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Abstra
t

We 
ompare Aut(Q ), the 
lassi
al automorphism group of a 
ountable dense linear

order, with Aut




(Q ), the group of all 
omputable automorphisms of su
h an order. They

have a number of similarities, in
luding the fa
ts that every element of ea
h group is a


ommutator and ea
h group has exa
tly three nontrivial normal subgroups. However,

the standard proofs of these fa
ts in Aut(Q ) do not work for Aut




(Q ). Also, Aut(Q )

has three fundamental properties whi
h fail in Aut




(Q ): it is divisible, every element

is a 
ommutator of itself with some other element, and two elements are 
onjugate if

and only if they have isomorphi
 orbital stru
tures. Keywords: latti
e-ordered groups,

automorphism groups, 
omputability theory, e�e
tive algebra, reverse mathemati
s.

1 Introdu
tion

Our goal is to examine the group of automorphisms of a 
ountable dense linear order without

endpoints, denoted Aut(Q ), from the perspe
tive of 
omputability theory. We begin with some

general motivation for the study of automorphism groups of linear orders and we present the

basi
 de�nitions for the study of Aut(Q ) in this se
tion. In the next se
tion, we turn to our
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motivation for studying the group of 
omputable automorphisms of Q and to a summary of

our results.

For any linear order L, there is a 
orresponding group of automorphisms, Aut(L). Su
h

groups have been extensively studied, partially due to their 
onne
tion with latti
e-ordered

groups. To de�ne a latti
e-order on Aut(L), set f �

Aut(L)

g if 8x 2 L(f(x) �

L

g(x)). Holland

showed that su
h automorphism groups play a 
entral role in the theory of latti
e-ordered

groups.

Theorem 1.1 (Holland [4℄). Every latti
e-ordered group 
an be embedded in Aut(L) for

some linear order L.

Consider the following two theorems to illustrate the importan
e of the study of automor-

phism groups for the theory of latti
e-ordered groups.

Theorem 1.2 (Holland [4℄, Weinberg [9℄). Every latti
e-ordered group 
an be embedded

(as a latti
e-ordered group) in a divisible latti
e-ordered group.

Theorem 1.3 (Glass and Gurevi
h [2℄). There is a �nitely presented latti
e-ordered group

whi
h has unsolvable word problem.

Theorem 1.2 is proved by showing that in Holland's Theorem, the linear orders L 
an be

assumed to have the property that Aut(L) is divisible. Holland proved this fa
t assuming

the generalized 
ontinuum hypothesis, and Weinberg later removed this assumption. Theo-

rem 1.3, perhaps of more interest to logi
ians, was proved by 
onsidering properties of the

automorphism group of the reals.

There are also interesting model theoreti
 and set theoreti
 properties of latti
e-ordered

groups. For example, the 
lass of all latti
e-ordered groups does not have the model theoreti


amalgamation property, although it is still true that every latti
e-ordered group 
an be em-

bedded in a two generator group (see the dis
ussion on pages 183-184 in [1℄). In set theory,

Glass, Gurevi
h, Holland, and Shelah [3℄ give an example of a statement about latti
e-ordered

groups whi
h is independent of ZFC.

In [5℄, Morozov and Truss 
onsidered the automorphism group of Q , a 
ountable dense

linear order without endpoints, from the viewpoint of 
omputability theory. For an arbitrary

ideal I in the Turing degrees, they de�ned Aut

I

(Q ) to be the set of automorphisms of Q whi
h

(under a suitable 
oding, dis
ussed below) are 
omputable from some element of I. (Turing

ideals play no role in the rest of this arti
le, so the reader who is unfamiliar with them 
an

safely skip this motivational example.) They proved that for Turing ideals I and J,

Aut

I

(Q )

�

=

Aut

J

(Q ) , I = J:

Along the way to proving this result, Morozov and Truss gave one example of a natural group

theoreti
 property that holds in Aut(Q ) but not in the group of 
omputable automorphisms

of Q . This example leads into our 
urrent work, whi
h is to 
ontinue the study of Aut(Q )

from the point of view of 
omputability theory by studying the group theoreti
 properties of

the group of all 
omputable automorphisms of Q .

Before giving more motivation for our work and stating our main results, we need some

ba
kground in the theory of Aut(Q ). The �rst de�nition introdu
es the main 
on
ept used

to prove many of the fundamental properties of Aut(Q ).
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De�nition 1.4. Fix f 2 Aut(Q ). For q 2 Q , we de�ne the orbital of q (relative to f) to be

the 
onvexi�
ation of the set 
ontaining f

n

(q) for all n 2 Z. More formally, if f(q) � q, then

we de�ne

orbital(q) =

[

n2N

[f

�n

(q); f

n

(q)℄:

If f(q) < q, then we take the union of the intervals [f

n

(q); f

�n

(q)℄. We label orbital(q)

positive if f(q) > q, negative if f(q) < q, and neutral if f(q) = q.

For any f 2 Aut(Q ) and any q 2 Q , orbital(q) is either a single point (if f(q) = q)

or a 
onvex open (possibly unbounded and possibly without rational endpoints) interval (if

f(q) 6= q). If q̂ 2 orbital(q), then orbital(q) = orbital(q̂) and the labels on the orbitals are

the same. Therefore, the relation q � q̂ if and only if orbital(q) = orbital(q̂) is an equivalen
e

relation whi
h respe
ts the ordering on Q and the labeling of orbitals. Hen
e, there is both a

natural order on the equivalen
e 
lasses (given by [q℄ � [q̂℄ if and only if [q℄ = [q̂℄ or [q℄ 6= [q̂℄

and q < q̂) and a natural labeling of the equivalen
e 
lasses.

De�nition 1.5. Fix f 2 Aut(Q ). The stru
ture Q mod the relation � with the indu
ed

ordering and labeling is 
alled the orbital stru
ture of f . We say that the orbital stru
tures

of f and g are isomorphi
 if there is a bije
tion between the orbital stru
tures whi
h preserves

both the order of the orbitals and the labels of the orbitals.

The support of f , denoted supp(f), is the set of q su
h that f(q) 6= q. There are three

nontrivial normal subgroups of Aut(Q ):

L(Q ) = ff j supp(f) is bounded aboveg;

R(Q ) = ff j supp(f) is bounded belowg; and

B(Q ) = ff j supp(f) is bounded above and belowg:

For these subgroups, we follow the notation given in [1℄. The intuition is that L(Q ) 
onsists

of the automorphisms that \live on the left", meaning that they are equal to the identity for

values far enough right on the line Q . Similarly, R(Q ) 
onsists of those automorphisms that

\live on the right" and B(Q ) refers to those automorphisms that are bounded on both sides.

The following theorem states several properties of Aut(Q ). During the 
ourse of this

arti
le, we will sket
h proofs of some of these properties, all of whi
h are based on those given

in Glass [1℄. The only di�eren
e in the proofs is that Glass 
onsiders the general 
ase of a

doubly homogeneous linear order (of whi
h Q is an example), while we spe
ialize our proofs

to Aut(Q ). Re
all that a group G is divisible if for every element g 2 G and every n 2 N

with n > 0, the equation x

n

= g has a solution. We use [f; g℄ = f

�1

g

�1

fg to denote the


ommutator of f and g in Aut(Q ). We use similar notation, [a; b℄, for points a; b 2 Q to

denote the 
losed interval between a and b in Q . The 
ontext will make 
lear whi
h meaning

is intended by the bra
ket notation.

Theorem 1.6. The following properties hold of Aut(Q ).

1. Aut(Q ) is divisible.
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2. For every f 2 Aut(Q ), there is a g 2 Aut(Q ) su
h that f = [f; g℄. Therefore, every

element of Aut(Q ) is a 
ommutator.

3. Two elements of Aut(Q ) are 
onjugate if and only if they have isomorphi
 orbital stru
-

tures.

4. Aut(Q ) has exa
tly three nontrivial normal subgroups: L(Q ), R(Q ), and B(Q ).

Before pro
eeding, we give referen
es for these results in Glass [1℄. Property 1 is stated as

Theorem 2E on page 40 and is proved on page 57. Property 2 is a 
ombination of Theorem 2F

on page 40 and Corollary 2.2.6 on page 63. The proof of Property 2 is a trivial 
onsequen
e

of Property 3 sin
e f and f

2

have identi
al orbital stru
tures for any f . Property 3 is stated

as Theorem 2.2.5 on page 62. Noti
e that the 
onditions in Theorem 2.2.5 that the map

be 1-1, onto, left-right preserving, and parity preserving mean exa
tly that the map is an

isomorphism between the orbital stru
tures. Finally, Property 4 is stated as Theorem 2.3.2

on page 65. Noti
e that Q trivially has 
ountable 
oterminality sin
e Q is 
ountable.

The standard proofs of these properties rely on the te
hnique of de�ning automorphisms

uniformly on orbitals. Formally, this means applying the Pat
hing Lemma 1.10.9 from [1℄.

To illustrate this te
hnique, 
onsider f 2 Aut(Q ) and suppose we want to show that there is

a g 2 Aut(Q ) su
h that g

2

= f . For ea
h orbital of f , pi
k a representative q for that orbital.

Without loss of generality, assume that orbital(q) is positive. Pi
k any point p 2 (q; f(q))

and an isomorphism h

1

: [q; p℄ ! [p; f(q)℄. De�ne h

2

: [p; f(q)℄ ! [f(q); f(p)℄ by h

2

(x) =

f(h

�1

1

(x)). To de�ne g(x) for a point x 2 orbital(q), noti
e that there is a unique n 2 Z su
h

that x 2 [f

n

(q); f

n+1

(q)). De�ne g(x) by �rst applying f

�n

, then applying either h

1

or h

2

depending on whether f

�n

(x) is in [q; p℄ or [p; f(q)℄, and �nally applying f

n

. Pasting together

the de�nitions for g on ea
h orbital yields an automorphism su
h that g

2

= f .

2 Motivation and summary of results

Our goal is to study the group of 
omputable automorphisms of Q , denoted Aut




(Q ). Sim-

ilarly, we use L




(Q ), R




(Q ) and B




(Q ) to denote the restri
tions of L(Q ), R(Q ) and B(Q )

respe
tively to the group of 
omputable automorphisms.

Our motivation is threefold. First, from the point of view of 
omputability theory, Aut




(Q )

is a naturally de�ned group deserving study. In parti
ular, we wish to understand whi
h prop-

erties of Aut(Q ) are 
aptured in Aut




(Q ) and whi
h are not. There are obvious similarities,

su
h as the fa
t that both groups are nonabelian and torsion-free, as well as obvious di�er-

en
es, su
h as the fa
t that Aut(Q ) is un
ountable while Aut




(Q ) is 
ountable. We hope that

a wider audien
e, on
e introdu
ed to Aut




(Q ), will �nd this group interesting in its own right.

Se
ond, we are motivated by the general program of e�e
tive algebra. In e�e
tive algebra,

one attempts to determine whi
h theorems and te
hniques in algebra remain true when we

restri
t our attention to the 
omputable sets. (Below, we will dis
uss the 
on
ept of a 
om-

putable set for the reader who is unfamiliar with this terminology.) Thus, this program is one

attempt at 
apturing whi
h parts of mathemati
s are 
onstru
tively true. (However, unlike an

intuitionisti
 approa
h to 
onstru
tive mathemati
s, we 
ontinue to work in 
lassi
al logi
.)
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The most widely known results in this area are the fa
t that the word problem for groups is

unsolvable and the negative solution to Hilbert's 10th problem that there is no algorithm to

determine if a Diophantine equation has a root.

In the 
ontext of this arti
le, we are interested in questions su
h as whether, given an

automorphism f of Q , we 
an e�e
tively 
onstru
t an automorphism g su
h that g

2

= f .

In Theorem 3.1, we show that the method of 
onstru
ting g des
ribed above is not e�e
tive

be
ause there is no 
omputable pro
edure to determine if two elements of Q are in the same

f orbital for an arbitrary 
omputable automorphism f . This result does not say that there is

not a 
omputable g su
h that g

2

= f , but it does say that the 
lassi
al proof does not yield

a method to 
onstru
t su
h a g. We pro
eed to show in Theorem 4.1 that in general su
h

a g does not exist by building a 
omputable automorphism f su
h that for all 
omputable

automorphisms g, g

2

6= f .

Our results on e�e
tiveness for the properties listed in Theorem 1.6 are not all negative.

In fa
t, they are an interesting mix of positive and negative results, all of whi
h are surveyed

at the end of this se
tion. To give one example of a positive result, we show in Se
tion 6 that

L




(Q ), R




(Q ), and B




(Q ) are the only nontrivial normal subgroups of Aut




(Q ). Therefore

the e�e
tive analogue of Property 4 of Theorem 1.6 is true.

Third, we are motivated by the program of reverse mathemati
s, whi
h seeks to determine

whi
h set existen
e axioms are required to prove parti
ular theorems of mathemati
s. Se
ond

order arithmeti
 (whi
h is mu
h weaker than ZFC and therefore more sensitive to axiomati


di�eren
es between theorems) is the model of set theory used in reverse mathemati
s. While

the details of se
ond order arithmeti
 are outside the s
ope of this arti
le, the general method

of reverse mathemati
s pro
eeds as follows. There are �ve basi
 axioms systems 
alled (in

in
reasing order of strength) RCA

0

, WKL

0

, ACA

0

, ATR

0

and �

1

1

-CA

0

. Most theorems in


ountable algebra are equivalent to one of these systems. To �nd an upper bound on the

axioms required to prove a theorem T , one looks for a proof of T in one of these systems. To

�nd a lower bound on the axioms required for T , one tries to prove the axioms of one of these

systems from the statement of T . (Te
hni
ally, one usually works in the axiom system RCA

0

plus the statement of T .) So, if ACA

0

suÆ
es to prove T and RCA

0

+ T suÆ
es to prove the

axioms in ACA

0

, then we 
an say that ACA

0

gives the minimum 
olle
tion of set theoreti


axioms required to prove T . The pro
ess of proving axioms from theorems (that is, proving

ACA

0

from RCA

0

+ T ) is 
alled a reversal and gives rise to the name reverse mathemati
s.

Two of these axiom systems are relevant to providing motivational ba
kground. In our


ontext, RCA

0


onsists (roughly) of axioms whi
h prove that the 
omputable sets exist. The

axiom system ACA

0

is stronger and it proves the existen
e of subsets of Q whi
h are de�ned

using quanti�
ation over elements of Q and N .

The di�eren
e between these systems is best illustrated with examples. For any given

q 2 Q , RCA

0


an prove the existen
e of sets su
h as the set of all a 2 Q for whi
h q < a or

the set of all a 2 Q su
h that a has a nonzero power of 2 in its denominator when it is written

in redu
ed form. There are obvious 
omputational pro
edures to determine the elements of

ea
h of those sets. On the other hand, if ACA

0

is given an automorphism f , then it is strong

enough to prove the existen
e of the set of all pairs of rationals a and q su
h that a and q are

in the same orbital with respe
t to the automorphism f . The de�nition for a and q being in
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the same orbital 
an be given using only a quanti�er over N . The formal de�nition splits into


ases depending on whether f(q) > q, f(q) = q or f(q) < q. In the 
ase when f(q) > q, we

have

a � q , 9n 2 N (f

�n

(q) � a � f

n

(q)):

Therefore, in ACA

0

, we 
an de�ne automorphisms uniformly on orbitals and hen
e prove the

�rst three properties in Theorem 1.6 using the 
lassi
al proofs as given in [1℄.

By Theorem 3.1, we 
annot use this method in RCA

0

sin
e there is no 
omputable pro
e-

dure to determine if two points are in the same orbital. This fa
t does not say that the �rst

three properties in Theorem 1.6 are not provable in RCA

0

. It only says that if they are prov-

able in RCA

0

, then they require a di�erent proof. However, Theorem 4.1 does say that RCA

0


annot prove Property 1 in Theorem 1.6 be
ause there is a 
omputable automorphism (whi
h

RCA

0


an prove exists) whi
h has no 
omputable divisors. Therefore, axioms (like RCA

0

)

whi
h 
an only prove the existen
e of 
omputable sets 
annot prove that this automorphism

has divisors.

Hopefully these examples give the reader a glimpse into the intera
tion between questions

in e�e
tive algebra and reverse mathemati
s. Sin
e our original goal was to study the group

Aut




(Q ), we did not attempt to get exa
t 
lassi�
ations of the properties of Theorem 1.6

in terms of reverse mathemati
s. We leave the exa
t 
lassi�
ation of these results as open

questions whi
h we hope someone will seek to answer. For example, by the 
omments above,

ACA

0

suÆ
es to prove Property 1 in Theorem 1.6, but RCA

0

does not prove this property. It

remains open whether WKL

0

suÆ
es to prove this property (although the proof given above

does not work in WKL

0

), and it remains open whether there is a reversal from this property

to either WKL

0

or ACA

0

. The 
urious reader is referred to Chapter 1 of Simpson [6℄ for a

more detailed introdu
tion to reverse mathemati
s and to Solomon [8℄ for a survey of results

in reverse mathemati
s 
on
erning ordered groups.

Our notation is standard and follows Glass [1℄ for automorphism groups and Soare [7℄

for 
omputability theory. In parti
ular, we use '

e

, e 2 ! to denote the partial 
omputable

fun
tions. The reader unfamiliar with the set of partial 
omputable fun
tions 
an think of '

e

as the e-th program in an e�e
tive list of all 
omputer programs in a given language. (Almost

any language 
urrently in use will have the same 
omputational power, so the exa
t 
hoi
e of

language does not matter.) These programs are assumed to run on a 
omputer with unlimited

memory and they are allowed to run for arbitrarily long �nite amounts of time. Ea
h program

take inputs from N . On input n, '

e

either runs forever without halting (in whi
h 
ase '

e

(n)

is unde�ned and we say the 
omputation does not halt or is divergent) or '

e

halts after some

�nite amount of time giving an output in N (in whi
h 
ase we de�ne '

e

(n) to be this output

and we say that the 
omputation 
onverges). Be
ause of the potential for divergen
e, the

fun
tions '

e

need not be total.

Furthermore, we use '

e;s

(n) to (roughly) stand for the a
tion of '

e

after exe
uting s many

instru
tions in its program. Thus, '

e

(n) is de�ned if and only if there is a t 2 N su
h that

'

e;s

(n) is de�ned for all s � t. That is, the program for '

e

on input n halts if and only

if it halts at some �nite stage. (By de�nition, on
e a 
omputation halts, it remains halted

forever.)

To view a partial 
omputable fun
tion on N as a fun
tion on Q , we �x an e�e
tive 1-1
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enumeration q

n

, n 2 N , of Q . We treat '

e

as the e�e
tive partial fun
tion on Q whi
h sends

q

n

to q

'

e

(n)

if '

e

(n) is de�ned, and is unde�ned if '

e

(n) is unde�ned. We routinely use the

notation '

e

(q) for q 2 Q with the understanding that '

e

is de�ned in this way.

Any two 
ountable dense linear orders without endpoints 
an be shown to be isomorphi


using a ba
k-and-forth argument that 
an be made e�e
tive in the 
ase when the orders are


omputable. (Formally, any 
omputable 
opy of the ordering Q is 
omputably 
ategori
al.)

Therefore, the theorems in this arti
le do not depend on the 
hoi
e of our e�e
tive enumeration

of Q . That is, if q

n

and r

n

are di�erent 
omputable 1-1 enumerations of Q , then there is a total


omputable fun
tion f su
h that the map q

n

7! r

f(n)

is an isomorphism between the 
ountable

dense linear orders given by fq

n

jn 2 N g and fr

n

jn 2 N g. Hen
e questions of e�e
tiveness with

respe
t to the enumeration q

n

will have exa
tly the same answers as questions of e�e
tiveness

with respe
t to the enumeration r

n

.

In Se
tion 3, we show that the method of de�ning an automorphism uniformly on the

orbitals of another automorphism 
annot be used in the 
ontext of Aut




(Q ) be
ause there is

no e�e
tive pro
edure to determine when two elements are in the same orbital. Formally,

we 
onstru
t an f 2 Aut




(Q ) su
h that the relation p � q, whi
h holds if and only if

orbital(p) = orbital(q), is as 
ompli
ated as the halting problem. Similar 
onstru
tions are

impli
it in [5℄, but we present the details to emphasize a method whi
h is repeated in all of

our negative results.

On
e we know that the method of de�ning automorphisms uniformly on orbitals does not

work in the 
ontext of Aut




(Q ), we 
onsider ea
h of the properties in Theorem 1.6 separately

to see if we 
an 
onstru
t a 
omputable 
ounter-example or if we 
an �nd an e�e
tive proof

of the property whi
h applies to Aut




(Q ).

In most 
ases, we de�ne our 
omputable automorphisms by an e�e
tive ba
k-and-forth

argument, utilizing the fa
t that (Q ;�) is homogeneous. If we have an order preserving

bije
tion f : F

0

! F

1

between �nite subsets of Q , then for any x 62 domain(f) and for any

y 62 range(f), there is a �nite extension

^

f of f su
h that x 2 domain(

^

f) and y 2 range(

^

f).

Starting in Se
tion 4, we 
onsider the various properties in Theorem 1.6. Con
erning

divisibility, we show in Theorem 4.1 that there are elements of Aut




(Q ) whi
h are not divisible

by k in Aut




(Q ) for any k � 2. We have already mentioned the impli
ations of this result for

e�e
tive algebra and reverse mathemati
s.

We examine the more subtle question of 
ommutators in Se
tion 5. The stronger statement

in Property 2 of Theorem 1.6 fails in the 
omputable 
ontext. That is, there is an f 2 Aut




(Q )

su
h that for every g 2 Aut




(Q ), f 6= [f; g℄. However, it turns out that every element

of Aut




(Q ) is a 
ommutator. In terms of reverse mathemati
s, we are in the interesting

situation that RCA

0

suÆ
es to prove that every element automorphism is a 
ommutator, but

does not suÆ
e to prove the stronger property. As with divisibility, ACA

0

is strong enough

to prove the stronger property, but it is unknown whether WKL

0

suÆ
es and there are no

known reversals.

In Se
tion 5, we also show why the failure of the stronger form of Property 2 of Theorem

1.6 implies that the e�e
tive version of Property 3 also fails. Morozov and Truss [5℄ give

a 
ounter-example to the e�e
tive version of this property by noting that if f and g are


onjugate in Aut




(Q ), then the orbital stru
tures of f and g have the same Turing degree.

7



They build 
omputable automorphisms f and g whi
h have isomorphi
 orbital stru
tures,

but for whi
h the orbital stru
ture for f is 
omputable and the orbital stru
ture for g is not.

In our 
ounter-example to Property 3, the automorphisms f and g not only have isomorphi


orbital stru
tures, but they have identi
al orbitals. Hen
e their orbital stru
tures have the

same Turing degree.

The fa
t that there are f; g 2 Aut




(Q ) whi
h have isomorphi
 orbital stru
tures, but are

not 
onjugate in Aut




(Q ) indi
ates that 
onjugation behaves quite di�erently in Aut(Q ) and

Aut




(Q ). Therefore, one might expe
t that there would be more than three nontrivial normal

subgroups in Aut




(Q ). However, it turns out that L




(Q ), R




(Q ), and B




(Q ) are the only

nontrivial normal subgroups in Aut




(Q ). This result is proved in Se
tion 6.

3 Orbital stru
tures

For any f 2 Aut




(Q ), the relation q 2 orbital(x) for q; x 2 Q is 
learly 
omputably enumer-

able. That is, for ea
h pair q; x 2 Q and ea
h n 2 N with n > 0, we 
an 
omputably 
he
k

the 
onditions su
h as f

�n

(x) � q � f

n

(x) whi
h would indi
ate that q 2 orbital(x). By

systemati
ally sear
hing over all su
h q, x and n, we 
an e�e
tively list the pairs q and x su
h

that q 2 orbital(x). If q and x are in the same orbital, then they will eventually be listed

as being in the same orbital. However, our sear
h pro
edure does not tell us if two elements

of Q are in di�erent orbitals. The 
hallenge here is to determine if q 62 orbital(x) sin
e our

pro
edure only lists positive information.

We show that the relation q 2 orbital(x) 
an be as 
ompli
ated as possible, that is, as


ompli
ated as the halting problem. Let K = fej'

e

(e) 
onverges g denote the halting set

and let K

n

denote the set of e < n for whi
h '

e;n

(e) 
onverges. K is a non
omputable

set and it is the most 
ompli
ated (in the sense of Turing redu
ibility) set whi
h 
an be

e�e
tively listed. In the next theorem, we 
onstru
t a 
omputable automorphism f su
h that

3e + 1 2 orbital(3e + 2) if and only if e 2 K. Therefore, if we 
ould determine in general if

q 2 orbital(x) for the 
omputable automorphism f , then we 
ould determine if e 2 K. Sin
e

K is not 
omputable, this fa
t tells us that determining if q 2 orbital(x) is not in general


omputable.

Theorem 3.1. There is an f 2 Aut




(Q ) for whi
h the set of pairs hq; xi su
h that q and x

are in the same orbital is Turing equivalent (in fa
t 1-equivalent) to K.

Proof. The proof of this fa
t is quite straightforward, but we present it in some detail, be
ause

all of our other negative results use variations on the same idea. The fun
tion f 2 Aut




(Q ) we

build has some additional properties that are not ne
essary for this argument, but whi
h will

be needed in more 
ompli
ated 
onstru
tions later. First of all, we guarantee that f satis�es

f(q) � q for all q and f(q) = q if and only if q � 0 or q = 3n for some n 2 N . We refer to these

as global properties of f , sin
e we de�ne these parts of f before the 
onstru
tion begins. This

leaves an in�nite number of intervals of the form (3n; 3(n+1)) in whi
h to 
ode K, or in later


onstru
tions to diagonalize. We also make sure that ea
h of these intervals 
onsists of either

exa
tly one positive orbital or exa
tly two positive orbitals. This requirement is unne
essary

for this 
onstru
tion, but it will be useful later.
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We have to meet the following requirements.

D

n

: q

n

2 domain(f):

R

n

: q

n

2 range(f):

P

e

: e 2 K $ orbital(3e+ 1) = orbital(3e+ 2):

We use the interval (3e; 3(e + 1)) to meet P

e

and our 
onstru
tion allows us to meet ea
h

P

e

independently with no injury. We des
ribe the 
onstru
tion on (0; 3), guaranteeing that 1

and 2 are in the same orbital if and only if 0 2 K. We assume that similar 
onstru
tions are

simultaneously o

urring in ea
h interval (3e; 3(e+ 1)).

Constru
tion:

Stage 0: Set f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set m

1

= m

2

= p

1

=

p

2

= 1.

Stage s + 1: Assume that we have not met P

0

yet and that we have de�ned a partial

isomorphism f on some �nite subset of (0; 3). Assume, for i 2 f1; 2g, that m

i

is the highest

power su
h that f

m

i

(i) is de�ned and p

i

is the highest power su
h that f

�p

i

(i) is de�ned.

Assume by indu
tion that f satis�es the following properties.

1. f

m

1

(1) < f

�p

2

(2).

2. (0; 3) \ domain(f) � [f

�p

1

(1); f

m

1

�1

(1)℄ [ [f

�p

2

(2); f

m

2

�1

(2)℄.

3. (0; 3) \ range(f) � [f

�p

1

+1

(1); f

m

1

(1)℄ [ [f

�p

2

+1

(2); f

m

2

(2)℄.

4. f(x) > x for all x 2 (0; 3) at whi
h f(x) is de�ned.

Case s = 3n: Let q = q

n

. If q 2 (0; 3), then extend f (if ne
essary) so that q 2 domain(f).

To perform this extension, �nd the �rst 
ase below that applies.

1. If 0 < q < f

�p

1

(1), then set f

�p

1

�1

(1) = q. Reset p

1

to p

1

+ 1.

2. If f

m

1

�1

(1) < q < f

m

1

(1), then pi
k x; y su
h that f

m

1

(1) < x < y < f

�p

2

(2) and set

f(q) = x and f

m

1

+1

(1) = y. Reset m

1

to m

1

+ 1.

3. If q = f

m

1

(1), then pi
k x su
h that q < x < f

�p

2

(2) and set f(q) = x. Reset m

1

to

m

1

+ 1.

4. If f

m

1

(1) < q < f

�p

2

(2), then set f

�p

2

�1

(2) = q. Reset p

2

to p

2

+ 1.

5. If f

m

2

�1

(2) < q < f

m

2

(2), then pi
k x; y su
h that f

m

2

(2) < x < y < 3 and set f(q) = x

and f

m

2

+1

(2) = y. Reset m

2

to m

2

+ 1.

6. If q = f

m

2

(2), then pi
k x su
h that q < x < 3 and set f

m

2

+1

(2) = x. Reset m

2

to

m

2

+ 1.

7. If f

m

2

(2) < q, then pi
k x su
h that q < x < 3 and set f

m

2

+1

(2) = q and f(q) = x.

Reset m

2

to m

2

+ 2.
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8. If no 
ase so far applies, extend f in any 
onsistent manner to put q into its domain.

Pro
eed to the next stage, noting that in ea
h 
ase, the extension of f we de�ned was 
onsis-

tent with our previous de�nitions and that the indu
tion hypotheses still hold.

Case s = 3n+1: Let q = q

n

. If q 2 (0; 3), then extend f (if ne
essary) so that q 2 range(f).

To a

omplish this extension, �nd the �rst 
ase that applies below.

1. If 0 < q < f

�p

1

(1), then pi
k x su
h that 0 < x < q and set f

�p

1

�1

(1) = q and

f

�1

(q) = x. Reset p

1

to p

1

+ 2.

2. If q = f

�p

1

(1), then pi
k x su
h that 0 < x < q and set f

�1

(q) = x. Reset p

1

to p

1

+ 1.

3. If f

�p

1

(1) < q < f

�p

1

+1

(1), then pi
k x; y su
h that 0 < x < y < f

�p

1

(x) and set

f(y) = q and f(x) = f

�p

1

(1). Reset p

1

to p

1

+ 1.

4. If f

m

1

(1) < q < f

�p

2

(2), then set f

m

1

+1

(1) = q. Reset m

1

to m

1

+ 1.

5. If q = f

�p

2

(2), then pi
k x su
h that f

m

1

(1) < x < q and set f(x) = q. Reset p

2

to

p

2

+ 1.

6. If f

�p

2

(2) < q < f

�p

2

+1

(2), then pi
k x; y su
h that f

m

1

(1) < x < y < f

�p

2

(2) and set

f

�1

(q) = y and f

�p

2

�1

(2) = x. Reset p

2

to p

2

+ 1.

7. If f

m

2

(2) < q, then set f

m

2

+1

(2) = q. Reset m

2

to m

2

+ 1.

8. If no 
ase so far applies, extend f in any 
onsistent manner to put q into its range.

Pro
eed to the next stage, noting that the extension of f we de�ned is 
onsistent with our

previous de�nition and that the indu
tion hypotheses still apply.

Case s=3n+2: Che
k if 0 2 K

n+1

�K

n

. If so, set f

m

1

+1

(1) = f

�p

2

(2) and starting with the

next stage 
ontinue the 
onstru
tion with the alternate 
ontinuation given below.

Alternate Continuation: On
e we have 
oded 0 2 K (or diagonalized in the 
ase of later


onstru
tions), we want to 
ontinue de�ning f , making sure that (0; 3) is a single positive

orbital. At stage s + 1 when s = 3n, we put q = q

n

into the domain of f (if ne
essary and

if q 2 (0; 3)). Assume by indu
tion that p

1

is the highest power su
h that f

�p

1

(1) is de�ned,

m

2

is the highest power su
h that f

m

2

(2) is de�ned, and that both the domain and range of

f are 
ontained in [f

�p

1

(1); f

m

2

(2)℄. To extend f so that q 2 domain(f), pi
k the �rst 
ase

that applies.

1. If q < f

�p

1

(1), then set f

�p

1

�1

(1) = q and reset p

1

to be p

1

+ 1.

2. If q = f

m

2

(2), then pi
k x su
h that f

m

2

(2) < x < 3. Set f

m

2

+1

(2) = x and reset m

2

to

be m

2

+ 1.

3. If f

m

2

(2) < q, then pi
k x su
h that q < x < 3. Set f

m

2

+1

(2) = q and f(q) = x. Reset

m

2

to be m

2

+ 2.

4. If none of these 
ases apply, extend f in any 
onsistent manner su
h that q 2 domain(f).
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Pro
eed to the next stage of the alternate 
ontinuation. A similar 
onstru
tion works at stages

s+ 1 where s = 3n+ 1 to put q = q

n

into the range of f . If s = 3n+ 2, skip immediately to

the next stage of the alternate 
ontinuation.

End of Constru
tion

The 
onstru
tion 
learly works, assuming that the indu
tion hypotheses are met at the

end of ea
h stage as 
laimed. Verifying this fa
t involves 
he
king ea
h of the possibilities in

ea
h 
ase. We give one example below.

Lemma 3.2. Suppose we are at stage s + 1 where s = 3n and P

0

is not met yet. If none of


onditions 1-7 apply to q, then the extension of f still satis�es the indu
tion hypotheses.

Proof. Under these assumptions, there must be an i 2 Z su
h that either�p

1

� i < m

1

�1 and

f

i

(1) < q < f

i+1

(q) or �p

2

� i < m

2

� 1 and f

i

(2) < q < f

i+1

(q). Assume the former 
ase.

Then, f

i+2

(1) is de�ned, so any 
onsistent extension of f must satisfy f

i+1

(1) < f(q) < f

i+2

.

Noti
e that the values for p

1

and m

1

stay the same and f(q) > q. Therefore, the indu
tion

hypotheses are satis�ed.

We verify that at the end of the 
onstru
tion, the interval (0; 3) is either a single positive

orbital or two positive orbitals.

Lemma 3.3. If 0 62 K, then the interval (0; 3) 
onsists of exa
tly two positive orbitals, with

orbital(1) below orbital(2).

Proof. If 0 62 K, then at ea
h stage we have f

m

1

(1) < f

�p

2

(2). The ba
k-and-forth nature of

the argument guarantees that both m

1

and p

2

approa
h in�nity as the 
onstru
tion pro
eeds.

Therefore, 1 and 2 lie in di�erent orbitals. Furthermore, ea
h q

n

is either put in orbital(1)

or orbital(2) when f(q

n

) is de�ned. Therefore, the orbitals for 1 and 2 
over the interval

(0; 3).

Lemma 3.4. If 0 2 K, then the interval (0; 3) 
onsists of a single positive orbital.

Proof. If 0 2 K

n+1

�K

n

, then at stage s+1, where s = 3n+2, we make orbital(1) = orbital(2).

In the alternate 
ontinuation, ea
h q

n

is put into orbital(1) = orbital(2) when f(q

n

) is de�ned.

Therefore, orbital(1) 
overs (0; 3).

This 
ompletes the proof of Theorem 3.1.

4 Divisibility

In this se
tion, we show that Aut




(Q ) is not divisible by proving the following theorem.

Theorem 4.1. There is an f 2 Aut




(Q ) su
h that for all g 2 Aut




(Q ) and all k 2 N with

k � 2, g

k

6= f .
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Proof. We build f 2 Aut




(Q ) whi
h meets the requirements D

n

and R

n

from Theorem 3.1 as

well as

P

e

: If '

e

2 Aut




(Q ); then '

k

e

6= f for any k � 2:

To meet P

e

, if '

e

looks like it might be a k

th

root of f for some k � 2, then we make sure

that for some q 2 Q and some n 2 N , f

n

('

e

(q)) 6= '

e

(f

n

(q)). This a
tion satis�es P

e

, sin
e

if '

k

e

= f , then '

e

and f 
ommute.

We begin with a fun
tion f whi
h has the same global properties as in Theorem 3.1 and

we use the witnesses 3e + 1 and 3e + 2 in the interval (3e; 3(e + 1)) to meet P

e

. As before,

the parts of the 
onstru
tion working in di�erent intervals a
t independently and there is no

injury. Therefore, we des
ribe only the a
tion in (0; 3).

Constru
tion:

Stage 0: De�ne f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set p

1

= m

1

=

p

2

= m

2

= 1.

Stage s + 1: Assume we have not met P

0

yet and the indu
tion hypotheses from Theorem

3.1 hold.

Case s = 3n: Pro
eed as in stage s+ 1 where s = 3n in Theorem 3.1.

Case s = 3n+ 1: Pro
eed as in stage s+ 1 where s = 3n+ 1 in Theorem 3.1.

Case s = 3n+2: If either '

0;s

(1) or '

0;s

(2) fails to 
onverge, then go to the next stage. If both

these 
omputations 
onverge, then 
he
k whether 1 < '

0

(1) < f(1) and 2 < '

0

(2) < f(2). If

either inequality fails, then '

0


annot be a k

th

root of f , so we go on to the next stage.

If both of these inequalities hold, then we need to a
tively diagonalize to meet P

0

. Let

m̂ and p̂ be the highest powers su
h that f

m̂

('

0

(1)) and f

�p̂

('

0

(2)) are de�ned. By the

indu
tion assumptions, it must be that m̂ � m

1

� 1 and p̂ � p

2

. Extend f 
onsistently so

that f

i

('

0

(1)) and f

�j

('

0

(2)) are de�ned for all i � m

1

� 1 and all j � p

2

. We have

f

m

1

�1

(1) < f

m

1

�1

('

0

(1)) < f

m

1

(1) and f

�p

2

(2) < f

�p

2

('

0

(2)) < f

�p

2

+1

(2):

Fix b; 
 2 Q su
h that

f

m

1

(1) < b < f

�p

2

(2) and f

�p

2

('

0

(2)) < 
 < f

�p

2

+1

(2):

Set f

m

1

+1

(1) = f

�p

2

(2), f

m

1

('

0

(1)) = b, and f(b) = 
. The inequalities above imply that this

gives a 
onsistent extension of f .

We now have f

m

1

+p

2

+1

(1) = 2, so '

0

(f

m

1

+p

2

+1

(1)) = '

0

(2). Furthermore, f

m

1

+1

('

0

(1)) =


 implies that f

�p

2

('

0

(2)) < f

m

1

+1

('

0

(1)). Therefore, as long as f is eventually extended

to an automorphism, we will have '

0

(2) < f

m

1

+p

2

+1

('

0

(1)), and so '

0

(f

m

1

+p

2

+1

(1)) <

f

m

1

+p

2

+1

('

0

(1)), satisfying P

0

. From this stage on (sin
e the indu
tion hypotheses are now

violated) 
ontinue exa
tly as in the alternate 
ontinuation of Theorem 3.1.

End of 
onstru
tion

The veri�
ation that the diagonalization su

eeds is 
ontained in the s = 3n+2 
ase.

5 Commutators

Re
all the standard notation for 
onjugation, f

g

= g

�1

fg, and for 
ommutators, [f; g℄ =

f

�1

g

�1

fg. We begin this se
tion by sket
hing the 
lassi
al proofs for two fa
ts about Aut(Q ).
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Theorem 5.1. If f; g 2 Aut(Q ) have isomorphi
 orbital stru
tures, then they are 
onjugate

in Aut(Q ).

Proof. De�ne the 
onjugating map h on ea
h f -orbital separately. Suppose q represents an

f -orbital and r represents the 
orresponding g-orbital. If orbital(q) is neutral, then h(q) = r.

If orbital(q) is positive, then let h be an arbitrary order preserving bije
tion from [q; f(q)℄

onto [r; g(r)℄. For any x 2 orbital(q), there is a unique n 2 Z su
h that x 2 [f

n

(q); f

n+1

(q)).

De�ne h(x) = g

n

(h(f

�n

(x))). If orbital(q) is negative, de�ne h similarly.

This proof does not work for Aut




(Q ) be
ause of Theorem 3.1. However, if the orbital

stru
tures of f and g are 
omputable and are 
omputably isomorphi
, then this proof shows

that f and g are 
onjugate in Aut




(Q ). We refer to this fa
t as the e�e
tivization of Theorem

5.1 and we use this fa
t repeatedly.

Classi
ally, the fa
t that every f 2 Aut(Q ) is a 
ommutator of the form [f; g℄ is a trivial


onsequen
e of Theorem 5.1. That is, �x f and noti
e that the identity map on Q mat
hes

up the orbitals of f and the orbitals of f

2

. Therefore, f and f

2

have isomorphi
 orbitals

stru
tures and must be 
onjugate. But, if f

2

= g

�1

fg, then f = [f; g℄. This gives a qui
k

proof that every element of Aut(Q ) is a 
ommutator.

This proof does not work in the 
omputable 
ase, sin
e Theorem 5.1 fails for Aut




(Q )

(as we shall see below). For Aut




(Q ), we repla
e the 
onne
tion from that theorem with the

following de�nition and lemma to show that every element in Aut




(Q ) is a 
ommutator.

De�nition 5.2. We say that f has a single unbounded positive orbital if f(0) > 0 and

orbital(0) = Q .

Lemma 5.3. For any h 2 Aut




(Q ), there is a p 2 Aut




(Q ) su
h that both p and ph 
onsist

of a single unbounded positive orbital.

Proof. De�ne p(x) = maxfh(x); h

�1

(x)g + 1. Sin
e either h(x) � x or h

�1

(x) � x, we

have p(x) � x + 1, so p 
onsists of one unbounded positive orbital. Furthermore, p(h(x)) =

maxfh(h(x)); h

�1

(h(x))g + 1, and so satis�es p(h(x)) � x + 1. Again, this implies that it


onsists of a single unbounded positive orbital.

Theorem 5.4. Every element of Aut




(Q ) is a 
ommutator.

Proof. Fix f 2 Aut




(Q ). By Lemma 5.3, there is a p 2 Aut




(Q ) su
h that both p and pf


onsist of a single unbounded positive orbital. Therefore, by the e�e
tivization of Theorem

5.1, there is an h 2 Aut




(Q ) su
h that pf = h

�1

ph and so f = p

�1

h

�1

ph = [p; h℄.

Theorem 5.5. There is an f 2 Aut




(Q ) su
h that for all h 2 Aut




(Q ), f 6= [f; h℄.

Proof. The requirements for this theorem are the D

n

and R

n

requirements of Theorem 3.1

plus

P

e

: '

e

2 Aut




! f

2

6= '

�1

e

f'

e

:

To satisfy P

e

, it suÆ
es to make sure that for some n and q, f

2n

(q) 6= '

�1

e

(f

n

('

e

(q))).

As in Se
tion 3, we 
onstru
t f without injury. We require the global properties from

Theorem 3.1, and for the �rst time, we use the fa
t that ea
h interval (3e; 3(e + 1)) 
onsists

of either exa
tly one positive orbital or exa
tly two positive orbitals.
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Lemma 5.6. Assume f has the global properties from Theorem 3.1. If f

2

= h

�1

fh, then h

must map ea
h interval (3n; 3(n+ 1)) bije
tively onto itself.

Proof. Write f

2

= h

�1

fh as hf

2

= fh. For any a su
h that f(a) = a, we have h(f

2

(a)) = h(a),

and so f(h(a)) = h(a). Consider h(0) = q. Either q < 0, q = 0, or q = 3n for some n � 1.

Suppose q < 0 and �x any x su
h that 0 < x < 3 and q < h(x) < 0. Then f(h(x)) = h(x),

but f

2

(x) > x, so h(f

2

(x)) > h(x), whi
h gives a 
ontradi
tion. It is not hard to see that

q = 3n for n � 1 also leads to a 
ontradi
tion. Therefore, h(0) = 0. Continuing by indu
tion,

we get h(3n) = 3n for all n. Sin
e h is an automorphism, it must map ea
h (3n; 3(n + 1))

bije
tively onto itself.

Consider the situation when f has two orbitals in (0; 3), say (0; r) and (r; 3). The boundary

point r must be irrational, sin
e a rational boundary point between two positive orbitals would

be mapped to itself, violating the global properties for f .

Lemma 5.7. Assume f is as in the last paragraph. If f

2

= h

�1

fh, then h must map (0; r)

bije
tively onto itself and (r; 3) bije
tively onto itself.

Proof. For a 
ontradi
tion, suppose �rst x 2 (0; r) and h(x) 2 (r; 3). Fix any y 2 (r; 3). Sin
e

h preserves order and h(3) = 3, we know h(x) < h(y) < 3. Sin
e h(x) and h(y) are in the same

f -orbital, there is an n su
h that f

n

(h(x)) > h(y). Therefore, f

2n

(x) = h

�1

(f

n

(h(x))) > y,

whi
h 
ontradi
ts the fa
t that x and y are in di�erent f -orbitals. A similar argument applies

when y 2 (r; 3) and h(y) 2 (0; r).

As with the proofs in Se
tions 3 and 4, we use the interval (3e; 3(e+1)) with the witnesses

3e+ 1 and 3e + 2 to meet P

e

, and we present the 
onstru
tion on (0; 3). Unlike the proof of

Theorem 4.1, where we 
ould assume that 1 < '

0

(1) < f(1) and 2 < '

0

(2) < 2, our 
urrent

opponent has 
onsiderably more freedom in de�ning '

0

(1) and '

0

(2). However, Lemma 5.6

does tell us that we 
an ignore P

0

unless '

0

(1) and '

0

(2) 
onverge to numbers in (0; 3). Also,

Lemma 5.7 gives us a new strategy to beat P

0

. If '

0

(1) and '

0

(2) 
onverge to numbers whi
h

we 
an guarantee are in the same f -orbital without 
ollapsing 1 and 2 in the same f -orbital,

then we do so and win P

0

.

Constru
tion:

Stage 0: Set f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set m

1

= p

1

= m

2

=

p

2

= 1.

Stage s + 1: Assume we have not met P

0

yet and the indu
tion hypotheses from Theorem

3.1 hold.

Case s = 3n: Pro
eed exa
tly as in stage s+ 1 when s = 3n in Theorem 3.1.

Case s = 3n+ 1: Pro
eed exa
tly as in stage s+ 1 when s = 3n+ 1 in Theorem 3.1.

Case s = 3n + 2: If either '

0;s

(1) or '

0;s

(2) fails to 
onverge, then go to the next stage. If

both 
omputations 
onverge, 
he
k if 0 < '

0

(1) < '

0

(2) < 3. If not, then '

0


annot 
onjugate

f

2

and f , so pro
eed to the next stage. Otherwise, we need to a
tively diagonalize to meet

P

0

. Choose the �rst sub
ase whi
h applies.

Sub
ase 1: Assume f

m

1

(1) < '

0

(1). To win P

0

, it suÆ
es (by Lemma 5.7) to guarantee

that (0; 3) has two orbitals su
h that 1 is in the bottom orbital and '

0

(1) is in the top orbital.

There are two possibilities: if '

0

(1) < f

�p

2

(2), then set f('

0

(1)) = f

�p

2

(2) (guaranteeing
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that '

0

(1) is in the same orbital as 2), and if f

�p

2

(2) � '

0

(1), then do nothing (sin
e '

0

(1)

is already in the same orbital as 2). In either 
ase, pro
eed to the next stage, noting that the

indu
tion hypotheses still hold. After this point, skip all diagonalization stages.

Sub
ase 2: Assume sub
ase 1 does not apply, and '

0

(2) < f

�p

2

(2). We win P

0

by making

sure (0; 3) has two orbitals with 2 in the top orbital and '

0

(2) in the bottom orbital. Again,

there are two possibilities: if f

m

1

(1) < '

0

(2), then set f

m

1

+1

(1) = '

0

(2) (guaranteeing that

'

0

(2) is in the same orbital as 1), and if '

0

(2) � f

m

1

(1), then do nothing (sin
e '

0

(2) is

already in the same orbital as 1). In either 
ase, pro
eed to the next stage, noting that the

indu
tion hypotheses still hold. After this point, skip all diagonalization stages.

Sub
ase 3: Assume that '

0

(1) � f

m

1

(1) and f

�p

2

(2) � '

0

(2). To redu
e the number of

possibilities in this sub
ase, we extend f as follows.

1. Pi
k y su
h that f

m

1

(1) < y < f

�p

2

(2). Set f

m

1

+1

(1) = y and reset m

1

to m

1

+ 1.

2. If '

0

(2) > f

m

2

(2), then pi
k x su
h that '

0

(2) < x < 3. Set f

m

2

+1

(2) = '

0

(2),

f

m

2

+2

(2) = x, and reset m

2

to m

2

+ 2.

3. If '

0

(1) < f

�p

1

(1), then set f

�p

1

�1

(1) = '

0

(1) and reset p

1

to p

1

+ 1.

The point of extending f in this manner is that we 
an now assume that there are integers i

and j with �p

1

� i < m

1

and �p

2

� j < m

2

su
h that

f

i

(1) � '

0

(1) < f

i+1

(1) and f

j

(2) � '

0

(2) < f

j+1

(2):

There are four possibilities to 
onsider. Our a
tion in ea
h of these possibilities will violate

the indu
tion hypotheses. Therefore, after this stage, we 
ontinue the 
onstru
tion with the

alternate 
ontinuation given in Theorem 3.1.

Sub
ase 3(a): Assume that '

0

(1) = f

i

(1) and f

j

(2) < '

0

(2). The 
ru
ial observation here is

that f

j

(2) < '

0

(2) < f

j+1

(2) implies that regardless of how f is extended to an automorphism

8k 2 Z (f

k

(2) 6= '

0

(2)): (1)

If we make f

2k

(1) = 2 for some k, then '

0

(f

2k

(1)) = '

0

(2). But, f

k

('

0

(1)) = f

k+i

(1) =

f

i�k

(2), whi
h by Equation (1) 
annot be equal to '

0

(2).

To make f

2k

(1) = 2 for some k, we a
t as follows. If m

1

+ p

2

+ 1 is even, then set

f

m

1

+1

(1) = f

�p

2

(2) (thus making f

m

1

+p

2

+1

(1) = 2). If m

1

+ p

2

+ 1 is odd, then pi
k a point

x su
h that f

m

1

(1) < x < f

�p

2

(2) and set f

m

1

+1

(1) = x and f(x) = f

�p

2

(2) (thus making

f

m

1

+p

2

+2

(1) = 2).

Sub
ase 3(b): Assume f

i

(1) < '

0

(1) and f

j

(2) = '

0

(2). We perform exa
tly the same

a
tion as in sub
ase 3(a). The veri�
ation that this su

essfully diagonalizes is essentially the

same as sub
ase 3(a).

Sub
ase 3(
): Assume that we have '

0

(1) = f

i

(1) and '

0

(2) = f

j

(2). Our strategy is again

to make f

2k

(1) = 2, for some k, to obtain

'

0

(f

2k

(1)) = '

0

(2) = f

j

(2) = f

2k+j

(1) and f

k

('

0

(1)) = f

k+i

(1):
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As long as k is 
hosen su
h that k + j 6= i, we will win P

0

. Pi
k points x

1

; : : : ; x

l

su
h that

f

m

1

(1) < x

1

< � � � < x

l

< f

�p

2

(2), m

1

+ l + p

2

+ 1 is even, and ((m

1

+ l + p

2

+ 1)=2) + j 6= i.

Set f

m

1

+1

(1) = x

1

, f(x

n

) = x

n+1

for 1 � n < l and f(x

l

) = f

�p

2

(2). We have made

f

m

1

+l+p

2

+1

(1) = 2 as desired.

Sub
ase 3(d): Assume f

i

(1) < '

0

(1) and f

j

(2) < '

0

(2). Extend f so that f

m

1

�i�1

('

0

(1))

and f

�p

2

�j

(2) are de�ned. Noti
e that

f

m

1

�1

(1) < f

m

1

�i�1

('

0

(1)) < f

m

1

(1) and f

�p

2

(2) < f

�p

2

�j

('

0

(2)) < f

�p

2

+1

(2):

Therefore, we have extended f as far as possible to maintain the indu
tion hypotheses. Our

goal is to make f

2k

(1) = 2, so that '

0

(f

2k

(1)) = '

0

(2), and to guarantee that f

n

('

0

(1)) 6=

'

0

(2) for any n.

If m

1

+ p

2

+ 1 is even, then set f

m

1

+1

(1) = f

�p

2

(2), whi
h makes f

m

1

+p

2

+1

(1) = 2.

Pi
k points x; y su
h that f

m

1

(1) < x < f

�p

2

(2) and f

�p

2

(2) < y < f

�p

2

�j

('

0

(2)). Set

f

m

1

�i

('

0

(1)) = x and f(x) = y. We have

f

�p

2

(2) < f

m

1

�i+1

('

0

(1)) < f

�p

2

�j

('

0

(2)):

When f is extended to an automorphism, we will have f

�p

2

�j�1

('

0

(2)) < f

�p

2

(2), whi
h

shows that f

n

('

0

(1)) 6= '

0

(2) for any n.

If m

1

+ p

2

+ 1 is odd, then pi
k four points v; w; x; y su
h that f

m

1

(1) < v < w < x <

f

�p

2

(2) and f

�p

2

(2) < y < f

�p

2

�j

('

0

(2)). Set f

m

1

+1

(1) = w and f(w) = f

�p

2

(2), so that

f

m

1

+p

2

+2

(1) = 2. Set f

m

1

�i

('

0

(1)) = v, f(v) = x, and f(x) = y. The veri�
ation that this

su

eeds is as above.

End of Constru
tion

Lemma 5.8. P

0

is satis�ed.

Proof. Assume '

0

(1) and '

0

(2) 
onverge. If either number is not in (0; 3), then Lemma 5.6

shows that P

0

is satis�ed. If both numbers are in (0; 3), then we must eventually 
onsider

one of the sub
ases when s = 3n+ 2. In the �rst two sub
ases, the numbers 1 and 2 remain

in distin
t orbitals by Lemma 3.3, while either '

0

(1) 2 orbital(2) or '

0

(2) 2 orbital(1).

Therefore, P

0

is satis�ed by Lemma 5.7. In the third sub
ase, we veri�ed that P

0

was satis�ed

in the 
onstru
tion.

This 
ompletes the proof of Theorem 5.5.

Corollary 5.9 (Morozov and Truss, [5℄). There are f; g 2 Aut




(Q ) su
h that f and g are


onjugate in Aut(Q ) but not in Aut




(Q ).

As noted in the introdu
tion, the proof of Corollary 5.9 in [5℄ builds f and g for whi
h

the Turing degrees of the orbital stru
tures for f and g are di�erent. We 
an strengthen this

result as follows.

Corollary 5.10. There are f; g 2 Aut




(Q ) su
h that f and g are 
onjugate in Aut(Q ), f and

g are not 
onjugate in Aut




(Q ), and the Turing degrees of the orbital stru
tures of f and g

are equal. In fa
t, f and g 
an be 
hosen to have the same orbitals.
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Proof. For any automorphism f (regardless of 
omputational properties), f and f

2

have the

same orbitals and therefore are 
onjugate in Aut(Q ). Let f be as in Theorem 5.5. Rewriting

f 6= [f; h℄ as f

2

6= f

h

, it is 
lear that the fun
tions f and g = f

2

satisfy Corollary 5.10.

6 Normal subgroups

The standard proof that Aut(Q ) 
ontains exa
tly three nontrivial normal subgroups, B(Q ),

L(Q ), and R(Q ), relies heavily on both the fa
t that Aut(Q ) is divisible and the fa
t that if

two elements in Aut(Q ) have isomorphi
 orbital stru
tures then they are 
onjugate. In this

se
tion, we show that B




(Q ), L




(Q ), and R




(Q ) are the only nontrivial normal subgroups in

Aut




(Q ). As with Theorem 5.4, our proof must di�er from the 
lassi
al proof.

Theorem 6.1. B




(Q ), L




(Q ), and R




(Q ) are the only nontrivial normal subgroups in

Aut




(Q ).

The rest of this se
tion is devoted to the proof of Theorem 6.1. To see these three

subgroups are normal in Aut




(Q ), suppose r 2 Q is su
h that f(q) = q for all q � r and let

h 2 Aut




(Q ) be arbitrary. Let q

0

= h

�1

(r). Then, for any x � q

0

, we have h(x) � r and so

h

�1

(f(h(x))) = x. The veri�
ation when f(q) = q for all q � s is similar.

For the remainder of this se
tion, we assume that all automorphisms mentioned are 
om-

putable.

The task of showing these are the only normal subgroups in Aut




(Q ) 
an be broken into

four pie
es. First, we show that if f 2 Aut




(Q ) is not in these subgroups, then the normal


losure of f is all of Aut




(Q ). Se
ond, we show that if f 2 L




(Q ) n R




(Q ), then the normal


losure of f is L




(Q ). Third, we show that if f 2 R




(Q ) n L




(Q ), then the normal 
losure of

f is R




(Q ). Finally, we show that if f 2 B




(Q ), then the normal 
losure of f is B




(Q ).

De�nition 6.2. We say that f has positive orbitals whi
h are 
o�nal as x ! +1 (as

x ! �1, respe
tively) if for every n 2 N , there is an x 2 Q su
h that x > n (x < �n,

respe
tively) and f(x) > x. We say f has positive orbitals whi
h are 
o�nal in both

dire
tions if f has positive orbitals whi
h are 
o�nal as x! +1 and as x! �1.

Lemma 6.3. Let f 2 Aut




(Q ) have positive orbitals whi
h are 
o�nal in both dire
tions. Then

there is a g 2 Aut




(Q ) su
h that f

g

f 
onsists of a single unbounded positive orbital.

Proof. Choose a sequen
e of rationals z

n

for n 2 Z su
h that f(z

2i

) = z

2i+1

for all i, the

sequen
e z

2i

is unbounded in both dire
tions, and n < m implies z

n

< z

m

. Su
h points 
an

be 
hosen e�e
tively by our assumption on f .

De�ne g e�e
tively su
h that g([z

n

; z

n+1

℄) = [z

n+1

; z

n+2

℄ for all n 2 Z. Noti
e that

g

�1

(f(g(f(z

2i

)))) = z

2i+2

. Therefore, f

g

f maps ea
h interval [z

2i

; z

2i+2

℄ onto [z

2i+2

; z

2i+4

℄

and hen
e 
onsists of one unbounded positive orbital.

Lemma 6.4. Let f 2 Aut




(Q ) be su
h that f 62 R




(Q ), f has positive orbitals as x ! +1,

but f does not have positive orbitals as x! �1. Then, there is a g 2 Aut




(Q ) in the normal


losure of f su
h that g has positive orbitals 
o�nal in both dire
tions.
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Proof. By the 
onditions on f , we 
an e�e
tively pi
k points z

i

for i 2 Z su
h that

1. z

i

are 
o�nal in both dire
tions,

2. for i � 0, z

i

< f(z

i

) < f

�1

(z

i+1

) < z

i+1

,

3. z

�1

< f

�1

(z

�1

) < f

�1

(z

0

) < z

0

, and

4. for i < 0, z

i�1

< f

�1

(z

i�1

) < f(z

i

) < z

i

.

By an e�e
tive ba
k-and-forth argument, de�ne � 2 Aut




(Q ) su
h that

1. for i � 0, the interval (z

i

; f(z

i

)) is a single positive �-orbital,

2. for i < 0, the interval (f(z

i

); z

i

) is a single negative �-orbital, and

3. �(x) = x for all other x.

Set g(x) = �

�1

f

�1

�f(x), and noti
e that g is in the normal 
losure of f . It is straightforward

to 
he
k that for all i � 0, (f

�1

(z

i

); z

i

) is a positive g-orbital and (z

i

; f(z

i

)) is a negative g-

orbital. Also, for i < 0, (f(z

i

); z

i

) is a positive g-orbital and (z

i

; f

�1

(z

i

)) is a negative g-orbital.

At all other points, g(x) = x. Therefore, g meets the requirements of the lemma.

Using Lemmas 6.3 and 6.4, we 
an show that for any f 2 Aut




(Q ), if f 62 L




(Q ) [R




(Q ),

then the normal 
losure of f is all of Aut




(Q ). Applying Lemma 6.4, we 
an assume without

loss of generality that f has positive orbitals whi
h are 
o�nal in both dire
tions. By Lemma

6.3, there is a g is the normal 
losure of f whi
h 
onsists of a single unbounded positive

orbital. Consider any h 2 Aut




(Q ). By Lemma 5.3, there is a p su
h that both p and ph


onsist of single positive unbounded orbitals. But, by the e�e
tivization of Theorem 5.1, both

p and ph are in the normal 
losure of f , and hen
e h is in the normal 
losure of f , as required.

We next 
onsider automorphisms f 2 L




(Q ) nR




(Q ).

De�nition 6.5. If f 2 L




(Q ) n R




(Q ), then we say a real r is the upper boundary for

supp(f) if supp(f) \ [r;+1) = ; and for any rational q < r, supp(f) \ (q; r) 6= ;.

The 
ase we are most interested in is when the upper boundary r is a rational. In this


ase, f(r) = r.

Lemma 6.6. If f 2 L




(Q )nR




(Q ), then there is a g 2 L




(Q ) in the normal 
losure of f su
h

that g has positive orbitals whi
h are 
o�nal as x ! �1 and the upper boundary of supp(g)

is a rational point.

Proof. Without loss of generality, we 
an assume that f has positive orbitals as x ! �1.

Pi
k points z

i

for i 2 N su
h that z

i

! �1 as i ! 1 and z

i+1

< f(z

i+1

) < f

�1

(z

i

) <

z

i

for all i. By an e�e
tive ba
k-and-forth argument, de�ne �(x) su
h that ea
h interval

(z

i

; f(z

i

)) is a positive �-orbital and �(x) = x for all x not in an interval of this type. Set

g(x) = �

�1

f

�1

�f(x) and noti
e that g is in the normal 
losure of f . As in Lemma 6.4, it is

straightforward to 
he
k that g has positive orbitals whi
h are 
o�nal as x ! �1 and the

upper boundary of g is f(z

0

).
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Lemma 6.7. If f 2 L




(Q ) n R




(Q ) has positive orbitals whi
h are 
o�nal as x ! �1 and

has a rational upper boundary point, then there is a g 2 L




(Q ) in the normal 
losure of f

su
h that g 
onsists of a single positive orbital (whi
h is unbounded as x ! �1) and has a

rational upper boundary point.

Proof. The proof is similar to that of Lemma 6.3.

Lemma 6.8. If h 2 L




(Q ), then there is a p 2 L




(Q ) su
h that both p and ph 
onsist of

single positive orbitals (whi
h are unbounded as x! �1) and have rational upper boundary

points.

Proof. Fix any rational number r su
h that r is greater than all the numbers in supp(h).

De�ne p(x) as follows. On the interval [r + 2;+1), p is the identity. p maps the interval

(r; r + 2) as a single positive orbital onto the interval (r + 1; r + 2). On the interval (�1; r℄,

p(x) = max(h(x); h

�1

(x))+1. Noti
e that sin
e p(r) = r+1, the intervals (�1; r℄ and (r; r+2)

join together in a single positive p-orbital. Therefore, p has a single positive orbital whi
h is

unbounded as x ! �1 and p has the rational upper boundary point r + 2. Furthermore,

sin
e h is the identity on all numbers bigger than r, ph has exa
tly the same orbital stru
ture

as p. Therefore, we have met the requirements of the lemma.

We are now in a position to show that for any f 2 L




(Q ) nR




(Q ), the normal 
losure of f

is all of L




(Q ). Applying Lemmas 6.6 and 6.7, there is a g in the normal 
losure of f whi
h


onsists of a single positive orbital whi
h is unbounded as x ! �1 and g has a rational

upper boundary point. For any h 2 L




(Q ), by Lemma 6.8, there is a p su
h that both p and

ph have the same orbital stru
ture as g. Applying the e�e
tivization of Theorem 5.1, g must

be 
onjugate to both p and ph, and therefore, h is in the normal 
losure of g.

A similar argument shows that if f 2 R




(Q ) n L




(Q ), then the normal 
losure of f is all

of R




(Q ). It remains to show that if f 2 B




(Q ), then the normal 
losure of f is all of B




(Q ).

De�nition 6.9. We say that the orbital stru
ture of f 
onsists of two orbitals separated

by a rational point if there are rationals q < r < s su
h that (q; r) and (r; s) are both

f -orbitals, and f is the identity on all other points.

Lemma 6.10. If f 2 B




(Q ) is not the identity, then there is a g 2 B




(Q ) in the normal


losure of f su
h that the orbital stru
ture of g 
onsists of two orbitals separated by a rational

point. Furthermore, the labels of the two nontrivial g-orbitals are di�erent.

Proof. Without loss of generality, we 
an assume there is a point z su
h that z < f(z). Fix

su
h a z. De�ne � e�e
tively su
h that (z; f(z)) is a single positive �-orbital, and �(x) = x

for all points outside this interval. Let g(x) = �

�1

f

�1

�f(x). It is straightforward to 
he
k

that (f

�1

(z); z) is a positive g-orbital, (z; f(z)) is a negative g-orbital, and g(x) = x for all

points outside these intervals. Therefore, g meets the requirements of the lemma.

Lemma 6.11. For any h 2 B




(Q ), there is a p 2 B




(Q ) su
h that the orbital stru
tures of

both p and ph 
onsist of two orbitals separated by a rational point. Furthermore, the labels on

the nontrivial orbitals for both p and ph are di�erent.
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Proof. Fix rational numbers q < r su
h that supp(h) lies in the interval (q; r). De�ne an

automorphism p(x) e�e
tively su
h that

1. p restri
ted to [r + 2;+1) is the identity,

2. p maps (r; r + 2) onto (r + 1; r + 2) as a single positive orbital,

3. for x 2 [q; r℄, p(x) = max(h(x); h

�1

(x)) + 1),

4. p maps (q � 1; q) onto (q � 1; q + 1) as a single positive orbital,

5. p(q � 1) = q � 1,

6. p maps (q � 2; q � 1) onto (q � 2; q � 1) as a single negative orbital, and

7. p restri
ted to (�1; q � 2℄ is the identity.

Be
ause p(q) = q+1 and p(r) = r+1, the intervals (q�1; q), [q; r℄ and (r; r+2) join together

in a single positive p-orbital. Therefore, the orbital stru
ture of p 
onsists of two orbitals

separated by the rational point q � 1. Furthermore, the lower orbital is negative and the

higher orbital is positive.

Sin
e h is the identity outside of (q; r), it is 
lear that ph has the same orbital stru
ture

as p, and so we have ful�lled the requirements of the lemma.

We 
an now �nish the proof of Theorem 6.1. Suppose f 2 B




(Q ) and �x any h 2 B




(Q ).

By Lemmas 6.10 and 6.11, there is a g in the normal 
losure of a p 2 B




(Q ) su
h that the

orbital stru
tures of g, p

�1

and (ph)

�1

are all e�e
tively the same. Therefore, on
e more

applying the e�e
tive version of Lemma 5.1, we get that g is 
onjugate to p

�1

and (ph)

�1

and

hen
e h is in the normal 
losure of f .
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