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Abstract. We first sketch the construction of a minimal degree under Ziegler

reducibility (called ∗-reducibility by Ziegler), arising from his study of existen-

tially closed groups and their finitely generated subgroups. We then extend
this to show that every finite distributive lattice is an initial segment of the

Ziegler degrees and deduce the undecidability of the ∀∃∀-theory of the Ziegler

degrees (in the language of partial ordering).

1. Introduction

1.1. The Theorem. Ziegler [Zi80] defined what he called ∗-reducibility, and what
we call Ziegler reducibility, in his comprehensive study of the finitely generated
subgroups of existentially closed groups. This reducibility is a common refinement
of both Turing and enumeration reducibility. In particular, he showed that if a
finitely generated group H is a subgroup of an existentially closed group G and
the word problem of a finitely generated group H0 is Ziegler reducible to the word
problem of H, then H0 is (isomorphic to) a subgroup of G as well.

In this paper, we undertake what we believe to be the first systematic degree-
theoretic study of the induced degree structure D∗, the Ziegler degrees. We first
show that there is a minimal Ziegler degree and then extend this to show that every
finite distributive lattice is an initial segment of the Ziegler degrees. This allows
us to conclude the undecidability of the ∀∃∀-theory of the Ziegler degrees (in the
language of partial ordering).

Our formal results are as follows:

Theorem 1.1. (1) There is a minimal Ziegler degree.
(2) There is an initial segment of the Ziegler degree isomorphic to the 3-element

chain.
(3) Any finite distributive lattice is an initial segment of the Ziegler degrees.
(4) The ∀∃∀-theory of the Ziegler degrees (in the language of partial ordering)

is undecidable.

Our constructions for Theorem 1.1(1)-(3) follow the general outline of the cor-
responding embedding constructions for the Turing degrees, with some notable
differences due to special features of Ziegler reducibility. We will present these in
sections 2 and 4, with a brief sketch of how to embed the 3-element chain in sec-
tion 3 as a warmup for the full embedding construction. We recommend readers to
familiarize themselves with the Turing degree constructions before reading these.
Finally, in section 5, we will present the proof of Theorem 1.1(4).
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1.2. Preliminaries. We first remind readers of some relevant definitions.

Definition 1.2. We use the notation Ac for the complement ω \A of a set A ⊆ ω.

• A set A ⊆ ω is enumeration reducible to a set B ⊆ ω (written A ≤e B) if
there is a c.e. set V such that

A = {n ∈ ω | ∃ ⟨n, i⟩ ∈ V [Di ⊆ B]}.
Here Di is the finite set with canonical index i, namely,

i =
∑
x∈Di

2x.

• A set C ⊆ ω is 1-enumeration reducible to a set B ⊆ ω (written C ≤1
e B,

see Ziegler [Zi80, Definition II.3.11]) if there is a c.e. set W such that

C = {n ∈ ω | ∃ ⟨n, i, j⟩ ∈ W [Di ⊆ B ∧Dj ⊆ Bc ∧ |Dj | ≤ 1]}.
• A set A ⊆ ω is Ziegler reducible to a set B ⊆ ω (written A ≤∗ B, see Ziegler

[Zi80, Definition III.1.1]) if A ≤e B and Ac ≤1
e B.

• We say A ≤∗ B via ⟨e, i⟩ if A ≤e B via a c.e. set We, and Ac ≤1
e B via a

c.e. set Wi, and we write A = (Φe,Ψi)[B].

So, in words, A ≤e B holds if n ∈ A can be enumerated from a finite collection
of positive facts about B; and A ≤∗ B holds if n ∈ A can be enumerated from a
finite collection of positive facts about B, and n /∈ A can be enumerated from the
conjunction of a finite collection of positive facts about B and at most one negative
fact about B. Note that A ≤m B implies A ≤∗ B; and that A ≤∗ B implies both
A ≤T B and A ≤e B. (In fact, all these implications are strict.)

2. A minimal Ziegler degree

We will make use of uniform f-trees and strongly uniform f-trees as defined in Ler-
man [Le83, Chapter VI], based on earlier work by Lachlan [La68] and Hugill [Hu69]
as well as Lachlan [La71]. This will be critical in ensuring that we achieve ∗-
minimality rather than just Turing minimality in the “splitting” stage. (In the
next section, in Definition 3.2, we will have to weaken the notion of being strongly
uniform slightly to being “very uniform”.)

Definition 2.1. (1) An f-tree is a map T : 2<ω → 2<ω such that for all
π, ρ ∈ 2<ω, π ≺ ρ iff T (π) ≺ T (ρ) and such that π <lex ρ iff T (π) <lex T (ρ).

(2) A sub-f-tree of an f-tree T is an f-tree S with ran(S) ⊆ ran(T ).
(3) A uniform f-tree is an f-tree T : 2<ω → 2<ω satisfying:

• for all π, ρ ∈ 2<ω, |π| = |ρ| implies |T (π)| = |T (ρ)|; and
• for all n ∈ ω and k < 2, there is τnk such that for all ρ ∈ 2n, T (ρ̂k) =
T (ρ)̂τnk .

(4) A strongly uniform f-tree is a uniform f-tree T : 2<ω → 2<ω such that for
all n ∈ ω and k < 2, τn0 and τn1 (as defined above) differ on exactly one bit.

(5) A uniform f-tree T has no explicit ⟨e, i⟩-contradictions if, for every τ ∈
ran(T ) and x ∈ ω, it is not the case that Φe[τ ](x) = 1 and Ψi[τ ](x) = 1
(i.e., x is not enumerated into both the final set and its complement).

(6) τ0 and τ1 witness that T ⟨e, i⟩-splits at σ if τ0, τ1, σ ∈ ran(T ); τ0, τ1 ≻ σ;
and

x /∈ (Φe,Ψi)[τ0] and x ∈ (Φe,Ψi)[τ1].
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(7) A uniform f-tree T is ⟨e, i⟩-splitting if, for every ρ ∈ dom(T ), T (ρ̂0) and
T (ρ̂1) witness that T (ρ) ⟨e, i⟩-splits.

Observe that if τ0, τ1 witness that T (ρ) ⟨e, i⟩-splits (and has no explicit ⟨e, i⟩-
contradictions), then we can find τ ′0, τ

′
1 that differ only on one bit and witness that

T (ρ) ⟨e, i⟩-splits. This is because the negative part Ψi of a Ziegler operator only
depends on one bit of negative information. So, with one exception, we can move
all the segments of τ0 and τ1 to the right to obtain τ ′0, τ

′
1. By our definition of

strongly uniform f-tree, if τ ′0, τ
′
1 differ only on one segment then they differ only

in one bit. Furthermore, observe that we could not have extended the definition
of explicit ⟨e, i⟩-contradictions to both computations giving 0 since that cannot be
determined by finite strings.

We will make use of the following lemma, whose proof is modeled on [Le83,
Theorem V.2.7], which guarantees that if T is a computable f-tree which has no
cone without ⟨e, i⟩-splittings or explicit ⟨e, i⟩-contradictions, then we can find a
computable sub-f-tree which is ⟨e, i⟩-splitting.

Lemma 2.2. Let T be a computable strongly uniform f-tree, and let e, i ∈ ω.
If T has no explicit ⟨e, i⟩-contradictions and for every σ ∈ ran(T ), there are τ0,
τ1 ∈ ran(T ) which witness that σ ⟨e, i⟩-splits, then there is a computable strongly
uniform ⟨e, i⟩-splitting sub-f-tree S of T .

Proof. We proceed by induction on n. Set S(⟨⟩) = T (⟨⟩). For n > 0, let τ0 and τ1
witness that T ⟨e, i⟩-splits at S(0n−1). As observed above, we may assume that τ0
and τ1 differ only on one bit. Suppose that for k < 2, we have τk = S(0n−1)̂ρk.
Then, for each π ∈ 2n−1 and k < 2, we define S(π̂k) = S(π)̂ρk.

We now verify that S is indeed a computable ⟨e, i⟩-splitting strongly uniform f-
tree. Clearly, S is a computable strongly uniform f-tree. Suppose that n is minimal
such that for some ρ ∈ 2n, S(ρ̂0) and S(ρ̂1) do not witness that S(ρ) ⟨e, i⟩-
splits. Recall, however, by construction, that S(0n̂0) and S(0n̂1) do witness
that S(0n) ⟨e, i⟩-splits, say, with witness argument x, so x /∈ (Φe,Ψi)[S(0n̂0)] and
x ∈ (Φe,Ψi)[S(0n̂1)].

Suppose first, for a contradiction, that the computation x /∈ (Φe,Ψi)[S(0n̂0)]
uses a negative bit in S(0n̂0) of length < |S(0n)|: Then x ∈ Ψi[S(0n̂1)], but also
x ∈ Φe[S(0n̂1)], contradicting there not being any explicit ⟨e, i⟩-contradictions.

So the computation x /∈ (Φe,Ψi)[S(0n̂0)] uses at most a negative bit in S(0n̂0),
which is of length ≥ |S(0n)|. But then, by the monotonicity of both Φe and Ψi

and the strong uniformity of T , we have x /∈ (Φe,Ψi)[ρ̂0] and x ∈ (Φe,Ψi)[ρ̂1]
as desired. □

We can now prove the first part of our main theorem, the existence of a minimal
Ziegler degree:

Proof of Theorem 1.1(1). The proof closely follows the classical proof of the exis-
tence of a minimal degree in the Turing degrees. At stage 0, let T0 be the identity
f-tree.

At odd stages s+ 1 = 2e+ 1, the requirements for A >∗ ∅ are handled as usual
by going to a full sub-f-tree in order to ensure that A ̸= φe for all e. (Recall that
A ≡∗ ∅ is equivalent to A ≡T ∅.) More precisely, we set Ts+1(ρ) = Ts(k̂ρ) for some
k < 2 and all ρ ∈ 2<ω, where φe and Ts(k) disagree. (Notice that this preserves
strong uniformity.)
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At even stages s = 2 ⟨e, i⟩+2, we satisfy the requirement that if (Φe,Ψi)[A] is a
valid computation, then either it ∗-computes A or is computable.

Case 1: There is σ ∈ ran(Ts) such that there is x ∈ ω with x ∈ Φe[σ] and
x ∈ Ψi[σ]. In this case, go to the full sub-f-tree above σ. More precisely, let
π ∈ 2<ω with Ts(π) = σ and set Ts+1(ρ) = Ts(π̂ρ) for all ρ ∈ 2<ω. (Notice
that this preserves strong uniformity.) This ensures that (Φe,Ψi)[A] is not a valid
computation for any branch A on Ts+1.

Case 2: Case 1 does not hold and there is σ ∈ ran(Ts) with no τ0 and τ1
extending σ ∈ ran(T ) which witness ⟨e, i⟩-splitting. Let Ts+1 be the full sub-f-tree
above σ. This will ensure that if (Φi,Ψj)[A] is a valid computation, then the result
is computable.

Case 3: Neither Case 1 nor Case 2 holds. Then for every σ ∈ ran(Ts), there
are τ0, τ1 ≻ σ in ran(Ts) such that τ0 and τ1 are incomparable and witness an
⟨e, i⟩-splitting. Define Ts+1 to be the computable, strongly uniform ⟨e, i⟩-splitting
sub-f-tree of T as given by Lemma 2.2.

Note that by the odd steps, lims |Ts(⟨⟩)| = ∞, and clearly the Ts form a de-
scending sequence of f-trees, so we can define A =

⋃
s Ts(⟨⟩). We will show that A

has minimal Ziegler degree. The same argument as for the Turing degrees shows
that A ̸≡∗ ∅. We now show that, for every e and i, (Φe,Ψi)[A] satisfies one of the
following, by our action at stage s = 2 ⟨e, i⟩+ 2 of the construction:

• (Φi,Ψj)[A] is not a valid computation, or
• (Φi,Ψj)[A] is computable, or
• (Φi,Ψj)[A] ≥∗ A.

In Case 1 of Stage s, the computation (Φi,Ψj)[A] does not ∗-compute any set
since there is some x computed to be both in it and not in it.

In Case 2, if (Φe,Ψi)[A] computes a set B, then B ≡T ∅ and thus B ≡∗ ∅ (unless
there is x which is neither computed to be in the set nor its complement; however,
in that case, (Φe,Ψi)[A] is not a valid computation). To see this, note that to
check if x ∈ B, find σ ∈ ran(Ts+1) with (Φe,Ψi)[σ](x) defined (which must exist
since (Φe,Ψi)[A](x) is defined). If there were τ ∈ ran(Ts+1) with (Φe,Ψi)[σ](x) ̸=
(Φe,Ψi)[τ ](x), this would contradict the hypothesis of Case 2; thus (Φe,Ψi)[σ](x) =
(Φe,Ψi)[A](x).

Finally, in Case 3, if the pair (Φe,Ψi) does ∗-compute a set B, say, then we need
to show that A ≤∗ B. Given x ∈ ω, we first fix k ∈ ω with |Ts+1(0

k)| ≤ x <
|Ts+1(0

k+1)|. (If x < |Ts+1(⟨⟩)|, then A(x) = Ts+1(⟨⟩)(x) is outright computable.)
We first verify that A ≤e B. Namely, x ∈ A iff(
Ts+1(0

k1)(x) = Ts+1(0
k+1)(x) = 1

)
∨

∃y ∈ B ∃u∃v ∃w
(
⟨y, u⟩ ∈ We ∧Du ⊆ T (0k1) ∧

⟨y, v, w⟩ ∈ Wi ∧Dv ⊆ T (0k+1) ∧ |Dw| ≤ 1 ∧

[Dw ̸= ∅ → max(Dw) < |T (0k+1)|] ∧Dw ∩ T (0k+1) = ∅
)
.

In words, x ∈ A if either Ts+1(σ)(x) = 1 for all σ for which Ts+1(σ)(x) is defined;
or if x is at the “splitting level” where Ts+1(0

k+1) and Ts+1(0
k1) witness the ⟨e, i⟩-

splitting with witness y, enumerating y into the complement of the computation
and into the computation, respectively, and y ∈ B.
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Furthermore, we verify that Ac ≤1
e B: Namely, x ∈ Ac iff(

Ts+1(0
k1)(n) = Ts+1(0

k+1)(n) = 0
)
∨

∃y /∈ B ∃u∃v ∃w
(
⟨y, u⟩ ∈ We ∧Du ⊆ T (0k1) ∧

⟨y, v, w⟩ ∈ Wi ∧Dv ⊆ T (0k+1) ∧ |Dw| ≤ 1 ∧

[Dw ̸= ∅ → max(Dw) < |T (0k+1)|] ∧Dw ∩ T (0k+1) = ∅
)
.

In words, x ∈ Ac if either Ts+1(σ)(x) = 0 for all σ for which Ts+1(σ)(x) is defined;
or if x is at the “splitting level” where Ts+1(0

k+1) and Ts+1(0
k1) witness the ⟨e, i⟩-

splitting with witness y, enumerating y into the complement of the computation
and into the computation, respectively, and y /∈ B. □

Remark 2.3. As Downey has pointed out, the set obtained here is also of minimal
m-degree.

3. The 3-element chain

As a warmup for the next section, we now modify the above construction to
build a 3-element chain as an initial segment in the Ziegler degrees. The idea of
the construction, which for the Turing degrees can be found in Odifreddi [Od89,
Chapter V.6], is to build a set A such that the even part of A has minimal degree,
and such that, for every valid computation (Φe,Ψi)[A], the resulting set is either
computable, ∗-equivalent to the even part of A, or ∗-computes A. (Odifreddi uses
the odd part instead of the even part in his presentation; but to be compatible with
the next section, we switch the even and odd parts.) So the even part of A will
represent the middle element in the 3-element chain.

Definition 3.1. For A ⊆ ω,

Even(A) = {x | 2x ∈ A}.

As in the previous section, the embedding result for the 3-element chain will
be proved by building a decreasing sequence of computable uniform f-trees. We
first prove the necessary lemmas which establish that it is possible to build such
a sequence. However, we will have to give up strong uniformity, so showing that
(Φe,Ψi)[A] is ∗-computable from another set will be more complicated as for the
negative information, we are allowed only one negative query; we will get around
this difficult by imposing the restriction that any disagreements on a segment have
to be the same, as stated in the following definition.

Definition 3.2. Recalling the notation from Definition 2.1, we define a very uni-
form f-tree to be a uniform f-tree T : 2<ω → 2<ω satisfying that for all n ∈ ω, k < 2,
and x < |τnk |, if τn0 (x) ̸= τn1 (x) then τn0 (x) < τn1 (x). (Thus any disagreements on
any fixed τnk “agree” with each other.)

Lemma 3.3. Let e ∈ ω and let T be a computable very uniform f-tree such that for
some σ, Even(T (σ̂0)) ̸= Even(T (σ̂1)). Then there is a computable very uniform
sub-f-tree S of T such that for every A on T ,

Even(A) ̸= φe.

Proof. The proof is the same as for Proposition V.6.11 from [Od89]. □
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Lemma 3.4. Let e, i ∈ ω and let T be a computable very uniform f-tree such that
for some σ ∈ 2<ω, Even(T (σ̂0)) = Even(T (σ̂1)). Then there is a computable
very uniform sub-f-tree S ⊆ T such that for every A on S, (Φe,Ψi)[Even(A)] ̸= A
(or (Φe,Ψi)[Even(A)] is not even a valid computation).

Proof. The proof is essentially the same as for Proposition V.6.12 from [Od89]. □

Put together, these lemmas suggest that we will be interested in f-trees which
have cofinally many levels which disagree on their even parts and cofinally many
levels which agree on their even parts. The simplest way to ensure this is to require
that the levels of T alternate between agreeing and disagreeing on their even parts.

Definition 3.5. A very uniform f-tree T is alternating if, for every ρ ∈ 2<ω,

• if |ρ| is even then Even(T (ρ̂0)) ̸= Even(T (ρ̂1)); and
• if |ρ| is odd then Even(T (ρ̂0)) = Even(T (ρ̂1)).

Lemma 3.6. Let e, i ∈ ω and let T be a computable very uniform f-tree such that
every ⟨e, i⟩-splitting is witnessed only by sequences which have different even parts.
Then for every A on T such that (Φe,Ψi)[A] is a valid computation,

(Φe,Ψi)[A] ≤∗ Even(A).

Proof. Let B = (Φe,Ψi)[A]. We first show that B ≤e Even(A). This follows since
by our assumption on ⟨e, i⟩-splittings being witnessed only by sequences which have
different even parts,

x ∈ B ⇐⇒ ∃u (⟨x, u⟩ ∈ We ∧ Even(Du) ⊆ Even(A)) .

Similarly, Bc ≤1
e Even(A) because, again by our assumption on ⟨e, i⟩-splittings

being witnessed only by sequences which have different even parts,

x /∈ B ⇐⇒ ∃v, w
(
⟨x, v, w⟩ ∈ Wi ∧

Even(Dv) ⊆ Even(A) ∧ |Dw| ≤ 1 ∧ Even(Dw) ∩ Even(A) = ∅
)
.

□

Lemma 3.7. Let e, i ∈ ω and let T be a computable very uniform f-tree such that
for every ρ ∈ 2<ω, if Even(T (ρ̂0)) ̸= Even(T (ρ̂1)), then T (ρ̂0) and T (ρ̂1)
⟨e, i⟩-split. Then for every A on T for which (Φe,Ψi)[A] is a valid computation,

Even(A) ≤∗ (Φe,Ψi)[A].

Proof. Let B = (Φe,Ψi)[A]. We first check that Even(A) ≤e B. Fix x ∈ ω. If
there is k < 2 such that every σ ∈ ran(T ) of minimal length > 2x has σ(2x) = k,
then Even(A)(x) = k. Otherwise, there are σ, τ ∈ ran(T ) (of minimal length) such
that σ(2x) ̸= τ(2x). Since T is very uniform and σ, τ were chosen of minimal
length, we may in addition assume that there is ρ ∈ 2<ω such that T (ρ̂0) = σ
and T (ρ̂1) = τ . Thus, by assumption on T , σ and τ ⟨e, i⟩-split. By the very
uniformity of T , we have σ(2x) = 0. Search for y witnessing this splitting. Since
σ(2x) = 0, it must be that (Φe,Ψi)[σ](y) = 0. Then x ∈ Even(A) iff B(y) = 1.

Similarly, if there are σ, τ ∈ ran(T ) (of minimal length) such that σ(2x) ̸= τ(2x),
then under the same hypotheses as in the previous paragraph, we have x /∈ Even(A)
iff B(y) = 0; otherwise A(2x) is computable. So (Even(A))c ≤1

e B. □
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Thus, by the previous two lemmas, if A is on a computable very uniform f-tree T
such that for all σ ∈ 2<ω, T (σ̂0) and T (σ̂1) ⟨e, i⟩-split iff they disagree on their
even parts, and if (Φe,Ψi)[A] is a valid computation, then Even(A) ≡∗ (Φe,Ψi)[A].

Recall that T being an alternating very uniform f-tree implies that the levels
of T alternate between agreement and disagreement on their even parts. The next
two lemmas ensure that we can build computable alternating ⟨e, i⟩-splitting very
uniform f-trees.

Lemma 3.8. Let e, i ∈ ω and let T be a computable very uniform alternating
f-tree such that for some ρ ∈ 2<ω, for every σ ⪰ T (ρ) in the range of T , there
is an ⟨e, i⟩-splitting above σ, and for each such ⟨e, i⟩-splitting above σ, the even
parts disagree. If there are no explicit ⟨e, i⟩-contradictions on T , then there is a
computable very uniform alternating sub-f-tree S of T such that for all π ∈ 2<ω

with |π| even, S(π̂0) and S(π̂1) ⟨e, i⟩-split.
Proof. The proof is similar to the construction in the proof of Lemma 2.2: Assume,
without loss of generality, that |ρ| is even, and start with S(⟨⟩) = T (ρ). Then
for π ∈ 2<ω of even length, let S(π̂0) and S(π̂1) be an ⟨e, i⟩-splitting of S(π)
on T such that both have odd length, proceeding as in the proof of Lemma 2.2
to ensure that S remains very uniform; for π ∈ 2<ω of odd length, suppose that
S(π) = T (π′), and let S(π̂k) = T (π′̂k) for k < 2. So for π ∈ 2<ω of odd length,
we are guaranteed disagreement on the even parts by hypothesis, and for π ∈ 2<ω

of even positive length, the fact that T is computable very uniform alternating
helps ensure that so is S. □

Finally, we need to prove the following lemma which takes care of the remaining
case:

Lemma 3.9. Let e, i ∈ ω and let T be a computable very uniform alternating f-tree
such that for every σ ∈ ran(T ), there is an ⟨e, i⟩-splitting above σ on which the
even parts agree. If there are no explicit ⟨e, i⟩-contradictions on T , then there is a
computable very uniform alternating sub-f-tree S of T such that for all π ∈ 2<ω,
S(π̂0) and S(π̂1) ⟨e, i⟩-split.
Proof. The construction of S is again similar to that in the proof of Lemma 2.2,
except that for π ∈ 2<ω of even length, we may need to extend S(π̂0) and S(π̂1)
more to create even disagreements. □

We are now ready to put the pieces together:

Proof of Theorem 1.1(2). We build a decreasing sequence of computable very uni-
form alternating f-trees Ts, and A will be the unique branch on all of them.

We need to ensure the following:

(1) Even(A) is not computable;
(2) A ≰∗ Even(A); and
(3) for e, i ∈ ω, one of the following holds:

(a) (Φe,Ψi)[A] is not a valid computation;
(b) (Φe,Ψi)[A] is computable;
(c) (Φe,Ψi)[A] ≡∗ Even(A); or
(d) (Φe,Ψi)[A] ≥∗ A.
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Construction:
Let T0 : 2<ω → 2<ω be the identity f-tree, noting that this f-tree is computable,

very uniform and alternating.
Let s = 3e + 1. Set Ts+1 to be the computable sub-f-tree of Ts provided by

Lemma 3.3. Notice that this sub-f-tree is found as a full sub-f-tree of Ts above
some ρ and hence can be made computable, very uniform and alternating.

Let s = 3 ⟨e, i⟩+ 2. Set Ts+1 to be the computable sub-f-tree of Ts provided by
Lemma 3.4. As above, Ts+1 can be made computable, very uniform and alternating.

Let s = 3 ⟨e, i⟩ + 3. If there are σ ∈ ran(Ts) and x ∈ ω with Φe[σ](x) = 1 =
Ψi[σ](x), then set Ts+1 to be the full sub-f-tree of Ts above ρ (chosen of even length).
Again, Ts+1 is computable, very uniform and alternating.

Else, if there is σ ∈ ran(Ts) with no ⟨e, i⟩-splitting above it, set Ts+1 to be the
full sub-f-tree of Ts above σ. As above, Ts+1 can be made computable, very uniform
and alternating.

If neither of the above cases hold, then, for every σ ∈ ran(Ts), there is an ⟨e, i⟩-
splitting on T . If there is ρ ∈ 2<ω such that for every σ ⪰ T (ρ) in the range of T
and for each ⟨e, i⟩-splitting above σ, the even parts disagree, then define Ts+1 as
given by Lemma 3.8.

Otherwise, for every σ ∈ ran(Ts), there is an ⟨e, i⟩-splitting above σ which agrees
on the evens. Then define Ts+1 as given by Lema 3.9.

Now let A be the unique branch in all Ts.
Verification:
By Lemma 3.3, the stages s + 1 ≡ 1 mod 3 ensure that Even(A) is not com-

putable.
By Lemma 3.4, the stages s+ 1 ≡ 2 mod 3 ensure that A ≰∗ Even(A).
Finally, the stages s + 1 ≡ 0 mod 3 ensure that one of the disjuncts in item (3)

above holds, using Lemmas 3.6-3.9.
This concludes the proof sketch for the 3-element chain. □

4. Finite distributive lattices

This section introduces the modifications to the previous section to show Theo-
rem 1.1(3), namely, that any finite distributive lattice embeds into D∗ as an initial
segment. This will allow us to prove in the next section as a corollary the undecid-
ability of the theory Th(D∗), and indeed of its ∀∃∀-fragment.

A key ingredient of our argument is Birkhoff’s representation theorem for finite
distributive lattices.

Theorem 4.1 (Birkhoff’s Representation Theorem [Bi37]). Every finite distribu-
tive lattice L is isomorphic to the lattice of downward-closed subsets of the partial
order of nonzero join-irreducible elements of L (under set inclusion).

For the remainder of this section, we fix a finite distributive lattice L and use
the following

Notation 4.2. Identify the (nonzero) join-irreducible elements of L with the set
{0, . . . n − 1}. Write D(L) for the subsets of {0, . . . , n − 1} corresponding to the
Birkhoff representation of L, i.e., D(L) is the set of downwards closed subsets of
{0, . . . n− 1}. Denote the lattice order on D(L) by <L, and define the set

Sm = {m′ < n | m′ ≱L m}.
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Intuitively, the set Sm ∈ D(L) corresponds to the join of all elements m′ ≱L m
in L (under the Birkhoff representation of L).

Definition 4.3. For m < n, let

Modmn (A) = {x ∈ A | x ≡ m mod n}.
Extend this to S ⊆ {0, . . . , n− 1} by

ModSn(A) =
⋃
m∈S

Modmn (A).

To link this definition to the previous section, note that for the 3-element chain,
we can use n = 2 and D(L) = {∅, {0}, {0, 1}}, where these sets represent the
bottom, middle and top element of the 3-element chain, respectively. Now “agreeing
on the even parts” corresponds to agreeing on the numbers 0 mod 2. Furthermore,
in this case, S1 = {0}, and S0 = ∅.

Theorem 1.1(3) will be proved by building a decreasing sequence of computable
very uniform alternating f-trees. The notion of “very uniform” will remain the same
as in Definition 3.2, but the notion of “alternating” has to be modified.

Definition 4.4. A very uniform f-tree T is alternating (for L) if, for every m < n
and for every ρ ∈ 2<ω, we have

|ρ| ≡ m mod n =⇒

ModSm
n (T (ρ̂0)) = ModSm

n (T (ρ̂1)) ∧Modmn (T (ρ̂0)) ̸= Modmn (T (ρ̂1)),
i.e., ρ̂0 and ρ̂1 agree on all numbers x ≡ m′ mod n for all m′ ∈ Sm but not on
all numbers x ≡ m mod n.

We first prove the necessary lemmas which establish that it is possible to build
such a sequence of f-trees. We start with a lemma that establishes that we can
diagonalize, generalizing the techniques of Lemmas 3.3 and 3.4.

Lemma 4.5. Let e, i ∈ ω, let m < n and let T be a computable very uniform
alternating f-tree. Then there is a computable very uniform alternating sub-f-tree S
of T such that if for every A on S, (Φe,Ψi)[ModSm

n (A)] is a valid computation,
then

Modmn (A) ̸= (Φe,Ψi)[ModSm
n (A)].

Proof. Fix k < 2 and ρ ∈ 2<ω such that m+ 1 + |ρ| is a multiple of n, and

Modmn (T (0m̂k)) ↾ (|T (0m+1)|+ 1) ̸=

(Φe,Ψi)[ModSm
n (T (0m̂k̂ρ))] ↾ (|T (0m+1)|+ 1) ↓ .

Note that such ρ and k must exist since (Φe,Ψi)[ModSm
n (A)] is a valid computation

for all A on T (and so is total), and since

(Φe,Ψi)[ModSm
n (0m+1̂ρ))] ↾ (|T (0m+1)|+ 1) =

(Φe,Ψi)[ModSm
n (0m̂1̂ρ))] ↾ (|T (0m+1)|+ 1),

using m /∈ Sm and by the definition of alternating f-tree, whereas

Modmn (T (0m+1)) ↾ (|T (0m+1)|+ 1) ̸= Modmn (T (0m̂1)) ↾ (|T (0m+1)|+ 1)

by the definition of alternating f-tree.
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Now define S to be the full sub-f-tree of T above T (0m̂k̂ρ). By our assump-
tions, this S is a computable very uniform alternating f-tree ensuring the lemma’s
claim. □

The next two lemmas specify conditions under which (Φe,Ψi)[A] and ModSn(A)
have the same Ziegler degree.

Lemma 4.6. Let e, i ∈ ω, let S ∈ D(L), and let T be a computable very uniform
alternating f-tree such that every ⟨e, i⟩-splitting is only witnessed by sequences which

have different ModSn-parts. Then, for every A on T such that (Φe,Ψi)[A] is a valid
computation,

(Φe,Ψi)[A] ≤∗ ModSn(A).

Proof. We first show that (Φe,Ψi)[A] ≤e ModSn(A). This follows since

x ∈ (Φe,Ψi)[A] ⇐⇒ ∃u
(
⟨x, u⟩ ∈ We ∧ModSn(Du) ⊆ ModSn(A)

)
.

Similarly, ((Φe,Ψi)[A])c ≤1
e ModSn(A) because

x /∈ (Φe,Ψi)[A] ⇐⇒ ∃v, w
(
⟨x, v, w⟩ ∈ Wi ∧

ModSn(Dv) ⊆ ModSn(A) ∧ |Dw| ≤ 1 ∧ModSn(Dw) ∩ModSn(A) = ∅
)
.

□

Lemma 4.7. Let e, i ∈ ω, let S ∈ D(L), and let T be a computable very uniform
alternating f-tree with no explicit ⟨e, i⟩-contradictions such that for every ρ ∈ 2<ω,

if ModSn(T (ρ̂0)) ̸= ModSn(T (ρ̂1)), then they ⟨e, i⟩-split. Then, for every A on T
for which (Φe,Ψi)[A] is a valid computation,

ModSn(A) ≤∗ (Φe,Ψi)[A].

Proof. We first check that ModSn(A) ≤e (Φe,Ψi)[A]. Fix m ∈ S and consider
nx +m. If there is k < 2 and some ℓ such that every σ ∈ ran(T ) of length ℓ has

σ(nx +m) = k, then ModSn(A)(nx +m) = k. Otherwise, there are σ, τ ∈ ran(T )
such that σ(nx + m) = 0 < 1 = τ(nx + m). Since T is very uniform, we may in
addition assume that there is ρ ∈ 2<ω such that T (ρ̂0) = σ and T (ρ̂1) = τ . Thus,
by our assumption on T , σ and τ ⟨e, i⟩-split at T (ρ). Search for y witnessing this

splitting. Then (Φe,Ψi)[σ](y) = 0 and (Φe,Ψi)[τ ](y) = 1. Thus nx+m ∈ ModSn(A)
iff (Φe,Ψi)[A](y) = 1.

Under the same hypotheses as in the previous paragraph, we have nx + m /∈
ModSn(A) iff (Φe,Ψi)[A](y) = 0, so (ModSn(A))c ≤1

e (Φe,Ψi)[A]. □

Thus, by the previous two lemmas, if A is on a computable very uniform alter-
nating f-tree T such that T (ρ̂0) and T (ρ̂1) ⟨e, i⟩-split iff they disagree on their

ModSn-parts and such that (Φe,Ψi)[A] is a valid computation, then ModSn(A) ≡∗

(Φe,Ψi)[A].
The next lemma ensures that we can build computable very uniform alternating

f-trees witnessing such splittings.

Lemma 4.8. Let e, i ∈ ω and let T be a computable very uniform alternating f-tree
such that for some ρ ∈ 2<ω, for every σ ⪰ T (ρ) in the range of T , there is an
⟨e, i⟩-splitting above σ. Let

S0 = {m < n | ∃∞ m′ ≡n m [T ⟨e, i⟩-splits at level m′]},
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and let S be the downward closure of S0 in L. (In other words, S is the smallest
set in D(L) such that above any σ ⪰ T (ρ) there is an ⟨e, i⟩-splitting disagreeing on

their ModSn-parts.) If there are no explicit ⟨e, i⟩-contradictions on T , then there is
a computable very uniform alternating sub-f-tree S of T such that for all π ∈ 2<ω,
S(π̂0) and S(π̂1) ⟨e, i⟩-split iff ModSn S(π̂0) ̸= ModSn S(π̂1).

Notice that any ⟨e, i⟩-splitting above T (ρ) is witnessed by sequences of the form
T (π̂0), T (π̂1) by the discussion preceding Lemma 2.2.

Proof. The proof is similar to the construction in the proof of Lemma 3.8. We
build S by induction on ℓ. Set S(⟨⟩) = T (ρ).

Suppose we have already defined S(π) for all π of length m′ = nx +m; and so

we need to define S(π̂k) for all π ∈ 2m
′
and k < 2 such that

ModSm
n (S(π̂0)) = ModSm

n (S(π̂1)) ∧(4.1)

Modmn (S(π̂0)) ̸= Modmn (S(π̂1)) ∧(4.2) (
S(π̂0) and S(π̂1) ⟨e, i⟩-split ⇐⇒ ModSn S(π̂0) ̸= ModSn S(π̂1))(4.3)

to preserve S being an alternating f-tree and to satisfy the conditions of Lemmas 4.6
and 4.7.

We distinguish two cases, depending on whether S ⊆ Sm or not: If S ⊆ Sm, we
can find π′ with |π′| ≡n m such that T (π′̂0) and T (π′̂1) extend S(π) and don’t
⟨e, i⟩-split. Setting S(π̂0) and S(π̂1) to be these sequences, we satisfy (4.1)-(4.3).

Since S ⊆ Sm, ModSn S(π̂0) = ModSn S(π̂1).
On the other hand, suppose S ⊈ Sm. Let ℓ ∈ S\Sm. Then ℓ ≥L m, and hence,

since S is downward closed, m ∈ S. Let ℓ′ ≥L m be in S0. To build S(π̂0)
and S(π̂1), find an ⟨e, i⟩-splitting at some level equivalent to ℓ′ mod n. We then
further extend to the next level equivalent to m mod n to ensure disagreement on
the Modmn -part. Thus, we can satisfy (4.1)-(4.3). □

We now have all the pieces we need in order to establish the proof promised for
this section:

Proof of Theorem 1.1(3). We build a decreasing sequence of computable very uni-
form alternating f-trees Ts and let A be the unique branch on all of them.

We need to ensure the following:

(1) Modmn (A) ≰∗ ModSm
n (A) for every m < n; and

(2) For e, i ∈ ω, one of the following holds:
(a) (Φe,Ψi)[A] is not a valid computation, or

(b) (Φe,Ψi)[A] ≡∗ ModSn(A) for some S ∈ D(L).

Note here that (1) suffices to show that ModS(A) ≰∗ ModS
′

n (A) for all S, S′ ∈
D(L) with S ̸⊆ S′ since we can choose some m ∈ S − S′ and so have Modmn (A) ≰∗

ModSm
n (A) while also Modmn (A) ≤∗ ModSn(A) and ModS

′

n (A) ≤∗ ModSm
n (A).

We start with T0 : 2<ω → 2<ω as the full identity tree, which is certainly
computable, very uniform and alternating.

At stage s = 2(n · ⟨e, i⟩ +m) + 1, we meet (1) for the reduction (Φe,Ψi) using
Lemma 4.5: The S obtained from this lemma will be our next Ts+1 and clearly
meets the requirement.
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At stage s = 2 ⟨e, i⟩+2, we meet (2) for the reduction (Φe,Ψi) using Lemma 4.8:
Pick S ∈ D(L) maximal in D(L) with the condition stated in the lemma’s hypoth-
esis. Then the S obtained from this lemma with this S will be our next Ts+1 and
again clearly meets the requirement unless there are explicit ⟨e, i⟩-contradictions
on Ts, in which case we can go to a full sub-f-tree.

In either case, the resulting f-tree Ts+1 can be made computable, very uniform
and alternating so that we can proceed with our construction. Since lims |Ts(⟨⟩)| =
∞, there will be a unique branch A through all the Ts as desired.

This concludes the proof of Theorem 1.1(3). □

5. Undecidability

This section will sketch the proof of Theorem 1.1(4), that the ∀∃∀-theory of the
Ziegler degrees (in the language of partial ordering) is undecidable.

This follows by the same argument as for the many-one degrees and the Turing
degrees. (The original undecidability argument of the full theory of the Turing
degrees is due to Lachlan [La68] and uses that every finite distributive lattice is an
initial segment of the Turing degrees; the undecidability of the ∀∃∀-theory of the
Turing degrees was only established by Schmerl (published in Lerman [Le83, Corol-
lary Vii.4.6]) and uses that every finite lattice is an initial segment of the Turing
degrees. It was only later that Nies [Ni96] established the hereditary undecidability
of the ∀∃∀-theory of the finite distributive lattices [Ni96, Theorem 4.8] and used it
and his Transfer Lemma [Ni96, Lemma 3.1] to establish the undecidability of the
∀∃∀-theory of the many-one degrees that it became known that embedding only
the finite distributive lattices as initial segments would have sufficed to establish
the undecidability of the ∀∃∀-theory of the Turing degrees as well.)

The proof of the undecidability of the ∀∃∀-theory of the Ziegler degrees follows
exactly as Nies’s proof for the many-one degrees [Ni96, Theorem 4.8]: The finite
distributive lattices have a hereditarily undecidable ∀∃∀-theory and are by our
Theorem 1.1 Σ1-elementarily definable with parameters in the Ziegler degrees.

We note here that the c.e. Ziegler degrees are closed downward in the Ziegler de-
grees (since A ≤∗ B implies A ≤e B, and so B being c.e. implies A being c.e.). Thus
the undecidability result for the first-order theory of the c.e. Q-degrees (which coin-
cide with the c.e. Ziegler degrees) proved by Downey, LaForte and Nies [DLN98] also
yields the undecidability of the first-order theory of the Ziegler degrees. However,
this proof does not yield our sharper result on the undecidability of the ∀∃∀-theory
of the Ziegler degrees since their coding seems to be considerably more complicated
than ours.

6. Open questions

We conclude here with a couple of open questions related to the results above.
The first concerns whether our result on the undecidability of the Ziegler degrees
is tight.

Question 6.1. Is the ∀∃-quantifier theory of D∗ decidable?

While it is known that the ∀∃-theory of DT is decidable, the corresponding
question in the enumeration degrees is still open. Moreover, De embeds into D∗ via
the map that sends a set A to the uniform join of the set of B ≤e A, but it is not
known whether the image of this embedding is definable.
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Finally, we finish by stating what we currently consider probably the most in-
teresting open question related to the results above:

Question 6.2. Is there a finite closed ideal in the Ziegler degrees?

Recall here that the notion of a closed ideal in the Ziegler degrees was defined by
Ziegler [Zi80, Definition III.3.10] and, loosely speaking, corresponds to the notion of
a Scott ideal in the Turing degrees. Ziegler [Zi80, Theorem III.3.12(2)] showed that
the closed ideals correspond precisely to the collections of Ziegler degrees encoding
all finitely generated subgroups of a fixed existentially closed group. Thus a positive
answer to our question would yield an existentially closed group such that its finitely
generated subgroups have their word problems reside in only finitely many Ziegler
degrees.
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