+1

and the span of these numbers intersets at most e+ 1+

P

i�e

�(i)

many Arhimedean lasses. �(e) is de�ned to be the smallest number of witnesses that will

guarantee R

e+1

has some pair that an be ollapsed to the same Arhimedean lass without

moving the elements proteted by the higher priority requirements.

De�nition 4.1. Let F � G be a �nite set. For x; y 2 F , we de�ne

x �

s

y , 9u; v � s (u; v > 0 ^ ujxj � jyj ^ vjyj � jxj):

If x 6�

s

y and jxj � jyj, then x�

s

y.
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The following lemma follows immediately from this de�nition.

Lemma 4.2. For all x; y 2 G, x � y , 9s(x �

s

y), x �

s

y ) 8t � s (x �

t

y), and

x� y , 8s(x�

s

y).

Constrution

Stage 0: Let H

0

= f0g, G

0

= f0

G

g, and f

0

(0) = 0

G

.

Stage s+ 1: The �rst step is to de�ne what appear to be the !-least representatives for the

Arhimedean lasses. De�ne a

s

i

2 G

s

by indution on i until every x 2 G

s

, x 6= 0

G

, satis�es

x �

s

a

s

i

for some a

s

i

. Let a

s

0

be the !-least stritly positive element in G

s

. Let a

s

i+1

be the

!-least element of G

s

suh that a

s

i+1

6�

s

a

s

j

for all j � i. Let A

s

be the set of the a

s

i

.

The seond step is to assign witnesses to the R

e

requirements by indution on e. We

ontinue to assign witnesses until the elements of A

s

are all taken. By indution on e we

assign R

e

�(e) many witnesses, w

s

e;i

for i < �(e), whih are hosen from A

s

in inreasing

!-order and whih are removed from A

s

one they are hosen. For eah R

e

whih has a full

set of witnesses, R

e

is ative if either R

e

did not have a full set of witnesses at the previous

stage, or one of R

e

's witnesses has hanged, or R

e

has the same witnesses and was ative at

the end of the previous stage. Otherwise, R

e

is not ative.

We say that R

e

needs attention if R

e

is ative, '

e;s

(w

s

e;i

) # for all i < �(e), and

f

s

('

e;s

(w

s

e;i

)) 6�

s

f

s

('

e;s

(w

s

e;j

)) for all i 6= j. Consider the least e suh that R

e

needs at-

tention. (If no R

e

needs attention, then proeed as if the searh proedure below ended

beause of option (1).) Run the following two searh proedures onurrently.

1. Searh for some i 6= j for whih f

s

('

e;s

(w

s

e;i

)) � f

s

('

e;s

(w

s

e;j

)).

2. Searh for some i 6= j and a map Æ : G

s

! G suh that

(a) Æ(x) = x for all x = f

s

(k) with k < e and all x = f

s

('

k;s

(w

s

k;l

)) with k < e,

l < �(k), and '

k;s

(w

s

k;l

) #.

(b) For all x; y; z 2 G

s

, x + y = z implies Æ(x) + Æ(y) = Æ(z), and x < y implies

Æ(x) < Æ(y).

() Æ(f

s

('

e;s

(w

s

e;i

))) � Æ(f

s

('

e;s

(w

s

e;j

))).

At least one of these searh proedures must terminate (see the veri�ation below).

If the searh in (1) terminates �rst, then let n

G

be the !-least element of G � G

s

and

let n

H

be the !-least number not in H

s

. De�ne G

s+1

= G

s

[ fn

G

g, H

s+1

= H

s

[ fn

H

g,

f

s+1

(x) = f

s

(x) for all x 2 H

s

, and f

s+1

(n

H

) = n

G

.

If the searh in (2) terminates �rst, then let fg

1

; : : : ; g

m

g = G

s

� range(Æ), let n

G

be the

!-least element in G� (G

s

[ range(Æ)), and let r

1

; : : : ; r

m+1

be the m+1 !-least numbers not

in H

s

. De�ne H

s+1

= H

s

[ fr

1

; : : : ; r

m+1

g, G

s+1

= G

s

[ range(Æ) [ fn

G

g, f

s+1

(x) = Æ(x) for

all x 2 H

s

, f

s+1

(r

i

) = g

i

for i � m, and f

s+1

(r

m+1

) = n

G

. Delare R

e

to be not ative, and

for all R

i

with i > e, if R

i

is not ative, delare it to be ative. We say that R

e

ated at stage

s + 1.

End of onstrution
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Lemma 4.3. The following properties hold of this onstrution.

1.

S

s

G

s

= G.

2. For all s and all x; y; z 2 H

s

, if f

s

(x) + f

s

(y) = f

s

(z), then f

s+1

(x) + f

s+1

(y) = f

s+1

(z),

and if f

s

(x) < f

s

(y), then f

s+1

(x) < f

s+1

(y).

3. If g

1

; : : : ; g

s

are the !-least elements of G, then fg

1

; : : : ; g

s

g � G

s+1

.

Lemma 4.4. For eah i, lim

s

a

s

i

= a

i

exists and for all i 6= j, a

i

6� a

j

.

Proof. Let s be suh that there are i+1 distint Arhimedean lasses represented among the

�rst s (in terms of N) elements of G. These elements are all in G

s+1

, and so a

s

0

; : : : ; a

s

i

are

all permanently de�ned and have reahed limits at stage s + 1. To see that a

i

6� a

j

, suppose

a

i

� a

j

and i < j. Then, there is an s suh that a

i

�

s

a

j

and so 8t � s (a

i

�

t

a

j

). Without

loss of generality, a

s

i

= a

i

has already reahed its limit. Therefore, for every t � s, a

t

j

6= a

j

,

whih is a ontradition.

Lemma 4.5. For eah e 2 ! and i < �(e), lim

s

w

s

e;i

= w

e;i

exists, and for all he; ii 6= he

0

; i

0

i,

w

e;i

6� w

e

0

;i

0

.

Proof. Immediate from Lemma 4.4.

Lemma 4.6. One of the two onurrent searh proedures must terminate.

Proof. Assume that the searh in (1) never terminates. Then, f

s

('

e

(w

s

e;i

)) 6� f

s

('

e

(w

s

e;j

))

for i 6= j. Let P be the set onsisting of f

s

(k) for k < e and all f

s

('

k;s

(w

s

k;l

)) for k < e,

l < �(k), and for whih '

k;s

(w

s

k;l

) #. Notie that Span(P ) intersets at most e+1+

P

k<e

�(k)

many Arhimedean lasses. Therefore, by the Pigeonhole Priniple, there must be i 6= j

suh that f

s

('

e

(w

s

e;i

)) � f

s

('

e

(w

s

e;i

)) and for all x 2 Span(P ), either x � f

s

('

e

(w

s

e;i

)) or

f

s

('

e

(w

s

e;j

))� x. Let C = fg 2 G

s

jf

s

('

e

(w

s

e;i

)) / g / f

s

('

e

(w

s

e;j

))g and apply Lemma 3.8 to

see the existene of a map Æ with the required properties.

Lemma 4.7. Eah R

e

requirement ats at most �nitely often and is eventually satis�ed.

Proof. The proof proeeds by indution on e. Let s be a stage suh that all R

i

with i < e

have eased to at and w

t

e;i

= w

e;i

for all t � s and i < �(e). The lemma is trivial if '

e

(w

e;i

) "

for some i. Therefore, assume '

e;s

(w

e;i

) # for all i. Suppose f

s

('

e

(w

e;i

)) �

s

f

s

('

e

(w

e;j

)) for

some i 6= j. Then, sine R

e

does not at, sine no requirement of higher priority ats and

sine no requirement of lower priority an hange either f

s

('

e

(w

e;i

)) or f

s

('

e

(w

e;j

)), we have

that for all t � s, f

t

('

e

(w

e;i

)) = f

s

('

e

(w

e;i

)) and f

t

('

e

(w

e;j

)) = f

s

('

e

(w

e;j

)). Therefore,

f('

e

(w

e;i

)) = f

s

('

e

(w

e;i

)), and f('

e

(w

e;j

)) = f

s

('

e

(w

e;j

)). It follows that '

e

(w

e;i

) � '

e

(w

e;j

)

in H, but w

e;i

6� w

e;j

in G, so R

e

is satis�ed.

If f

s

('

e

(w

e;i

)) 6�

s

f

s

('

e

(w

e;j

)) for all i 6= j, then R

e

ats at stage s+1. Either R

e

disovers

that f

s

('

e

(w

e;i

)) � f

s

('

e

(w

e;j

)) for some i 6= j, in whih ase R

e

does not at and is satis�ed

as above, or else R

e

�nds an appropriate Æ. In that ase, f

s+1

('

e

(w

e;i

)) � f

s+1

('

e

(w

e;j

)) and

R

e

is delared not ative. Sine no requirement of higher priority ever ats again and no

witness w

e;i

hanges again, we have that R

e

never ats again. Therefore, R

e

is satis�ed as

above.
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Lemma 4.8. Eah S

e

requirement is satis�ed.

Proof. Let s be a stage suh that all requirements R

i

with i � e have stopped ating. No

requirement is allowed to hange f

s

(e) after this stage, and hene S

e

is satis�ed.

5 E�etive H�older's Theorem

In this setion, we turn to the e�etive algebra we need to prove Theorems 1.11 and 1.3. In

Setions 5, 6, and 7, G denotes a omputable Arhimedean ordered group with in�nite rank.

H�older's Theorem haraterizes the Arhimedean ordered groups.

H�older's Theorem. If G is an Arhimedean ordered group, then G is isomorphi to a sub-

group of the naturally ordered additive group R.

Notie that H�older's Theorem implies that every Arhimedean ordered group is abelian.

It is possible to give an e�etive proof of H�older's Theorem (see [18℄ for the details of suh a

proof). To desribe the e�etive version of H�older's Theorem formally, we need the following

de�nitions. The �rst de�nition says that a omputable real number is one whih has a

omputable dyadi expansion.

De�nition 5.1. A omputable real is a omputable sequene of rationals x = hq

k

jk 2 Ni

suh that 8k8i ( jq

k

� q

k+i

j � 2

�k

). Let y = hq

0

k

jk 2 Ni be another real. We say x = y if

jq

k

� q

0

k

j � 2

�k+1

for all k. Similarly, x < y if there is a k suh that q

k

+ 2

�k+1

< q

0

k

. (Notie

that the latter ondition is �

0

1

.)

The next de�nition formalizes the notion of a omputable ordered subgroup of the reals.

Sine reals are seond order objets (that is, they are in�nite sequenes of rationals), we

speify a omputable subgroup by uniformly oding a ountable sequene of reals suh that

we an ompute the sum and the order relation of two reals in the sequene e�etively in the

indies of these elements.

De�nition 5.2. A omputable ordered subgroup of R (indexed by a omputable set

X) is a omputable sequene of omputable reals A = hr

n

jn 2 Xi together with a partial

omputable funtion +

A

: X �X ! X, a partial omputable binary relation �

A

on X, and

a distinguished number i 2 X suh that

1. r

i

= 0

R

.

2. n +

A

m = p if and only if r

n

+

R

r

m

= r

p

.

3. n �

A

m if and only if r

n

�

R

r

m

.

4. (X;+

A

;�

A

) satis�es the ordered group axioms with i as the identity element.

E�etive H�older's Theorem. If G is a omputable Arhimedean ordered abelian group,

then G is isomorphi to a omputable ordered subgroup of R, indexed by G, for whih +

A

and

�

A

are exatly +

G

and �

G

.
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To prove this version of H�older's Theorem, one builds a uniform sequene of omputable

reals r

g

, for g 2 G, suh that r

g

+

R

r

h

= r

g+h

and r

g

�

R

r

h

if and only if g �

G

h. We will use

this orrespondene to give us a measure of distane in G. Notie that while the omputable

ordered subgroup of the reals here is not a omputable group in the ordinary sense (sine

the elements are seond order objets), there still is a sense in whih the isomorphism is

omputable. For eah g 2 G, we an uniformly ompute the orresponding real r

g

. Therefore,

we an think of the isomorphism as e�etively giving us an index for the Turing mahine

omputing the dyadi expansion of the orresponding real in suh a way that both the addition

funtion and the order relation are e�etive in these indies.

The proof of Proposition 5.3 an be found in [11℄.

Proposition 5.3. If rank(G) > 1 and G is Arhimedean, then G is dense in the sense that

for every g < h, there is an x suh that g < x < h.

If fa; bg is independent, then the element x from Proposition 5.3 an be taken to be a

linear ombination 

1

a + 

2

b in whih both 

1

and 

2

are nonzero.

Proposition 5.4. Let G be a subgroup of (R;+) with rank � 2. For every r 2 R with r > 0,

there is an h 2 G with h 2 (0; r). Notie, r 2 R, but it need not be in G.

Proof. Let g 2 G be suh that g > 0. By Proposition 5.3, there is an x 2 G suh that

0 < x < g, and hene, either x 2 (0; g=2) or g � x 2 (0; g=2). Thus, there is an h 2 G suh

that h 2 (0; g=2). Repeat this argument to get elements in (0; g=4), (0; g=8), and so on, until

an element appears in (0; r).

Proposition 5.5. Let G be a subgroup of (R;+) with rank � 2. For every r

1

�

R

r

2

, there is

an h 2 G with h 2 (r

1

; r

2

). Notie, r

1

; r

2

2 R, but they need not be in G.

Proof. Let d = r

2

� r

1

and let g 2 G be suh that g 2 (0; d). Then, sine R is Arhimedean

ordered, there is an m 2 N suh that r

1

< mg < r

2

. Setting h = mg proves the theorem.

If fa; bg is independent, then by the omments following Proposition 5.3, we an assume

that the h in Proposition 5.4 and 5.5 has the form h = 

1

a + 

2

b with 

1

; 

2

6= 0.

Proposition 5.6. Let G be a subgroup of (R;+) with in�nite rank, B = fb

0

; : : : ; b

m

g � G

be a linearly independent set, X = fx

0

; : : : ; x

n

g � G be any set of nonidentity elements, and

d 2 R with d > 0. Then there are elements a

i

2 G, for 0 � i � n, suh that fb

0

; : : : ; b

m

; (x

0

+

a

0

); : : : ; (x

n

+ a

n

)g is linearly independent and for eah i, ja

i

j < d. Furthermore, we an

require that for any �xed p 2 N, p 6= 0, eah a

i

is divisible by p in G.

Proof. It is enough to onsider a single element x

0

2 G, and proeed by indution. If x

0

is independent from B, then let a

0

= 0

G

. Otherwise, let b 2 G be suh that fb

0

; : : : ; b

m

; bg

is linearly independent. By Proposition 5.4, there are oeÆients 

1

; 

2

2 Z (whih we an

assume are both nonzero) suh that 

1

b + 

2

b

0

2 (0; d=p). Let a

0

= 

1

pb + 

2

pb

0

. Clearly, a

0

is divisible by p in G, ja

0

j < d, and fb

0

; : : : ; b

m

; (x

0

+ a

0

)g is linearly independent (sine we

assumed that 

1

6= 0).
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To prove Theorem 1.11, it suÆes, by Theorem 1.9, to build a omputable ordered group

H whih is �

0

2

isomorphi but not omputably isomorphi to G. We build H in stages so

that at eah stage we have a �nite set H

s

and a map f

s

: H

s

! G with range G

s

. Assuming

that lim

s

f

s

(x) onverges for eah x, the Limit Lemma shows that f = lim

s

f

s

is �

0

2

. During

the onstrution, we meet the requirements

R

e

: '

e

: H ! G is not an isomorphism:

Notie that we are treating '

e

as a map from H to G.

We de�ne +

H

and �

H

as before: a+

H

b =  if and only if 9s (f

s

(a) +

G

f

s

(b) = f

s

()), and

a <

H

b if and only if 9s (f

s

(a) �

G

f

s

(b)). To insure that these operations are well-de�ned and

omputable, we guarantee that

f

s

(a) + f

s

(b) = f

s

() ) 8t � s (f

t

(a) + f

t

(b) = f

t

()) (3)

and f

s

(a) �

G

f

s

(b) ) 8t � s (f

t

(a) �

G

f

t

(b)): (4)

To defeat a single requirement R

e

, our strategy is to guess a basis for G. The inverse

image under f of suh a basis will be a basis for H. The strategy for R

e

proeeds as follows.

1. Pik two elements a

s

e

and b

s

e

from our guess at the basis for H. We will settle on

longer and longer initial segments of a basis, so eventually, R

e

will hoose two linearly

independent elements. Without loss of generality, we assume a

s

e

<

H

b

s

e

.

2. Do nothing until a stage t � s ours for whih '

e;t

(a

t

e

) #, '

e;t

(b

t

e

) #, and '

e

(a

t

e

) <

G

'

e

(b

t

e

). If these alulations do not appear, then '

e

is not an isomorphism from H to

G, so R

e

is satis�ed.

3. De�ne f

t+1

(b

e

) 6= f

t

(b

e

) suh that for some large n;m 2 N , we have n'

e

(a

t

e

) <

G

m'

e

(b

t

e

)

and mf

t+1

(b

t

e

) <

G

nf

t+1

(a

t

e

). In this ase, we have also satis�ed R

e

. The algebra behind

the de�nition of f

t+1

is disussed in Setion 6.

The general idea for Step 3 is to �x an e�etive map  : G! R, whih we use to measure

distanes in G. We want to move the image of b

t

e

just enough to make the diagonalization

possible, but not so far as to upset the order or addition relations de�ned to far. Propositions

5.4 and 5.6 will allow us to diagonalize as long as f

s

(a

t

e

) and f

s

(b

t

e

) really are independent.

Therefore, we initiate a searh proess for an appropriate new image of b

t

e

, whih, to keep

the requirements R

e

and R

i

from interfering with eah other, we require to be in the span

of f

s

(a

t

e

) and f

s

(b

t

e

). Either we �nd an appropriate image, or we �nd a dependene relation

between a

t

e

and b

t

e

. In the latter ase, we know that the witnesses for R

e

are bound to hange.

The injury in this onstrution is �nite. One the higher priority requirements have eased

to at, R

e

an use the next two linearly independent elements to diagonalize.

6 Algebra for Theorems 1.11 and 1.3

From the desription in the previous setion, it should be lear that when we hange the

image of a basis element b

t

e

, we need to make sure that we preserve both the addition and
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ordering fats spei�ed so far in H. To preserve the addition fats, we use the notion of an

approximate basis for a �nite subset G

0

of G.

Before giving the formal de�nition of an approximate basis, we give some motivation

for the onditions whih our in the de�nition. Suppose G

0

is a �nite subset of G and

B = fb

0

; : : : ; b

k

g is an independent set whih spans G

0

. Then, eah g 2 G

0

satis�es a unique

redued relation of the form �y = 

0

b

0

+ � � � + 

k

b

k

. Furthermore, if g, h, and g + h 2 G

0

,

then the redued relation satis�ed by g + h an be found by adding the relations for g

and h, and dividing by the greatest ommon divisor of the nonzero oeÆients. That is, if

�g = 

0

b

0

+ � � � + 

k

b

k

and �h = d

0

b

0

+ � � �d

k

b

k

, then g + h is the solution to the redued

version of

��y = (�

0

+ �d

0

)b

0

+ � � �+ (�

k

+ �d

k

)b

k

:

At eah stage of the onstrution, we will guess at an independent subset of G, and our

guess at eah stage will be an approximate basis. We want our guesses to have these two

properties of an atual independent set. Therefore, assume that G

0

is the �nite subset of G

whih is the range of the partial isomorphism f

s

we have de�ned at stage s.

To imitate the �rst property, we want our approximate basis X

s

= fx

s

0

; : : : ; x

s

k

g at stage

s to be t-independent, where t is large enough that eah element g 2 G

0

is the solution to a

unique redued dependene relation of the form

�y = 

0

x

s

0

+ 

1

x

s

1

+ � � �+ 

k

x

s

k

;

where eah oeÆient has absolute value � t. Notie that if g is the solution to more than one

relation of this form, then we know X

s

is not independent. Sine there is some independent

set whih spans G

0

, there must be a set whih is t

0

-independent (for some t

0

) and whih does

have this uniqueness property.

As new elements enter H during the onstrution, they will be assigned redued de-

pendene relations. If h enters H at stage s and is assigned the redued relation �y =



0

x

0

+ � � � + 

k

x

k

, then for every stage t � s, we will de�ne f

t

(h) to be the unique solution

to �y = 

0

x

t

0

+ � � � 

k

x

t

k

(where x

t

0

; : : : ; x

t

k

is an initial segment of our approximate basis at

stage t). Therefore, the seond property we want X

s

to have is that if g, h, and g + h are all

in G

0

, then the dependene relation for g + h relative to the approximate basis is the sum of

the dependene relations for g and h, as desribed above. This property will guarantee that

Equation (3) holds. The key point is that if g + h satis�es some other redued dependene

relation, then, as above, we know that X

s

is not independent, and therefore, there must be

another set with the required properties.

By the omments above, if X

s

is independent and spans G

0

, then it will have both of

these properties. It follows that every �nite G

0

has an approximate basis and that during

the onstrution we an add additional requirements on the level of independene of an

approximate basis, suh as requiring that it be at least s-independent at stage s.

De�nition 6.1. Let G

0

be a �nite subset of G. An approximate basis for G

0

with weight

t > 0 is a �nite sequene X = hx

0

; : : : ; x

k

i suh that

1. fx

0

; : : : ; x

k

g is t-independent,
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2. every g 2 G

0

[ X satis�es a unique redued dependene relation of the form �y =



0

x

0

+ � � � 

k

x

k

with 0 < � � t and j

i

j � t, and

3. for every g; h 2 G

0

[X with g + h 2 G

0

[X, if g and h satisfy the redued dependene

relations �g = 

0

x

0

+ � � �+ 

k

x

k

and �h = d

0

x

0

+ � � �+ d

k

x

k

with �, �, j

i

j, and jd

i

j � t,

then the redued oeÆients in

��(g + h) = (�

0

+ �d

0

)x

0

+ � � �+ (�

k

+ �d

k

)x

k

have absolute value less that t.

We use sequenes to represent approximate bases to emphasize the fat that their elements

are ordered. We will abuse notation, however, and simply treat them as sets, with the

understanding that the set fx

0

; : : : ; x

k

g is really the ordered sequene hx

0

; : : : ; x

k

i. Also,

whenever we refer to g 2 G

0

satisfying a redued equation of an approximate basis of weight

t, we assume that the absolute value of all the oeÆients is bounded by t.

Returning to the desription of the onstrution, at stage s we have an approximate basis

X

s

= fx

s

0

; : : : ; x

s

k

s

g for G

s

whih is t

s

-independent. Eah h whih enters H at stage s is

assigned a redued dependene relation �y = 

0

x

0

+ � � �+ 

k

s

x

k

s

with �; j

i

j � t

s

. For every

t � s, we de�ne f

t

(h) so that

�f

t

(h) = 

0

x

t

0

+ � � �+ 

k

s

x

t

k

s

:

The properties of an approximate basis guarantee that Equation (3) holds.

However, it is not lear that Equation (4) will hold or that the relation �y = 

0

x

t

0

+ � � �+



k

s

x

t

k

s

will have a solution unless we do something to insure that our hoies for approximate

bases at stages s and t � s �t together in a nie way. Therefore, we introdue the notion of

oherene between approximate bases.

De�nition 6.2. Let G

0

� G

1

be �nite subsets of G, with approximate bases X

0

=

fx

0

0

; : : : ; x

0

k

0

g of weight t

0

and X

1

= fx

1

0

; : : : ; x

1

k

1

g with weight t

1

, respetively. We say that

X

1

oheres with X

0

if the following onditions are met.

1. k

0

� k

1

and t

0

� t

1

.

2. For eah i � k

0

, if fx

0

0

; : : : ; x

0

i

g is linearly independent, then x

1

j

= x

0

j

for every j � i.

3. If g 2 G

0

satis�es the redued equation �y = 

0

x

0

0

+ � � �+ 

k

0

x

0

k

0

, then there is a solution

to �y = 

0

x

1

0

+ � � �+ 

k

0

x

1

k

0

in G.

4. If g <

G

h 2 G

0

satisfy the redued sums �y = 

0

x

0

0

+ � � � + 

k

0

x

0

k

0

and �z = d

0

x

0

0

+

� � � + d

k

0

x

0

k

0

, respetively, then the solutions g

0

; h

0

2 G, respetively, to the equations

�y = 

0

x

1

0

+ � � �+ 

k

0

x

1

k

0

and �z = d

0

x

1

0

+ � � �+ d

k

0

x

1

k

0

satisfy g

0

<

G

h

0

.

Lemma 6.3. Let G

0

� G

1

be �nite subsets of G, and let X

0

be an approximate basis for G

0

.

There exists an approximate basis X

1

for G

1

whih oheres with X

0

.
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Proof. Sine we are not yet worried about e�etiveness issues, we an assume by H�older's

Theorem that G � R. If X

0

is linearly independent, then we an extend it to a set X

1

whih

is linearly independent and spans G

1

. Suh a set X

1

satis�es the onditions in De�nition 6.2.

Therefore, assume that X

0

is not linearly independent and that i < k

0

is suh that

fx

0

0

; : : : ; x

0

i

g is linearly independent, but fx

0

0

; : : : ; x

0

i+1

g is not. Let d

0

be the minimum distane

between any pair g 6= h 2 G

0

, and let d = d

0

=(3t

0

k

0

).

Apply Proposition 5.6 with B = fx

0

0

; : : : ; x

0

i

g, X = fx

0

i+1

; : : : ; x

0

k

0

g, d as above, and

p = t

0

!. We obtain a

i+1

; : : : ; a

k

0

suh that fx

0

0

; : : : ; x

0

i

; (a

i+1

+x

0

i+1

); : : : ; (a

k

0

+x

0

k

0

)g is linearly

independent, and, for eah j with i + 1 � j � k

0

, t

0

! divides a

j

and ja

j

j < d.

For 0 � j � i, set x

1

j

= x

0

j

, and for i+1 � j � k

0

, set x

1

j

= a

j

+x

0

j

. Sine Y = fx

1

0

; : : : ; x

1

k

0

g

is linearly independent, we let X

1

be a �nite linearly independent set that extends Y and that

spans G

1

. Clearly, X

1

is an approximate basis for G

1

and satis�es Conditions 1 and 2 of

De�nition 6.2.

To see that X

1

satis�es Condition 3, �x an arbitrary g 2 G

0

, and suppose �g = 

0

x

0

0

+

� � �+ 

k

0

x

0

k

0

is a redued dependene relation with �; j

i

j � t

0

. Then,

�y = 

0

x

1

0

+ � � �+ 

k

0

x

1

k

0

= (

0

x

0

0

+ � � �+ 

k

0

x

0

k

0

) + (

i+1

a

i+1

+ � � �+ 

k

0

a

k

0

):

Sine � � t

0

and t

0

! divides eah of the a

j

in G, the equation �y = 

0

x

1

0

+ � � �+ 

k

0

x

1

k

0

has a

solution g

0

2 G.

To see that X

1

satis�es Condition 4, we onsider the distane between the solutions g 2 G

0

and g

0

2 G

1

to the dependene relation above. Sine eah j

j

j � t

0

, ja

j

j < d, and there are at

most k

0

of the a

j

's, we have

j�g � �g

0

j � j

i+1

a

i+1

+ � � �+ 

k

a

k

j � k

0

t

0

d � d

0

=3:

Furthermore, sine � > 0 2 N , jg � g

0

j � j�g � �g

0

j � d

0

=3. Suppose h 2 G

0

with h 6= g

satis�es �h = d

0

x

0

0

+ � � � + d

k

0

x

0

k

0

and h

0

2 G

1

is the solution to �y = d

0

x

1

0

+ � � � + d

k

0

x

1

k

0

.

An idential argument shows that jh � h

0

j � d

0

=3. Combining the fats that jg � hj � d

0

,

jg � g

0

j � d

0

=3, and jh� h

0

j � d

0

=3, it is lear that g <

G

h implies g

0

<

G

h

0

.

It remains to �x an e�etive method for �nding bases whih ohere. The algorithm below

is not the most obvious one, but it has properties whih will be important in our proof.

Suppose G

0

� G

1

are �nite subsets of G. Let X

0

= fx

0

; x

1

; � � � ; x

k

0

g be an approximate

basis for G

0

whih is t

0

-independent. We �nd an approximate basis X

1

for G

1

whih oheres

with X

0

in three phases.

In the �rst phase, we guess (until we �nd evidene to the ontrary) that X

0

is linearly

independent. We perform the following two tasks onurrently.

1. Searh for a dependene relation among the elements of X

0

.

2. Searh for a Y suh that X

0

[ Y is an approximate basis for G

1

whih oheres with X

0

as follows. Begin with n = t

0

+ 1 and i = 0.

(a) Let y

i

be the N-least element of G suh that X [ fy

0

; : : : ; y

i

g is n-independent.

Chek if this set spans G

1

using oeÆients with absolute value � n. If so, then

proeed to (b), and if not, repeat (a) with i set to i + 1.
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(b) Chek if X

0

[fy

0

; : : : ; y

i

g satis�es Condition 3 from De�nition 6.1. If it does, then

it oheres with X

0

and we end the algorithm. If it is not an approximate basis,

then return to (a) with n set to n+ 1 and i = 0.

This phase will terminate, sine if X

0

is linearly independent, then, at worst, we re-

peat (a) and (b) until we pik elements y

0

<

N

� � � <

N

y

i

whih are the N-least suh that

fx

0

; : : : ; x

k

0

; y

0

; : : : ; y

i

g is a linearly independent and spans G

1

. This set oheres with X

0

. If

this phase ends beause we �nd an approximate basis in Step 2, then the algorithm termi-

nates. However, if this phase ends beause we �nd a dependene relation in Step 1, then we

proeed to the seond phase with the knowledge that X

0

is not linearly independent.

For the seond phase, assume that we know fx

0

; : : : ; x

i+1

g is n-dependent, but fx

0

; : : : ; x

i

g

is n-independent. We searh for elements y

i+1

through y

k

0

from whih to onstrut elements

whih play the role of the a

j

's in the proof of Lemma 6.3. Before starting this phase, �x

a omputable embedding  : G ! R, let d

0

be any positive real less than the minimum of

j (g � h)j, where g 6= h range over G

0

, and set d = d

0

=3k

0

t

0

.

1. For i + 1 � j � k

0

, pik y

j

2 G to be the N-least suh that fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is

n-independent.

2. Chek the following �

0

1

onditions onurrently.

(a) Searh for a dependene relation among fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

k

0

g. If we disover

that fx

0

; : : : ; x

j+1

g is dependent, then restart Phase 2 with fx

0

; : : : ; x

j

g. If we

disover that fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is dependent for some j, then we return to

Step 1 of this phase, set n to be large, and repik y

i+1

through y

k

0

.

(b) For eah i + 1 � j � k

0

, searh for oeÆients b

j

; d

j

6= 0 suh that, for a

i+1

=

b

i+1

t

0

!x

i

+ d

i+1

t

0

!y

i+1

and a

j

= b

j

t

0

!y

j�1

+ d

j

t

0

!y

j

(for j > i + 1), we have  (a

j

) 2

(0; d). If we �nd suh a

j

, then end Phase 2.

Determining if  (a

j

) 2 (0; d) is a �

0

1

fat, so by dove-tailing our omputations, we an

e�etively perform the searh in (b). This phase will terminate, sine one fx

0

; : : : ; x

i

g has

shrunk to a linearly independent set (by �nitely many disoveries of dependene relations

in (a)), we know that there are linearly independent y

j

's and oeÆients b

j

; d

j

, with the

required properties. By ontinually hoosing the N-least elements whih look independent,

we eventually �nd suh elements.

We verify two properties of X

0

= fx

0

; : : : ; x

i

; x

i+1

+a

i+1

; : : : ; x

k

0

+a

k

0

g. First, as in Lemma

6.3, if �y = 

0

x

0

+ � � �+ 

k

0

x

k

0

, with �; j

i

j � t

0

, has a solution g 2 G

0

, then

�y = 

0

x

0

+ � � �+ 

i

x

i

+ 

i+1

(x

i+1

+ a

i+1

) + � � �+ 

k

0

(x

k

0

+ a

k

0

)

has a solution in g

0

2 G. Seond, j (g)�  (g

0

)j � d

0

=3, also as in Lemma 6.3. Therefore, if

g < h 2 G

0

and g

0

; h

0

are the solutions to the dependene relations for g and h, respetively,

with x

i+1

; : : : ; x

k

0

replaed by x

i+1

+a

i+1

; : : : ; x

k

0

+a

k

0

, then g

0

< h

0

. Therefore, any extension

of X

0

whih is an approximate basis for G

1

will ohere with X

0

.

To �nd suh an extension, we use a searh similar to Phase 1. Perform the following two

tasks onurrently.
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1. Searh for a dependene relation among the elements of X

0

. If we �nd suh a relation,

then either fx

0

; : : : ; x

i

g is dependent, in whih ase we return to the beginning of Phase

2 with a shorter initial segment of X

0

, or else fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

j

g is dependent for

some j � k

0

. In this ase, we return to Step 1 of Phase 2 with fx

0

; : : : ; x

i

g and repik

y

i+1

through y

k

0

with n hosen to be large.

2. Searh for a Y suh that X

0

[ Y is an approximate basis for G

1

whih oheres with X

0

as follows. Set m to be large and i = 0.

(a) Let w

i

be the N-least element of G suh that X

0

[ fw

0

; : : : ; w

i

g is m-independent.

Chek if this set spans G

1

using oeÆients with absolute value � m. If so, then

proeed to (b), and if not, repeat (a) with i set to i + 1.

(b) Chek if X

0

[ fw

0

; : : : ; w

i

g satis�es Condition 3 from De�nition 6.1. If it does,

then, by the omments above, it oheres with X

0

, and we end the algorithm. If it

is not an approximate basis, then return to (a) with m set to m + 1.

This phase must terminate sine we an return to Phase 2 only �nitely often without

piking a linearly independent set fx

0

; : : : ; x

i

; y

i+1

; : : : ; y

k

0

g. From here, it is lear that we

will eventually pik a spanning set for G

1

with the orret level of independene.

We ould easily have added requirements that the approximate basis X

1

has a spei�ed

higher level of independene or a larger size. We summarize this disussion with the following

lemma.

Lemma 6.4. Let G be a omputable Arhimedean ordered group with in�nite rank, G

0

� G

1

be �nite subsets of G, and X

0

be a t

0

-independent approximate basis for G

0

of size k

0

. For

any m;n with t

0

< m and k

0

< n, we an e�etively �nd an approximate basis X

1

for G

1

whih oheres with X

0

, whih is at least m-independent, and whih has size at least n.

It remains to disuss the diagonalization proess for an R

e

requirement. Reall that R

e

has two witnesses, a

e

and b

e

2 H

s

suh that f

s

(a

e

) and f

s

(b

e

) are elements of our approximate

basis X

s

(of weight t

s

) for G

s

, where G

s

is the image of H

s

under f

s

. Also, we have a �xed map

 : G! R. If we want to diagonalize for R

e

at stage s, then we searh for an element x in the

subgroup generated by t

s

!f

s

(a

e

) and t

s

!f

s

(b

e

) suh that  (x) is suÆiently lose to 0 in R and

x meets the diagonalization strategy disussed at the end of Setion 5. (We will provide the

exat bounds for  (x) and the exat diagonalization properties during the onstrution when

we have established the neessary notation.) If we �nd an appropriate x, then we replae

f

s

(b

e

) in our approximate basis by f

s

(b

e

)�x. As above, the fat that t

s

! divides x allows us to

solve the neessary equations in G to preserve addition and the fat that  (x) is suÆiently

lose to 0 guarantees that the new solutions have the same ordering relations as ones from

G

s

. However, sine we have introdued large multiples of f

s

(a

e

) and f

s

(b

e

), it need not be the

ase that X

0

= (X

s

� ff

s

(b

e

)g) [ ff

s

(b

e

)� xg is still t

s

-independent.

We handle this situation as follows. If we are diagonalizing for R

e

, assume that

X

s

= ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

); f

s

(y

1

); : : : ; f

s

(y

k

)g:
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Every element g 2 G

s

is the solution to a unique redued dependene relation over X

s

with

oeÆients whose absolute value is bounded by t

s

. We want to �nd a new approximate basis

X

0

s

(of weight � t

s

) for some subset G

0

s

of G suh that we have met our diagonalization

requirements and suh that all the equations whih were satis�ed by some g 2 G

s

over X

s

are also satis�ed by some g

0

2 G

0

s

over X

0

s

. Notie that addition is automatially preserved

beause g

1

+ g

2

= g

3

in G

s

if and only if the de�ning equations for g

1

, g

2

, and g

3

satisfy this

additive relationship. Therefore, if g

0

1

, g

0

2

, and g

0

3

are the solutions in G

0

s

to the equations for

g

1

, g

2

, and g

3

over X

0

s

, we must have g

0

1

+ g

0

2

= g

0

3

. Lastly, we want that < is preserved in the

sense that if g < h in G

s

, then g

0

< h

0

holds in G

0

s

.

Therefore, we perform two searhes onurrently. First, we searh for a dependene rela-

tion among ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)g. If we �nd suh a dependene relation, we know

that the witnesses a

e

and b

e

are going to hange, so there is no need to diagonalize at this

point. Seond, we searh for nonzero oeÆients 

1

and 

2

and for elements u

1

; : : : ; u

k

of G

suh that

1.  (

1

t

s

!f

s

(a

e

) + 

2

t

s

!f

s

(b

e

)) is as lose to 0 as we want it to be and meets our diagonal-

ization strategy (and we set x = 

1

t

s

!f

s

(a

e

) + 

2

t

s

!f

s

(b

e

)), and

2. t

s

! divides eah u

i

and  (u

i

) is as lose to 0 as we want it to be, and

3. X

0

s

= ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)�x; f

s

(y

1

)+u

1

; : : : ; f

s

(y

k

)+u

k

g is t

0

s

independent

for some t

0

s

� 2(t

s

)

3

, and

4. for every g 2 G

s

, the equation satis�ed by g over X

s

has a solution g

0

over X

0

s

(and we

let G

0

s

be the set of solutions to these equations), and

5. < is preserved in the sense mentioned above.

Assuming that ff

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

)g is independent, Propositions 5.4 and 5.5 will

tell us that we an �nd an appropriate x and Proposition 5.6 will tell us that we an �nd

appropriate u

i

elements.

Now, we de�ne f

0

s

: H

s

! G

0

s

on the approximate basis X

0

s

by f

0

s

(a

i

) = f

s

(a

i

) for i � e,

f

0

s

(b

i

) = f

s

(b

i

) for i < e, f

0

s

(b

e

) = f

s

(b

e

)�x, and f

0

s

(y

i

) = f

s

(y

i

)+u

i

. We an extend this map

aross H

s

by mapping h 2 H

s

to the solution over X

0

s

for the equation de�ning f

s

(h) over X

s

.

The map f

0

s

preserves all the ordering and addition fats about H

s

.

To see that X

0

s

is an approximate basis for G

0

s

, we need to hek Condition (3) of De�nition

6.1. Therefore, assume that g; h 2 G

s

satisfy the equations

�g = 

0

f

s

(a

0

) + 

1

f

s

(b

0

) + � � �+ 

2e

f

s

(a

e

) + 

2e+1

f

s

(b

e

) + 

2e+2

f

s

(y

1

) + � � �+ 

2e+1+k

f

s

(y

k

)

�h = d

0

f

s

(a

0

) + d

1

f

s

(b

0

) + � � �+ d

2e

f

s

(a

e

) + d

2e+1

f

s

(b

e

) + d

2e+2

f

s

(y

1

) + � � �+ d

2e+1+k

f

s

(y

k

)

over X

s

with j

i

j; jd

i

j � t

s

and 0 < �; � � t

s

. Let g

0

; h

0

be the solutions to these equations over

X

0

s

, and suppose g

0

+ h

0

2 G

0

s

. Then, sine G

0

s

is exatly the set of solutions to the equations

(over X

0

s

) for the elements g 2 G

s

, we know that g

0

+ h

0

satis�es an equation of the form

(g

0

+ h

0

) = l

0

f

0

s

(a

0

) + � � �+ l

2e+1

f

0

s

(b

e

) + l

2e+2

f

0

s

(y

1

) + � � �+ l

2e+1+k

f

0

s

(y

k

) (5)
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with jl

i

j � t

s

and 0 <  � t

s

. However, summing the equations for g and h, we see that g

0

+h

0

also satis�es

��(g

0

+ h

0

) = (�

0

+ �d

0

)f

s

(a

0

) + � � �+ (�

2e+1+k

+ �d

2e+1+k

)f

s

(y

k

): (6)

We need to show that Equations (6) and (5) are equivalent when redued. If we multiply

Equation (5) by �� and Equation (6) by , we obtain two equations for ��(g

0

+ h

0

). Eah

of these equations has its oeÆients bounded by 2(t

s

)

3

, and sine X

0

s

is 2(t

s

)

3

independent,

these equations must have equal oeÆients. Therefore, they remain the same when redued.

This ompletes the proof that X

0

s

is an approximate basis for G

0

s

.

To �nish the stage, we let X

s+1

be an approximate basis for G

s

[ G

0

s

whih oheres

with the basis ff

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

); f

0

s

(y

1

); : : : ; f

0

s

(y

k

)g for G

0

s

. We an assume

that f

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

) forms an initial segments of X

s+1

, sine otherwise there

must be a dependene relation between f

s

(a

0

); f

s

(b

0

); : : : ; f

s

(a

e

); f

s

(b

e

).

For eah h 2 H

s

, the dependene relation de�ning f

s

(h) over X

s

has a solution over X

0

s

,

and hene it has a solution in G over X

s+1

. Let G

00

s

be the set of solutions to the equations

for h 2 H

s

over X

s+1

.

We let G

s+1

= G

s

[G

0

s

[G

00

s

[X

s+1

and we expand H

s

to H

s+1

by adding jG

s+1

nG

s

j many

new elements. To de�ne the map f

s+1

on H

s+1

, we �rst onsider f

s+1

(h) for h 2 H

s

. We know

that f

s

(h) satis�es a redued equation over X

s

and that this equation has a solution in G

s+1

over X

s+1

. Therefore, we de�ned f

s+1

(h) to be the solution to this equation in G

s+1

. For

the new elements in H

s+1

, we map these elements to the elements of G

s+1

whih are not hit

by elements of H

s

under f

s+1

. Eah of the new elements in H

s+1

is assigned the dependene

relation satis�ed by f

s+1

(h) over X

s+1

.

The �nal thing to notie is that sine f

0

s

(a

0

); f

0

s

(b

0

); : : : ; f

0

s

(a

e

); f

0

s

(b

e

) forms an initial seg-

ments of X

s+1

, we have that f

s+1

(a

e

) = f

s

(a

e

) and f

s+1

(b

e

) = f

s

(b

e

) � x. Hene, we have

diagonalized as we wanted.

7 Proof of Theorems 1.11 and 1.3

At stage s of the onstrution, we will have an approximate basis X

s

= fx

s

0

; : : : ; x

s

k

s

g � G,

with k

s

� 2s, whih is t

s

-independent, with t

s

> s. If h enters H at stage s + 1, then h

is assigned a redued dependene relation of the form �y = 

0

x

0

+ � � � + 

k

s+1

x

k

s+1

. We say

that g 2 G satis�es this relation relative to the approximate basis X

t

, with t � s + 1, if

�g = 

0

x

t

0

+ � � �+ 

k

s+1

x

t

k

s+1

. Eah requirement R

e

, with e � s, has two distint witnesses, a

s

e

and b

s

e

, suh that f

s

(a

s

e

) 2 X

s

and f

s

(b

s

e

) 2 X

s

. R

e

does not need attention at stage s if

any of the following onditions hold:

1. '

e;s

(a

s

e

) " or '

e;s

(b

s

e

) ", or

2. for some 0 < m; n < s, m'

e;s

(b

s

e

) #�

G

n'

e;s

(a

s

e

) # and nf

s

(a

s

e

) <

G

mf

s

(b

s

e

), or

3. for some 0 < m; n < s, m'

e;s

(a

s

e

) #�

G

n'

e;s

(b

s

e

) # and nf

s

(b

s

e

) <

G

mf

s

(a

s

e

), or

4. R

e

was delared satis�ed at some stage t < s and both a

s

e

and b

s

e

are the same as a

t

e

and

b

t

e

.
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R

e

requires attention at stage s if none of these onditions hold.

Constrution

Stage 0: Fix a omputable embedding  : G ! R. Set H

0

= f0g, f

0

(0) = 0

G

, and X

0

= ;.

Assign 0 2 H the empty redued dependene relation.

Stage s + 1: Assume we have de�ned H

s

and f

s

: H

s

! G, with G

s

= range(f

s

). We have

a set X

s

� G

s

whih is an approximate basis for G

s

, whih is t

s

-independent and whih has

size k

s

� 2s. Eah element h 2 H

s

has been assigned a redued dependene relation of the

form �y = 

0

x

0

+ � � �+ 

i

x

i

for some i � k

s

. We split the stage into four steps.

Step 1 : Let g be the N-least element of G not in G

s

. Let X

0

s

= fx

0

0;s

; : : : x

0

k

0

s

;s

g be an

approximate basis for G

s

[ fgg whih oheres with X

s

, whih has size k

0

s

� 2(s + 1), and

whih is t

0

s

-independent, for some t

0

s

> (s+1). Beause X

0

s

oheres with X

s

, every dependene

relation assigned to an element h 2 H

s

has a solution over X

0

s

. Let G

0

s

ontain G

s

, fgg, X

0

s

,

and the solution to the dependene relation for eah h 2 H

s

over X

0

s

. Let n = jG

0

s

n G

s

j,

let h

1

; : : : h

n

be the n least elements of N not in H

s

, and let H

0

s

= H

s

[ fh

1

; : : : ; h

n

g. De�ne

f

0

s

: H

0

s

! G

0

s

as follows. For h 2 H

s

, f

0

s

(h) is the solution to the dependene for h over X

0

s

.

For h

i

, 1 � i � n, let f

0

s

(h

i

) map to the elements of G

0

s

not in the image of H

s

under f

0

s

.

Eah new h

i

2 H

0

s

is assigned the redued dependene relation �y = 

0

x

0

+ � � �+ 

k

0

s

x

k

0

s

with

�; j

j

j � t

0

s

suh that

�f

0

s

(h

i

) = 

0

x

0

0;s

+ 

1

x

0

1;s

+ � � �+ 

k

0

s

x

0

k

0

s

;s

:

Step 2 : De�ne the witnesses for R

e

with e � s by setting a

s+1

e

and b

s+1

e

to be the elements of

H

0

s

suh that f

0

s

(a

s+1

e

) = x

0

2e;s

and f

0

s

(b

s+1

e

) = x

0

2e+1;s

. Chek if any R

e

requires attention. If

so, let R

e

be the least suh requirement and go to Step 3. Otherwise, proeed to Step 4.

Step 3 : In this step we do the atual diagonalization. First, alulate a safe distane to move

the image of b

s+1

e

. Set d

0

2 R to be suh that d

0

> 0 and

d

0

� minf j (f

0

s

(h))�  (f

0

s

(g))j j h 6= g 2 H

0

s

g:

We an �nd suh a d

0

e�etively sine H

0

s

is �nite. Set d = d

0

=(3t

0

s

(1 + k

0

s

)).

Seond, we searh for an appropriate x 2 G to set f

s+1

(b

s+1

e

) = f

0

s

(b

s+1

e

)� x. We say that

x diagonalizes for R

e

if there are n;m > 0 suh that either

nf

0

s

(a

s+1

e

) <

G

m(f

0

s

(b

s+1

e

)� x) and n'

s

e

(a

s+1

e

) �

G

m'

s

e

(b

s+1

e

)

or nf

0

s

(a

s+1

e

) >

G

m(f

0

s

(b

s+1

e

)� x) and n'

s

e

(a

s+1

e

) �

G

m'

s

e

(b

s+1

e

):

We searh onurrently for

1. elements x; u

2e+2

; : : : ; u

k

0

s

in G suh that

(a) x has the form 

1

t

0

s

!f

0

s

(a

s+1

e

) + 

2

t

0

s

!f

0

s

(b

s+1

e

) with 

1

; 

2

6= 0 suh that  (x) 2 (0; d),

and x diagonalizes for R

e

, and

(b) t

0

s

! divides eah u

i

in G and j (u

i

)j < d, and
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() X

00

s

= ff

0

s

(a

s+1

0

); f

0

s

(b

s+1

0

); : : : ; f

0

s

(a

s+1

e

); f

0

s

(b

s+1

e

)� x; f

0

s

(x

0

2e+2

) + u

2e+2

; : : : ; f

0

s

(x

0

k

0

s

) +

u

k

0

s

g is at least 2(t

0

s

)

3

independent, or

2. n;m 2 N suh that nf

0

s

(a

s+1

e

) <

G

mf

0

s

(b

s+1

e

) and n'

e;s

(a

s+1

e

) �

G

m'

e;s

(b

s+1

e

), or

3. n;m 2 N suh that nf

0

s

(b

s+1

e

) <

G

mf

0

s

(a

s+1

e

) and n'

e;s

(b

s+1

e

) �

G

m'

e;s

(a

s+1

e

), or

4. a dependene relation among ff

0

s

(a

s+1

0

); f

0

s

(b

s+1

0

); : : : ; f

0

s

(a

s+1

e

); f

0

s

(b

s+1

e

)g in G.

This proess terminates (see Lemma 7.1). Furthermore, if we found X

00

s

, then beause t

0

s

!

divides all the elements we are adding to the approximate basis elements, this set has the

property that eah dependene relation assigned to an h 2 H

0

s

has a solution over X

00

s

. Also,

beause j (u

i

)j < d and  (x) < d, these solutions preserve < in the sense desribed at the

end of Setion 6 (see Lemma 7.3).

If the proess terminates with Conditions 2, 3, or 4, then skip to Step 4. Otherwise, we

de�ne f

s+1

using x and the u

i

. For every h 2 H

0

s

, there is a solution to the dependene relation

for h over X

00

s

. Therefore, we an de�ne G

00

s

as the set of solutions to the dependene relations

assigned to h 2 H

0

s

. As explained at the end of Setion 6, beause X

00

s

is 2(t

0

s

)

3

independent, it

is an approximate basis for G

00

s

. Let X

s+1

be an approximate basis for G

0

s

[G

00

s

whih oheres

with the approximate basis X

00

s

for G

0

s

. Let G

s+1

= G

0

s

[G

00

s

[X

s+1

and let H

s+1

ontain H

0

s

plus jG

s+1

n G

0

s

j many new elements. De�ne f

s+1

: H

s+1

! G

s+1

as follows. For h 2 H

0

s

,

set f

s+1

(h) to be the solution to the dependene relation for h over X

s+1

. Map the elements

h 2 H

s+1

nH

0

s

to the elements of G

s+1

whih are not in the image of H

0

s

under f

s+1

and assign

to eah suh h the redued dependene relation satis�ed by f

s+1

(h) over X

s+1

. Proeed to

stage s+ 2.

Step 4 : If we arrived at this step, then there is no diagonalization to be done. De�ne f

s+1

= f

0

s

,

X

s+1

= X

0

s

, H

s+1

= H

0

s

, G

s+1

= G

0

s

, k

s+1

= k

0

s

, and t

s+1

= t

0

s

. If we arrived at Step 4 beause

Condition 2 or 3 was satis�ed in the searh proedure in Step 3, then delare R

e

satis�ed.

Proeed to stage s+ 2.

End of Constrution

To prove the onstrution works, we verify the following lemmas.

Lemma 7.1. The searh proedure in Step 3 of stage s+ 1 terminates.

Proof. Eah ondition in the searh proedure is �

0

1

. Therefore, it suÆes to show that if

Conditions 2, 3, and 4 do not hold, then Condition 1 does hold.

Suppose Conditions 2, 3, and 4 are not true. Beause Condition 4 does not hold, f

0

s

(a

s+1

e

)

and f

0

s

(b

s+1

e

) are linearly independent. Therefore, by Proposition 5.4, there are n;m 2 N suh

that jm (f

0

s

(b

s+1

e

))�n (f

0

s

(a

s+1

e

))j <

R

d. Fix suh n;m, and without loss of generality, assume

that n (f

0

s

(a

s+1

e

)) <

R

m (f

0

s

(b

s+1

e

)) (the ase for the reverse inequality follows by a similar

argument). Beause  is an embedding, nf

0

s

(a

s+1

e

) <

G

mf

0

s

(b

s+1

e

), and beause Condition 2

does not hold, n'

e;s

(a

s+1

e

) <

G

m'

e;s

(b

s+1

e

).
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Sine t

0

s

!f

0

s

(a

s+1

e

) and t

0

s

!f

0

s

(b

s+1

e

) are linearly independent, we use Proposition 5.5 to on-

lude that there are nonzero 

1

and 

2

suh that

m (f

0

s

(b

s+1

e

))� n (f

0

s

(a

s+1

e

))

m

<

R



1

t

0

s

 (f

0

s

(a

s+1

e

)) + 

2

t

0

s

 (f

0

s

(b

s+1

e

)) <

R

d

m

:

We set x = 

1

t

0

s

f

0

s

(a

s+1

e

) + 

2

t

0

s

f

0

s

(b

s+1

e

), and note that mf

0

s

(b

s+1

e

) � nf

0

s

(a

s+1

e

) <

G

mx,  (x) 2

(0; d), and t

0

s

! divides x in G. Furthermore, sine 

2

6= 0, f

0

s

(b

s+1

e

) � x is independent from

f

0

s

(a

s+1

e

). Finally, to see that x diagonalizes for R

e

:

0 <

R

m (f

0

s

(b

s+1

e

))� n (f

0

s

(a

s+1

e

)) <

R

m (x)

) mf

0

s

(b

s+1

e

)�mx <

G

nf

0

s

(a

s+1

e

);

whih implies that m(f

s

(b

s+1

e

)� x) <

G

nf

s

(a

s+1

e

) as required.

Finally, Proposition 5.6 implies that elements u

2e+2

; : : : ; u

k

0

s

exist with the required level

of independene.

Lemma 7.2. Eah h 2 H is assigned a unique redued dependene relation of the form

�y = 

0

x

0

+ � � �+ 

n

x

n

. Furthermore, if h 2 H

s

and x

s

0

; : : : ; x

s

n

are the initial elements of X

s

,

then this relation has a solution in G.

Proof. The �rst time an approximate basis is hosen after h enters H, h is assigned a unique

redued dependene relation. If h 2 H

s

nH

s�1

, then f

s

(h) satis�es a dependene relation of

the form �y = 

0

x

s

0

+ 

1

x

s

1

+ � � �+ 

k

s

x

s

k

s

with �; j

i

j � t

s

. We show by indution that for all

u � s this equation has a solution in G. Notie that if u � s, then jX

u

j � jX

s

j, so there are

enough approximate basis elements in X

u

for this equation to make sense. Assume that the

equation has a solution at stage u, and we onsider it at stage u+ 1.

X

0

u

oheres with X

u

, so �y = 

0

x

0

0;u

+ 

1

x

0

1;u

+ � � �+ 

k

s

x

0

k

s

;u

has a solution. If we do not

diagonalize at stage u + 1, then X

u+1

= X

0

u

, and we are done. If we do diagonalize at stage

u+1, then our onditions on X

00

u

guarantee that the equation has a solution over X

00

u

. We then

hoose X

u+1

so that it oheres with X

00

u

, and hene the equation has a solution over X

u+1

.

Lemma 7.3. Suppose s + 1 is a stage at whih we diagonalize, and a <

G

b 2 G

0

s

satisfy the

dependene relations �y = 

0

x

0

0;s

+ � � �+ 

k

x

0

k;s

and �y = d

0

x

0

0;s

+ � � �+ d

k

x

0

k;s

. If a

00

; b

00

2 G

are the solutions to �y = 

0

x

s+1

0

+ � � �+ 

k

x

s+1

k

and �y = d

0

x

s+1

0

+ � � �+d

k

x

s+1

k

, then a

00

<

G

b

00

.

Proof. At stage s+ 1, we set d

0

to be <

R

the least distane between any pair  (h) and  (g),

with h 6= g 2 G

0

s

, and we set d = d

0

=(3t

s+1

(1 + k

0

s

)). Let a

0

and b

0

be the solutions to the

equations for a and b over X

00

s

. We �rst show that a

0

< b

0

.

IfX

00

s

= fx

00

0;s

; : : : ; x

00

k

0

s

;s

g, then by our restritions on  (x) and  (u

i

), we have that j (x

0

i;s

)�

 (x

00

i;s

)j � d for eah i. Therefore, sine � > 0,

j (a)�  (a

0

)j � j (�a)�  (�a

0

)j � (k

0

s

+ 1)t

0

s

d = d

0

=3:

Similarly, j (b)� (b

0

)j � d

0

=3. However, sine j (a)� (b)j � d

0

, we have that  (a

0

) <  (b

0

)

and hene, a

0

< b

0

.

Finally, sine X

s+1

oheres with X

00

s

, we know that a

0

< b

0

implies that a

00

< b

00

, as

required.
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Lemma 7.4. For eah s 2 N, eah a; b;  2 H

s

and eah t � s, we have

f

s

(a) + f

s

(b) = f

s

()) f

t

(a) + f

t

(b) = f

t

()

and f

s

(a) � f

s

(b)) f

t

(a) � f

t

(b):

Proof. First, we hek that addition is preserved. If a and b are assigned the dependene

relations �y = 

0

x

0

+ � � � + 

k

x

k

and �y = d

0

x

0

+ � � � + d

k

x

k

, respetively, then by the

de�nition of an approximate basis,  is assigned the redued version of

��(g + h) = (�

0

+ �d

0

)x

0

+ � � �+ (�

k

+ �d

k

)x

k

:

At every stage t after the assignment of these dependene relations, f

t

(a), f

t

(b), and f

t

() are

de�ned to be the solutions of these relations relative to X

t

. Therefore, f

t

(a) +

G

f

t

(b) = f

t

().

Seond, we hek that the ordering is preserved. Assume that a; b 2 G

s

are suh that

f

s

(a) <

G

f

s

(b). We show by indution on t � s that f

t

(a) <

G

f

t

(b). Sine X

0

t+1

oheres with

X

t

, we know that if a

0

; b

0

2 G are the solutions to the dependene relations assigned to a and

b, respetively, relative to the basis X

0

t+1

, then a

0

<

G

b

0

. If we do not diagonalize at stage

t+1, then X

t+1

= X

0

t+1

, so we are done. If we do diagonalize, then we apply Lemma 7.3.

Lemma 7.5. Eah approximate basis element x

s

i

reahes a limit, and the set of these limits

forms a basis for G. Furthermore, eah witness a

s

e

and b

s

e

reahes a limit and eah requirement

R

e

is eventually satis�ed.

Proof. It is lear that if the elements x

s

i

reah limits, then they will form a basis for G.

Therefore, sine eah x

s

i

is eventually hosen to be an a

s

e

or a b

s

e

, it suÆes to show by indution

on e that a

s

e

and b

s

e

reah limits and that eah R

e

requirement is eventually satis�ed. Sine

a

s

0

= x

s

0

is always de�ned to be the �rst nonidentity element in G, this element never hanges,

and hene reahes a limit a

0

.

Consider b

s

0

= x

s

1

. Let y be the N least element of G suh that fa

0

; zg is independent.

Sine our algorithm for hoosing a oherent basis always hooses the N least elements it an,

we eventually �nd a stage when we reognize that fa

s

0

; b

s

0

g is dependent and we pik y

1

to

be z in Phase 2 of the oherent basis algorithm. From this stage on, whenever we run this

algorithm, we hoose y

1

to be z, so eventually by Proposition 5.6 we will �nd an appropriate

linear ombination of b

s

0

and z and set b

s+1

0

to be this linear ombination. Sine b

s+1

0

is now

independent from a

0

, it will not hange again unless R

0

diagonalizes.

One b

s

0

has reahed a limit, R

0

is guaranteed to win if it ever hooses to diagonalize.

This is beause one fa

s

0

; b

s

0

g is independent, the searh proedure in Step 3 annot end in

Condition 4. If R

0

never wants to diagonalize, then R

0

is satis�ed for trivial reasons. If R

0

does diagonalize, then b

s

0

hanges one last time, but it remains independent of a

0

and hene

will never hange again.

We an now onsider the ase for e + 1. Assume we have passed a stage suh that

a

s

0

; b

s

0

; : : : ; a

s

e

; b

s

e

have all reahed their limits and no requirement R

i

, with i � e, ever

wants to at again. As above, let z

1

and z

2

be the N least elements of G suh that

fa

s

0

; b

s

0

; : : : ; a

s

e

; b

s

e

; z

1

; z

2

g is independent. It is possible that the ation of diagonalization for

a higher priority requirement will have made a

s

e+1

and b

s

e+1

independent from the elements
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above. If not, then the algorithm for piking a oherent basis eventually �nds that they are

dependent and rede�nes a

s

e+1

to be a linear ombination with z

1

and rede�nes b

s

e+1

to be a

linear ombination with z

2

. After this point, a

s

e+1

will never hange again, and b

s

e+1

will only

hange if R

e+1

wants to at. As above, if R

e+1

ever wants to at, then it is guaranteed to

win beause the searh in Step 3 annot end in Condition 4. Therefore, R

e+1

is eventually

satis�ed and b

s

e+1

reahes a limit.

Lemma 7.6. For eah s and eah h 2 H

s

, the sequene f

t

(h) for t � s reahes a limit.

Proof. Suppose h 2 H

s

and h is assigned the relation �y = 

0

x

0

+ � � � + 

k

x

k

. For t � s,

f

t

(h) is the solution to this equation over X

t

. Therefore, one eah x

t

i

reahes a limit, so does

f

t

(h).

This ends the proof of Theorem 1.11. To �nish the proof of Theorem 1.3, we need one

more lemma.

Lemma 7.7. H admits a omputable basis.

Proof. For i 2 N , de�ne d

i

to be the element assigned the redued equation y = x

s

i

and let f

be the pointwise limit of f

s

. Then, f(d

i

) = lim

s

x

s

i

= x

i

. Sine fx

i

ji 2 Ng is a basis for G,

fd

i

ji 2 Ng is a basis for H.

8 Proofs of Theorems 1.12 and 1.4

For this setion, we �x a omputable ordered abelian group G with in�nite rank whih is not

Arhimedean, but has only �nitely many Arhimedean lasses. Assume G has r nontrivial

Arhimedean lasses and �x positive representatives �

1

; : : : ;�

r

for these lasses. Sine every

nonidentity element g 2 G satis�es g � �

i

for a unique i, we an e�etively determine the

Arhimedean lass of eah g.

For eah 1 � i � r, let L

i

be the omputable subgroup fg 2 Gjg � �

i

g. Also, let E

i

be the

least nontrivial Arhimedean lass of the quotient group G=L

i

. Sine E

i

is an Arhimedean

ordered group (with the indued order), we an �x maps  

i

: E

i

! R by H�older's Theorem.

Sine G has in�nite rank, at least one of the E

i

groups must have in�nite rank. We will say

that �

i

represents an in�nite rank Arhimedean lass if E

i

has in�nite rank. Otherwise,

�

i

represents a �nite rank Arhimedean lass.

The key to proving Theorems 1.12 and 1.4 is to �nd the orret analogues of Propositions

5.4 and 5.6 and Lemma 6.3. One we have these results, the arguments presented in Setions

6 and 7 an be used with minor hanges.

De�nition 8.1. A �nite subset G

0

� G is losed under Arhimedean di�erenes if for

all g; h 2 G

0

suh that g � h but g � h 6� g, we have g � h 2 G

0

.

Lemma 8.2. If G

0

� G is �nite, then there is a �nite set G

0

0

suh that G

0

� G

0

0

and G

0

0

is

losed under Arhimedean di�erenes.
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Proof. Start with the largest Arhimedean lass ourring in G

0

and ompare all pairs of

elements in this lass. For eah pair suh that g � h and g � h 6� g, add g � h to G

0

.

Considering eah Arhimedean lass inG

0

in dereasing order, we lose G

0

under Arhimedean

di�erenes by adding only �nitely many elements.

De�nition 8.3. X � G is nonshrinking if for all x

0

� � � � � x

n

2 X and oeÆients



0

; : : : ; 

n

with at least one 

i

6= 0, we have 

0

x

0

+ � � �+ 

n

x

n

� x

0

. X is t-nonshrinking if

this property holds with the absolute values of the oeÆients bounded by t.

Theorem 8.4. There is a nonshrinking basis for G.

Proof. For eah 1 � i � r, �x a set B

i

of elements b

i

j

suh that eah b

i

j

� �

i

and the set of

elements b

i

j

+ L

i

is a basis for E

i

. The fat that the b

i

j

elements are independent modulo L

i

means that for any oeÆients 

1

; : : : ; 

k

with at least one 

j

6= 0, we have

(

1

b

i

1

+ � � �+ 

k

b

i

k

) + L

i

6= L

i

and hene 

1

b

i

1

+ � � �+ 

k

b

i

k

62 L

i

. Sine eah b

i

j

� �

i

, this implies that 

1

b

i

1

+ � � �+ 

k

b

i

k

� �

i

.

Therefore, B

i

is nonshrinking.

It remains to show that B =

S

1�i�r

B

i

is a basis for G. First, B is independent sine eah

B

i

is independent and nonshrinking. Seond, to see that B spans G, let g 2 G be suh that

g � �

i

. For some hoie of oeÆients �; 

1

; : : : ; 

k

and elements b

i

1

; : : : ; b

i

k

, we an write

�g + L

i

= (

1

b

i

1

+ � � �+ 

k

b

i

k

) + L

i

:

Therefore, 

1

b

i

1

+ � � � + 

k

b

i

k

� �g � �

i

. If this element is equal to 0

G

, then we are done.

Otherwise, we an repeat this proess with 

1

b

i

1

+ � � �+ 

k

b

i

k

��g. Sine there are only �nitely

many Arhimedean lasses, this proess must stop and show that some multiple of g is a

linear ombination of elements of B.

De�nition 8.5. Let G

0

� G be �nite. X

0

is a approximate nonshrinking basis for G

0

with weight t

0

if X

0

is an approximate basis for G

0

with weight t

0

and X

0

is t

0

-nonshrinking.

As before, an approximate nonshrinking basis is a sequene, but we abuse notation and

treat it as a set. Furthermore, we think of X

0

as broken down into Arhimedean lasses, and

we treat X

0

as a sequene of sequenes, hX

1

0

; : : : ; X

r

0

i, where X

i

0

is the sequene of elements

x 2 X

0

for whih x � �

i

.

De�nition 8.6. If G

0

� G

1

are �nite subsets and X

0

= fx

0

0

; : : : ; x

0

k

0

g is an approx-

imate nonshrinking basis for G

0

of weight t

0

, then the approximate nonshrinking basis

X

1

= fx

1

0

; : : : ; x

1

k

1

g for G

1

of weight t

1

oheres with X

0

if

1. Conditions 1, 3, and 4 from De�nition 6.2 hold, and

2. for eah Arhimedean lass X

i

0

inside X

0

, if X

i

0

= fx

0

i

0

; : : : ; x

0

i

l

g and j is suh that

fx

0

i

0

; : : : ; x

0

i

j

g is independent, but fx

0

i

0

; : : : ; x

0

i

j+1

g is not, then fx

0

i

0

; : : : ; x

0

i

j

g � X

1

.

We an now give the analogues of Propositions 5.4 and 5.6 and of Lemma 6.3.
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Proposition 8.7. Let fb

0

; b

1

g � G be independent and nonshrinking suh that b

0

� b

1

� �

i

.

Then, for any d > 0 2 R, there are nonzero oeÆients 

0

; 

1

suh that

j 

i

((

0

b

0

+ L

i

) + (

1

b

1

+ L

i

))j < d:

Proof. This lemma is a diret onsequene of Proposition 5.4.

Proposition 8.8. Let B = fb

0

; : : : ; b

m

g � G be independent and nonshrinking suh that

b

j

� �

i

for eah j, and assume that �

i

represents an in�nite rank Arhimedean lass. Let

X = fx

0

; : : : ; x

n

g � G be suh that x

j

� �

i

for eah j, and �x d > 0 2 R and p > 0 2 N.

There are elements a

0

; : : : ; a

n

2 G suh that

1. fb

0

; : : : ; b

m

; x

0

+ a

0

; : : : ; x

n

+ a

n

g is independent and nonshrinking, and

2. for eah j, (p divides a

j

), (x

j

+ a

j

� �

i

), and j 

i

(a

j

+ L

i

)j < d.

Proof. As in Proposition 5.6, we prove this lemma for x

0

and then proeed by indution. If

B [fx

0

g is independent and nonshrinking, then let a

0

= 0

G

. Otherwise, there are oeÆients



0

; : : : ; 

m

; � with � > 0 suh that 

0

b

0

+ � � � + 

m

b

m

+ �x

0

= y � �

i

. Solving for �x

0

gives

�x

0

= y � 

0

b

0

� � � � � 

m

b

m

.

Sine �

i

represents an in�nite rank Arhimedean lass, we an �x a b � �

i

suh that

fb

0

+ L

i

; : : : ; b

m

+ L

i

; b + L

i

g is independent in G=L

i

. Clearly, B [ fbg is independent, but

by the argument in Theorem 8.4, it is also nonshrinking. Next, we apply Proposition 8.7

to get nonzero oeÆients 

0

; 

1

suh that j 

i

((

0

b

0

+ L

i

) + (

1

b + L

i

))j < d=p and we let

a

0

= p

0

b

0

+ p

1

b.

To see that B [ fx

0

+ a

0

g is independent and nonshrinking, suppose there are oeÆients

d

0

; : : : ; d

m

; � suh that d

0

b

0

+ � � �+ d

m

b

m

+ �(x

0

+ a

0

) = z � �

i

. Sine B is independent and

nonshrinking, we know � 6= 0. Multiplying by � and performing several substitutions, we get

�d

0

b

0

+ � � �+ �d

m

b

m

+ ��x

0

+ ��a

0

= �z � �

i

;

�d

0

b

0

+ � � �+ �d

m

b

m

+ �(y � 

0

b

0

� � � � � 

m

b

m

) + ��(p

0

b

0

+ p

1

b) = �z; and

(�d

0

� �

0

+ ��p

1

)b

0

+ (�d

1

+ �

1

)b

1

+ � � �+ (�d

m

� �

m

)b

m

+ ��p

1

b = �z � �y� �

i

:

Sine ��p

1

6= 0, the bottom equation ontradits the fat that B [ fbg is independent and

nonshrinking.

Lemma 8.9. Let G

0

� G

1

be �nite sets and assume that G

0

is losed under Arhimedean

di�erenes. Let X

0

be an approximate nonshrinking basis for G

0

with weight t

0

. There exists

an approximate nonshrinking basis X

1

for G

1

whih oheres with X

0

.

Proof. If X

0

is independent and nonshrinking, then let X

1

be any independent nonshrinking

extension of X

0

whih spans G

1

. If X

0

is either not independent or not nonshrinking, then

we begin by partitioning X

0

into Arhimedean lasses. For simpliity of notation, assume

that there are only two Arhimedean lasses in X

0

. The general ase follows by a similar

argument, whih is skethed after the ase of two Arhimedean lasses. LetX

0

= fb

1

; : : : ; b

l

g[

fe

1

; : : : ; e

m

g, where b

i

� �

b

and e

i

� �

e

for Arhimedean representatives �

b

� �

e

.
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Seond, onsider eah Arhimedean lass in X

0

and separate out the initial segment whih

is independent and nonshrinking. That is,

X

0

= fb

1

; : : : ; b

i

g [ fb

i+1

; : : : ; b

l

g [ fe

1

; : : : ; e

j

g [ fe

j+1

; : : : ; e

m

g;

where fb

0

; : : : ; b

i

g is independent and nonshrinking, but fb

0

; : : : ; b

i+1

g is not (and similarly

for e

j

). Let d > 0 2 R be less than the minimum of all the following onditions:

1. j 

b

(x+ L

b

)j for x 2 G

0

, x � �

b

, and

2. j 

b

(x+ L

b

)�  

b

(y + L

b

)j for x; y 2 G

0

with x � y � �

b

and x + L

b

6= y + L

b

, and

3. j 

e

(x + L

e

)j for x 2 G

0

with x � �

e

, and

4. j 

e

(x + L

e

)�  

e

(y + L

e

)j for x; y 2 G

0

with x � y � �

e

and x + L

e

6= y + L

e

.

Let d

0

= d=(3t

0

(l +m)).

Apply Proposition 8.8 with B = fb

1

; : : : ; b

i

g,  

b

, d

0

, t

0

!, and X = fb

i+1

; : : : ; b

l

g to get

fa

i+1

; : : : ; a

l

g. Also, apply Proposition 8.8 with B = fe

1

; : : : ; e

j

g,  

e

, d

0

, t

0

!, and X =

fe

j+1

; : : : ; e

m

g to get fa

0

j+1

; : : : ; a

0

m

g. Let

Y = fb

1

; : : : ; b

i

g [ fb

i+1

+ a

i+1

; : : : ; b

l

+ a

l

g [ fe

1

; : : : ; e

j

g [ fe

j+1

+ a

0

j+1

; : : : ; e

m

+ a

0

m

g:

Sine Y is independent and nonshrinking, we an extend it to X

1

whih is independent,

nonshrinking, spans G

1

, and for whih jX

1

j � jX

0

j. Clearly, X

1

is an approximate non-

shrinking basis for G

1

. To see that X

1

oheres with X

0

, notie that X

1

is t

1

-independent and

t

1

-nonshrinking for arbitrarily large t

1

. Also, the fat that t

0

! divides eah a

k

and a

0

k

shows

that every equation over X

0

whih de�nes an element of G

0

has a solution over X

1

.

To hek the last ondition, suppose g < h 2 G

0

satisfy the redued equations

�y = 

1

b

1

+ � � �+ 

l

b

l

+ 

l+1

e

1

+ � � �+ 

l+m

e

m

and

�y = d

1

b

1

+ � � �+ d

l

b

l

+ d

l+1

e

1

+ � � �+ d

l+m

e

m

;

respetively. Let g

0

; h

0

2 G be the solutions to these equations over X

1

, that is, with (b

i+1

+

a

i+1

) through (b

l

+ a

l

) in plae of b

i+1

through b

1

, and (e

j+1

+ a

0

j+1

) through (e

m

+ a

0

m

) in

plae of e

j+1

through e

m

.

We need to show that g

0

< h

0

. There are several ases to onsider. First, suppose g � �

b

and h � �

e

. g < h implies that h > 0

G

, and g � �

b

implies that the oeÆients 

l+1

; : : : ; 

l+m

are all 0. Therefore, g

0

� �

b

, and similarly, h

0

� �

e

. We laim that h > 0

G

implies that

h

0

> 0

G

. To see this fat, notie

�h� �h

0

= d

i+1

a

i+1

+ � � �+ d

l

a

l

+ d

l+j+1

a

0

j+1

+ � � �+ d

l+m

a

0

m

:

Therefore, j 

e

((�h��h

0

)+L

e

)j � (l+m)t

0

d

0

� d=3. Sine j 

e

(h+L

e

)j > d and j 

e

((h�h

0

)+

L

e

)j � j 

e

((�h � �h

0

) + L

e

)j, we have that  

e

(h

0

+ L

e

) > 0. The de�nition of the quotient

order and the fat that  

e

is an embedding imply that h

0

> 0

G

. Putting these fats together,
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we have that g

0

� �

b

� �

e

� h

0

and h

0

> 0

G

, and therefore g

0

< h

0

. A similar analysis applies

when g � �

e

and h � �

b

.

It remains to onsider the ase when g � h. Assume g � h � �

e

and onsider the

ase when g � h � �

e

. In this ase, g + L

e

6= h + L

e

, so g + L

e

< h + L

e

, and hene

 

e

(g + L

e

) <  

e

(h + L

e

). By alulations similar to those above and those in Lemma 6.3

involving our hoie of d

0

, we have that  

e

(g

0

+L

e

) <  

e

(h

0

+L

e

). Therefore g

0

+L

e

< h

0

+L

e

,

whih implies g

0

< h

0

.

If g � h � �

e

, but h� g � �

e

, then sine G

0

is losed under Arhimedean di�erenes, we

know that h � g 2 G

0

and sine g < h, we have 0

G

< h� g. Again, by our hoie of d, this

means that 0

G

< h

0

� g

0

, and so g

0

< h

0

.

Finally, if g � h � �

b

, then sine G

0

is losed under Arhimedean di�erenes and �

b

represents the smallest Arhimedean lass in G

0

, we know g � h � �

b

. The analysis for the

ase when g � h � �

e

applies in this ase as well.

We now sketh the general ase. Suppose there are k Arhimedean lasses in X

0

. We

partition X

0

into Arhimedean lasses, X

0

= fb

1

1

; : : : ; b

1

n

1

g [ � � � [ fb

k

1

; : : : ; b

k

n

k

g orresponding

to the representatives �

b

1

; : : : ;�

b

k

. Next, for eah j � k, we separate out the initial segment

of fb

j

1

; : : : ; b

j

n

j

g whih is independent and nonshrinking, fb

j

1

; : : : ; b

j

m

j

g [ fb

j

m

j

+1

; : : : ; b

j

n

j

g. We

�x d > 0 2 R, as above, whih is less that the minimum for all j � k of

1. j 

b

j

(x + L

b

j

)j for x 2 G

0

, x � �

b

j

, and

2. j 

b

j

(x+L

b

j

)�  

b

j

(y+L

b

j

)j for eah x; y 2 G

0

with x � y � �

b

j

and x+ L

b

j

6= y+ L

b

j

.

Let d

0

= d=3t

0

(n

1

+� � �+n

k

). For eah j � k, we apply Proposition 8.8 to get fa

j

m

j

+1

; : : : ; a

j

n

j

g.

Let Y = [

j�k

fb

j

1

; : : : ; b

j

m

j

; b

j

m

j

+1

+a

j

m

j

+1

; : : : ; b

j

n

j

+a

j

n

j

g. Sine Y is independent and nonshrink-

ing, we an extend it to X

1

whih is independent, nonshrinking, and spans G

1

. As above,

our de�nition of d

0

implies that if h 2 G

0

is positive and satis�es a redued equation over X

0

,

then the solution h

0

to the same equation over X

1

is also positive. The proof that X

1

oheres

with X

0

now breaks into ases exatly as above.

Now that we have the appropriate replaements for Propositions 5.4 and 5.6 and Lemma

6.3, we sketh the remainder of the argument. There is a searh proedure to make Lemma

8.9 e�etive just as in Setion 6, exept when we searh for dependene relations, we also

searh for sums whih shrink in terms of the Arhimedean lasses.

For our given group G, we build H and a �

0

2

isomorphism f : H ! G in stages as before.

We again meet the requirements

R

e

: '

e

: H ! G is not an isomorphism

by diagonalization. The �rst hange in the onstrution is to use approximate nonshrink-

ing bases instead of just approximate bases. These insure that our basis at the end of the

onstrution is nonshrinking.

The seond hange is to �x the part of the basis for the �nite rank Arhimedean lasses

at stage 0. For eah �

i

whih represents a �nite rank Arhimedean lass, let n

i

= rank(E

i

),

where E

i

is the subgroup of G=L

i

onsisting of the least nontrivial Arhimedean lass. Pik
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a set B

i

whih is independent, nonshrinking, has size n

i

, and suh that for all x 2 B

i

, x � �

i

.

Plae these elements in the approximate nonshrinking basis at stage 0. Sine these elements

are in fat independent and nonshrinking, they will remain in all approximate nonshrinking

bases hosen later in the onstrution.

The third hange is to �x the least i suh that �

i

represents an in�nite rank Arhimedean

lass. We perform the diagonalization to meet R

e

using approximate basis elements whih

are � �

i

. Just as Proposition 5.4 is used in Lemma 7.1 to perform the diagonalization,

Proposition 8.7 is used here.

With these hanges, the proofs for Theorems 1.12 and 1.4 proeed just as those for The-

orems 1.11 and 1.3.
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