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Abstract

We compare Aut(Q), the classical automorphism group of a countable dense linear
order, with Aut.(Q), the group of all computable automorphisms of such an order. They
have a number of similarities, including the facts that every element of each group is a
commutator and each group has exactly three nontrivial normal subgroups. However,
the standard proofs of these facts in Aut(Q) do not work for Aut.(Q). Also, Aut(Q)
has three fundamental properties which fail in Aut.(Q): it is divisible, every element
is a commutator of itself with some other element, and two elements are conjugate if
and only if they have isomorphic orbital structures. Keywords: lattice-ordered groups,
automorphism groups, computability theory, effective algebra, reverse mathematics.

1 Introduction

Our goal is to examine the group of automorphisms of a countable dense linear order without
endpoints, denoted Aut(Q), from the perspective of computability theory. We begin with some
general motivation for the study of automorphism groups of linear orders and we present the
basic definitions for the study of Aut(Q) in this section. In the next section, we turn to our
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motivation for studying the group of computable automorphisms of (Q and to a summary of
our results.

For any linear order L, there is a corresponding group of automorphisms, Aut(L). Such
groups have been extensively studied, partially due to their connection with lattice-ordered
groups. To define a lattice-order on Aut(L), set f <auw(z) g if Vo € L(f(z) <r g(x)). Holland
showed that such automorphism groups play a central role in the theory of lattice-ordered
groups.

Theorem 1.1 (Holland [4]). Every lattice-ordered group can be embedded in Aut(L) for
some linear order L.

Consider the following two theorems to illustrate the importance of the study of automor-
phism groups for the theory of lattice-ordered groups.

Theorem 1.2 (Holland [4], Weinberg [9]). Every lattice-ordered group can be embedded
(as a lattice-ordered group) in a divisible lattice-ordered group.

Theorem 1.3 (Glass and Gurevich [2]). There is a finitely presented lattice-ordered group
which has unsolvable word problem.

Theorem 1.2 is proved by showing that in Holland’s Theorem, the linear orders L can be
assumed to have the property that Aut(L) is divisible. Holland proved this fact assuming
the generalized continuum hypothesis, and Weinberg later removed this assumption. Theo-
rem 1.3, perhaps of more interest to logicians, was proved by considering properties of the
automorphism group of the reals.

There are also interesting model theoretic and set theoretic properties of lattice-ordered
groups. For example, the class of all lattice-ordered groups does not have the model theoretic
amalgamation property, although it is still true that every lattice-ordered group can be em-
bedded in a two generator group (see the discussion on pages 183-184 in [1]). In set theory,
Glass, Gurevich, Holland, and Shelah [3] give an example of a statement about lattice-ordered
groups which is independent of ZFC.

In [5], Morozov and Truss considered the automorphism group of Q, a countable dense
linear order without endpoints, from the viewpoint of computability theory. For an arbitrary
ideal I in the Turing degrees, they defined Aut;(Q) to be the set of automorphisms of @ which
(under a suitable coding, discussed below) are computable from some element of I. (Turing
ideals play no role in the rest of this article, so the reader who is unfamiliar with them can
safely skip this motivational example.) They proved that for Turing ideals I and J,

AlltI(Q) = AlltJ(Q) < I=1J.

Along the way to proving this result, Morozov and Truss gave one example of a natural group
theoretic property that holds in Aut(Q) but not in the group of computable automorphisms
of Q. This example leads into our current work, which is to continue the study of Aut(Q)
from the point of view of computability theory by studying the group theoretic properties of
the group of all computable automorphisms of Q.

Before giving more motivation for our work and stating our main results, we need some
background in the theory of Aut(Q). The first definition introduces the main concept used
to prove many of the fundamental properties of Aut(Q).
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Definition 1.4. Fix f € Aut(Q). For ¢ € Q, we define the orbital of ¢ (relative to f) to be
the convexification of the set containing f™(q) for all n € Z. More formally, if f(q) > ¢, then
we define
orbital(g) = [ J[f"(a), f"(a)]-
neN
If f(g9) < q, then we take the union of the intervals [f™(q), f~™(q)]. We label orbital(q)
positive if f(q) > ¢, negative if f(¢) < ¢, and neutral if f(q) = ¢.

For any f € Aut(Q) and any ¢ € Q, orbital(q) is either a single point (if f(q) = q)
or a convex open (possibly unbounded and possibly without rational endpoints) interval (if
f(q) # q). If ¢ € orbital(g), then orbital(¢) = orbital(¢) and the labels on the orbitals are
the same. Therefore, the relation g ~ ¢ if and only if orbital(q) = orbital(§) is an equivalence
relation which respects the ordering on Q and the labeling of orbitals. Hence, there is both a
natural order on the equivalence classes (given by [g] < [¢] if and only if [¢] = [¢] or [q] # [{]
and ¢ < §¢) and a natural labeling of the equivalence classes.

Definition 1.5. Fix f € Aut(Q). The structure Q mod the relation ~ with the induced
ordering and labeling is called the orbital structure of f. We say that the orbital structures
of f and g are isomorphic if there is a bijection between the orbital structures which preserves
both the order of the orbitals and the labels of the orbitals.

The support of f, denoted supp(f), is the set of ¢ such that f(q) # ¢g. There are three
nontrivial normal subgroups of Aut(Q):

L(Q) = {f |supp(f) is bounded above},
R(Q) = {f|supp(f) is bounded below}, and
B(Q) = {f |supp(f) is bounded above and below}.

For these subgroups, we follow the notation given in [1]. The intuition is that L(Q) consists
of the automorphisms that “live on the left”, meaning that they are equal to the identity for
values far enough right on the line Q. Similarly, R(Q) consists of those automorphisms that
“live on the right” and B(Q) refers to those automorphisms that are bounded on both sides.

The following theorem states several properties of Aut(Q). During the course of this
article, we will sketch proofs of some of these properties, all of which are based on those given
in Glass [1]. The only difference in the proofs is that Glass considers the general case of a
doubly homogeneous linear order (of which @Q is an example), while we specialize our proofs
to Aut(Q). Recall that a group G is divisible if for every element g € G and every n € N
with n > 0, the equation " = ¢ has a solution. We use [f,g] = f g 'fg to denote the
commutator of f and g in Aut(Q). We use similar notation, [a,b], for points a,b € Q to
denote the closed interval between a and b in Q. The context will make clear which meaning
is intended by the bracket notation.

Theorem 1.6. The following properties hold of Aut(Q).

1. Aut(Q) is divisible.



2. For every f € Aut(Q), there is a g € Aut(Q) such that f = [f,g]. Therefore, every
element of Aut(Q) is a commutator.

3. Two elements of Aut(Q) are conjugate if and only if they have isomorphic orbital struc-
tures.

4. Aut(Q) has ezxactly three nontrivial normal subgroups: L(Q), R(Q), and B(Q).

Before proceeding, we give references for these results in Glass [1]. Property 1 is stated as
Theorem 2E on page 40 and is proved on page 57. Property 2 is a combination of Theorem 2F
on page 40 and Corollary 2.2.6 on page 63. The proof of Property 2 is a trivial consequence
of Property 3 since f and f? have identical orbital structures for any f. Property 3 is stated
as Theorem 2.2.5 on page 62. Notice that the conditions in Theorem 2.2.5 that the map
be 1-1, onto, left-right preserving, and parity preserving mean exactly that the map is an
isomorphism between the orbital structures. Finally, Property 4 is stated as Theorem 2.3.2
on page 65. Notice that QQ trivially has countable coterminality since Q is countable.

The standard proofs of these properties rely on the technique of defining automorphisms
uniformly on orbitals. Formally, this means applying the Patching Lemma 1.10.9 from [1].
To illustrate this technique, consider f € Aut(Q) and suppose we want to show that there is
a g € Aut(Q) such that g = f. For each orbital of f, pick a representative g for that orbital.
Without loss of generality, assume that orbital(q) is positive. Pick any point p € (g, f(q))
and an isomorphism hy : [g,p] = [p, f(g)]. Define hs : [p, f(q)] = [f(q), f(p)] by ha(z) =
f(h7'(x)). To define g(z) for a point = € orbital(q), notice that there is a unique n € Z such
that z € [f"(q), f*"'(q)). Define g(x) by first applying f~™, then applying either h; or hy
depending on whether f~"(x) is in [g, p] or [p, f(¢)], and finally applying f™. Pasting together
the definitions for ¢ on each orbital yields an automorphism such that g% = f.

2 Motivation and summary of results

Our goal is to study the group of computable automorphisms of Q, denoted Aut.(Q). Sim-
ilarly, we use L.(Q), R.(Q) and B.(Q) to denote the restrictions of L(Q), R(Q) and B(Q)
respectively to the group of computable automorphisms.

Our motivation is threefold. First, from the point of view of computability theory, Aut.(Q)
is a naturally defined group deserving study. In particular, we wish to understand which prop-
erties of Aut(Q) are captured in Aut.(Q) and which are not. There are obvious similarities,
such as the fact that both groups are nonabelian and torsion-free, as well as obvious differ-
ences, such as the fact that Aut(Q) is uncountable while Aut.(Q) is countable. We hope that
a wider audience, once introduced to Aut.(Q), will find this group interesting in its own right.

Second, we are motivated by the general program of effective algebra. In effective algebra,
one attempts to determine which theorems and techniques in algebra remain true when we
restrict our attention to the computable sets. (Below, we will discuss the concept of a com-
putable set for the reader who is unfamiliar with this terminology.) Thus, this program is one
attempt at capturing which parts of mathematics are constructively true. (However, unlike an
intuitionistic approach to constructive mathematics, we continue to work in classical logic.)



The most widely known results in this area are the fact that the word problem for groups is
unsolvable and the negative solution to Hilbert’s 10th problem that there is no algorithm to
determine if a Diophantine equation has a root.

In the context of this article, we are interested in questions such as whether, given an
automorphism f of Q, we can effectively construct an automorphism g such that ¢*> = f.
In Theorem 3.1, we show that the method of constructing g described above is not effective
because there is no computable procedure to determine if two elements of (Q are in the same
f orbital for an arbitrary computable automorphism f. This result does not say that there is
not a computable g such that g = f, but it does say that the classical proof does not yield
a method to construct such a g. We proceed to show in Theorem 4.1 that in general such
a g does not exist by building a computable automorphism f such that for all computable
automorphisms g, g*> # f.

Our results on effectiveness for the properties listed in Theorem 1.6 are not all negative.
In fact, they are an interesting mix of positive and negative results, all of which are surveyed
at the end of this section. To give one example of a positive result, we show in Section 6 that
L.(Q), R.(Q), and B.(Q) are the only nontrivial normal subgroups of Aut.(Q). Therefore
the effective analogue of Property 4 of Theorem 1.6 is true.

Third, we are motivated by the program of reverse mathematics, which seeks to determine
which set existence axioms are required to prove particular theorems of mathematics. Second
order arithmetic (which is much weaker than ZFC and therefore more sensitive to axiomatic
differences between theorems) is the model of set theory used in reverse mathematics. While
the details of second order arithmetic are outside the scope of this article, the general method
of reverse mathematics proceeds as follows. There are five basic axioms systems called (in
increasing order of strength) RCAy, WKLy, ACA,, ATR, and II{-CA,. Most theorems in
countable algebra are equivalent to one of these systems. To find an upper bound on the
axioms required to prove a theorem 7', one looks for a proof of T" in one of these systems. To
find a lower bound on the axioms required for 7', one tries to prove the axioms of one of these
systems from the statement of T'. (Technically, one usually works in the axiom system RCA,
plus the statement of T'.) So, if ACAy suffices to prove T" and RCA + T suffices to prove the
axioms in ACAy, then we can say that ACAy gives the minimum collection of set theoretic
axioms required to prove T. The process of proving axioms from theorems (that is, proving
ACAj from RCA( 4 T) is called a reversal and gives rise to the name reverse mathematics.

Two of these axiom systems are relevant to providing motivational background. In our
context, RCAy consists (roughly) of axioms which prove that the computable sets exist. The
axiom system ACAj is stronger and it proves the existence of subsets of Q which are defined
using quantification over elements of Q and N.

The difference between these systems is best illustrated with examples. For any given
g € Q, RCA( can prove the existence of sets such as the set of all a € Q for which ¢ < a or
the set of all a € Q such that a has a nonzero power of 2 in its denominator when it is written
in reduced form. There are obvious computational procedures to determine the elements of
each of those sets. On the other hand, if ACA is given an automorphism f, then it is strong
enough to prove the existence of the set of all pairs of rationals a and ¢ such that a and ¢ are
in the same orbital with respect to the automorphism f. The definition for a and ¢ being in



the same orbital can be given using only a quantifier over N. The formal definition splits into
cases depending on whether f(q) > ¢, f(q) = q or f(q) < ¢. In the case when f(q) > ¢, we
have

ar~qeIneN(f"(q) <a< fq)

Therefore, in ACAg, we can define automorphisms uniformly on orbitals and hence prove the
first three properties in Theorem 1.6 using the classical proofs as given in [1].

By Theorem 3.1, we cannot use this method in RCAj since there is no computable proce-
dure to determine if two points are in the same orbital. This fact does not say that the first
three properties in Theorem 1.6 are not provable in RCAq. It only says that if they are prov-
able in RCAg, then they require a different proof. However, Theorem 4.1 does say that RCAy
cannot prove Property 1 in Theorem 1.6 because there is a computable automorphism (which
RCA( can prove exists) which has no computable divisors. Therefore, axioms (like RCAy)
which can only prove the existence of computable sets cannot prove that this automorphism
has divisors.

Hopefully these examples give the reader a glimpse into the interaction between questions
in effective algebra and reverse mathematics. Since our original goal was to study the group
Aut.(Q), we did not attempt to get exact classifications of the properties of Theorem 1.6
in terms of reverse mathematics. We leave the exact classification of these results as open
questions which we hope someone will seek to answer. For example, by the comments above,
ACA, suffices to prove Property 1 in Theorem 1.6, but RCA( does not prove this property. It
remains open whether WKL suffices to prove this property (although the proof given above
does not work in WKLy), and it remains open whether there is a reversal from this property
to either WKLy or ACAy,. The curious reader is referred to Chapter 1 of Simpson [6] for a
more detailed introduction to reverse mathematics and to Solomon [8] for a survey of results
in reverse mathematics concerning ordered groups.

Our notation is standard and follows Glass [1] for automorphism groups and Soare [7]
for computability theory. In particular, we use ¢., e € w to denote the partial computable
functions. The reader unfamiliar with the set of partial computable functions can think of ¢,
as the e-th program in an effective list of all computer programs in a given language. (Almost
any language currently in use will have the same computational power, so the exact choice of
language does not matter.) These programs are assumed to run on a computer with unlimited
memory and they are allowed to run for arbitrarily long finite amounts of time. Each program
take inputs from N. On input n, @, either runs forever without halting (in which case ¢.(n)
is undefined and we say the computation does not halt or is divergent) or ¢, halts after some
finite amount of time giving an output in N (in which case we define ¢.(n) to be this output
and we say that the computation converges). Because of the potential for divergence, the
functions ¢, need not be total.

Furthermore, we use ¢, s(n) to (roughly) stand for the action of p, after executing s many
instructions in its program. Thus, ¢.(n) is defined if and only if there is a ¢ € N such that
@es(n) is defined for all s > ¢. That is, the program for ¢, on input n halts if and only
if it halts at some finite stage. (By definition, once a computation halts, it remains halted
forever.)

To view a partial computable function on N as a function on Q, we fix an effective 1-1



enumeration ¢,, n € N, of Q. We treat ¢, as the effective partial function on Q which sends
@n 0 Qp.(n) if pe(n) is defined, and is undefined if .(n) is undefined. We routinely use the
notation ¢.(q) for ¢ € Q with the understanding that ¢, is defined in this way.

Any two countable dense linear orders without endpoints can be shown to be isomorphic
using a back-and-forth argument that can be made effective in the case when the orders are
computable. (Formally, any computable copy of the ordering Q is computably categorical.)
Therefore, the theorems in this article do not depend on the choice of our effective enumeration
of Q. That is, if ¢, and r,, are different computable 1-1 enumerations of (Q, then there is a total
computable function f such that the map g, — 7y(,) is an isomorphism between the countable
dense linear orders given by {¢,|n € N} and {r,|n € N}. Hence questions of effectiveness with
respect to the enumeration ¢, will have exactly the same answers as questions of effectiveness
with respect to the enumeration r,.

In Section 3, we show that the method of defining an automorphism uniformly on the
orbitals of another automorphism cannot be used in the context of Aut.(Q) because there is
no effective procedure to determine when two elements are in the same orbital. Formally,
we construct an f € Aut.(Q) such that the relation p ~ ¢, which holds if and only if
orbital(p) = orbital(g), is as complicated as the halting problem. Similar constructions are
implicit in [5], but we present the details to emphasize a method which is repeated in all of
our negative results.

Once we know that the method of defining automorphisms uniformly on orbitals does not
work in the context of Aut.(Q), we consider each of the properties in Theorem 1.6 separately
to see if we can construct a computable counter-example or if we can find an effective proof
of the property which applies to Aut.(Q).

In most cases, we define our computable automorphisms by an effective back-and-forth
argument, utilizing the fact that (Q, <) is homogeneous. If we have an order preserving
bijection f : Fy — Fy between finite subsets of Q, then for any = ¢ domain(f) and for any
y ¢ range(f), there is a finite extension f of f such that z € domaln(f) and y € range(f).

Starting in Section 4, we consider the various properties in Theorem 1.6. Concerning
divisibility, we show in Theorem 4.1 that there are elements of Aut.(Q) which are not divisible
by k in Aut.(Q) for any k > 2. We have already mentioned the implications of this result for
effective algebra and reverse mathematics.

We examine the more subtle question of commutators in Section 5. The stronger statement
in Property 2 of Theorem 1.6 fails in the computable context. That is, there is an f € Aut.(Q)
such that for every g € Aut.(Q), f # [f,g9]. However, it turns out that every element
of Aut.(Q) is a commutator. In terms of reverse mathematics, we are in the interesting
situation that RCA, suffices to prove that every element automorphism is a commutator, but
does not suffice to prove the stronger property. As with divisibility, ACAy is strong enough
to prove the stronger property, but it is unknown whether WKL, suffices and there are no
known reversals.

In Section 5, we also show why the failure of the stronger form of Property 2 of Theorem
1.6 implies that the effective version of Property 3 also fails. Morozov and Truss [5] give
a counter-example to the effective version of this property by noting that if f and g are
conjugate in Aut.(Q), then the orbital structures of f and g have the same Turing degree.



They build computable automorphisms f and g which have isomorphic orbital structures,
but for which the orbital structure for f is computable and the orbital structure for g is not.
In our counter-example to Property 3, the automorphisms f and g not only have isomorphic
orbital structures, but they have identical orbitals. Hence their orbital structures have the
same Turing degree.

The fact that there are f, g € Aut.(Q) which have isomorphic orbital structures, but are
not conjugate in Aut.(Q) indicates that conjugation behaves quite differently in Aut(Q) and
Aut.(Q). Therefore, one might expect that there would be more than three nontrivial normal
subgroups in Aut.(Q). However, it turns out that L.(Q), R.(Q), and B.(Q) are the only
nontrivial normal subgroups in Aut.(Q). This result is proved in Section 6.

3 Orbital structures

For any f € Aut.(Q), the relation g € orbital(x) for ¢,z € Q is clearly computably enumer-
able. That is, for each pair ¢, € Q and each n € N with n > 0, we can computably check
the conditions such as f~"(z) < g < f™(z) which would indicate that ¢ € orbital(xz). By
systematically searching over all such ¢, z and n, we can effectively list the pairs ¢ and x such
that ¢ € orbital(z). If ¢ and z are in the same orbital, then they will eventually be listed
as being in the same orbital. However, our search procedure does not tell us if two elements
of Q are in different orbitals. The challenge here is to determine if ¢ ¢ orbital(x) since our
procedure only lists positive information.

We show that the relation ¢ € orbital(xz) can be as complicated as possible, that is, as
complicated as the halting problem. Let K = {e|p.(e)converges } denote the halting set
and let K, denote the set of e < n for which ¢.,(e) converges. K is a noncomputable
set and it is the most complicated (in the sense of Turing reducibility) set which can be
effectively listed. In the next theorem, we construct a computable automorphism f such that
3e + 1 € orbital(3e + 2) if and only if e € K. Therefore, if we could determine in general if
q € orbital(x) for the computable automorphism f, then we could determine if e € K. Since
K is not computable, this fact tells us that determining if ¢ € orbital(x) is not in general
computable.

Theorem 3.1. There is an f € Aut.(Q) for which the set of pairs (q,x) such that q and z
are in the same orbital is Turing equivalent (in fact 1-equivalent) to K.

Proof. The proof of this fact is quite straightforward, but we present it in some detail, because
all of our other negative results use variations on the same idea. The function f € Aut.(Q) we
build has some additional properties that are not necessary for this argument, but which will
be needed in more complicated constructions later. First of all, we guarantee that f satisfies
f(q) > g forall g and f(q) = ¢ if and only if ¢ < 0 or ¢ = 3n for some n € N. We refer to these
as global properties of f, since we define these parts of f before the construction begins. This
leaves an infinite number of intervals of the form (3n,3(n+1)) in which to code K, or in later
constructions to diagonalize. We also make sure that each of these intervals consists of either
exactly one positive orbital or exactly two positive orbitals. This requirement is unnecessary
for this construction, but it will be useful later.
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We have to meet the following requirements.

D,, : ¢, € domain(f).

R, : g, € range(f).
P, : e € K < orbital(3e + 1) = orbital(3e + 2).

We use the interval (3e,3(e + 1)) to meet P. and our construction allows us to meet each
P, independently with no injury. We describe the construction on (0, 3), guaranteeing that 1
and 2 are in the same orbital if and only if 0 € K. We assume that similar constructions are
simultaneously occurring in each interval (3e,3(e 4 1)).

Construction:

Stage 0: Set f~1(1) =1/2, f(1) =5/4, f~%(2) = 7/4, and f(2) =5/2. Set m; = my =p; =
p2 =1

Stage s + 1: Assume that we have not met F, yet and that we have defined a partial
isomorphism f on some finite subset of (0,3). Assume, for ¢ € {1,2}, that m; is the highest
power such that f™i(i) is defined and p; is the highest power such that f~7i(i) is defined.
Assume by induction that f satisfies the following properties.

Lofm1) < f7(2).

2. (0,3) Ndomain(f) C [f77*(1), fM=HDIULF7(2), f™7H(2)).
3. (0,3) Nrange(f) C [f7*(1), f (D] U [f2H1(2), f™(2)].
4. f(z) >z for all z € (0,3) at which f(z) is defined.

Case s = 3n: Let ¢ = g,. If ¢ € (0,3), then extend f (if necessary) so that ¢ € domain(f).
To perform this extension, find the first case below that applies.

1. If 0 < g < f7P1(1), then set f~P171(1) = q. Reset p; to p; + 1.

2. If fm=1(1) < g < f™(1), then pick z,y such that f™ (1) < z <y < f772(2) and set
f(q) = z and f™*1(1) = y. Reset my to my + 1.

3. If ¢ = f™(1), then pick x such that ¢ < z < f7P2(2) and set f(q) = x. Reset m; to
my + 1.

4. If f™(1) < ¢ < f7P2(2), then set fP271(2) = q. Reset py to py + 1.

5. If fm271(2) < ¢ < f™2(2), then pick z,y such that f™2(2) <z <y < 3 and set f(q) ==z
and fm2*1(2) = y. Reset my to my + 1.

6. If ¢ = f™2(2), then pick z such that ¢ < z < 3 and set f™2%1(2) = z. Reset my to
mo + ]_

7. If f™(2) < g, then pick z such that ¢ < = < 3 and set f™"(2) = ¢ and f(q) = =.
Reset moy to mo + 2.



8. If no case so far applies, extend f in any consistent manner to put ¢ into its domain.

Proceed to the next stage, noting that in each case, the extension of f we defined was consis-
tent with our previous definitions and that the induction hypotheses still hold.

Case s =3n+ 1: Let ¢ = ¢q,. If ¢ € (0, 3), then extend f (if necessary) so that ¢ € range(f).
To accomplish this extension, find the first case that applies below.

1. If 0 < ¢ < fP(1), then pick z such that 0 < x < ¢ and set fP"1(1) = ¢ and
f~Yq) = z. Reset p; to p; + 2.

2. If ¢ = fP1(1), then pick z such that 0 < z < ¢ and set f (q) = x. Reset p; to p; + 1.

3. If f771(1) < ¢ < f7Pr*(1), then pick z,y such that 0 < z < y < f7P'(x) and set
f(y) =qand f(xz) = fP(1). Reset p; to p; + 1.

4. If fm1(1) < ¢ < f772(2), then set f™71(1) = q. Reset m; to my + 1.

5. If ¢ = f772(2), then pick z such that f™(1) < x < q and set f(x) = q. Reset py to
P2+ 1.

6. If f7P2(2) < g < fP21(2), then pick z,y such that f™ (1) <z <y < fP2(2) and set
f~Yq) =y and fP271(2) = x. Reset p, to ps + 1.

7. If fm2(2) < g, then set f™271(2) = q. Reset my to my + 1.
8. If no case so far applies, extend f in any consistent manner to put ¢ into its range.

Proceed to the next stage, noting that the extension of f we defined is consistent with our
previous definition and that the induction hypotheses still apply.

Case s=3n+2: Check if 0 € K,,.1 — K,,. If so, set f™T1(1) = fP2(2) and starting with the
next stage continue the construction with the alternate continuation given below.
Alternate Continuation: Once we have coded 0 € K (or diagonalized in the case of later
constructions), we want to continue defining f, making sure that (0,3) is a single positive
orbital. At stage s + 1 when s = 3n, we put ¢ = ¢, into the domain of f (if necessary and
if ¢ € (0,3)). Assume by induction that p; is the highest power such that f~7'(1) is defined,
my is the highest power such that f™2(2) is defined, and that both the domain and range of
f are contained in [f?'(1), f™*(2)]. To extend f so that ¢ € domain(f), pick the first case
that applies.

1. If ¢ < f7(1), then set fP~1(1) = ¢ and reset p; to be p; + 1.

2. If ¢ = f™2(2), then pick = such that f™2(2) < z < 3. Set f™"1(2) = z and reset my to
be my + 1.

3. If fm™2(2) < g, then pick x such that ¢ < x < 3. Set f™%1(2) = ¢ and f(q) = z. Reset
me to be mo + 2.

4. If none of these cases apply, extend f in any consistent manner such that ¢ € domain(f).
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Proceed to the next stage of the alternate continuation. A similar construction works at stages
s+ 1 where s = 3n + 1 to put ¢ = g, into the range of f. If s = 3n + 2, skip immediately to
the next stage of the alternate continuation.
End of Construction

The construction clearly works, assuming that the induction hypotheses are met at the
end of each stage as claimed. Verifying this fact involves checking each of the possibilities in
each case. We give one example below.

Lemma 3.2. Suppose we are at stage s + 1 where s = 3n and Py is not met yet. If none of
conditions 1-7 apply to q, then the extension of f still satisfies the induction hypotheses.

Proof. Under these assumptions, there must be an ¢« € Z such that either —p; < i < m;—1and
fi(1) < g < f*Y(q) or —py < i < my —1 and f4(2) < ¢ < f™!(q). Assume the former case.
Then, f"2(1) is defined, so any consistent extension of f must satisfy f**1(1) < f(q) < f*.
Notice that the values for p; and m; stay the same and f(q) > ¢. Therefore, the induction
hypotheses are satisfied. O

We verify that at the end of the construction, the interval (0, 3) is either a single positive
orbital or two positive orbitals.

Lemma 3.3. If 0 ¢ K, then the interval (0,3) consists of exactly two positive orbitals, with
orbital(1) below orbital(2).

Proof. 1f 0 ¢ K, then at each stage we have f™1(1) < f7P2(2). The back-and-forth nature of
the argument guarantees that both m; and p, approach infinity as the construction proceeds.
Therefore, 1 and 2 lie in different orbitals. Furthermore, each g, is either put in orbital(1)
or orbital(2) when f(g,) is defined. Therefore, the orbitals for 1 and 2 cover the interval
(0,3). O

Lemma 3.4. If 0 € K, then the interval (0,3) consists of a single positive orbital.

Proof. 1f0 € K, 11— K,, then at stage s+1, where s = 3n+2, we make orbital(1) = orbital(2).
In the alternate continuation, each g, is put into orbital(1) = orbital(2) when f(g,) is defined.
Therefore, orbital(1) covers (0, 3). O

This completes the proof of Theorem 3.1.
O

4 Divisibility
In this section, we show that Aut.(Q) is not divisible by proving the following theorem.

Theorem 4.1. There is an f € Aut.(Q) such that for all g € Aut.(Q) and all k € N with
k>2,9"#f.
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Proof. We build f € Aut.(Q) which meets the requirements D,, and R,, from Theorem 3.1 as
well as
P, : If . € Aut.(Q), then ¢F # f for any k > 2.

To meet P., if o, looks like it might be a k' root of f for some k > 2, then we make sure
that for some ¢ € Q and some n € N, f"(.(q)) # @e(f"(¢q)). This action satisfies P., since
if o¥ = f, then ¢, and f commute.

We begin with a function f which has the same global properties as in Theorem 3.1 and
we use the witnesses 3e + 1 and 3e + 2 in the interval (3e,3(e 4+ 1)) to meet P,. As before,
the parts of the construction working in different intervals act independently and there is no
injury. Therefore, we describe only the action in (0, 3).

Construction:

Stage 0: Define f1(1) = 1/2, f(1) = 5/4, f1(2) = 7/4, and f(2) = 5/2. Set p; = m; =
P2 = Mo = 1.

Stage s + 1: Assume we have not met P, yet and the induction hypotheses from Theorem
3.1 hold.

Case s = 3n: Proceed as in stage s + 1 where s = 3n in Theorem 3.1.

Case s = 3n + 1: Proceed as in stage s + 1 where s = 3n + 1 in Theorem 3.1.

Case s = 3n+2: If either g 5(1) or g s(2) fails to converge, then go to the next stage. If both
these computations converge, then check whether 1 < o(1) < f(1) and 2 < ¢o(2) < f(2). If
either inequality fails, then ¢, cannot be a k™ root of f, so we go on to the next stage.

If both of these inequalities hold, then we need to actively diagonalize to meet Fy. Let
m and p be the highest powers such that f™(po(1)) and f P(po(2)) are defined. By the
induction assumptions, it must be that m < m; — 1 and p < ps. Extend f consistently so
that f*(¢o(1)) and f=7((2)) are defined for all 7 < m; — 1 and all j < p,. We have

FMH L) < f™M 7N eo(1)) < f™(1) and f72(2) < 7P (00(2)) < fTPEH(2).
Fix b,c € Q such that
fm(1) <b< f72(2) and f72(po(2)) < e < fTH(2).

Set ft(1) = f7P2(2), f™(po(1)) = b, and f(b) = c. The inequalities above imply that this
gives a consistent extension of f.

We now have fm™P2t1(1) =2 so po(f™P2+1(1)) = ¢p(2). Furthermore, f™ ! (py(1)) =
c implies that f7P2(o(2)) < f™T1(po(1)). Therefore, as long as f is eventually extended
to an automorphism, we will have pg(2) < fm™TP2Tl(py(1)), and so @o(fm™P2T1(1)) <
fratrtl(pg(1)), satisfying Py. From this stage on (since the induction hypotheses are now
violated) continue exactly as in the alternate continuation of Theorem 3.1.
End of construction

The verification that the diagonalization succeeds is contained in the s = 3n + 2 case. [

5 Commutators

Recall the standard notation for conjugation, f¢ = ¢g~!fg, and for commutators, [f,g] =
f~'g7 fg. We begin this section by sketching the classical proofs for two facts about Aut(Q).
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Theorem 5.1. If f,g € Aut(Q) have isomorphic orbital structures, then they are conjugate
in Aut(Q).

Proof. Define the conjugating map h on each f-orbital separately. Suppose g represents an
f-orbital and r represents the corresponding g-orbital. If orbital(q) is neutral, then h(q) = r.
If orbital(q) is positive, then let h be an arbitrary order preserving bijection from [g, f(q)]
onto [r, g(r)]. For any x € orbital(q), there is a unique n € Z such that = € [f"(q), f*"(q)).
Define h(z) = ¢g"(h(f ™(x))). If orbital(q) is negative, define h similarly. O

This proof does not work for Aut.(Q) because of Theorem 3.1. However, if the orbital
structures of f and g are computable and are computably isomorphic, then this proof shows
that f and g are conjugate in Aut.(Q). We refer to this fact as the effectivization of Theorem
5.1 and we use this fact repeatedly.

Classically, the fact that every f € Aut(Q) is a commutator of the form [f, g] is a trivial
consequence of Theorem 5.1. That is, fix f and notice that the identity map on Q matches
up the orbitals of f and the orbitals of f2. Therefore, f and f? have isomorphic orbitals
structures and must be conjugate. But, if f> = g !fg, then f = [f,g]. This gives a quick
proof that every element of Aut(Q) is a commutator.

This proof does not work in the computable case, since Theorem 5.1 fails for Aut.(Q)
(as we shall see below). For Aut.(Q), we replace the connection from that theorem with the
following definition and lemma to show that every element in Aut.(Q) is a commutator.

Definition 5.2. We say that f has a single unbounded positive orbital if f(0) > 0 and
orbital(0) = Q.

Lemma 5.3. For any h € Aut.(Q), there is a p € Aut.(Q) such that both p and ph consist
of a single unbounded positive orbital.

Proof. Define p(z) = max{h(z),h"*(z)} + 1. Since either h(z) > z or h™'(z) > =, we
have p(z) > z + 1, so p consists of one unbounded positive orbital. Furthermore, p(h(z)) =
max{h(h(z)),h 1(h(z))} + 1, and so satisfies p(h(x)) > x + 1. Again, this implies that it
consists of a single unbounded positive orbital. 0

Theorem 5.4. Every element of Aut.(Q) is a commutator.

Proof. Fix f € Aut.(Q). By Lemma 5.3, there is a p € Aut.(Q) such that both p and pf
consist of a single unbounded positive orbital. Therefore, by the effectivization of Theorem
5.1, there is an h € Aut.(Q) such that pf = h!ph and so f = p th 1ph = [p,h]. O

Theorem 5.5. There is an f € Aut.(Q) such that for all h € Aut.(Q), f # |f,h].

Proof. The requirements for this theorem are the D, and R, requirements of Theorem 3.1
plus
P.: . € Aute = 2 # . fe..

To satisfy P,, it suffices to make sure that for some n and q, f2*(q) # . (f"(¢e(q))).

As in Section 3, we construct f without injury. We require the global properties from
Theorem 3.1, and for the first time, we use the fact that each interval (3e,3(e + 1)) consists
of either exactly one positive orbital or exactly two positive orbitals.
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Lemma 5.6. Assume f has the global properties from Theorem 8.1. If f* = h™1fh, then h
must map each interval (3n,3(n + 1)) bijectively onto itself.

Proof. Write f2 = h™' fh as hf* = fh. For any a such that f(a) = a, we have h(f?(a)) = h(a),
and so f(h(a)) = h(a). Consider h(0) = g. Either ¢ < 0, ¢ = 0, or ¢ = 3n for some n > 1.
Suppose ¢ < 0 and fix any z such that 0 < z < 3 and ¢ < h(z) < 0. Then f(h(z)) = h(x),
but f2(x) > z, so h(f?(z)) > h(x), which gives a contradiction. It is not hard to see that
g = 3n for n > 1 also leads to a contradiction. Therefore, h(0) = 0. Continuing by induction,
we get h(3n) = 3n for all n. Since h is an automorphism, it must map each (3n,3(n + 1))
bijectively onto itself. O

Consider the situation when f has two orbitals in (0, 3), say (0,7) and (r,3). The boundary
point r must be irrational, since a rational boundary point between two positive orbitals would
be mapped to itself, violating the global properties for f.

Lemma 5.7. Assume f is as in the last paragraph. If f> = h='fh, then h must map (0,r)
bijectively onto itself and (r,3) bijectively onto itself.

Proof. For a contradiction, suppose first z € (0,7) and h(z) € (r,3). Fix any y € (r,3). Since
h preserves order and h(3) = 3, we know h(z) < h(y) < 3. Since h(z) and h(y) are in the same
f-orbital, there is an n such that f™(h(z)) > h(y). Therefore, f**(z) = h='(f"(h(z))) > v,
which contradicts the fact that = and y are in different f-orbitals. A similar argument applies
when y € (r,3) and h(y) € (0,r). O

As with the proofs in Sections 3 and 4, we use the interval (3e,3(e+ 1)) with the witnesses
3e + 1 and 3e + 2 to meet P,, and we present the construction on (0,3). Unlike the proof of
Theorem 4.1, where we could assume that 1 < py(1) < f(1) and 2 < ¢y(2) < 2, our current
opponent has considerably more freedom in defining o(1) and y(2). However, Lemma 5.6
does tell us that we can ignore P, unless ¢y(1) and o(2) converge to numbers in (0, 3). Also,
Lemma 5.7 gives us a new strategy to beat Py. If ¢o(1) and ¢o(2) converge to numbers which
we can guarantee are in the same f-orbital without collapsing 1 and 2 in the same f-orbital,
then we do so and win F.

Construction:

Stage 0: Set f1(1) =1/2, f(1) =5/4, f1(2) =7/4, and f(2) =5/2. Set my; =p; = my =
p2 = 1.

Stage s + 1: Assume we have not met P, yet and the induction hypotheses from Theorem
3.1 hold.

Case s = 3n: Proceed exactly as in stage s + 1 when s = 3n in Theorem 3.1.

Case s = 3n + 1: Proceed exactly as in stage s + 1 when s = 3n + 1 in Theorem 3.1.

Case s = 3n + 2: If either g (1) or ¢gs(2) fails to converge, then go to the next stage. If
both computations converge, check if 0 < (1) < o(2) < 3. If not, then ¢y cannot conjugate
f? and f, so proceed to the next stage. Otherwise, we need to actively diagonalize to meet
Py. Choose the first subcase which applies.

Subcase 1: Assume f™ (1) < ¢o(1). To win P, it suffices (by Lemma 5.7) to guarantee
that (0, 3) has two orbitals such that 1 is in the bottom orbital and ¢y(1) is in the top orbital.
There are two possibilities: if po(1) < f7P2(2), then set f(po(1)) = f7P2(2) (guaranteeing
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that @o(1) is in the same orbital as 2), and if fP2(2) < (1), then do nothing (since (1)
is already in the same orbital as 2). In either case, proceed to the next stage, noting that the
induction hypotheses still hold. After this point, skip all diagonalization stages.

Subcase 2: Assume subcase 1 does not apply, and o(2) < f7P2(2). We win Py by making
sure (0,3) has two orbitals with 2 in the top orbital and ¢((2) in the bottom orbital. Again,
there are two possibilities: if f™ (1) < ¢p(2), then set f™ (1) = ¢o(2) (guaranteeing that
©o(2) is in the same orbital as 1), and if po(2) < f™1(1), then do nothing (since ¢o(2) is
already in the same orbital as 1). In either case, proceed to the next stage, noting that the
induction hypotheses still hold. After this point, skip all diagonalization stages.

Subcase 3: Assume that ¢g(1) < f™ (1) and f72(2) < ¢o(2). To reduce the number of
possibilities in this subcase, we extend f as follows.

1. Pick y such that f™ (1) <y < f7P2(2). Set f™*!(1) = y and reset m; to my + 1.

2. If ©o(2) > f™2(2), then pick z such that ¢o(2) < =z < 3. Set fm2t1(2) = y(2),
fm2*2(2) = z, and reset my to my + 2.

3. If (1) < f7P1(1), then set f~P1=1(1) = py(1) and reset p; to p; + 1.

The point of extending f in this manner is that we can now assume that there are integers ¢
and 7 with —p; <17 <my; and —py; < j < mg such that

f1(1) < @o(1) < f1(1) and f7(2) < po(2) < f771(2).

There are four possibilities to consider. Our action in each of these possibilities will violate
the induction hypotheses. Therefore, after this stage, we continue the construction with the
alternate continuation given in Theorem 3.1.

Subcase 3(a): Assume that ¢o(1) = f4(1) and f7(2) < o(2). The crucial observation here is
that f7(2) < ¢o(2) < f771(2) implies that regardless of how f is extended to an automorphism

Vk € Z(f*(2) # ¢o(2)). (1)

If we make f2%(1) = 2 for some k, then ¢o(f?*(1)) = ©o(2). But, ff(pe(1)) = (1) =
fik(2), which by Equation (1) cannot be equal to ¢g(2).

To make f?*(1) = 2 for some k, we act as follows. If m; + py + 1 is even, then set
fm™ri(1) = f7P2(2) (thus making f™*P2+1(1) = 2). If my + py + 1 is odd, then pick a point
x such that f™(1) < z < f772(2) and set f™*!(1) = x and f(z) = f772(2) (thus making
fm1+p2+2(1) - 2)'

Subcase 3(b): Assume f'(1) < po(1) and f7(2) = ¢p(2). We perform exactly the same
action as in subcase 3(a). The verification that this successfully diagonalizes is essentially the
same as subcase 3(a).

Subcase 3(c): Assume that we have py(1) = f(1) and po(2) = f7(2). Our strategy is again
to make f2*(1) = 2, for some k, to obtain

po( (1)) = o(2) = f7(2) = f*H(1) and fH(o(1)) = f7(1).
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As long as k is chosen such that k + j # i, we will win F,. Pick points x1,...,x; such that
)<z < - < < fP2(2), my+1+p2+ liseven, and ((my +1+p2+1)/2) +j #i.
Set f™t(1) = zy, f(zn) = Tpyy for 1 < m < [ and f(z;) = f772(2). We have made
fratitptl(1) = 2 as desired.

Subcase 3(d): Assume fi(1) < ¢o(1) and f7(2) < po(2). Extend f so that f™ " 1(py(1))
and fP277(2) are defined. Notice that

FrmhA) < f™M T Heo(1)) < f™(1) and f72(2) < f P (p0(2)) < fPTH(2).

Therefore, we have extended f as far as possible to maintain the induction hypotheses. Our
goal is to make f2*(1) = 2, so that po(f*(1)) = po(2), and to guarantee that f™(po(1)) #
©o(2) for any n.

If my + py + 1 is even, then set f™*1(1) = f72(2), which makes fm*P2*1(1) = 2.
Pick points z,y such that f™ (1) < z < f772(2) and f7P2(2) < y < f7P77(py(2)). Set
F™ % pp(1)) =z and f(x) =y. We have

F772(2) < f™ 7 po(1)) < FT 7 (0(2))-

When f is extended to an automorphism, we will have f™P277=!(py(2)) < f7P2(2), which
shows that f™(¢o(1)) # @o(2) for any n.

If my + pa + 1 is odd, then pick four points v, w,z,y such that f™ (1) <v < w <z <
F7P2(2) and f72(2) <y < fP2(pe(2)). Set fMF(1) = w and f(w) = fP2(2), so that
fratPet2(1) = 2. Set f™~(po(1)) = v, f(v) = z, and f(z) = y. The verification that this
succeeds is as above.

End of Construction

Lemma 5.8. F, is satisfied.

Proof. Assume ¢y(1) and ¢g(2) converge. If either number is not in (0, 3), then Lemma 5.6
shows that Py is satisfied. If both numbers are in (0, 3), then we must eventually consider
one of the subcases when s = 3n + 2. In the first two subcases, the numbers 1 and 2 remain
in distinct orbitals by Lemma 3.3, while either ¢y(1) € orbital(2) or ¢o(2) € orbital(1).
Therefore, P, is satisfied by Lemma 5.7. In the third subcase, we verified that Py was satisfied
in the construction. O

This completes the proof of Theorem 5.5. O

Corollary 5.9 (Morozov and Truss, [5]). There are f,g € Aut.(Q) such that f and g are
conjugate in Aut(Q) but not in Aut.(Q).

As noted in the introduction, the proof of Corollary 5.9 in [5] builds f and ¢ for which
the Turing degrees of the orbital structures for f and g are different. We can strengthen this
result as follows.

Corollary 5.10. There are f,g € Aut.(Q) such that f and g are conjugate in Aut(Q), f and
g are not conjugate in Aut.(Q), and the Turing degrees of the orbital structures of f and g
are equal. In fact, f and g can be chosen to have the same orbitals.
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Proof. For any automorphism f (regardless of computational properties), f and f? have the
same orbitals and therefore are conjugate in Aut(Q). Let f be as in Theorem 5.5. Rewriting
f #1[f,h] as f? # f", it is clear that the functions f and g = f? satisfy Corollary 5.10. [

6 Normal subgroups

The standard proof that Aut(Q) contains exactly three nontrivial normal subgroups, B(Q),
L(Q), and R(Q), relies heavily on both the fact that Aut(Q) is divisible and the fact that if
two elements in Aut(Q) have isomorphic orbital structures then they are conjugate. In this
section, we show that B.(Q), L.(Q), and R.(Q) are the only nontrivial normal subgroups in
Aut.(Q). As with Theorem 5.4, our proof must differ from the classical proof.

Theorem 6.1. B.(Q), L.(Q), and R.(Q) are the only nontrivial normal subgroups in
Aut.(Q).

The rest of this section is devoted to the proof of Theorem 6.1. To see these three
subgroups are normal in Aut.(Q), suppose r € Q is such that f(q) = ¢ for all ¢ > r and let
h € Aut.(Q) be arbitrary. Let ¢ = h~!(r). Then, for any z > ¢, we have h(z) > r and so
h=Y(f(h(z))) = . The verification when f(g) = ¢ for all ¢ < s is similar.

For the remainder of this section, we assume that all automorphisms mentioned are com-
putable.

The task of showing these are the only normal subgroups in Aut.(Q) can be broken into
four pieces. First, we show that if f € Aut.(Q) is not in these subgroups, then the normal
closure of f is all of Aut.(Q). Second, we show that if f € L.(Q) \ R.(Q), then the normal
closure of f is L.(Q). Third, we show that if f € R.(Q) \ L.(Q), then the normal closure of
f is R.(Q). Finally, we show that if f € B.(Q), then the normal closure of f is B.(Q).

Definition 6.2. We say that f has positive orbitals which are cofinal as z — +oo (as
r — —o0, respectively) if for every n € N, there is an z € Q such that z > n (z < —n,
respectively) and f(z) > z. We say f has positive orbitals which are cofinal in both
directions if f has positive orbitals which are cofinal as * —+ 400 and as z — —oo.

Lemma 6.3. Let f € Aut.(Q) have positive orbitals which are cofinal in both directions. Then
there is a g € Aut.(Q) such that f9f consists of a single unbounded positive orbital.

Proof. Choose a sequence of rationals z, for n € Z such that f(zy;) = 29;41 for all i, the
sequence zp; is unbounded in both directions, and n < m implies z, < z,,. Such points can
be chosen effectively by our assumption on f.

Define g effectively such that g([z,,2n11]) = [2n+1, 2nee] for all n € Z. Notice that
g (f(9(f(22)))) = 22i42. Therefore, f9f maps each interval [2za;, 22i12] onto [29i12, 22 14]
and hence consists of one unbounded positive orbital. O

Lemma 6.4. Let f € Aut.(Q) be such that f & R.(Q), f has positive orbitals as x — +00,
but f does not have positive orbitals as x — —oo. Then, there is a g € Aut.(Q) in the normal
closure of f such that g has positive orbitals cofinal in both directions.
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Proof. By the conditions on f, we can effectively pick points z; for ¢ € Z such that
1. z; are cofinal in both directions,
2. fori >0, z; < f(2) < f H2i41) < 2ig1,
3. 2.1 < fHz1) < fH20) < 20, and
4. fori <0,z 1 < [N zi1) < f(2) < 2.
By an effective back-and-forth argument, define a € Aut.(Q) such that
1. for i > 0, the interval (z;, f(2;)) is a single positive a-orbital,
2. for i < 0, the interval (f(z;), 2;) is a single negative a-orbital, and
3. a(x) = z for all other z.

Set g(x) = a~'f~'af(z), and notice that g is in the normal closure of f. It is straightforward
to check that for all ¢ > 0, (f!(zi), 2:) is a positive g-orbital and (z;, f(z;)) is a negative g-
orbital. Also, fori < 0, (f(2;), 2;) is a positive g-orbital and (z;, f ~*(2;)) is a negative g-orbital.
At all other points, g(z) = z. Therefore, g meets the requirements of the lemma. O

Using Lemmas 6.3 and 6.4, we can show that for any f € Aut.(Q), if f & L.(Q) U R.(Q),
then the normal closure of f is all of Aut.(Q). Applying Lemma 6.4, we can assume without
loss of generality that f has positive orbitals which are cofinal in both directions. By Lemma
6.3, there is a ¢ is the normal closure of f which consists of a single unbounded positive
orbital. Consider any h € Aut.(Q). By Lemma 5.3, there is a p such that both p and ph
consist of single positive unbounded orbitals. But, by the effectivization of Theorem 5.1, both
p and ph are in the normal closure of f, and hence A is in the normal closure of f, as required.

We next consider automorphisms f € L.(Q) \ R.(Q).

Definition 6.5. If f € L.(Q) \ R.(Q), then we say a real r is the upper boundary for
supp(f) if supp(f) N [r,+00) = 0 and for any rational ¢ < r, supp(f) N (gq,r) # 0.

The case we are most interested in is when the upper boundary r is a rational. In this
case, f(r) =r.

Lemma 6.6. If f € L.(Q)\ R.(Q), then there is a g € L.(Q) in the normal closure of f such
that g has positive orbitals which are cofinal as © — —oo and the upper boundary of supp(g)
1$ a rational point.

Proof. Without loss of generality, we can assume that f has positive orbitals as + — —o0.
Pick points z; for i € N such that z; — —oco as ¢ — oo and 241 < f(zi1) < f7(z) <
z; for all i. By an effective back-and-forth argument, define «(z) such that each interval
(zi, f(z;)) is a positive a-orbital and a(z) = z for all z not in an interval of this type. Set
g(z) = a 'flaf(r) and notice that g is in the normal closure of f. As in Lemma 6.4, it is
straightforward to check that g has positive orbitals which are cofinal as x — —oo and the
upper boundary of g is f(zp). O
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Lemma 6.7. If f € L.(Q) \ R.(Q) has positive orbitals which are cofinal as v — —oo and
has a rational upper boundary point, then there is a g € L.(Q) in the normal closure of f
such that g consists of a single positive orbital (which is unbounded as x — —o0) and has a
rational upper boundary point.

Proof. The proof is similar to that of Lemma 6.3. OJ

Lemma 6.8. If h € L.(Q), then there is a p € L.(Q) such that both p and ph consist of
single positive orbitals (which are unbounded as x — —o0) and have rational upper boundary
points.

Proof. Fix any rational number r such that r is greater than all the numbers in supp(h).
Define p(z) as follows. On the interval [r 4+ 2, 4+00), p is the identity. p maps the interval
(r,7 + 2) as a single positive orbital onto the interval (r + 1,7 + 2). On the interval (—oo, 7],
p(x) = max(h(z), h~'(z))+1. Notice that since p(r) = r+1, the intervals (—oco, r] and (r, r+2)
join together in a single positive p-orbital. Therefore, p has a single positive orbital which is
unbounded as x — —oo and p has the rational upper boundary point r + 2. Furthermore,
since h is the identity on all numbers bigger than r, ph has exactly the same orbital structure
as p. Therefore, we have met the requirements of the lemma. O

We are now in a position to show that for any f € L.(Q) \ R.(Q), the normal closure of f
is all of L.(Q). Applying Lemmas 6.6 and 6.7, there is a ¢g in the normal closure of f which
consists of a single positive orbital which is unbounded as z — —oo and ¢ has a rational
upper boundary point. For any h € L.(Q), by Lemma 6.8, there is a p such that both p and
ph have the same orbital structure as g. Applying the effectivization of Theorem 5.1, g must
be conjugate to both p and ph, and therefore, h is in the normal closure of g.

A similar argument shows that if f € R.(Q) \ L.(Q), then the normal closure of f is all
of R.(Q). It remains to show that if f € B.(Q), then the normal closure of f is all of B.(Q).

Definition 6.9. We say that the orbital structure of f consists of two orbitals separated
by a rational point if there are rationals ¢ < r < s such that (¢,r) and (r,s) are both
f-orbitals, and f is the identity on all other points.

Lemma 6.10. If f € B.(Q) is not the identity, then there is a g € B.(Q) in the normal
closure of f such that the orbital structure of g consists of two orbitals separated by a rational
point. Furthermore, the labels of the two nontrivial g-orbitals are different.

Proof. Without loss of generality, we can assume there is a point z such that z < f(z). Fix
such a z. Define « effectively such that (z, f(2)) is a single positive a-orbital, and «a(z) = z
for all points outside this interval. Let g(z) = a™'f~'af(z). It is straightforward to check
that (f 1(z), z) is a positive g-orbital, (2, f(z)) is a negative g-orbital, and g(z) = x for all
points outside these intervals. Therefore, g meets the requirements of the lemma. O

Lemma 6.11. For any h € B.(Q), there is a p € B.(Q) such that the orbital structures of
both p and ph consist of two orbitals separated by a rational point. Furthermore, the labels on
the nontrivial orbitals for both p and ph are different.
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Proof. Fix rational numbers ¢ < r such that supp(h) lies in the interval (q,r). Define an
automorphism p(x) effectively such that

1. p restricted to [r 4+ 2,4+00) is the identity,

2. pmaps (r,r 4+ 2) onto (r + 1,7 + 2) as a single positive orbital,

3. for x € [q,7], p(z) = max(h(z), " (z)) + 1),

4. p maps (¢ —1,q) onto (¢ —1,q + 1) as a single positive orbital,

5. p(g—1)=q-1,

6. p maps (¢ — 2, — 1) onto (¢ — 2,q — 1) as a single negative orbital, and
7. p restricted to (—oo,q — 2] is the identity.

Because p(q) = ¢+ 1 and p(r) = r+1, the intervals (¢ — 1, q), [q, ] and (r, +2) join together
in a single positive p-orbital. Therefore, the orbital structure of p consists of two orbitals
separated by the rational point ¢ — 1. Furthermore, the lower orbital is negative and the
higher orbital is positive.

Since h is the identity outside of (g, r), it is clear that ph has the same orbital structure
as p, and so we have fulfilled the requirements of the lemma. O

We can now finish the proof of Theorem 6.1. Suppose f € B.(Q) and fix any h € B.(Q).
By Lemmas 6.10 and 6.11, there is a g in the normal closure of a p € B.(Q) such that the
orbital structures of g, p* and (ph) ! are all effectively the same. Therefore, once more
applying the effective version of Lemma 5.1, we get that g is conjugate to p~! and (ph) ! and
hence h is in the normal closure of f.
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