
Interpolating d-r. e. and REA degrees between r.

e. degrees

Marat Arslanov

�

Kazan University, Kazan, Russia

Ste�en Lempp

y

University of Wisconsin, Madison WI 53706-1388 USA

Richard A. Shore

x

Cornell University, Ithaca NY 14853 USA

May 29, 1998

1. Introduction

This paper is a contribution to the investigation of the relationship between the

r. e. degrees (the complexity classes under Turing reducibility of sets which can

be e�ectively enumerated) and those of two important generalizations of recursive

(e�ective) enumerability. The �rst generalization starts with the characterization

of the r. e. sets as those sets A that can be e�ectively approximated with at most

one change in the approximation: We begin by guessing that x is not in A and we

may change our mind at most once to put x into A (when it is enumerated in A

in the usual de�nition of an r. e. set). The natural generalization of this property

(introduced by Putnam [1965] and Gold [1965]) is to allow the approximation to

change more often.

�

Partially supported by Russia Foundation of Fundamental Investigations Grant 93-011-

16004 and a Fulbright Fellowship held at Cornell University and the University of Wisconsin.

y

Partially supported by NSF Grant DMS-9100114.

x

Partially supported by NSF Grant DMS-9204308 and ARO through MSI, Cornell University,

DAAL-03-C-0027.

De�nition 1.1. A set A is n-r. e. if there is a recursive function f(x; s) such that

for every x

1. f(x; 0) = 0

2. lim

s

f(x; s) = A(x)

3. jfs : f(x; s) 6= f(x; s+ 1)gj � n.

So, in particular, the 1-r. e. sets are precisely the r. e. sets. The 2-r. e. sets are also

known as the d-r. e. sets as they are the di�erences of r. e. sets, i. e. the ones of

the form B �C with both B and C r. e. Similarly the n-r. e. sets are those given

by starting with r. e. sets and alternating the Boolean operations of di�erence and

union. These sets form a true hierarchy even in terms of degree: There are, for

each n > 0, (n + 1)-r. e. sets which are not of n-r. e. degree, i. e. not of the same

degree as any n-r. e. set (Cooper [1971]). This hierarchy can be carried into the

trans�nite (Ershov [1968 a,b], [1970]) to de�ne �-r. e. sets for recursive ordinals �

by associating the changes allowed in the recursive approximation with elements

of a recursive system of notations for �. Two remarkable facts here are �rst that

the !-r. e. sets are precisely those truth table reducible to the complete r. e. set

K and also those A for which there are recursive functions f; g with f as in the

above de�nition except that (3) becomes jfs : f(x; s) 6= f(x; s + 1)gj � g(n).

Second, if we �x any path through Kleene's O (i. e. any system of notations for

all the recursive ordinals) then the union of the classes of �-r. e. sets for all � in

this system is precisely the class of sets recursive in K, i. e. the �

0

2

sets (Ershov

[1970]). The appropriate de�nitions for the �-r. e. sets and proofs of all of these

results and more can be found in Epstein, Haas and Kramer [1981] which is a �ne

introduction to the �-r. e. degrees.

The second generalization of recursive enumerability that we want to consider

is the hierarchy of REA sets and operators introduced in Jockusch and Shore

[1984]. Here the motivating ideas were the jump operator and relative recursive

enumerability.

De�nition 1.2. We de�ne the sets REA in X by induction.

1. X is 0-REA in X.

2. If Y is n-REA in X and e 2 !, then Y �W

Y

e

is (n+ 1)-REA in X.

The n-REA sets are those which are n-REA in the empty set.

2

Once again, the 1-REA degrees are precisely the r. e. degrees; the hierarchy is

nondegenerate even in terms of degrees and it can be extended into the trans�nite

along notations for recursive ordinals. The !-REA in X sets, for example, are the

ones of the form

L

A

i

where A

0

= X and A

i

= A

i�1

�W

A

i�1

f(i)

for some recursive

function f . This generalization is strictly stronger than the �rst: every n-r. e.

degree is n-REA for each n but there is a 2-REA set recursive in K which is not

of n-r. e. degree for any n. (Indeed, given a �xed notation system for any recursive

ordinal �, there is a 2-REA set recursive in K which is not of �-r. e. degree.) (All

these results are in Jockusch and Shore [1984].)

There are a number of applications of REA operators to other questions in

degree theory in Jockusch and Shore [1984] but clearly the most striking is the

natural de�nition in the structure D (the Turing degrees of all sets with just the

relation of Turing reducibility) of the binary relation \c is arithmetic in a". For

example, c is arithmetic (i. e. c < 0

(n)

for some n < !) if and only if 9y > c8z(z_y

is not a minimal cover of z). (x is a minimal cover of z < x i� there is now strictly

between them. The relativization of this de�nition to the degrees above a de�nes

when a degree c � a is arithmetic in a. As an arbitrary c is arithmetic in a i�

c _ a is, we have the desired de�nition of \c is arithmetic in a".) Combining this

result with general de�nability arguments from Nerode and Shore [1979], [1980]

and Shore [1982] gives many corollaries on de�nability and automorphisms of D.

For example, every relation on degrees above 0

(!)

which is de�nable in second

order arithmetic is de�nable in D and every automorphisms of D is the identity

on every degree above 0

(!)

.

An even more remarkable application of these hierarchies is Cooper's natural

de�nitions of the binary relations \c is recursively enumerable in a" (Cooper

[1994]) and \c is the Turing jump of a" (Cooper [1990],[1993],[1995]). For example,

0

0

is the largest degree x such that :9a; b(x _ a is unsplittable over a avoiding

b). (We say that c is unsplittable over a avoiding b if c > a;b but there do not

exist c

0

; c

1

such that a < c

0

; c

1

< c, c = c

0

_ c

1

and b 6� c

0

; c

1

.) Once again

applying the results of Nerode and Shore [1980] and Shore [1982], these results

have immediate corollaries for de�nability and automorphisms strengthening the

ones above. For example, every relation on degrees above 0

000

de�nable in second

order arithmetic is de�nable in D and every automorphism of D is the identity on

degrees above 0

000

. (With some additional care (or by work of Slaman and Woodin

[1996]) one can replace 0

000

by 0

00

in these results.)

Both of these basic de�nability results are proved in the same style. First some

local structural property P

�

of �-r. e. sets is isolated which distinguishes them from

3

�-REA sets for � < � in the sense that every �-REA set has property P

�

(even

relative to any degree below it) for � < � but there is an �-r. e. set which does

not have P

�

. Then a generalization of both the Friedberg completeness theorem

and the Posner-Robinson cupping theorem for �-REA operators derived from �-r.

e. ones proved in Jockusch and Shore [1984] is applied to see that every X 6� 0

(�)

for any � < � joins 0

(�)

up to a degree which has the property P

�

relative to some

degree below it. For de�ning \arithmetic in", � = ! and P

!

is the property of

not being a minimal degree. For the de�nition of 0

0

, � = 2 and P

2

is the property

of having a splitting which avoids any given smaller degree b.

That, for any � < �, every �-REA set A has property P

�

(even relative to

C �

T

A) follows in each case from one of the basic structural properties of the r.

e. degrees:

Theorem 1.3. Density Theorem (Sacks [1964]): If a < c are r. e. degrees then

there is an r. e. degree c such that a < b < c.

Theorem 1.4. Splitting Theorem with cone avoiding (Sacks [1963]): If

c 6� b and c is r. e. then there are r. e. degrees c

0

; c

1

such that neither is above b

and their join is equal to c.

The structural results on the �-r. e. side are the following:

Theorem 1.5. Minimal Degrees (Sacks [1961]): There is an !-r. e. set M of

minimal degree.

Theorem 1.6. Unsplittable degrees (Cooper [1990], [1995]): There is a 2-r.

e. degree c and a degree b < c such that c is unsplittable (over 0) avoiding b.

Now even without the striking applications to de�nability, these basic prop-

erties of the r. e. degrees, particularly density, have been the center of structural

investigations of the generalizations to n-r. e. and n-REA degrees. An early un-

published result of Lachlan showed that no 2-r. e. degree could be minimal. (See

also Epstein, Haas and Kramer [1981] for a direct proof of the nonminimality of

n-r. e. degrees.) Of course, from our current vantage point, this follows directly

from the facts that the 2-r. e. degrees are 2-REA and that the n-REA degrees are

dense (for each n separately and for the union over all n). This density result in

turn is an easy corollary of the density theorem for the r. e. degrees. Much work

was devoted to the questions of density and splitting in the 2-r. e. degrees them-

selves. Partial positive results can be found in Arslanov [1985],[1988],[1990] and

4

Ishmukhametov [1985]. Important related results on branching and nonbranching

degrees in the 2-r. e. degrees can be found in Kaddah [1992] and [1993]. We also

mention the following speci�c theorems:

Theorem 1.7. Weak Density Theorem (Cooper, Lempp and Watson [1989]):

Given any r. e. degrees a < c there is a properly 2-r. e. degree b between them.

(b is properly 2-r. e. if it is 2-r. e. but not r.e.)

Theorem 1.8. Splitting Theorem (Cooper [1992]): If c is a 2-r. e. degree then

there are incomparable 2-r. e. degrees c

0

; c

1

such that c

0

_ c

1

= c.

Theorem 1.9. Low

2

Density and Splitting (Cooper [1991]): The low

2

2-r. e.

degrees are dense and each is splittable above any

As described above, the failure of density in the REA hierarchy occurs at level

! (Theorem 1.5) and of splitting with cone avoiding at level 2 of the r. e. hierarchy

(Theorem 1.6). A long awaited and di�cult result was the failure of density for

the 2-r. e. degrees.

Theorem 1.10. Nondensity Theorem (Cooper, Harrington, Lachlan, Lempp,

Soare [1991]): There is a 2-r. e. degree d < 0

0

such that there is no 2-r. e. (or even

!-r. e.) degree e with d < e < 0

0

.

On the other hand, there is an older important result dealing with a version

of the density problem combining both the n-REA and n-r. e. hierarchies.

Theorem 1.11. (Soare and Stob [1982]): If c > 0 is r. e. then there is an a REA

in c which is not of r. e. degree. Of course, if c is low then a < 0

0

.

Soare and Stob [1982] also claimed that a modi�cation of their strategy for

low c would make a 2-r. e. They have since withdrawn this claim (personal com-

munication) but it and other results mentioned above suggest a general question

about density and the r.e., 2-r. e. and 2-REA degrees which we address in this

paper:

Question 1.12. When, given two r. e. degrees a < c, can we �nd a 2-r. e. degree

b which is both REA in a and below c?

5

Now several of the previously cited results give partial answers to this ques-

tion. In particular Theorem 1.7 says that we can always do it if we give up the

requirement that b be REA in a. Indeed, by Cooper and Yi [1995], there is always

a 2-r. e. degree b between a and c as long as a is r. e. and c is 2-r. e. Theorem

1.11 says that the answer is yes if we give up the requirement that b be 2-r. e.

but assume that it a is low and c is 0

0

. We do not know if it is possible to also

make b 2-r. e. We can instead describe an argument that will produce b REA in

a and below c if a is low and c is high:

Proposition 1.13. If c < h are r. e., c is low and h is high, then there is an

a < h which is REA in c but not r. e.

Proof. We describe the modi�cations needed in the construction of Soare

and Stob [1982]. First note that c

00

= h

0

. Thus there is a function k recursive

in h such that k dominates every function recursive in c. Let H be an r. e.

set of degree h and e be such that �

H

e

= k. Let g(x; s) = �

e

(H; x)[s], if it is

convergent and 0 otherwise (with the usual convention that �

e

(H; x)[s] < s). Of

course, g is recursive, lim

s

g(x; s) = k(x), the limit is reached only after k(x) (i.

e. �s(8t > sfg(x; s) = g(x; t)g) > k(x)) and, recursively in H, we can �nd a

stage s after which g(x; s) never changes. We adjust the construction as follows.

When we seem to have a situation in which we would want to put x

s

i�1

into A(B)

(remember, Soare and Stob construct two sets, A and B, one of which is of the

desired degree a) with some associated axiom, we preserve A(B) on the axiom use

and wait for g(x

s

i�1

; t) to change. If it changes before C changes on the axiom,

we put x

s

i�1

into A(B). Otherwise, we proceed as in Soare and Stob [1982]. To

verify that the construction works, suppose each oracle question about getting C-

correct computations as needed to trigger our wanting to put each x

s

i�1

into A(B)

is eventually answered yes. (If not then we satisfy the requirement by some �nite

action or a divergence attested to by this answer.) In this case, we argue that C

is recursive for a contradiction. The function of i giving the stages at which we

get C-correct computations for wanting to put x

s

i�1

into A(B) is recursive in C.

Thus for almost every i, we actually do put x

s

i�1

into A(B) after the associated

axiom is C-correct. Thus we can argue as in the original paper that C is recursive

except that we begin at the point after which every x

s

i�1

gets into A(B) after

the previous use is correct. (The inductive argument proceeds by showing that,

once C is correct on the interval determined by x

i�1

; x

i

, the next stage at which

W (V) changes on the interval determined by x

i

; x

i+1

gives a stage after which C

6

itself cannot change on the interval determined by x

i

; x

i+1

.) Of course, the sets

A;B constructed are recursive in H by the permitting restriction on enumerating

numbers into them as (uniformly in x) H can compute a stage after which g(x; s)

never changes. 2

In the two remaining sections of the paper, we provide two other pieces of

information about this question. The �rst says that the answer is yes if a is high.

The second says in a very strong way that, in general, the answer is no. Indeed,

it is no even if we drop the requirement that b be 2-r. e. and even if we �x c to

be 0

0

.

Theorem 2.1. For all high r. e. degrees h < g there is a properly d-r. e. degree

a such that h < a < g and a is r. e. in h.

Theorem 3.1. There is an incomplete nonrecursive r. e. A such that every set

REA in A and recursive in 0

0

is of r. e. degree.

The proof of the �rst of these results combines highness with a modi�ed version

of the proof strategy of Cooper, Lempp and Watson [1989]. A description of

the needed modi�cations is given in Section 2. The second theorem is a rather

surprising result with a somewhat unusual proof strategy. It is a 0

000

argument

that at times moves left in the tree so that the accessible nodes are not linearly

ordered at each stage. Thus the construction lacks a true path in the usual

sense. Two substitute notions �ll this role: The true nodes are the leftmost ones

accessible in�nitely often; the semitrue nodes are the leftmost ones such that there

are in�nitely many stages at which some extension is accessible. Another unusual

feature of the construction is that it involves using distinct priority orderings

to control the interactions of di�erent parts of the construction. An intuitive

description of the construction and a description of these orderings along with a

formal de�nition of the construction and full proof is in given in Section 3. We

just note here that by Proposition 1.13 and Theorem 2.1 the set A constructed

in Theorem 3.1 cannot be either low

2

or high, so in particular ;

0

<

T

A

0

<

T

;

00

.

(The Theorem immediately rules out the possibility that A could be high. On the

other hand, if A

00

�

T

0

00

, choose a D <

T

A with D

0

�

T

A

0

. Then 0

0

is high over

D and A is low over it. By the Proposition relativized to D, there would be a set

B REA in A and below 0

0

but not of degree REA in D and so certainly not of r.

e. degree.)

It is tempting to suggest that Theorem 1.11 might be improved by changing

7

the top degree 0

0

to any r. e. degree b > a (as long as a is low) in analogy with

Theorem 2.1 where we only require that the bottom degree h be high. Proposition

1.13 does this for b high but it does not seem possible to make b an arbitrary

r. e. degree above a. More precisely, we can use Theorem 3.1 to prove that this

proposal fails relative to some degree: Let a be the degree of the r. e. set A of

Theorem 3.1 and let c < a be such that c

0

= a

0

. Thus a is low with respect to c

and a < 0

0

but there is no degree d which is REA in a and below 0

0

which is not

of r. e. degree and so, of course, r. e. in c.

Another interesting notion related to density connecting the r. e. and 2-r. e.

degrees has been introduced by Cooper and Yi [1995]:

De�nition 1.14. A 2-r. e. degree d is isolated by the r. e. degree a if a < d and

every r. e. b < d is also less than or equal to a.

Cooper and Yi [1995] prove that there are such degrees and that there are

2-r. e. degrees d which are not isolated by any r. e. degree a. They also raise

a number of interesting questions about the isolated and isolating degrees which

are answered in forthcoming papers by LaForte [1995], Ding and Qian [1995] and

Arslanov, Lempp and Shore [1995].

Our notation is generally standard and follows Soare [1987]. We note, however,

that we append [s] to various functionals such as �

e

(A; x)[s] to indicate the state

of a�airs at stage s. In particular if A is r. e. (or otherwise being approximated)

we mean by this notation the result of running the e

th

Turing machine for s

steps on input x with oracle A[s], the subset of A enumerated by stage s (the

approximation to A at stage s). We take the use of this computation to be the

greatest number about which it queries the oracle and denote it by �

e

(A; x)[s]; so

changing the oracle at �

e

(A; x)[s] destroys the computation. In particular, if A is

r. e. we may assume that �

e

(A; x)[s] is not in A[s] and so putting it in destroys

the computation. We also use a modi�ed version of the restriction notation for

functions to mesh with this de�nition of the use: fdx means the restriction of

the function f to numbers y � x. Thus if �

e

(A; x) is convergent, then the use is

Ad�

e

(A; x) and changing A at �

e

(A; x) destroys this computation (and similarly

for computations and approximations at stage s of a construction).

2. Interpolation between high degrees

Theorem 2.1. For all high r. e. degrees h < g there is a properly d-r. e. degree

a such that h < a < g and a is r. e. in h.

8

Proof. Let H 2 h and G 2 g be �xed r. e. sets. We will construct a d-r. e. set

D so that A = H �D has the desired properties, namely, A is r. e. in H, A �

T

G

and A does not have r. e. degree.

To satisfy the last property we meet the following requirements for all e,

R

e

: D 6= �

W

e

e

_W

e

6= 	

H�D

e

;

where f(W

e

;�

e

;	

e

)g

e2!

is some enumeration of all possible triples consisting of

an r. e. set W and partial recursive functionals � and 	. In addition, we will

ensure that A �

T

G by a permitting argument.

To meet these requirements we use the strategy for the Weak Density Theorem

from Cooper, Lempp and Watson [1989] with some modi�cations.

The basic strategy for R

e

without the requirement A �

T

G and in the absence

of any H-changes is the one developed by Cooper [1971] to prove the existence of

a properly d-r. e. degree. To attack R

e

we choose an unused witness x and wait

for a stage s such that

D

s

(x) = �

W

e

e

d'

e

(x)[s] ^W

e

d'

e

(x)[s] = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x)[s];

preserve Dd

e;s

'

e;s

(x) from injury by other strategies; put x into D and wait for

a stage s

0

at which

D

s

0

(x) = �

W

e

e

d'

e

(x)[s

0

] ^W

e

d'

e

(x)[s

0

] = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x)[s

0

]:

We then remove x from D and preserve Dd

e;s

0

'

e;s

0

(x).

If Hd

e;s

'

e;s

(x) does not change after stage s then x is a witness to the suc-

cess of R

e

. As in Cooper, Lempp and Watson [1989], we now impose \indirect"

restraint on H by threatening to show that G �

T

H via a functional �

e

. We make

in�nitely many such attacks on R

e

by an !-sequence of \cycles", where each cycle

k proceeds as follows:

1. Choose an unused candidate x

k

greater than any number mentioned thus

far in the construction.

2. Wait for a stage s at which

D(x

k

) = �

W

e

e

d'

e

(x

k

) ^W

e

d'

e

(x

k

) = 	

(H�D)d

e

'

e

(x

k

)

e

d'

e

(x

k

):

(If this never happens then x

k

is a witness to the success of R

e

.)

9

3. Preserve Dd

e;s

'

e;s

(x

k

).

4. Set �

H

e

(k) = G

s

(k) with use

e

(k) =

e;s

'

e;s

(x

k

), and start cycle k + 1 to

run simultaneously with cycle k.

5. Wait for G(k) to change (at a stage s

0

, say).

6. Stop cycles k

0

> k, put x

k

into D.

7. Wait for a stage s

00

at which

D(x

k

) = �

W

e

e

d'

e

(x

k

) ^W

e

d'

e

(x

k

) = 	

(H�D)d

e

'

e

(x

k

)

e

d'

e

(x

k

):

8. Remove x

k

from D and preserve Dd

e;s

00

'

e;s

00

(x

k

).

Whenever some cycle sees an Hd

e;s

'

e;s

(x

k

)-change after stage s, it will kill

the cycles k

0

> k, make their functionals unde�ned, and go back to step 2.

The module has the following possible outcomes:

(A) Eventually each cycle k gets stuck at step 5 waiting for a G(k)-change,

or gets an Hd

e;s

'

e;s

(x

k

)-change after step 6. In this case, �

H

e

= G, contrary to

hypothesis.

(B) Some (least) cycle k

0

gets stuck at step 2, 7, or 8. Then we were successful

in restraining H and satisfy R

e

through cycle k

0

.

(C) Some (least) cycle k

0

gets in�nitely many H-changes after step 2. Then

�

W

e

e

or 	

H�D

e

is partial, and R

e

is again satis�ed by cycle k

0

.

Therefore, either we were successful in satisfying R

e

through outcomes (B) or

(C), or there are in�nitely many cycles with a G-change such that Hd

e;s

'

e;s

(x

k

)

does not change after step 6. Keeping this in mind let us now turn to the require-

ment that A is r. e. in H.

To ensure this result we use a common method which works as follows. When

a witness x

k

is enumerated into D at stage s we appoint a certain marker �(x

k

).

Then we allow x

k

to be removed from A at a later stage t only if Hd�(x

k

) 6=

H

t

d�(x

k

).

Obviously, this ensures that A is r. e. in H. But now the di�culty is that the

Hd�(x

k

)-change may entail an Hd

e;s

'

e;s

(x

k

)-change after stage s

0

and so after

step 6 (if �(x

k

) �

e;s

'

e;s

(x

k

)) which ruins our attack of R

e

by the witness x

k

.

As we saw before, if we are not successful via outcome (B) or (C), then we

must have in�nitely many cycles k such that G(k) changes after stage s but

Hd

e;s

'

e;s

(x

k

) does not change after step 6. We de�ne a partial recursive function

10

� such that in this case, by a characterization of high degrees, beginning with some

k

0

, any cycle k > k

0

gets an Hd�(x

k

)-change after the stage m = s

00

of step 7.

Therefore, for some cycle k > k

0

we will have a G(k)-change at step 5, no

Hd

e;s

'

e;s

(x

k

)-change after step 6, and an Hd�(x

k

)-change after step 7. This will

be su�cient to win R

e

through cycle k.

By a theorem of Robinson [1968], we may choose a r. e. set H 2 h and an

e�ective enumeration fH

s

g

s2!

of H so that the computation function

c

H

(x) = (�s > x)[H

s

dx = Hdx]

dominates all recursive functions.

Now we de�ne functions � and m in the following way: Each cycle k proceeds

as above but with the following step inserted after step 6:

6

1

2

: a) Let �(x

k

) be a number greater than any mentioned thus far in the con-

struction, in particular greater than the maximum of all current 	

e

-uses.

b) Suppose p is the least integer such that m(p) is unde�ned. We will de�ne

m(p) to be the �rst stage t > s (if there is one) such that either

H

t

d

e;s

'

e;s

(x

k

) 6= H

t�1

d

e;s

'

e;s

(x

k

);

or

D

t

(x) = �

W

e

d'

e

(x)

e

(x)[t] ^W

e

d'

e

(x)[t] = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x)[t]:

(which is step 7 of the k-cycle).

Clearly, �(x

k

) � p. Notice also that if m(p) is not de�ned for some (least) p,

then the requirement R

e

is satis�ed by the cycle k at which the search for m(p)

was begun.

If m is total then c

H

(p) > m(p) for all p � some p

0

. For any such p we have

H

m(p)

dp 6= Hdp. If m(p) was de�ned by cycle k then �(x

k

) � p. It follows that

H

m(p)

d�(x

k

) 6= Hd�(x

k

) for all k � some k

0

. We have already mentioned that

Hd

e;s

'

e;s

(x

k

) does not change after step 6 for in�nitely many k. For any such k

we have m(p) = s

00

(the stage of step 7). This means that all these cycles receive

the desired Hd�(x

k

)-change after step 7.

Now each cycle k proceeds as above but with step 6

1

2

inserted after step 6 and

the following step inserted after step 7:

11

7

1

2

: Wait for Hd�(x

k

) to change and then proceed.

This ensures that A is r. e. in H.

Now we have to ensure that A �

T

G through a permitting argument. The

strategy again is essentially the same as in Cooper, Lempp and Watson [1989].

We need G to permit x to enter D at step 6 as well as to leave D at step

8. The former permission is already given by the G(k)-change at step (6). As in

Cooper, Lempp and Watson [1989], the latter has to be built into the strategy

(by asking for permission j many times for larger and larger j).

The basic module for the R

e

-strategy consists of an (!�!)-sequence of cycles

(j; k) for j; k 2 !. Cycle (0; 0) starts �rst, and each cycle (j; k) can start cycles

(j; k + 1) or (j + 1; 0) and stop, or cancel, cycles (j

0

; k

0

) for (j; k) < (j

0

; k

0

) (in the

lexicographical ordering). Each cycle (j; k) can de�ne �

H

j

(k) and �

H

(j). (�

j

and

� are functionals that are threatening to compute G from H.) We also de�ne

functions m and �. Each cycle (j; k) may de�ne values �(x) and m(p) for the

current witness x and the least p such that m(p) is unde�ned, respectively. The

cycle proceeds as follows:

1. Choose an unused candidate x greater than any number mentioned thus far

in the construction.

2. Wait for a stage s at which

D(x) = �

W

e

d'

e

(x)

e

(x) ^W

e;s

d'

e

(x) = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x):

(If this never happens then x is a witness to the success of R

e

.)

3. Preserve Dd

e;s

'

e;s

(x) from injury by other strategies from now on.

4. Set �

H

j

(k) = G

s

(k) with use

j

(k) =

e;s

'

e;s

(x), and start cycle (j; k+1) to

run simultaneously with cycle (j; k).

5. Wait for Hd

e;s

'

e;s

(x) or G(k) to change (at a stage s

0

, say). If H changes

�rst then cancel cycles (j

0

; k

0

) > (j; k), drop the D-restraint of cycle (j; k) to

0, and go back to step 2. If G changes �rst then stop cycles (j

0

; k

0

) > (j; k)

and proceed to step 6.

6. Put x into D.

12

7. Let �

s

(x) be a number greater than all mentioned thus far in the construc-

tion, in particular greater than the maximum of all current 	

e

-uses. Suppose

p is the least integer such that m(p) is unde�ned. De�ne m(p) to be the �rst

stage t > s (if one exists) such that either H

t

d

e;s

'

e;s

(x) 6= H

t�1

d

e;s

'

e;s

(x);

or

D

t

(x) = �

W

e

d'

e

(x)

e

(x)[t] ^W

e

d'

e

(x) = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x)[t]:

8. Wait for a stage s

00

at which

D(x) = �

W

e

d'

e

(x)

e

(x) ^W

e;s

00

d'

e

(x) = 	

(H�D)d

e

'

e

(x)

e

d'

e

(x):

9. Preserve Dd

e;s

00

'

e;s

00

(x) from injury by other strategies from now on.

10. Set �

H

(j) = G

s

00

(j) with use �(j) =

e

'

e

(x) and start cycle (j + 1; 0) to

run simultaneously with the (j; k) cycles now running.

11. Wait for Hd

e;s

00

'

e;s

00

(x) or G(j) to change. If H changes �rst then cancel

cycles (j

0

; k

0

) � (j + 1; 0), drop the D-restraint of cycle (j; k) to

e;s

'

e;s

(x),

and go back to step 8. If G changes �rst then stop cycles (j

0

; k

0

) � (j+1; 0)

and proceed to step 12.

12. Wait for Hd�

s

(x) to change.

13. Remove x from D.

14. Wait for

Hd

e;s

'

e;s

(x) 6= Hd

e

'

e

(x)[s] or Hd

e;s

00

'

e;s

00

(x) 6= Hd

e

'

e

(x)[s

00

]:

Proceed to step 15 or 16, respectively.

15. Reset �

H

j

(k) = G(k), cancel cycles (j

0

; k

0

) > (j; k), start cycle (j; k+1), and

halt cycle (j; k).

16. Reset �

H

(j) = G(j), cancel cycles (j

0

; k

0

) � (j + 1; 0), start cycle (j + 1; 0),

and halt cycle (j; k).

Whenever a cycle (j; k) is started, any previous version of it has been cancelled

and its functionals have become unde�ned through H-changes. Therefore �

j

and

� are de�ned consistently.

13

The explicit construction and the remaining parts of the proof of Theorem 2.1

are now essentially the same as in Cooper, Lempp and Watson with only obvious

changes. So we will not give them here except for the proof of the claim that

A �

T

G which now is a little more delicate.

Lemma 2.2. D �

T

G.

Proof. To G-recursively compute whether x 2 D, �rst �nd a stage s such that

G

s

dx = Gdx. If �

s

(x) is not de�ned then x 62 D. Otherwise, �nd a stage t such

that H

t

d�

s

(x) = Hd�

s

(x). (Remember, H �

T

G.) Now x 2 D if and only if

x 2 D

t

. 2

3. A noninterpolation result

Theorem 3.1. There is an incomplete nonrecursive r. e. A such that every set

REA in A and recursive in 0

0

is of r. e. degree.

We will build the desired r. e. set A along with an auxiliary r. e. set C and

various r. e. sets B

e

. There are three types of requirements for our construction.

� P

e

: �

e

6= A (for each partial recursive functional �

e

).

� N

e

: �

A

e

6= C (for each partial recursive functional �

e

).

� R

e

: If W

A

e

= 	

K

e

then W

A

e

�

T

B

e

� A & B

e

�

T

W

A

e

� A (for each partial

recursive functional 	

e

and each r. e. in A set W

A

e

= dom(�

A

e

) we build an

associated r. e. set B

e

).

The �rst two types of requirements are handled in the usual way. For P

e

we will choose a follower x from the column associated with the requirement

which is larger than all higher priority restraints. When the follower is realized

(�

e

(x) #= 0), we will put x into A. For N

e

we will choose a follower x from the

column associated with the requirement, wait for �

e

(A; x) to converge and then

put x into C and attempt to preserve A on �

e

(x); the use of the computation.

(This preservation will be interconnected with the actions for requirements related

to various R

i

.)

The basic plan for R

e

is that, when the length of agreement between W

A

e

and

	

K

e

becomes larger than y, we will appoint markers b

e;y

and a

e;y

targeted for B

e

14

and A, respectively. If, at a later stage s, it appears that y 2 W

A

e

and 	

K

e

dy =

W

A

e

dy, we would expect to put b

e;y

into B

e

and protect the use �

e

(A; y)[s] of the

computation putting y intoW

A

e

. With an eye towards showing thatW

A

e

�

T

A�B,

we would then promise to put a

e;y

into A if y leaves W

A

e

because of a change in

Ad�

e

(y)[s] to record, in A � B, the fact that y does not seem to be in W

A

e

. Of

course, this would immediately impose in�nitary restraint on the construction and

prevent us from satisfying the positive requirements. The natural procedure now

is to break R

e

up into subrequirements. We phrase them so as to also make our

intended reductions between W

A

e

� A and B

e

� A explicit:

� R

e;y

: If W

A

e

(y) = 	

e

(K; y) = 1 then [there is eventually a pair of markers

such that] b

e;y

2 B

e

and a

e;y

=2 A. If W

A

e

(y) = 	

e

(K; y) = 0 then [there is

eventually a marker] b

e;y

62 B

e

.

Thus our procedure for R

e

will measure the length of agreement between W

A

e

and 	

K

e

and appoint markers a

e;y

, b

e;y

, but it will be R

e;y

that starts our action

by putting b

e;y

into B

e

when appropriate. R

e;y

will then impose restraint on

Ad�

e

(y)[s] . It is the interaction of these restraints, and that of the overtly negative

requirements N

i

, with our overarching commitment to put other a

e

0

;y

0

into A if

b

e

0

;y

0

is put into B

e

0

at s

0

and A later changes, say at s

00

, on �

e

0

(y

0

)[s

0

] that is the

source of the real di�culty in satisfying the requirements. For example, suppose

a

e

0

;y

0

< �

e

(y)[s] but s

0

> s. At s

00

we would have to put a

e

0

;y

0

into A and so injure

R

e;y

. If we attempt to simply increase the restraint imposed by R

e;y

to prevent the

A change on �

e

0

(y

0

)[s

0

], we will eventually impose larger and larger restraint in this

e�ort: When we put b

e

0

;y

0

into B

e

0

at s

0

, R

e;y

will impose restraint on �

e

0

(y

0

)[s

0

],

but then some new a

e

00

;y

00

may be smaller than �

e

0

(y

0

)[s

0

]. If we then must put

b

e

00

;y

00

into B

e

00

at s

00

> s

0

we will have to impose restraint �

e

00

(y

00

)[s

00

]. For, if not,

when some lower priority P

i

puts some x < �

e

00

(y

00

)[s

00

] into A we will have to put

a

e

00

;y

00

into A. This will force us to put a

e

0

;y

0

into A and injure R

e;y

's restraint.

(We will call this sequence of numbers that we are successively forced to put into

A because of x's entry the cascade (of elements into A) initiated by x's entry into

A.) Of course, the positive requirements cannot live with the in�nitary restraint

that would be imposed in this way by even a single subrequirement R

e;y

.

The solution to this conict has two components. On the one hand, we allow

the restraint to grow as described above but only for a

e

0

;y

0

of \higher priority"

than R

e;y

. On the other hand, before putting b

e;y

into B

e

at s and imposing our

restraint, we act to preempt the possible actions of \lower priority" a

e

0

;y

0

that

might later injure �

e

(y)[s]. We do this by immediately putting these markers into

15

A ourselves. In this case, we ourselves may destroy the computation of �

e

(A; y)

and so obviate the need to put b

e;y

into B

e

and impose restraint. The price we

pay for this security is that we may be forced to do this in�nitely often (y may

enter and leave W

A

e

in�nitely often) and so R

e;y

or N

i

may become an in�nitary

positive requirement.

Initially, we deal with this in the usual way by employing a tree argument

with nodes � assigned to the various requirements P

e

; N

e

; R

e

; R

e;y

. On each path

of our priority tree T we will have a node � assigned to R

e

before any assigned to

an R

e;y

. It is at such nodes � that we assign markers b

�;y

and a

�;y

. If � is assigned

to some R

e;y

then it works on the associated set B

�

being built at the last (i. e.

longest) node � � � assigned to R

e

by dealing with the markers a

�;y

, b

�;y

. In this

situation, we will say that � is associated with �; y. We begin the construction by

associating with ;, the root of T , any !-type ordering of these requirements, <

;

,

such that R

e

precedes every R

e;y

and the requirements P

i

occupy every other place

in this ordering. [The second condition is a technical convenience that prevents

two similar types of requirements from being assigned to successive nodes on the

tree.]

The crucial point about our action for R

e;y

is that if we do actually act

positively for it in�nitely often, then the hypotheses of R

e

fail: y =2 W

A

e

but

	

e

(K; y)[t] = 1 for in�nitely many t and so W

A

e

(y) 6= 	

e

(K; y). Thus we satisfy

the overall requirement R

e

. We will then restart all requirements R

e

0

of lower

priority than R

e

below this outcome in the usual 0

000

fashion. We phrase this in

terms of de�ning a priority ordering <

�^z

associated with outcome z of node �

and assigning the �rst element of this ordering to �^z. One somewhat unusual

point to keep in mind is that the preemptive positive action for R

e;y

may well be

directed by some higher priority requirement wishing to keep a

�;y

out of A. In

this case, we assign the outcome corresponding to the in�nitary positive action

that shows that R

e

is satis�ed to the node of highest priority restraining a

�;y

. It

is this procedure that at times forces us to jump to the left in the priority tree

when determining the next accessible node.

The �nal issue to be considered is the appropriate priority ordering to be

used to decide if action for a node � assigned to R

e;y

and associated with some

incarnation of R

e

at some earlier node � can preempt another requirement assigned

to some R

e

0

;y

0

by putting a

�

0

;y

0

into A. The ordering that correctly takes into

account the idea that actions for � assigned to R

e;y

cannot ruin the intended

reductions for R

e

0

of higher priority (for example, by sending the markers a

�;y

and

b

�;y

to in�nity) and still manages to spread the restraint out in such a way as to

16

keep it �nite is the lexicographic ordering of pairs h�; yi with which � is associated.

Here the �rst coordinates are themselves nodes on the tree and are given the usual

priority ordering of a tree construction. The second coordinates are just numbers

with the usual ordering on !. We can now describe the formal construction.

3.1. Construction:

We will de�ne a tree construction priority argument that is somewhat di�erent

from the standard arguments like those in Soare [1987], Ch. XIV. We use <

to denote the usual priority ordering on the sequences (of outcomes) which are

the nodes of our priority tree T . We use <

L

to denote the usual left-to-right

ordering on the priority tree that corresponds to the lexicographic ordering on

nodes incomparable in the subsequence relation. At each stage s we will proceed

through a sequence of substages u at each of which we will de�ne an accessible

node �. (When it is necessary to distinguish the substage u of stage s at which we

are acting, as for example, to indicate the current value of the restraint function

for �, we write r(�; u) in place of r(�; s). In such cases, the stage s of which

u is a substage will be determined by the context.) If � is accessible at some

substage u of s, we call s an �-stage as usual. However, the accessible nodes will

not necessarily be nested in the subsequence ordering �; there may be jumps to

the left. We terminate stage s when we reach a node of length s. Until such a

substage, we act for each node � when it becomes accessible in some way which

may include adding to the possible outcomes of a node of higher priority. We will

also declare some node � to be the next accessible node and de�ne an ordering

<

�

of (a subset of the) initial requirements and assign the �rst requirement in <

�

to this node. The other speci�c actions for an accessible node � at substage u of

stage s are determined by the type of requirement assigned to � and are speci�ed

below. [Remarks in square brackets [] are to help explain the construction. They

are not part of the formal procedure.] Before de�ning the speci�c actions for each

type of requirement we give some general rules for our construction.

We will put a marker b

�;y

into B

�

only at a stage s when some assigned to R

e;y

and associated with �; y is accessible and �

e

(A; y) # [s]. We will then put a

�;y

into

A whenever A later changes on �

e

(A; y)[s]. Thus, when any number z is put into

A, we immediately check to see if this action necessitates putting any markers a

�;y

into A and then continue this process until it stops (as it must as there are only

�nitely many markers de�ned at any stage). We call this the cascade (of elements

into A) initiated by z's entering A. The markers b

�;y

and a

�;y

, once de�ned, become

17

unde�ned if and only if a

�;y

enters A or � is initialized. Initialization of a node

� assigned to a requirement R

e

consists of canceling all markers a

�;y

, b

�;y

. Such

a node � is initialized whenever a node <

L

� becomes accessible and at certain

other times described in the construction. Initialization for a node � assigned to

a requirement N

e

or R

e;y

at substage u of stage s consists of canceling the current

follower (for N

e

), setting the associated restraint r(�; u) = 0, and so the auxiliary

set S(�; u) = ; (but not cancelling the markers a

�;y

, b

�;y

for the h�; yi associated

with �). The auxiliary set S(�; u) is introduced for notational convenience and

is de�ned as fh�; yij a

�;y

[u] < r(�; u)g. These nodes are initialized whenever

a <

L

� becomes accessible and only then. We now describe the actions at the

node � which becomes accessible at substage u of stage s according to the type

of requirement assigned to �.

R

e

: For notational convenience, we denote by � the node assigned to R

e

that

has just been declared accessible. At this node we measure the length of agreement

` between W

A

e

and 	

K

e

. To do this appropriately for the �-stages, we incorporate

the idea of the \hat trick" into the de�nition of the versions �

A

�

;W

A

�

and 	

K

�

of

�

A

e

;W

A

e

and 	

K

e

, respectively, that we use at �. Let t be the last �-stage before s

(0 if s is the �rst �-stage). We de�ne �

A

�

;W

A

�

and 	

K

�

as follows:

If K

s

d

e;s

(x) = K

t

d

e;s

(x) then 	

�

(K; x)[s] = 	

e

(K; x)[s];

otherwise 	

�

(K; x)[s] is divergent.

If A

s

d�

e;s

(x) = A

t

d�

e;s

(x), then �

�

(A; x)[s] = �

e

(A; x)[s];

otherwise �

�

(A; x)[s] is divergent.

x 2 W

A

�

[s], �

�

(A; x)[s] # .

We de�ne the length of agreement function as usual:

`(�; s) = �x:(W

A

�

(x)[s] = 	

�

(K; x)[s]).

The possible outcomes for � are 1 and 0 (in left to right order). If `(�; s) has

reached a new maximum, i. e. `(�; s) > `(�; t) for every previous �-stage t, then the

outcome of � is1 and we declare �^1 accessible. Its associated priority ordering

<

�^1

is the same as that for � with R

e

removed from the beginning of the ordering.

If any of the markers b

�;y

, a

�;y

are unde�ned for y < `(�; s), we de�ne them to be

new distinct large numbers in !

[�]

. [This happens only when `(�; s) > y for the

�rst time or we have put a

�;y

into A or initialized � since the last �-stage. The

18

actions enumerating elements b

�;y

into B

�

take place after we reach a node below

�^1 associated with the subrequirements R

e;y

.] Otherwise, �'s outcome is 0; its

associated priority ordering <

�^0

is the same as that for � except that R

e

and all

its subrequirements R

e;y

are removed from the list.

R

e;y

: Suppose � is the longest node � � assigned to R

e

. We say that � is

associated with h�; yi. [We shall see that for � to be accessible at u, �^1 must

have already have been accessible at some previous substage of s.] The initial

possible outcomes of � are 1; 0 (in left to right order). At any later point t of

the construction the set of possible outcomes will be S(�; t)[f1; 0g. (Remember

that S(�; t) = fh�; yij a

�;y

[t] < r(�; t)g.) The elements of S(�; t) are ordered

from left to right by the lexicographic ordering on pairs h�

0

; y

0

i (where the �rst

coordinates are ordered by the tree priority ordering and the second by the natural

ordering on !). The outcomes 1; 0 are then added in order to the (right hand)

end of this ordering. Our action depends on the status of the markers b

�;y

and a

�;y

and whether y 2 W

A

�

.

1) If a

�;y

is unde�ned then the outcome of � is 0; �^0 is accessible and <

�^0

is

the �nal segment of <

�

with R

e;y

removed. [This situation cannot \really" occur

in�nitely often if the hypotheses of R

e

are satis�ed and so the outcome is not

essential except for the completeness of our description of the construction.]

2) If y =2 W

A

�

at s (i. e. �

�

(A; y) " [s]) [and so 	

�

(K; y) = 	

e

(K; y) = 0] then the

outcome of � is 0 [the expected value of 	

e

(K; y)], �^0 is accessible and <

�^0

is

<

�

with R

e;y

removed. [Note that if a

�;y

is de�ned then y < `(�; s) as we are at

an �-expansionary stage and a

�;y

0

gets de�ned only for y

0

< `(�; s).]

3) y 2 W

A

�

at s (i. e. �

�

(A; y) # [s] = �

e

(A; y) # [s]) [and so 	

�

(K; y) = 	

e

(K; y) =

1] but b

�;y

=2 B

�

(at u).

We �rst see if, for the sake of some requirement of higher priority, we need

to try to force y out of W

A

e

and preempt future actions that might make us put

a

�;y

into A. If not, i. e. there is no � < � such that a

�;y

2 S(�; u), we put b

�;y

into B

�

and let r(�; u) be a new large number. [The purpose of this restraint

will be to keep y in W

A

e

and so the computation associated with � convergent.]

The outcome of � is 1 [for convergent], �^1 is accessible and <

�^1

is just <

�

with

its �rst element, R

e;y

, removed. On the other hand, if there is a � < � such

that a

�;y

2 S(�; u), we let � < � be the highest priority requirement such that

19

a

�;y

2 S(�; u) [and so h�; yi is a possible outcome of �]. We put into A every a

�

0

;y

0

such that h�; yi < h�

0

; y

0

i unless

i) there is a � � such that r(; u) > a

�

0

;y

0

or

ii) �

0

� �^h�; zi for some h�; zi � h�; yi.

If the cascade initiated by putting all of these elements into A includes a number

less than �

e

(A; y)[s] [and so kills the computation], we jump to �^h�; yi and declare

it to be accessible. We restart all requirements R

i

>

�

R

e

by de�ning <

�^h�;yi

to be

the �nal segment of <

�

beginning immediately after R

e

with all requirements R

e;y

0

removed. If not, the outcome of � is again 1 [for convergent], �^1 is accessible and

<

�^1

is just <

�

with its �rst element, R

e;y

, removed. In this case, we initialize all

�

0

with �

0

� �^h�; zi for any h�; zi. Next, we rede�ne the restraint function r(�; u)

to be a number larger than any used so far in the construction. [The purpose of

this restraint will be to preserve the computation associated with � by keeping

y in W

A

e

.] If the original computation associated with h�; yi is ever injured, i. e.

a number z � �

e

(A; y)[s] enters A at some later point t, we put a

�;y

into A and

declare the markers b

�;y

and a

�;y

to be unde�ned, as described by the general rules

of our construction.

4) y 2 W

A

�

at s (i. e. �

�

(A; y) # [s] = �

e

(A; y) # [s]) [so 	

�

(K; y) = 	

e

(K; y) = 1]

and b

�;y

is de�ned and in B

�

.

We maintain the situation initiated when we put b

�;y

into B

�

: The outcome

of � is 1; �^1 is accessible and <

�^1

is <

�

with R

e;y

removed. If r(�; u) is not

already de�ned, we let r(�; u) be a new large number and so let S(�; u) consist

of all h�

0

; y

0

i such that a

�

0

;y

0

is de�ned.

N

e

: If � has no current follower [this is the �rst �-stage or its follower has

been canceled by initialization or injury since the last �-stage], we appoint a

large number from !

[�]

as the current follower of � and let 1; 0, in left to right

order, be the possible outcomes of �. Now suppose x is the current follower of

�. If �

e

(A; x) #= 0 and x =2 C, then we put x into C. In this case, we impose

restraint r(�; u) on A equal to a new large number. The possible outcomes for �

are S(�; u) [f1; 0g ordered as for R

e;y

in case (3). The outcome of � is 1, �^1

is accessible and <

�^1

is just <

�

with the �rst element, N

e

, removed. If r(�; t)

is injured at some later point t, i. e. some z < r(�; t) enters A, we cancel �'s

current follower. If, at s, :(�

e

(A; x) #= 0), then the outcome of � is 0, �^0 is

accessible and <

�^0

is also just <

�

with the �rst element, N

e

, removed. [S(�; t)

may have new pairs added in and the outcomes in S(�; t) may become accessible

20

when we consider jumping to them from a node associated with some h�; yi with

h�; yi 2 S(�; t).]

P

e

: The possible outcomes of � in left to right order are 1; 0. Let x be the

least element of !

[�]

larger than all restraints r(�; u) for � � �. We say that �

is satis�ed if there is a z such that �

e

(z) = 0 and z 2 A. If � is not satis�ed

and �

e

(x) = 0, we put x into A. Now, if � is satis�ed then its outcome is 1;

otherwise, it is 0. In either case, � concatenated with its outcome is accessible

and the associated ordering is <

�

with its �rst element, P

e

, removed.

3.2. Veri�cations

We must now verify that the construction satis�es the requirements. As the

construction is somewhat unusual, there are a number of auxiliary lemmas that

must be proven to show that it behaves at all the way we might expect.

Lemma 3.2. If some � � �^h�; yi is accessible at t, then there is an s � t at

which �^h�; yi becomes accessible by jumping to it from a node to its right.

Proof. The only way to get below �^h�; yi without �rst going through it is to

jump to some node of the form �^h�; zi � �^h�; yi. However, no � can have an

outcome of the form h�; zi before it is accessible. Thus there is a stage at which

�^h�; yi �rst becomes accessible. It can do so only by our jumping to it from its

right. 2

Lemma 3.3. i) If h�; yi 2 S(�; s), then � < �.

ii) Moreover, if any � � �^h�; yi is ever accessible, then � � �.

Proof. i) We prove the �rst assertion of the Lemma for all �; � simultaneously

by induction on the (sub)stages of the construction. Suppose s is the �rst time

we produce a counterexample. If r(�; s) is now de�ned for the �rst time since �

was last initialized, say at t, then if any successor of � has been accessible since

t, it must be an extension of �^0. Thus when r(�; s) is de�ned, �^1 becomes

accessible and all nodes to its right are initialized. In particular, no marker a

�

0

;y

0

remains de�ned for � < �

0

. (Markers with �

0

to the right of �^1 are initialized

now; markers with �

0

� �^1 were initialized at t and have not been accessible since

then; and � 6= �

0

as they are assigned di�erent requirements.) Thus no such pair

21

is put into S(�; s) contrary to the assumption that � becomes a counterexample

at s. If r(�; s) increases at s, then we considered jumping to �^h�

0

; y

0

i from some

 associated with a h�

0

; y

0

i already in S(�; s). By the minimality of s, �

0

< �. The

construction now directs us to put every a

�;y

with h�; yi > h�

0

; y

0

i into A (and so

make these markers unde�ned) unless a

�;y

< r(; s) for some � � or � � �^h�; zi

for some h�; zi � h�

0

; y

0

i. If a

�;y

satis�es the �rst restriction, � < by induction

and so � < � as required. If a

�;y

satis�es the second restriction, then � is initialized

before we rede�ne r(�; s) and so again h�; yi is not eligible to be put into S(�; s)

and we have no counterexample to the Lemma for � at s.

ii) By Lemma 3.2, there is a stage s at which �^h�; yi becomes accessible by

jumping to it from a node associated with h�; yi which is to the right of �^h�; yi.

As is associated with h�; yi, � � by de�nition, but, by (i) of our Lemma, � < �

and so � � � as required. 2

Lemma 3.4. i) If � � �^h�; yi, h�; zi 2 S(�; s) and h�; zi 62 S(; s) for any

 � �, then h�; zi � h�; yi or � � �^h�; yi. ii) Moreover, if any � � �^h�; zi is

ever accessible then � � � or � � �^h�; yi.

Proof. i) Let �^h�; yi be �xed. We prove part (i) of the Lemma for all � �

�^h�; yi by induction on the (sub)stages of the construction. Suppose for the

sake of a contradiction that substage u of stage s is the �rst point at which a

counterexample occurs and it does so by h�; zi entering S(�; u) for � � �^h�; yi

with h�; zi 6� h�; yi and � 6� �^h�; yi. By our convention on the priority ordering

<

;

, � � �^h�; yi since �^h�; yi is assigned a requirement of the form P

i

. In order

for any pair to enter S(�; u) at u, � must be accessible or we must be considering

a jump to an immediate extension �^h�

0

; y

0

i of � from some accessible node > �

associated with h�

0

; y

0

i 2 S(�; u). Thus there must be a substage v < u of stage s

at which we actually jump to a node �^h�

0

; y

0

i � �^h�; yi from a associated with

h�; yi which is to the right of �^h�; yi or we consider jumping to some �^h�

0

; y

0

i

from a associated with some h�

0

; y

0

i which is to the right of �^h�; yi at u itself.

We �rst deal with the case that we jump to �^h�; yi at v < u. If a

�;z

is unde�ned

when we jump to �^h�; yi, it cannot be (re)de�ned as long as we remain below

�^h�; yi, as � 6� �^h�; yi and so we cannot produce the assumed counterexample

at u. If we do not remain below �^h�; yi for the rest of stage s, we must move to

its left. Once we have moved to the left of �^h�; yi and so of �, � can never again

become accessible or have S (�;w) increase at any later substage of stage s for a

contradiction. If a

�;z

is still de�ned when we jump to �^h�; yi, h�; zi is put into

22

S(�; v). It can only leave S(�; w) by � or � being initialized. If � is initialized

the marker a

�;z

becomes unde�ned and we are in the situation just analyzed. On

the other hand, � can be initialized only by our moving to its left which again

prevents S(�;w) from increasing at any later substage of stage s.

We next deal with the case that, at v < u, we jump to some �^h�

0

; y

0

i � �^h�; yi

from a associated with h�

0

; y

0

i which is to the right of �^h�; yi. As is to the

right of �^h�; yi and � �

0

, �

0

6� �^h�; yi. Moreover, h�

0

; y

0

i cannot be in S(

0

; v)

for any

0

� � or we would have considered jumping to

0

^h�

0

; y

0

i 6= �^h�

0

; y

0

i

instead. Thus, by our inductive hypothesis at v (with � = � and h�; zi = h�

0

; y

0

i),

h�

0

; y

0

i � h�; yi.

Now we show that, in this case, if a

�;z

is de�ned at v, and not restrained

with priority at least �, it enters A and so the marker becomes unde�ned. By

our assumption that h�; zi supplies the assumed counterexample, h�; yi < h�; zi

and � 6� �^h�; yi. The �rst inequality, together with the established fact that

h�

0

; y

0

i � h�; yi, implies that h�

0

; y

0

i < h�; zi. The second together with the fact that

�^h�

0

; y

0

i � �^h�; yi, implies that � 6� �^h�; wi for any h�; wi � h�

0

; y

0

i. (Indeed,

they guarantee that � 6� � at all.) Thus the instructions for the construction at

substage v direct us to put a

�;z

into A and so make the marker unde�ned unless

it is restrained with priority at least that of �. Of course, if a

�;z

is restrained with

priority at least that of �, h�; zi 2 S(�; v) for some � � � where we may assume

that � is the highest priority node such that h�; zi 2 S(�; v). If � 6� � then, as

�^h�

0

; y

0

i � �^h�; yi, � � �^h�; yi which would contradict the induction hypothesis

with � for �. Thus if a

�;z

is de�ned at v and not restrained with priority at least

�, it is put into A and so the marker becomes unde�ned.

We are now in the same situation as when we jumped to �^h�; yi: a node

extending �^h�; yi is accessible and either a

�;z

is unde�ned or restrained with

priority at least �. As before, this produces a contradiction to the assumption

that a counterexample is produced at substage u.

Finally, we deal with the case that, at u, we consider jumping to some �^h�

0

; y

0

i

from a associated with some h�

0

; y

0

i which is to the right of �^h�; yi. The

argument proceeds as in the previous case (with � for � and u for v) until we

reach the conclusion that (at u) a

�;z

is unde�ned when we are about to rede�ne

�'s restraint and so its S set or it is restrained with priority at least � for the

required contradiction.

ii) By Lemma 3.2, there is a point t at which �^h�; zi becomes accessible by

jumping to it from a node associated with h�; zi which is to the right of �^h�; zi.

As is associated with h�; zi, � � by de�nition, and so if h�; zi � h�; yi, � � �

23

as required. Of course, h�; zi =2 S(; t) for any < � (and so, a fortiori, for

any < �^h�; yi � �) or we could not have jumped to �^h�; zi. Thus � � � or

� � �^h�; yi as required. 2

Lemma 3.5. If � � �^h�; yi and � is assigned to requirement R

e

0

;y

0

and is asso-

ciated with h�

0

; y

0

i then either �

0

� � or �

0

� �^h�; yi.

Proof. Suppose � and �

0

are assigned to R

e

and R

e

0

, respectively. By the de�-

nition of the pair associated with �, �

0

� �. By Lemma 3.3(ii), � � � (there is a

stage at which �^h�; yi is accessible since � � �^h�; yi is assigned a requirement.)

Thus the only concern is that � � �

0

� �. Suppose �rst that e

0

� e. By construc-

tion, a node �

0

� � can be assigned to R

e

0

with e

0

� e only if there is some �^ h�; zi

with � � �^ h�; zi � �

0

such that � is assigned to a requirement R

n

with n < e.

Let �^ h�; zi be the �rst such node. Let t be a stage at which �^h�; yi is accessible.

Now by Lemma 3.4, � � � or � � �^h�; zi. The latter possibility contradicts

our assumption that � � �^ h�; zi. The former contradicts our assumption that

�^ h�; zi is the �rst instance of the phenomenon that would allow us to have a

node between � and � assigned to an R

i

with i < e (since � � � by Lemma 3.3

applied to h�; zi 2 S(�; s)).

Now consider the possibility that e < e

0

and let �^h�; yi be the longest node

contained in � which provides a counterexample to the Lemma. By de�nition,

�

�^h�;yi

is the �nal segment of �

�

starting after R

e

with all R

e;y

0

removed. Of

course, R

e

0

precedes any R

e

0

;y

0

by our conventions on the original priority ordering.

(Changes in the ordering always produce a �nal segment of a previous ordering

with perhaps some R

i

and all its subrequirements removed.) Thus as long as we

stay inside this ordering, we must have a node � assigned to R

e

0

before � and

so � would be associated with h�; y

0

i and not h�

0

; y

0

i. The only way we can get

outside this ordering is for us to restart at a higher point, i. e. to get a �^h�; zi

with �^h�; yi � �^ h�; zi � � with � � �^h�; yi. In this case, Lemma 3.4 would

tell us that � � �. This would then contradict the choice of �^h�; yi as the last

node contained in � providing a counterexample with �. 2

Lemma 3.6. If we jump from a node � to a node �^h�

0

; y

0

i at stage s, then

�^h�

0

; y

0

i <

L

�. Thus if � is accessible after at stage s, then � <

L

 or � � .

Proof. Of course, we can only jump to �^h�

0

; y

0

i from � if � is associated with

h�

0

; y

0

i. Now, the second claim is immediate from the �rst which we now prove.

24

If � <

L

�, the �rst assertion is clear. Otherwise, � � � as we only jump to

successors of nodes of higher priority. If �^1 � � or �^0 � �, then the claim

is again obvious as �^h�

0

; y

0

i <

L

�^1 <

L

�^0. The only other possibility is that

�^h�; yi � � for some h�; yi. By Lemma 3.5, �

0

� � or �

0

� �^h�; yi. Lemma

3.3, however, tells us that �

0

< � and so �

0

� �. Thus h�

0

; y

0

i < h�; yi and so by

de�nition of the ordering �^h�

0

; y

0

i <

L

�^h�; yi � � as required. 2

Lemma 3.7. Each stage s of the construction eventually terminates.

Proof. We proceed by induction on s. Assume we have �nished every stage

less than s and the current priority tree is T which is necessarily �nite. As all

new nodes added to the priority tree during stage s must be below nodes in T by

construction, there is a leftmost node �

0

in T which is ever accessible at stage s.

Suppose it is accessible at substage v

0

. By our choice of �

0

and Lemma 3.6, all

nodes accessible at substages v > v

0

must extend �

0

. Let T

0

be the �nite priority

tree constructed by substage v

0

. Again all nodes added after v

0

must extend nodes

in T

0

and so there is a leftmost node �

1

in T

0

that is ever accessible during stage s.

If we did not terminate the construction upon reaching �

0

, �

1

� �

0

. Continuing

on by induction we must either terminate stage s or build a strictly increasing

sequence of accessible nodes. Of course, we must then terminate stage s as well

as the nodes must eventually become longer than s. 2

Lemma 3.8. A node � associated with h�; yi can be accessible at some substage

u of stage s only if �^1 (and so also �) was previously accessible at s.

Proof. First, we note that it is clear from the construction that �^1 can

become accessible only immediately after � becomes accessible. We now prove

the Lemma by induction on the (sub)stages of the construction. Suppose for

the sake of a contradiction that substage u of stage s is the �rst point at which

a counterexample occurs. By de�nition, � � �. If � � �^0, then � could be

assigned to requirement R

e;y

only if we �rst restart the priority ordering at some

point before R

e

. In this case, some node � would be assigned to R

e

before any

to R

e;y

and so � would be associated with h�; yi. Thus � � �^1. Consider the

�rst substage v � u of stage s at which some � � �^1 becomes accessible before

�^1 has become accessible. We must have jumped to � � �^1 from a node

to the right of �^1. is associated with some h�

0

; y

0

i 2 S(�; v) and � = �^h�

0

; y

0

i

for some � � �^1. So by Lemma 3.3, �

0

� �. As no node extending �^1 has

25

been previously accessible at s by our choice of � � �, and �

0

has been accessible

by our inductive hypothesis (after all which is associated with h�

0

; y

0

i is already

accessible), �

0

� �. Now, by Lemma 3.5, no node extending � is associated with

h�; yi. Thus, as long as the accessible nodes continue to be extensions of �, we

cannot produce the assumed counterexample. If any node �

0

= �

0

^h�

00

; y

00

i not

extending � ever later becomes accessible at a substage t of stage s, it does so

because we jumped to it from some

0

� � with

0

associated with h�

00

; y

00

i and

h�

00

; y

00

i 2 S(�

0

; t). Now, by Lemma 3.3 again, �

00

� �

0

and we are in the same

situation as with � and �

0

. The Lemma now follows by induction (on the number

of such jumps). 2

Lemma 3.9. Suppose � is assigned to a requirement of the form N

e

or R

e;y

and

there is a stage s

0

of the construction after which no node to the left of � is ever

accessible. Then there is a stage s

1

� s

0

after which � is never initialized or

injured and a stage s

2

� s

1

after which both r(�; t) and S(�; t) are constant.

Proof. We begin by noting that no node < � assigned to any requirement P

i

can act to put a number into A after s

0

as that would make ^1 accessible when

it had not been so before (we act at most once for any P

i

by construction).

Next, we note that there are only �nitely many nodes � <

L

� on T by s

0

.

Although we may add immediate successors to these nodes � after s

0

none of these

successors are ever accessible and so none of them de�ne restraints or auxiliary

sets or get successors of their own. Of course, there are also only �nitely many

nodes � � �. Thus we may prove the Lemma for the nodes � < � by induction on

the priority ordering. Suppose therefore that we have established the Lemma for

all < � � � with the point t

0

(after s

0

) of the construction as the least witness

to the fact that never again is such a initialized or its restraint r(; v) injured

or increased (and so its auxiliary set S(; v) also never changes again). We now

we wish to prove the Lemma for � which is assigned a requirement N

e

or R

e;y

.

First of all, � can be initialized only when some node to the left of � is

accessible and so never after s

0

. We next prove that r(�; v) is never injured after

t

0

.

If there is no point in the construction after t

0

at which r(�; v) is de�ned,

there is nothing to prove. So suppose substage v

0

of stage t

0

is the �rst point

after t

0

at which r(�; v) is de�ned. As no node of higher priority than � which is

assigned to a requirement of the form P

i

ever acts again and all of lower priority

ones are prohibited from putting a number less than r(�; v) into A, no action for

26

any requirement P

i

can be the �rst to directly injure r(�; v) (i. e. by putting in

a follower less than this restraint). The only other nodes that initiate putting

elements into A are nodes associated with some h�

0

; y

0

i. Suppose such a node is

accessible at a substage v

1

(of stage t

1

� t

0

) after v

0

. Let � be the highest priority

node such that h�

0

; y

0

i 2 S(�; v

1

). If � � � then the dumping action for cannot

directly put any number less than r(�; v

1

) into A by construction. Suppose � < �.

In this case, we either increase r(�; v) or declare �^h�

0

; y

0

i accessible. The former

is not possible by our inductive assumption that the � restraint has settled down

for all � < �. In the latter case, �^h�

00

; y

00

i � � for some h�

00

; y

00

i � h�

0

; y

0

i since

no node to the left of � can be accessible. Remember that we are concerned that

some a

�;y

� r(�; v

1

) is about to be put into A by our immediate action for .

Thus by de�nition, h�; yi 2 S(�; v

1

). So, by Lemma 3.4, a

�;y

is restrained with

priority at least � or h�; yi � h�

00

; y

00

i (and so h�; yi � h�

0

; y

0

i) or � � �^h�

00

; y

00

i. In

each of these cases our dumping action for cannot directly put such a number

a

�;y

into A by the de�nition of this action (case (3) of R

e;y

).

Thus to show that r(�; v) is never injured after t

0

it su�ces to prove that if

only numbers greater than r(�; v) are put into A directly by any requirement at

points v after v

0

then the cascade they initiate also puts only numbers greater

than r(�; v) into A.

The crucial claim here is that if any a

�

0

;y

0

is less than r(�; v) and b

�

0

;y

0

was

put into B

�

0

by (assigned to R

e

0

;y

0

) at substage v

0

of stage s

0

before v then

�

e

0

(A; y)[s

0

] � r(�; t) for every point t of the construction that is after v. This

claim clearly su�ces for our purposes by the de�nition of the cascade procedure.

It is certainly true at v

0

when we de�ne r(�; v) as it is set to be a new large

number. The only worry is that for some a

�

0

;y

0

� r(�; v), some may put a

b

�

0

;y

0

into B

�

0

at some substage v

0

of a stage t after v with �

e

0

(A; y

0

)[t] larger than

r(�; v

0

). As h�

0

; y

0

i 2 S(�; v) � S(�; v

0

) (it has not been initialized by induction)

and no higher priority � can have its restraint increased by assumption, � must

be the highest priority node with h�

0

; y

0

i 2 S (�; v

0

) and so we set r(�; v

0

) to be a

new large number (and so bigger than �

e

0

(A; y

0

)[t]) at v

0

by construction. Thus

r(�; v) is never injured after t

0

.

Now r(�; v) changes only when some b

�

0

;y

0

enters B

�

0

for some h�

0

; y

0

i 2 S(�; v).

Once b

�

0

;y

0

enters B

�

0

at substage u of stage t, �

�

0

(A; y

0

)[t] � r(�; u). As this

restraint is never injured, a

�

0

;y

0

is never put into A and so b

�

0

;y

0

never becomes

unde�ned. (The only other way for b

�

0

;y

0

to become unde�ned is for �

0

to be

initialized. However, h�

0

; y

0

i 2 S(�; v) and so �

0

< � by Lemma 3.3 and, by our

assumption, no node of higher priority than � is ever initialized again.) Thus, for

27

each h�

0

; y

0

i 2 S(�; t), b

�

0

;y

0

can enter B

�

0

at most once. As r(�; v) changes only

when such a b

�

0

;y

0

enters B

�

0

, to prove that r(�; v) eventually stabilizes, it clearly

su�ces then to show that S(�; v) is eventually constant.

When �rst de�ned S(�; v) consists of a �nite set. It expands at a later point

t by our putting in those h�

00

; y

00

i for which a

�

00

;y

00

is de�ned only when some b

�

0

;y

0

is put into B

�

0

by some where h�

0

; y

0

i 2 S(�; t). Remember that, by Lemma 3.3,

this implies that �

0

< �. Now, by construction, before we put b

�

0

;y

0

into B

�

0

we put

into A every a

�

00

;y

00

with �

00

6� �^h�; zi for any h�; zi such that h�

00

; y

00

i > h�

0

; y

0

i

and a

�

00

;y

00

is not restrained by requirements of priority at least � and so make

such a

�

00

;y

00

unde�ned. The markers with �

00

� �^h�; zi for some h�; zi are then

initialized by the construction and so do not make any contribution to S(�; v).

Of course, the restraints of strictly higher priority than � have already stabilized

by our choice of v

0

and so h�

00

; y

00

i is already in S(�; t) for all a

�

00

;y

00

ever restrained

by any requirement with strictly higher priority than �. Thus every new h�

00

; y

00

i

put into S(�; v) is strictly smaller than h�

0

; y

0

i in the lexicographic ordering of

such pairs. As there are only �nitely many �

0

< �, there are only �nitely many

such pairs that can ever be put into S(�; v). Thus this process of putting a new

b

�

00

;y

00

into B

�

00

and new pairs into S(�; v) must eventually stop and so S(�; v) is

eventually constant as required. 2

We would now like to argue that the requirements are satis�ed along the true

path. However, because of the possibility of jumping to the left there may be

gaps in the set of leftmost nodes visited in�nitely often. We consider instead the

classes TN of true nodes and STN of semitrue nodes rather than the true path.

We must prove that such exist and that every requirement is assigned to some

true node.

De�nition 3.10. The set of true nodes, TN, is de�ned as follows:

TN = f�j� is accessible in�nitely often

but no � <

L

� has this propertyg.

The set of semitrue nodes, STN, is de�ned as follows:

STN = f�j in�nitely often some � � is accessible

but no � <

L

� has this propertyg.

Lemma 3.11. TN � STN which is an in�nite path in T .

28

Proof. It is clear from the de�nitions that TN � STN which is linearly ordered

by �. Suppose � 2 STN . We must show that some immediate successor of �

is in STN . If � has only �nitely many immediate successors, this is immediate

from the de�nition of STN . If � is assigned to a requirement of the form P

i

or

R

i

then it has only two possible immediate successors. If it is assigned to some

N

i

or R

i;y

then it has only �nitely many immediate successors by Lemma 3.9. 2

Lemma 3.12. If �^h�; zi 2 STN , then there is an � � � � � and a �^h�; yi �

�^h�; zi such that �; �^h�; yi 2 TN .

Proof. First, note that, by Lemma 3.3, � � �. At the �rst substage u of any

stage s at which some node � � �^h�; zi in STN becomes accessible, we must

jump to � from a node to the right of �^h�; zi. Thus � must be of the form

�^h�; yi and must be associated with h�; yi. By Lemma 3.4, � � �. (We cannot

have � � �^h�; zi because is associated with h�; yi (which implies that � �)

and is to the right of �^h�; zi.) If there is a single such node � that is accessible

in�nitely often, it supplies the desired witness for the Lemma. Otherwise, there

must be an in�nite sequence of distinct such �

i

^h�

i

; y

i

i 2 STN and we must jump

to each of them from some

i

to the right of �^h�; zi. As STN is linearly ordered

by extension, we may assume that �

i

^h�

i

; y

i

i � �

i+1

^h�

i+1

; y

i+1

i. As above, each

�

i

� �. As there are only �nitely many nodes contained in �, there is a node �

which is the value of �

i

for in�nitely many i. By Lemma 3.4, we would then have

an in�nite nonascending sequence h�; y

j

i in the lexicographic ordering. This can

only happen if the y

j

are eventually constant. This would mean that there are

�

i

� �

j

such that h�

i

; y

i

i = h�

j

; y

j

i = h�; yi. This cannot happen for we can never

jump to �

j

^h�; yi as the instructions of the construction would always send us to

�

i

^h�; yi instead. 2

Lemma 3.13. Every requirement of the form P

i

; N

i

or R

i

is assigned to some

node � 2 TN . Every requirement of the form R

e;y

is assigned to a node � 2 TN ;

or some node of the form �^h�; yi is in TN ; or �^0 with � assigned to R

e

is in

TN . Moreover, for each requirement Q assigned to a node � 2 TN there is a last

node � 2 TN which is assigned to Q.

Proof. We de�ne two sequences of nodes �

i

; �

i

^h�

i

; y

i

i in TN as follows: �

0

= ;;

if �

i

is de�ned and in TN , we let �

i+1

be the �rst node in TN extending �

i

^h�

i

; y

i

i

such that some �

i+1

^h�

i+1

; y

0

i 2 TN and let y

i+1

be the least such y

0

. (We consider

29

�

0

^h�

0

; y

0

i to be ; for technical convenience.) If there is no such node, the sequence

terminates. Suppose the nodes �

i

are assigned to the requirements R

e

i

.

We claim that the nodes in the interval (�

i

; �

i+1

] are all in TN and are assigned

requirements from <

�

i

^h�

i

;y

i

i

in order except that if a node � is assigned to R

e

and

�^0 is in the interval, then all requirements R

e;y

are left out. Moreover, <

�

i+1

(if it exists) is just <

�

i

^h�

i

;y

i

i

starting immediately after R

e

i+1

with all such R

e;y

omitted. (Of course, <

�

i

^h�

i

;y

i

i

itself was just <

�

i

starting after R

e

i

with all R

e

i

;y

omitted.) If �

i+1

does not exist, we simply claim that, after �

i

, STN = TN and

we just keep assigning requirements from <

�

i

^h�;

i

y

i

i

in this way.

We proceed by induction through the nodes in the interval (which are all in

STN by de�nition if �

i+1

exists). We start with �

i

^h�

i

; y

i

i. It is in TN and

assigned the �rst element of <

�

i

^h�

i

;y

i

i

by de�nition. Suppose we have reached

 2 TN but not yet �

i+1

. If is assigned some requirement of the form P

i

or

R

i

then the immediate successor ^w in STN is accessible in�nitely often and

so in TN . Unless is assigned to R

i

and w = 0, the priority ordering <

^w

is just that <

with the �rst element removed and we continue the induction.

Otherwise, <

^w

is <

with R

i

and all R

i;y

removed and we also continue the

induction. Suppose then that is assigned to a requirement of the form N

i

or

R

i;z

. Let w be such that ^w 2 STN . If w = 0; 1, ^w 2 TN and we are in the

same situation as for P

i

. If w is of the form h�; zi then, by Lemma 3.12, there

are � � and �^h�; yi � ^w such that �; �^h�; yi 2 TN . If � � �

i

^h�

i

; y

i

i, then

�

i+1

exists by de�nition and � � �

i+1

by minimality of �

i+1

. In this case, we have

�nished the induction argument by arriving at �

i+1

. Otherwise, we argue for a

contradiction. By Lemma 3.4, � � �

i

and h�; yi � h�

i

; y

i

i. Let j < i be least

such that �

j

� � � �

j+1

. By minimality of �

j+1

, � = �

j+1

. By Lemma 3.4 again,

h�; yi � h�

j+1

; y

j+1

i but as � = �

j+1

and y

j+1

was chosen least, y = y

j+1

. In this

case �^h�; yi could never be accessible (we would always jump to �

j+1

^h�

j+1

; y

j+1

i)

for the desired contradiction.

Thus, as we proceed through the nodes in the intervals (�

i

; �

i+1

] in TN (if

there is a last node �

i

we understand the interval (�

i

; �

i+1

] to be all of STN = TN

after �

i

), we assign all requirements in order except those R

e;y

such that e = e

i

for some i or such that one of these nodes is assigned to R

e

and ^0 is also one

of these nodes and so in TN . Moreover, it is clear that, once we have assigned a

requirement Q to a node � in some interval (�

i

; �

i+1

], we never again assign Q to

any other node � 2 TN . 2

We are now ready to prove that the requirements are satis�ed and the con-

30

struction succeeds.

Lemma 3.14. Each requirement P

e

and N

e

is satis�ed, i. e. A 6= �

e

and �

A

e

6= C.

Proof. Consider a node � 2 TN assigned to P

e

. By Lemma 3.9, the restraints

r(; s) for < � are eventually constant. Thus it is immediate from the instruc-

tions for � that there is some x such that �

e

(x) 6= A(x) by �'s actions if not by

some other means. Next, consider an � 2 TN assigned to N

e

. Suppose x is a

follower of � after all action for higher priority nodes has ceased and so appointed

after � is initialized in that way for the last time. If �

e

(A; x)[s] = 0 at any later

stage, we put x into C and preserve the computation. It is never injured by

Lemma 3.9 and so �

e

(A; x) = 0 6= C(x). If �

e

(A; x)[s] 6= 0 for any later stage s,

�

e

(A; x) 6= 0 = C(x). Thus in either case, �

A

e

6= C. 2

Lemma 3.15. If the hypotheses of R

e

hold, i. e. W

A

e

= 	

K

e

, and � 2 TN is

assigned to R

e

then neither �^0 nor any node �^h�; yi is in TN .

Proof. Suppose W

A

e

= 	

A

e

and � 2 TN is assigned to R

e

. We �rst show that

for any x there is an �-stage s such that `(�; s) > x. By our assumptions, there is

an �-stage r such that, for every t � r and y � x, 	

e

(K; y)[t] = 	

e

(K; y) with use

e

(y) and, if y 2 W

A

e

(i. e. �

e

(A; y) #), then �

e

(A; y)[t] = �

e

(A; y) with use �

e

(y).

Thus for y < x; y 2 W

A

e

, 	

�

(K; y)[t] = 	

e

(K; y) = �

�

(A; y)[t] = �

e

(A; y) = 1

for every �-stage t > r. Let u be the �rst A-true stage after r. (Recall that

u is an A-true stage if no number less than that enumerated in A at u is ever

enumerated in A after u.) Let s be the �rst �-stage greater than or equal to u.

It is now immediate from the de�nitions that W

A

�

(y)[s] = 	

�

(K; y)[s] for every

y � x and so `(�; s) > x as required. (The only possible concern is for y =2 W

A

e

.

Of course, 	

�

(K; y)[s] = 	

e

(K; y) = 0 by assumption. If, however, �

�

(A; y)[s] #,

then the use of this computation at s is the same as at the previous �-stage t. As

r � t � u � s and u is an A-true stage, this could happen only if the computation

at s is actually A-correct, contradicting our assumption that y =2 W

A

e

. Thus �^1

is accessible in�nitely often as required.)

Next suppose that some �^h�; yi 2 TN for the sake of a contradiction. �^h�; yi

can be accessible only when there is a node � �^1 associated with h�; yi which is

accessible at a stage s such that �

e

(A; y) # and a

�;y

is de�ned and so 	

e

(K; y) = 1

(as a

�;y

is de�ned and so `(�; s) > y). In order for �^h�; yi to become accessible our

action at must kill the computation �

e

(A; x). As �^h�; yi 2 TN , this happens

31

in�nitely often and so x =2 W

A

e

but there are in�nitely many stages at which

	

e

(K; x) = 1 for the desired contradiction. 2

We can now conclude the proof of the Theorem with the following Lemma.

Lemma 3.16. If W

A

e

= 	

K

e

and � is the last node on TN assigned to R

e

then

W

A

e

�

T

B

�

� A and B

�

�

T

W

A

e

� A.

Proof. First, by Lemma 3.13, there is a last node � 2 TN assigned to R

e

.

By Lemmas 3.13 and 3.15 there is, for each y, a node � 2 TN associated with

h�; yi. Moreover, for each y we eventually de�ne markers b

�;y

, a

�;y

and, if they ever

become unde�ned, we rede�ne them at the next �^1-stage. Let � be the node on

TN below � assigned to R

e;y

and s

�

the stage s

2

proved to exist Lemma 3.9. Now

if b

�;y

is ever in B

�

at an �-stage s after s

�

, Lemma 3.9 states that the restraint

now imposed (by � if not by some requirement of higher priority) that protects

the computation associated with �

e

(A; y) because of which we put b

�;y

into B

�

is

never injured and so a

�;y

=2 A and y 2 W

A

e

. On the other hand, it is obvious from

the construction that if y 2 W

A

e

then we must eventually have b

�;y

2 B

�

at an

�-stage s > s

�

.

Now, in general, b

�;y

may enter B

�

at some stage s > s

�

which is not an �-stage

[it can be put in by some assigned to R

e;y

which is to the right of the true path].

However, this can only happen if �

e

(A; y)[s] is convergent and 	

e

(K; y) = 1[s]. If

A is not correct on the use �

e

(A; y)[s] then, when A changes, we put a

�;y

into A

by construction. If this happens in�nitely often then y =2 W

A

e

but 	

e

(K; y) = 1[t]

for in�nitely many t and so W

A

e

6= 	

K

e

for a contradiction. Thus y 2 W

A

e

if and

only if we eventually have a pair of markers such that b

�;y

2 B

�

and a

�;y

=2 A while

y =2 W

A

e

if and only if there is eventually a marker b

�;y

=2 B

�

. This shows that

W

A

e

�

T

B

�

� A.

Finally, we prove that B

�

�

T

W

A

e

� A. To decide if some b is in B

�

we wait

until stage b to see if b has been appointed as a marker b

�;y

for some y. If not then

b 62 B

�

. If so then we see if y 2 W

A

e

. If so then the construction guarantees that

b

�;y

2 B

�

. If not then b

�;y

can enter B

�

at t > b only if a

�;y

is later put into A (at

a stage when the computation �

e

(A; y)[t] is seen to be incorrect). Thus we ask if

a

�;y

2 A. If so then b = b

�;y

is in B

�

if and only if it has entered by the stage at

which a

�;y

is put into A. If a

�;y

62 A then b = b

�;y

=2 B

�

. 2

32

4. Bibliography

Arslanov, M. M. [1985], Structural properties of the degrees below 0

0

, Sov. Math.

Dokl. N.S. 283 no. 2, 270-273.

Arslanov, M. M. [1988], On the upper semilattice of Turing degrees below 0

0

,

Sov. Math. 7, 27-33.

Arslanov, M. M. [1990], On the structure of degrees below 0

0

, in Recursion

Theory Week, K. Ambos-Spies, G. H. M�uller and G. E. Sacks eds., LNMS 1432,

Springer-Verlag, Berlin, 1990, 23-32.

Arslanov, M. M., Lempp, L. and Shore, R. A. [1995], On isolating r. e. and

isolated d-r. e. degrees, to appear.

Cooper, S. B. [1971], Degrees of Unsolvability , Ph. D. Thesis, Leicester Uni-

versity, Leicester, England.

Cooper, S. B. [1990], The jump is de�nable in the structure of the degrees of

unsolvability, Bull. Am. Math. Soc. (NS) 23, 151-158.

Cooper, S. B. [1991], The density of the low

2

n-r. e. degrees, Arch. Math.

Logic 31, 19-24.

Cooper, S. B. [1992], A splitting theorem for the n-r. e. degrees, Proc. Am.

Math. Soc. 115, 461-471.

Cooper, S. B. [1993], De�nability and global degree theory, in Logic Colloquium

'90, J. Oikkonen and J. V�a�an�anen eds., Lecture Notes in Logic 2, Springer-Verlag,

Berlin, 25{45.

Cooper, S. B. [1994], Rigidity and de�nability in the noncomputable universe,

in Proceedings of the 9th International Congress of Logic, Methodology and Philos-

ophy of Science, D. Prawitz, B. Skyrms and D. Westerstahl eds., North-Holland,

Amsterdam, 1994, 209{236.

Cooper, S. B. [1995], On a conjecture of Kleene and Post, to appear.

Cooper, S. B., Harrington, L., Lachlan, A. H., Lempp, S. and Soare, R. I.

[1991], The d-r. e. degrees are not dense, Ann. Pure and Applied Logic 55, 125-

151.

Cooper, S. B., Lempp, S. and Watson, P. [1989], Weak density and cupping in

the d-r. e. degrees, Israel J. Math. 67, 137-152.

Cooper, S. B. and Yi, X. [1995], Isolated d-r. e. degrees, to appear.

Ding, D. and Qian, L. [1995], An r. e. degree not isolating any d-r. e. degree,

to appear.

Epstein, R. L., Haas, R. and Kramer, R. L. [1981], Hierarchies of sets and

degrees below 0

0

, in Logic Year 1979-80, M. Lerman, J. H. Schmerl and R. I.

33

Soare eds., Springer-Verlag, LNMS 859, Berlin, 32-48.

Ershov, Y. [1968a] On a hierarchy of sets I, Algebra i Logika 7 no. 1, 47-73.

Ershov, Y. [1968b] On a hierarchy of sets II, Algebra i Logika 7 no. 4, 15{47.

Ershov, Y. [1970] On a hierarchy of sets III, Algebra i Logika 9 no. 1, 34-51.

Gold, E. M. [1965], Limiting recursion, J. Symb. Logic 30, 28-48.

Ishmukhametov, Sh. T. [1985], On di�erences of recursively enumerable sets,

Izv. Vyssh. Uchebn. Zaved. Mat. 279, 3-12.

Jockusch, C. G. Jr. and Shore, R. A., [1984], Pseudo-jump operators II: Trans-

�nite iterations, hierarchies and minimal covers, J. Symb. Logic 49, 1205-1236.

Kaddah, D. [1992], Ph. D. Thesis, University of Wisconsin, Madison.

Kaddah, D. [1993], In�ma in the d-r. e. degrees, Ann. Pure and Applied Logic

62, 207-263.

LaForte, G. [1995], Phenomena in the n-r. e. and n-REA degrees, Ph. D.

Thesis, University of Michigan.

Nerode, A. and Shore, R. A. [1979],Second Order Logic and First Order Theo-

ries of Reducibility Orderings in The Kleene Symposium, J. Barwise, H. J. Keisler

and K. Kunen, eds., North-Holland, 181-200.

Nerode, A. and Shore, R. A. [1980], Reducibility Orderings: Theories, De�n-

ability and Automorphisms, Ann. Math. Logic, 18, 61-89.

Putnam, H. [1965], Trial and error predicates and the solution to a problem

of Mostowski, J. Symb. Logic 30, 49-57.

Robinson, R. W. [1968], A dichotomy of the recursively enumerable sets, Z.

Math. Logik Grundl. Math. 14, 339-356.

Sacks, G. E. [1961], A minimal degree less than 0

0

, Bull. Am. Math. Soc. 67,

416-419..

Sacks, G. E. [1963], On the degrees less than 0

0

, Ann. Math. (2) 77, 211-231.

Sacks, G. E. [1964], The recursively enumerable degrees are dense, Ann. Math.

(2) 80, 300-312.

Shore, R. A. [1982], On Homogeneity and De�nability in the First Order The-

ory of the Turing Degrees, J. Symb. Logic, 47, 8-16.

Slaman, T. A. and Woodin, W. H. [1996], De�nability in Degree Structures, in

preparation.

Soare, R. I., [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag,

Berlin.

Soare, R. I. and Stob, M. [1982], Relative recursive enumerability, in Proc.

Herbrand Symposium, Logic Colloquium 1981, J. Stern, ed., North-Holland, Am-

sterdam, 299-324.

34

