
A GENERAL FRAMEWORK FOR PRIORITY ARGUMENTS

Steffen Lempp and Manuel Lerman

The degrees of unsolvability were introduced in the ground-breaking papers of

Post [P] and Kleene and Post [KP] as an attempt to measure the information con-

tent of sets of natural numbers. Kleene and Post were interested in the relative

complexity of decision problems arising naturally in mathematics; in particular,

they wished to know when a solution to one decision problem contained the infor-

mation necessary to solve a second decision problem. As decision problems can be

coded by sets of natural numbers, this question is equivalent to: Given a computer

with access to an oracle which will answer membership questions about a set A,

can a program (allowing questions to the oracle) be written which will correctly

compute the answers to all membership questions about a set B? If the answer is

yes, then we say that B is Turing reducible to A and write B �

T

A. We say that

B �

T

A if B �

T

A and A �

T

B. �

T

is an equivalence relation, and �

T

induces

a partial ordering on the corresponding equivalence classes; the poset obtained in

this way is called the degrees of unsolvability, and elements of this poset are called

degrees.

Post was particularly interested in computability from sets which are partially

generated by a computer, namely, those for which the elements of the set can be

enumerated by a computer. These sets are called (recursively) enumerable, as are

their degrees. He showed [P] that the enumerable degrees have a least and greatest

element, and asked whether there were other enumerable degrees. This problem,

which became known as Post's Problem, was solved a decade later by Friedberg

[F] and Mu�cnik [M], and their solutions introduced a new technique, the priority

method, which is the subject of this paper.

The degrees of unsolvability form an algebraic structure which is induced by the

information content of sets. One motivation for studying this structure is to see how

closely this algebraic structure recaptures information content. Thus we would like

to know if sets with di�erent information content give rise to degrees which look

1991 Mathematics Subject Classi�cation. 03D25.

Key words and phrases. (recursively) enumerable degrees, decidability, Turing jump, existen-

tial theory, embedding of partial ordering.

The �rst author's research was partially supported by National Science Foundation Grants

DMS-8701891, DMS-8901529, DMS-9100114, U.S.-W. Germany Binational Grant INT-8722296,

and post-doctoral fellowships of the Deutsche Forschungsgemeinschaft and the Mathematical Sci-

ences Research Institute.

The second author's research was partially supported by National Science Foundation Grants

DMS-8521843, DMS-8900349, and DMS-9200539, and the Mathematical Sciences Research Insti-

tute.

The authors wish to express their gratitude to C. Ash, M. Groszek, L. Harrington, J. Knight,

A. Ku�cera, R. Shore, and T. Slaman for helpful comments.

Typeset by A

M

S-T

E

X

1

di�erent inside the structure, i.e., is it the case that the degrees have no non-

trivial automorphisms? Many people have worked on this problem, and combined

results of Shore [Sh], Slaman and Woodin [SW], and Cooper [Co1], [Co2], show that

there are few, if any, non-trivial automorphisms, and any such automorphism must

move degrees to nearby degrees. Other research has pursued answers to similar

questions about substructures of the degrees such as the enumerable degrees, and

has investigated the relationship of these substructures to arithmetic. Attempts at

answering these and other global questions about degree structures have required

a careful analysis of the algebraic structure, and one of the key techniques for

obtaining structure theorems, especially for the enumerable degrees, has been the

priority method. As the complexity of the structural questions increased, more

powerful variants of the priority method were developed to try to answer these

questions. The framework which we will describe in this paper encompasses the

techniques used to prove the individual structure theorems.

The priority method has been applied outside degree theory, e.g. in the study of

the lattice of enumerable sets by Soare, Maass, Harrington, and many others; and in

e�ective model theory by Nerode, Remmel, Ash, Knight, and others. There have

been several important applications outside computability theory. Among these

are Martin's [Ma] original proof of the Axiom of Borel Determinacy, Solovay's [Sol]

characterization of the degrees of models of true arithmetic, and Slaman's result

that ACA

0

is not conservative over RCA

0

+ Ramsey's Theorem for Pairs. It is our

hope that the framework which we present will provide a deeper understanding of

the nature of the priority method; and that this understanding will aid in identifying

classes of problems for which the priority method is useful for �nding solutions. (We

envision this to be similar to the way forcing provides a very useful framework for

set theorists.)

The priority method can be viewed as an e�ective version of the Cantor diagonal

argument. One wishes to carry out an e�ective construction whose result is the

satisfaction of an in�nite list fR

i

: i 2 Ng of requirements. A typical requirement

will have the form (' !) & (:'! �). We call ' the directing sentence. If ' is

true, then we want to carry out validated action , and if ' is false, then we want to

carry out activated action �. The need for e�ectiveness precludes the use of a Cantor

diagonal argument, since we may not be able to e�ectively determine the truth

of the directing sentence for a given requirement. The priority method provides

schemes for carrying out action based on the truth of e�ectively generated guesses

about the directing sentence. As action for one requirement may con
ict with the

ultimate truth of the action already carried out for another requirement, there is

also a need to organize the construction to resolve such con
icts. The priority

method produces ways of assigning priority to attempts at satisfying requirements,

and having this priority organize the action carried out for the guesses at the truth

of directing sentences.

The simplest priority method is called the �nite injury priority method, and is

the method discovered by Friedberg [F] and Mu�cnik [M]. In this case, the portion,

�, of the directing sentence determining the type of action to be taken is existential,

so corresponds to an enumerable condition. While waiting to discover the truth of �

for a requirement R of high priority, action is taken for lower priority requirements

under the assumption that � is not true. Upon discovery of the truth of �, action

2

is taken for R which may injure the ultimate truth of the directing sentence or

action already taken for requirements of lower (but not higher) priority than R,

and new attempts at satisfying the lower priority requirements are begun which

are compatible with the preservation of the truth of the directing sentence and the

action taken for R.

As directing sentences become more complicated, their ultimate truth cannot

be discovered in an enumerable fashion. What is required is a decomposition of

the sentence into fragments of lower complexity, and a use of the truth of such

fragments as a way both to generate action, and to guess at the truth of the full

sentence. At the next level of quanti�er complexity, the corresponding method has

been called in�nite injury, and was discovered by Sacks [Sa1], Shoen�eld [Sf1], and

Yates [Y1] and developed primarily by Sacks. The level after that was initially called

monstrous injury, and was discovered by Lachlan [La3]. Harrington introduced a

nicer classi�cation of the levels of complexity of priority arguments in terms of the

degree of the oracle needed to determine how each requirement is satis�ed; thus for

each n 2 N, the 0

(n)

-priority method is one which requires a 0

(n)

-oracle to unravel

the construction in this way. (So a �nite injury argument is a 0

0

-argument, an

in�nite injury argument is a 0

00

-argument, etc.)

The need to use priority arguments of higher levels of complexity to answer

structural questions about the enumerable degrees becomes evident as the quanti�er

complexity of the question increases. Such questions naturally occur when they

involve iterates of the jump operator. The development of the framework presented

in this paper was motivated by our proof of the decidability of the existential

theory of the enumerable degrees in the language of least and greatest element and

predicates �

n

for n 2 N, where a �

n

b i� a

(n)

� b

(n)

. The decision procedure

required us to show that a sentence of this language is true of the enumerable

degrees i� it is consistent with the poset axioms, and the strictly increasing and

order-preserving properties of the jump operator. The proof of the latter result

uses the 0

(n)

-priority method for all n.

Attempts at �nding frameworks for the priority method, or fragments thereof,

were undertaken early in the development of the method. Each framework was

viewed as a way to capture the common combinatorics of a given class of prior-

ity arguments, and so avoid redundancy in proofs using such arguments. Sacks

[Sa1] provided such a framework for �nite injury, and Lachlan made some early

attempts for in�nite injury as well, taking both a game-theoretic approach [La1],

and an e�ective Baire category approach [La2]. Yates [Y2] developed an approach

for combining in�nite injury arguments with e�ective perfect closed set forcing in

the setting of the degrees below 0

0

, using Banach-Mazur games to model the con-

structions. Subsequent frameworks for priority arguments of restricted complexity

have been developed by Shoen�eld [Sf2] using a tree of strategies, and Kontostathis

[K1], [K2], and [K3] using an e�ective Baire category approach. Harrington was the

�rst to �nd a general way to approach priority arguments at all arithmetical levels,

and accomplished this by combining the tree of strategies approach with the use of

the Kleene Fixed-Point Theorem. Ash [A1], [A2], and Knight [Kn] have developed

various frameworks which apply to restricted classes of problems in e�ective model

theory using trees of enumerations, but cover all hyperarithmetic levels of com-

plexity of the priority argument. Another approach, using trees of trees, has been

3

introduced by Groszek and Slaman [GS]. The latter two approaches have in
uenced

the development of our framework, which is substantially developed in [LL1], and

will be fully developed in [LL2]. This framework takes an inductive approach and

uses a separate tree of strategies for each level of the induction. While it has been

developed only for levels of priority through 0

(!)

, it seems amenable to extension

to hyperarithmetic levels.

The framework which we have developed [LL1], [LL2] is built on the tree of

strategies approach to priority arguments which was introduced by Lachlan [La3],

developed by Harrington, and popularized by Soare [So]. However, we use a se-

quence of trees of strategies rather than a single tree. We begin by assigning

requirements of high quanti�er complexity to a tree T

n

of level n for some n. We

then require a level-by-level decomposition of the requirement into fragments which

are assigned to nodes of lower level trees. This procedure ends when we reach T

0

,

the level at which an e�ective construction takes place. It must be shown that the

satisfaction of the fragments of the requirements which trace their heredity to the

true paths through all trees will ensure the satisfaction of the high-level requirement

assigned to a node of T

n

.

The paper is organized as follows. In Section 1, we illustrate the basic features of

the framework at the example of the above-mentioned decidability result [LL1]. In

Section 2, we indicate how these ideas can be used to formulate a general framework

and discuss the ways in which we expect the framework to be useful for proving

additional results.

1. An Example. We illustrate the major ideas of our framework at the example

of the above-mentioned decidability result by the authors [LL1]. We begin with

some de�nitions. Let R = hR;�; 0; 0

0

i be the poset of enumerable degrees with

least element 0 and greatest element 0

0

. For each m 2 N and a;b 2 R, we de�ne

a �

m

b, a

(m)

� b

(m)

:

A jump poset is a 5-tuple hP;�; P

0

;�

0

; fi, such that hP;�i and hP

0

;�

0

i are posets

of cardinality � 2 with least and greatest elements, and f is an order-preserving

map from P onto P

0

. An m-jump poset is a structure

hP

0

;�

0

; P

1

;�

1

; f

1

; : : : ; P

m

;�

m

; f

m

i

such that for each k < m, hP

k

;�

k

; P

k+1

;�

k+1

; f

k+1

i is a jump poset. The following

structure theorem is proved in [LL1]. Since this theorem implies that any existential

statement not excluded by the trivial properties of Turing reducibility and Turing

jump can be realized, it follows easily that the existential theory of the enumerable

degrees in the language of least and greatest element and the predicates �

n

is

decidable.

Theorem. Fix n 2 N, and let hP

0

;�

0

; P

1

;�

1

; f

1

; : : : ; P

m

;�

m

; f

m

i be a �nite m-

jump poset such that P

0

has least element 0 and greatest element 1. Then there is

a �nite set G

0

of enumerable degrees, and there are �nite sets G

k

= fd : 9a 2 G

0

(a

(k)

= d)g for each k 2 [1;m] such that the following diagram commutes. Further-

more, the embedding maps 0 2 P

0

to 0 and 1 2 P

0

to 0

0

. (In fact, the proof of this

theorem can easily be extended to all countable < !-jump posets.)

4

Figure 1

The proof of the theorem uses a 0

(n)

-priority argument to show that a certain

set of requirements can be satis�ed. The embedding maps c 2 P

0

to the degree of

the enumerable set A

c

(where we set A

0

= ; and A

1

= ;

0

for the least and greatest

element 0 and 1 of P

0

). Inductively de�ne the function g

k

by: g

0

is the identity,

and for k > 0, g

k

= f

k

�g

k�1

. There are three types of requirements to be satis�ed.

Incomparability requirements ensure that if g

k

(c) 6� g

k

(b) then A

(k)

c

6�

T

A

(k)

b

.

Using an iterated version of Shoen�eld's Limit Lemma, we will build a functional

� computable in A

c

whose k-fold iterated limit does not equal the k-fold iterated

limit of any functional �

e

computable in A

b

. To make this precise, we must ensure

�(A

c

) is total & 8x(lim

u

1

: : : lim

u

k

�(A

c

;u

1

; : : : ; u

k

; x)#); and(1.1)

9x(lim

u

1

: : : lim

u

k

(�(A

c

;u

1

; : : : ; u

k

; x) 6= lim

v

1

: : : lim

v

k

�

e

(A

b

; v

1

; : : : ; v

k

; x))

(1.2)

for all e. (1.1) will follow from (1.2) and properties of the construction; so we will

not have explicit strategies for it on our trees. To satisfy (1.2), we �x a distinct x

whenever this requirement is assigned to a node �

k

2 T

k

.

The basic module for satisfying (1.2) (for k = 0) is just the Friedberg-Mu�cnik

argument, which we recast as follows in order to allow later generalizations: We

�rst �x a diagonalization witness x. The directing sentence is

(1.3) 9s8t � s(�

e

(A

b

;x)[s]#= 0 & A

b

� u(A

b

; e; x)[s] = A

b;t

� (u(A

b

; e; x)[s])):

(Formally, this is a �

2

-sentence; however, the inner universal quanti�er over stages

can be ignored by preserving the set A

b

once a computation has been found, so we

will treat (1.3) as a �

1

-sentence.)

We now de�ne �(A

c

;x) = 0 with some big use �(x). As long as the directing

sentence appears false (i.e., as long as no witness s has been found for (1.3)), we

are done. Once (1.3) appears true, we reset �(A

c

;x) = 1 (after enumerating �(x)

into A

c

) and try to preserve the truth of the directing sentence by restraining A

b

.

5

The basic module for k = 1 is now essentially an !-sequence of basic modules

for k = 0: The directing sentence will be

(1.4) 9

1

v9s8t � s(�

e

(A

b

; v; x)[t]#= 0);

which is equivalent to

(1.5) 8v9v

0

� v9s8t � s(�

e

(A

b

; v

0

; x)[t]#= 0):

(By the same remark as for (1.3), we can treat this as a �

2

-sentence.) We can now

split up (1.5) into directing subsentences by bounding the outermost quanti�er on v

by some v

0

, say. A substrategy working with this directing subsentence will perform

subaction by �rst de�ning �(A

c

;u; x) = 0 for all u � some u

0

, and later, when

the directing subsentence appears true if ever, resetting �(A

c

;u; x) = 1 for these

u. There are now two possibilities for satisfying this requirement. If (1.5) really

holds then every substrategy will eventually reset �(A

c

;u; x) = 1 for its values u;

otherwise, there will be some last substrategy (working with a su�ciently large v

0

)

that never �nds a pair of witnesses (v

0

; s) for its directing subsentence, and this

substrategy will de�ne �(A

c

;u; x) = 0 for almost all u.

The cases k > 1 are now treated similarly, using an inductive argument.

The second type of requirement which must be satis�ed ensures comparability of

kth jumps (for k > 0) if the smaller of the kth jumps is not to be the kth jump of 0

0

,

i.e. 0

(k+1)

. (We do not consider the case k = 0 here since it can be satis�ed by direct

coding. We treat the kth jump of 0

0

separately, in the third type of requirement

below, since we cannot restrain the set ;

0

, and so the complexity of the directing

sentence has to be computed di�erently.) The comparability requirements thus

ensure that if g

k

(b) � g

k

(c), then A

(k)

b

�

T

A

(k)

c

. Again using an iterated version of

Shoen�eld's Limit Lemma, we will build a functional � computable in A

c

whose

k-fold iterated limit equals A

(k)

b

. Thus we must ensure (1.1) and, for all e,

(1.6) lim

u

1

: : : lim

u

k

�(A

c

;u

1

; : : : ; u

k

; e) =

(

A

(k)

b

(e) if k is odd,

A

(k)

b

(e) if k is even.

The basic module for k = 1 has directing sentence e 2 A

0

b

, i.e.,

(1.7) 9s8t � s(�

e

(A

b

; e)[s]#);

which we may (again by preservation) treat as a �

1

-sentence. We now de�ne

�(A

c

;u; e) = 0 for larger and larger u until, if ever, (1.7) appears true, at which

time we start setting �(A

c

;u; e) = 1 for all subsequent u. The crucial point is that

if (1.7) later becomes false (due to injury) then, almost always, the number entering

A

b

will also enter A

c

and thus allow us to reset �(A

c

;u; e) from 1 back to 0. (We

call this feature automatic correction.)

The cases k > 1 are again handled by induction as for the incomparability

requirements.

The third type of requirement which must be satis�ed preserves comparability

of kth jumps if the smaller of the kth jumps is the kth jump of 0

0

, i.e. 0

(k+1)

. These

6

highness requirements ensure that if g

k

(1) � g

k

(c), then ;

(k+1)

�

T

A

(k)

c

. As for the

second type of requirement, we thus must satisfy (1.1) and, for all e,

(1.8) lim

u

1

: : : lim

u

k

�(A

c

;u

1

; : : : ; u

k

; e) =

(

;

(k+1)

(e) if k is even,

;

(k+1)

(e) if k is odd,

The basic module for satisfying this requirement is the same for incomparability

requirements, except that we now do not have the ability to preserve computations

relative to A

b

= ;

0

; so we lose the ability to preserve computations, and (1.7), for

example, has to be treated as a �

2

-sentence.

We de�ne the dimension of a requirement as the quanti�er-complexity of its

directing sentence (modulo preservability as mentioned above). So incomparability

and highness requirements have dimension k+ 1 while comparability requirements

have dimension k.

Our construction takes place on a �nite number of trees of strategies, which we

de�ne by setting

T

0

= f0;1g

<!

; and(1.9)

T

k+1

= f� 2 (T

k

)

<!

j 8i; j < lh(�)(i < j ! �(i) � �(j))g:(1.10)

The intuition is the following: On T

0

, a node can have outcome 0 (denoting that

the directing subsentence was found by the node to be false) and1 (denoting that

it was found to be true). On T

k+1

, the outcome �

k

2 T

k

of a node �

k+1

2 T

k+1

denotes that �

k

= (�

k

)

�

is a substrategy of the strategy �

k+1

and that the outcome

of �

k

also gives the \�nal" outcome of �

k+1

, namely, that either �

k

has found the

witness to the directing sentence of �

k+1

, or that �

k

is a node of minimal length

working for �

k+1

and that neither �

k

nor any of its extensions working for �

k+1

�nd

a witness for �

k+1

. (We denote by up(�

k

) = �

k+1

the fact that �

k

is a substrategy

of �

k+1

.)

We next de�ne a function � : T

k

! T

k+1

, denoting that a node �

k

2 T

k

guesses

that the true path (coding the correct outcomes) through T

k+1

extends the node

�(�

k

). The node �(�

k

) is de�ned by induction as follows: Given that �

k+1

� �(�

k

)

(where j�

k+1

j = n, say), we specify

(1.11) (�(�

k

))(n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�

k

if (�

k

)

�

�nds a witness for �

k+1

and

�

k

� �

k

codes this outcome,

�

k

if �

k

is the least �

k+1

-substrategy � �

k

,

but none �nds a witness,

" if there is no substrategy � �

k

working for �

k+1

.

Once the third clause of (1.11) applies, the de�nition of the node �(�

k

) is complete.

The �-function naturally extends to a function � : T

k

! T

k+1

on in�nite paths.

(We will denote by �

k

the true path of the construction on T

k

, which will compute

the outcome of each node along it correctly according to the truth of the directing

sentences. The true path �

0

of T

0

will be computable, while the paths �

k+1

=

�(�

k

) will be computable in ;

(k+1)

.)

7

We will always maintain the condition

(1.12) up(�

k

) � �(�

k

);

i.e., any substrategy on T

k

works for a node on T

k+1

which it believes to lie along

the true path. This is part of our condition of consistency on the way we determine

up(�

k

). We omit the formal de�nition of this notion; besides (1.12), consistency

requires essentially that we have not yet found a witness for up(�

k

) along �

k

; and

that up(�

k

) not be restrained by a �(�

k

)-link [�

k+1

; �

k+1

], i.e., we do not want

�

k+1

� up(�

k

) � �

k+1

� �(�

k

);

where �

k+1

has a di�erent guess about the outcome of a node on a higher tree than

�

k+1

. (Links are a very general concept, unifying the notions of initialization, links

in the sense of Soare [So2, Ch. XIV], and several others into one. It is possible to

show that the absence of a link around up(�

k

) actually implies (1.12).)

The de�nition of our functionals � is now determined by a notion of control,

deciding which strategy is allowed to de�ne a functional at which arguments. The

de�nition is rather straightforward for the incomparability requirements, since each

strategy at the top level will work with a distinct diagonalization witness. For

the comparability and highness requirements, however, we have, even at the top

level, many incomparable strategies, all competing to de�ne the same functional

according to their (possibly con
icting) guesses about the truth of their directing

sentences (as well as the e�ect of other strategies). The notion of control alone is

not able to handle these con
icts on T

k�1

, i.e. one level below the dimension of

the requirement. Instead, we introduce the notion of implication chain to resolve

these con
icts.

We illustrate the implication chain machinery in the following example. Suppose

that we have �

k�1

� �̂

k�1

� �

k�1

2 [T

k�1

] such that �

k�1

and �̂

k�1

are trying to

de�ne the same functional on possibly the same argument. A problem will occur if

there is no way to determine which of �

k�1

and �̂

k�1

is derived from nodes along

the true paths for the construction (although �̂

k�1

seems to have this property

based on the current approximation to the true paths), and �

k�1

and �̂

k�1

wish to

make de�nitions with di�erent values. We then delay this de�nition and investigate

the process of returning �

k�1

and its antiderivatives to a later approximation to

the true paths. There will be a minimum set of nodes of the top tree whose

outcomes will have to be (forcibly) switched by switching the outcomes of some of

their derivatives, regardless of the truth of their directing sentences. We determine

whether such switches would injure the oracle set for any axioms we would currently

declare, if we were to declare axioms. If the answer is yes (the non-amenable case),

then it is safe to declare axioms; if �

k�1

returns to the true path, these axioms will

not re
ect computation from the �nal oracle, so �

k�1

will have the ability to declare

new axioms. Otherwise (the amenable case), we start building an implication chain

to resolve the con
icts. We �rst go through the process of returning �

k�1

to the

true path without any functional de�nitions, and determining an outcome for the

new derivative of either �

k�1

or up(�

k�1

) obtained in this manner. If the outcome

di�ers from that for �

k�1

, then we will have resolved our con
ict on the new path,

8

and can proceed to de�ne axioms. Otherwise, we will have replicated our starting

situation on T

k�2

, and can now repeat the procedure described above. We continue

until we either resolve the con
ict by changing the outcome of one of the nodes,

or reach T

0

. The process is arranged to preserve implications between directing

sentences in such a way that the outcomes are contradictory (i.e., one node claims

to have found a witness below a certain bound while the other claims there is none

below a higher bound). Once we reach T

0

, this contradiction cannot occur (as the

outcomes are now computable and we will have an implication between directing

sentences), so the con
ict can be resolved by changing the outcome of one of the

nodes. Thus the construction must also validate �̂

0

, resolving the con
ict.

In using the implication chain machinery, there is a need to preserve implications

between directing sentences, level-by-level, while preventing uncorrectable axioms

from being declared. The machinery which ensures that this can be achieved is

complex and delicate.

As can be seen from the above very rough description, there will be many nodes

on our trees, even along the true path, which are not allowed to act, or determine

their outcomes, according to the truth of their directing sentences. In the above,

this can happen in two ways: The node may be restrained by a link, or it may be

involved in bringing another node back on the truth path as part of the implication

chain machinery. We need to verify that enough critical nodes remain (i.e., nodes

which are allowed to act according to the truth of their directing sentence) so that

we can argue that the substrategies of a strategy work together to ensure their

strategy's success.

2. The General Framework and the Framework Theorem. In Section 1, we

illustrated some basic features of the framework, and the properties which need to

be veri�ed to ensure that all requirements in a given construction are satis�ed. The

example given in the present paper indicates that such a veri�cation can still be very

complicated | in fact, it is much lengthier than the development of the necessary

lemmas about the whole framework. However, the notions used for the particular

example, namely, link, consistency, control, implication chains, and critical nodes,

seem to be applicable to many constructions, although some modi�cations to their

exact de�nitions may be necessary. Thus we envision a modular approach to priority

arguments. In addition to the properties which are universally required, one can

axiomatize notions such as control and implication chains, and the development

of their properties will follow from this axiomatization. For other proofs in which

these notions are useful, we will merely have to verify that these axioms hold, and

then will have available the properties spelled out by the lemmas which follow from

the axioms. In this way, we can avoid having to prove the same facts in di�erent

situations. Instead, we can appeal to a Framework Theorem, which will state that if

certain properties of the above notions are satis�ed then so are all the requirements.

We will show how to use the Framework Theorem to prove a number of structure

theorems in [LL2].

Another feature of the iterated trees of strategies approach is that the description

of the basic module used to satisfy a requirement is a �nite tree rather than a
ow

chart. This makes the analysis easier, and certainly simpler to describe. The loops

which enter into the
ow chart description are absorbed into the properties we

9

require of our decompositions of directing sentences and action as we pass from

tree to tree.

The usefulness of the iterated trees of strategies increases with the level of com-

plexity of the priority argument. At the lower levels, the combinatorial facts proved

within this framework are relatively simple, and their proofs are shorter than the

characterization of the decomposition from tree to tree. As the combinatorial in-

teractions become more complicated, the decomposition becomes a smaller part of

the proof. The framework is especially useful when there are requirements of the

same nature at several levels which can be handled uniformly, or the level of the

argument is too high to be easily visualized in one step. (An advantage of the

framework in the latter case is that its presentation is as close as possible to the

standard presentation, if an inductive component is to be introduced.) In [LLW],

we used the framework to prove a new theorem, the existence of a minimal pair of

enumerable degrees whose jumps form a minimal pair over 0

0

. This theorem can

probably be generalized to carry the simultaneity of the minimal pairs through all

�nite levels, and perhaps to decide the existential theory of R when a relation sym-

bol for meet is added to the language of Section 1. While the two-level proof could

have been carried out without the framework, the framework would be a natural

way to obtain a proof for in�nitely many levels. Many results of this nature should

be accessible through the use of iterated trees of strategies.

References

[A1] C.J. Ash, Stability of recursive structures in arithmetical degrees, Ann. Pure and Applied

Logic 32 (1986), 113-135.

[A2] , Labelling systems and r.e. structures, Ann. Pure and Applied Logic 47 (1990),

99-119.

[Co1] S.B. Cooper, The jump is de�nable in the structure of the degrees of unsolvability, Bull.

AMS (New Series) 23 (1990), 151-158.

[Co2] , Rigidity and de�nability in the noncomputable universe, Proceedings of the Inter-

national Congress for Logic, Methodology and the Philosophy of Science (Uppsala, 1991)

(D. Prawitz and D. Westerst�ahl, eds.), North-Holland Publishing Co., Amsterdam, New

York (to appear).

[F] R.M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability,

Proc. Natl. Acad. Sci. USA 43 (1957), 236-238.

[GS] M.J. Groszek and T.A. Slaman, Foundations of the Priority Method, I: Finite and in�nite

injury, (manuscript).

[KP] S.C. Kleene and E.L. Post, The upper semi-lattice of degrees of recursive unsolvability,

Ann. of Math. (2) 59 (1954), 379-407.

[Kn] J. Knight, A metatheorem for constructions by �nitely many workers, Jour. Symb. Logic

55 (1990), 787-804.

[Ko1] K. Kontostathis, Topological framework for non-priority, Zeitschr. f�ur Math. Logik und

Grund. der Math. 37 (1991), 495-500.

[Ko2] , Topological framework for �nite injury, Zeitschr. f�ur Math. Logik und Grund. der

Math. 38 (1992), 189-195.

[Ko3] , Topological framework for in�nite injury (to appear).

[La1] A.H. Lachlan, On some games which are relevant to the theory of recursively enumerable

sets, Ann. of Math. (2) 91 (1970), 291-310.

[La2] , The priority method for the construction of recursively enumerable sets, Cam-

bridge Summer School in Mathematical Logic (A.R.D. Mathias and H. Rogers, Jr., eds.),

Lecture Notes in Mathematics No. 337, Springer-Verlag, Berlin, Heidelberg, New York,

1973.

10

[La3] , A recursively enumerable degree which will not split over all lesser ones, Ann.

Math. Logic 9 (1975), 307-365.

[LL1] S. Lempp and M. Lerman, The decidability of the existential theory of the poset of recur-

sively enumerable degrees with jump relations (to appear).

[LL2] , Iterated trees of strategies and priority arguments, monograph (to appear).

[LLW] S. Lempp, M. Lerman, and F. Weber, Minimal pair constructions and iterated trees of

strategies, Logical Methods, In Honor of Anil Nerode's 60th Birthday (J. Crossley, J.

Remmel, R. Shore, M. Sweedler, eds.), Birkh�auser, Boston, Basel, Berlin, 1993, pp. 512-

554.

[Ma] D.A. Martin, Borel Determinacy, Ann. of Math. (2) 102 (1975), 363-371.

[M] A.A. Mu�cnik, On the unsolvability of the problem of reducibility in the theory of algorithms,

Dokl. Akad. Nauk SSSR, N.S. 108 (1956), 194-197. (Russian)

[P] E.L. Post, Recursively enumerable sets of positive integers and their decision problems,

Bull. AMS 50 (1944), 284-316.

[Sa1] G.E. Sacks, Degrees of Unsolvability, Ann. of Math. Studies No. 55, Princeton University

Press, Princeton, N.J., 1963.

[Sa2] , Recursive enumerability and the jump operator, Trans. AMS 108 (1963), 223-239.

[Sf1] J.R. Shoen�eld, Undecidable and creative theories, Fund. Math. 49 (1961), 171-179.

[Sf2] , Non-bounding constructions, Ann. Pure and Applied Logic 50 (1990), 191-205.

[Sh] R.A. Shore, On homogeneity and de�nability in the �rst-order theory of the Turing degrees,

Jour. Symb. Logic 47 (1982), 8-16.

[SW] T.A. Slaman and H. Woodin, De�nability in Degree Structures (to appear).

[So] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic,

Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[Sol] R.M. Solovay, Degrees of models of true arithmetic (preliminary version, unpublished)

(1984).

[Y1] C.E.M. Yates, On the degrees of index sets, Trans. AMS 121 (1966), 309-328.

[Y2] , Banach-Mazur games, comeagre sets, and degrees of unsolvability, Math. Proc.

Cambridge Philosophical Soc. 79 (1976), 195-220.

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388;

Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009

E-mail address: lempp@math.wisc.edu; mlerman@math.uconn.edu

11

