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Abstrat

We ompare Aut(Q ), the lassial automorphism group of a ountable dense linear

order, with Aut



(Q ), the group of all omputable automorphisms of suh an order. They

have a number of similarities, inluding the fats that every element of eah group is a

ommutator and eah group has exatly three nontrivial normal subgroups. However,

the standard proofs of these fats in Aut(Q ) do not work for Aut



(Q ). Also, Aut(Q )

has three fundamental properties whih fail in Aut



(Q ): it is divisible, every element

is a ommutator of itself with some other element, and two elements are onjugate if

and only if they have isomorphi orbital strutures. Keywords: lattie-ordered groups,

automorphism groups, omputability theory, e�etive algebra, reverse mathematis.

1 Introdution

Our goal is to examine the group of automorphisms of a ountable dense linear order without

endpoints, denoted Aut(Q ), from the perspetive of omputability theory. We begin with some

general motivation for the study of automorphism groups of linear orders and we present the

basi de�nitions for the study of Aut(Q ) in this setion. In the next setion, we turn to our
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motivation for studying the group of omputable automorphisms of Q and to a summary of

our results.

For any linear order L, there is a orresponding group of automorphisms, Aut(L). Suh

groups have been extensively studied, partially due to their onnetion with lattie-ordered

groups. To de�ne a lattie-order on Aut(L), set f �

Aut(L)

g if 8x 2 L(f(x) �

L

g(x)). Holland

showed that suh automorphism groups play a entral role in the theory of lattie-ordered

groups.

Theorem 1.1 (Holland [4℄). Every lattie-ordered group an be embedded in Aut(L) for

some linear order L.

Consider the following two theorems to illustrate the importane of the study of automor-

phism groups for the theory of lattie-ordered groups.

Theorem 1.2 (Holland [4℄, Weinberg [9℄). Every lattie-ordered group an be embedded

(as a lattie-ordered group) in a divisible lattie-ordered group.

Theorem 1.3 (Glass and Gurevih [2℄). There is a �nitely presented lattie-ordered group

whih has unsolvable word problem.

Theorem 1.2 is proved by showing that in Holland's Theorem, the linear orders L an be

assumed to have the property that Aut(L) is divisible. Holland proved this fat assuming

the generalized ontinuum hypothesis, and Weinberg later removed this assumption. Theo-

rem 1.3, perhaps of more interest to logiians, was proved by onsidering properties of the

automorphism group of the reals.

There are also interesting model theoreti and set theoreti properties of lattie-ordered

groups. For example, the lass of all lattie-ordered groups does not have the model theoreti

amalgamation property, although it is still true that every lattie-ordered group an be em-

bedded in a two generator group (see the disussion on pages 183-184 in [1℄). In set theory,

Glass, Gurevih, Holland, and Shelah [3℄ give an example of a statement about lattie-ordered

groups whih is independent of ZFC.

In [5℄, Morozov and Truss onsidered the automorphism group of Q , a ountable dense

linear order without endpoints, from the viewpoint of omputability theory. For an arbitrary

ideal I in the Turing degrees, they de�ned Aut

I

(Q ) to be the set of automorphisms of Q whih

(under a suitable oding, disussed below) are omputable from some element of I. (Turing

ideals play no role in the rest of this artile, so the reader who is unfamiliar with them an

safely skip this motivational example.) They proved that for Turing ideals I and J,

Aut

I

(Q )

�

=

Aut

J

(Q ) , I = J:

Along the way to proving this result, Morozov and Truss gave one example of a natural group

theoreti property that holds in Aut(Q ) but not in the group of omputable automorphisms

of Q . This example leads into our urrent work, whih is to ontinue the study of Aut(Q )

from the point of view of omputability theory by studying the group theoreti properties of

the group of all omputable automorphisms of Q .

Before giving more motivation for our work and stating our main results, we need some

bakground in the theory of Aut(Q ). The �rst de�nition introdues the main onept used

to prove many of the fundamental properties of Aut(Q ).
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De�nition 1.4. Fix f 2 Aut(Q ). For q 2 Q , we de�ne the orbital of q (relative to f) to be

the onvexi�ation of the set ontaining f

n

(q) for all n 2 Z. More formally, if f(q) � q, then

we de�ne

orbital(q) =

[

n2N

[f

�n

(q); f

n

(q)℄:

If f(q) < q, then we take the union of the intervals [f

n

(q); f

�n

(q)℄. We label orbital(q)

positive if f(q) > q, negative if f(q) < q, and neutral if f(q) = q.

For any f 2 Aut(Q ) and any q 2 Q , orbital(q) is either a single point (if f(q) = q)

or a onvex open (possibly unbounded and possibly without rational endpoints) interval (if

f(q) 6= q). If q̂ 2 orbital(q), then orbital(q) = orbital(q̂) and the labels on the orbitals are

the same. Therefore, the relation q � q̂ if and only if orbital(q) = orbital(q̂) is an equivalene

relation whih respets the ordering on Q and the labeling of orbitals. Hene, there is both a

natural order on the equivalene lasses (given by [q℄ � [q̂℄ if and only if [q℄ = [q̂℄ or [q℄ 6= [q̂℄

and q < q̂) and a natural labeling of the equivalene lasses.

De�nition 1.5. Fix f 2 Aut(Q ). The struture Q mod the relation � with the indued

ordering and labeling is alled the orbital struture of f . We say that the orbital strutures

of f and g are isomorphi if there is a bijetion between the orbital strutures whih preserves

both the order of the orbitals and the labels of the orbitals.

The support of f , denoted supp(f), is the set of q suh that f(q) 6= q. There are three

nontrivial normal subgroups of Aut(Q ):

L(Q ) = ff j supp(f) is bounded aboveg;

R(Q ) = ff j supp(f) is bounded belowg; and

B(Q ) = ff j supp(f) is bounded above and belowg:

For these subgroups, we follow the notation given in [1℄. The intuition is that L(Q ) onsists

of the automorphisms that \live on the left", meaning that they are equal to the identity for

values far enough right on the line Q . Similarly, R(Q ) onsists of those automorphisms that

\live on the right" and B(Q ) refers to those automorphisms that are bounded on both sides.

The following theorem states several properties of Aut(Q ). During the ourse of this

artile, we will sketh proofs of some of these properties, all of whih are based on those given

in Glass [1℄. The only di�erene in the proofs is that Glass onsiders the general ase of a

doubly homogeneous linear order (of whih Q is an example), while we speialize our proofs

to Aut(Q ). Reall that a group G is divisible if for every element g 2 G and every n 2 N

with n > 0, the equation x

n

= g has a solution. We use [f; g℄ = f

�1

g

�1

fg to denote the

ommutator of f and g in Aut(Q ). We use similar notation, [a; b℄, for points a; b 2 Q to

denote the losed interval between a and b in Q . The ontext will make lear whih meaning

is intended by the braket notation.

Theorem 1.6. The following properties hold of Aut(Q ).

1. Aut(Q ) is divisible.
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2. For every f 2 Aut(Q ), there is a g 2 Aut(Q ) suh that f = [f; g℄. Therefore, every

element of Aut(Q ) is a ommutator.

3. Two elements of Aut(Q ) are onjugate if and only if they have isomorphi orbital stru-

tures.

4. Aut(Q ) has exatly three nontrivial normal subgroups: L(Q ), R(Q ), and B(Q ).

Before proeeding, we give referenes for these results in Glass [1℄. Property 1 is stated as

Theorem 2E on page 40 and is proved on page 57. Property 2 is a ombination of Theorem 2F

on page 40 and Corollary 2.2.6 on page 63. The proof of Property 2 is a trivial onsequene

of Property 3 sine f and f

2

have idential orbital strutures for any f . Property 3 is stated

as Theorem 2.2.5 on page 62. Notie that the onditions in Theorem 2.2.5 that the map

be 1-1, onto, left-right preserving, and parity preserving mean exatly that the map is an

isomorphism between the orbital strutures. Finally, Property 4 is stated as Theorem 2.3.2

on page 65. Notie that Q trivially has ountable oterminality sine Q is ountable.

The standard proofs of these properties rely on the tehnique of de�ning automorphisms

uniformly on orbitals. Formally, this means applying the Pathing Lemma 1.10.9 from [1℄.

To illustrate this tehnique, onsider f 2 Aut(Q ) and suppose we want to show that there is

a g 2 Aut(Q ) suh that g

2

= f . For eah orbital of f , pik a representative q for that orbital.

Without loss of generality, assume that orbital(q) is positive. Pik any point p 2 (q; f(q))

and an isomorphism h

1

: [q; p℄ ! [p; f(q)℄. De�ne h

2

: [p; f(q)℄ ! [f(q); f(p)℄ by h

2

(x) =

f(h

�1

1

(x)). To de�ne g(x) for a point x 2 orbital(q), notie that there is a unique n 2 Z suh

that x 2 [f

n

(q); f

n+1

(q)). De�ne g(x) by �rst applying f

�n

, then applying either h

1

or h

2

depending on whether f

�n

(x) is in [q; p℄ or [p; f(q)℄, and �nally applying f

n

. Pasting together

the de�nitions for g on eah orbital yields an automorphism suh that g

2

= f .

2 Motivation and summary of results

Our goal is to study the group of omputable automorphisms of Q , denoted Aut



(Q ). Sim-

ilarly, we use L



(Q ), R



(Q ) and B



(Q ) to denote the restritions of L(Q ), R(Q ) and B(Q )

respetively to the group of omputable automorphisms.

Our motivation is threefold. First, from the point of view of omputability theory, Aut



(Q )

is a naturally de�ned group deserving study. In partiular, we wish to understand whih prop-

erties of Aut(Q ) are aptured in Aut



(Q ) and whih are not. There are obvious similarities,

suh as the fat that both groups are nonabelian and torsion-free, as well as obvious di�er-

enes, suh as the fat that Aut(Q ) is unountable while Aut



(Q ) is ountable. We hope that

a wider audiene, one introdued to Aut



(Q ), will �nd this group interesting in its own right.

Seond, we are motivated by the general program of e�etive algebra. In e�etive algebra,

one attempts to determine whih theorems and tehniques in algebra remain true when we

restrit our attention to the omputable sets. (Below, we will disuss the onept of a om-

putable set for the reader who is unfamiliar with this terminology.) Thus, this program is one

attempt at apturing whih parts of mathematis are onstrutively true. (However, unlike an

intuitionisti approah to onstrutive mathematis, we ontinue to work in lassial logi.)
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The most widely known results in this area are the fat that the word problem for groups is

unsolvable and the negative solution to Hilbert's 10th problem that there is no algorithm to

determine if a Diophantine equation has a root.

In the ontext of this artile, we are interested in questions suh as whether, given an

automorphism f of Q , we an e�etively onstrut an automorphism g suh that g

2

= f .

In Theorem 3.1, we show that the method of onstruting g desribed above is not e�etive

beause there is no omputable proedure to determine if two elements of Q are in the same

f orbital for an arbitrary omputable automorphism f . This result does not say that there is

not a omputable g suh that g

2

= f , but it does say that the lassial proof does not yield

a method to onstrut suh a g. We proeed to show in Theorem 4.1 that in general suh

a g does not exist by building a omputable automorphism f suh that for all omputable

automorphisms g, g

2

6= f .

Our results on e�etiveness for the properties listed in Theorem 1.6 are not all negative.

In fat, they are an interesting mix of positive and negative results, all of whih are surveyed

at the end of this setion. To give one example of a positive result, we show in Setion 6 that

L



(Q ), R



(Q ), and B



(Q ) are the only nontrivial normal subgroups of Aut



(Q ). Therefore

the e�etive analogue of Property 4 of Theorem 1.6 is true.

Third, we are motivated by the program of reverse mathematis, whih seeks to determine

whih set existene axioms are required to prove partiular theorems of mathematis. Seond

order arithmeti (whih is muh weaker than ZFC and therefore more sensitive to axiomati

di�erenes between theorems) is the model of set theory used in reverse mathematis. While

the details of seond order arithmeti are outside the sope of this artile, the general method

of reverse mathematis proeeds as follows. There are �ve basi axioms systems alled (in

inreasing order of strength) RCA

0

, WKL

0

, ACA

0

, ATR

0

and �

1

1

-CA

0

. Most theorems in

ountable algebra are equivalent to one of these systems. To �nd an upper bound on the

axioms required to prove a theorem T , one looks for a proof of T in one of these systems. To

�nd a lower bound on the axioms required for T , one tries to prove the axioms of one of these

systems from the statement of T . (Tehnially, one usually works in the axiom system RCA

0

plus the statement of T .) So, if ACA

0

suÆes to prove T and RCA

0

+ T suÆes to prove the

axioms in ACA

0

, then we an say that ACA

0

gives the minimum olletion of set theoreti

axioms required to prove T . The proess of proving axioms from theorems (that is, proving

ACA

0

from RCA

0

+ T ) is alled a reversal and gives rise to the name reverse mathematis.

Two of these axiom systems are relevant to providing motivational bakground. In our

ontext, RCA

0

onsists (roughly) of axioms whih prove that the omputable sets exist. The

axiom system ACA

0

is stronger and it proves the existene of subsets of Q whih are de�ned

using quanti�ation over elements of Q and N .

The di�erene between these systems is best illustrated with examples. For any given

q 2 Q , RCA

0

an prove the existene of sets suh as the set of all a 2 Q for whih q < a or

the set of all a 2 Q suh that a has a nonzero power of 2 in its denominator when it is written

in redued form. There are obvious omputational proedures to determine the elements of

eah of those sets. On the other hand, if ACA

0

is given an automorphism f , then it is strong

enough to prove the existene of the set of all pairs of rationals a and q suh that a and q are

in the same orbital with respet to the automorphism f . The de�nition for a and q being in
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the same orbital an be given using only a quanti�er over N . The formal de�nition splits into

ases depending on whether f(q) > q, f(q) = q or f(q) < q. In the ase when f(q) > q, we

have

a � q , 9n 2 N (f

�n

(q) � a � f

n

(q)):

Therefore, in ACA

0

, we an de�ne automorphisms uniformly on orbitals and hene prove the

�rst three properties in Theorem 1.6 using the lassial proofs as given in [1℄.

By Theorem 3.1, we annot use this method in RCA

0

sine there is no omputable proe-

dure to determine if two points are in the same orbital. This fat does not say that the �rst

three properties in Theorem 1.6 are not provable in RCA

0

. It only says that if they are prov-

able in RCA

0

, then they require a di�erent proof. However, Theorem 4.1 does say that RCA

0

annot prove Property 1 in Theorem 1.6 beause there is a omputable automorphism (whih

RCA

0

an prove exists) whih has no omputable divisors. Therefore, axioms (like RCA

0

)

whih an only prove the existene of omputable sets annot prove that this automorphism

has divisors.

Hopefully these examples give the reader a glimpse into the interation between questions

in e�etive algebra and reverse mathematis. Sine our original goal was to study the group

Aut



(Q ), we did not attempt to get exat lassi�ations of the properties of Theorem 1.6

in terms of reverse mathematis. We leave the exat lassi�ation of these results as open

questions whih we hope someone will seek to answer. For example, by the omments above,

ACA

0

suÆes to prove Property 1 in Theorem 1.6, but RCA

0

does not prove this property. It

remains open whether WKL

0

suÆes to prove this property (although the proof given above

does not work in WKL

0

), and it remains open whether there is a reversal from this property

to either WKL

0

or ACA

0

. The urious reader is referred to Chapter 1 of Simpson [6℄ for a

more detailed introdution to reverse mathematis and to Solomon [8℄ for a survey of results

in reverse mathematis onerning ordered groups.

Our notation is standard and follows Glass [1℄ for automorphism groups and Soare [7℄

for omputability theory. In partiular, we use '

e

, e 2 ! to denote the partial omputable

funtions. The reader unfamiliar with the set of partial omputable funtions an think of '

e

as the e-th program in an e�etive list of all omputer programs in a given language. (Almost

any language urrently in use will have the same omputational power, so the exat hoie of

language does not matter.) These programs are assumed to run on a omputer with unlimited

memory and they are allowed to run for arbitrarily long �nite amounts of time. Eah program

take inputs from N . On input n, '

e

either runs forever without halting (in whih ase '

e

(n)

is unde�ned and we say the omputation does not halt or is divergent) or '

e

halts after some

�nite amount of time giving an output in N (in whih ase we de�ne '

e

(n) to be this output

and we say that the omputation onverges). Beause of the potential for divergene, the

funtions '

e

need not be total.

Furthermore, we use '

e;s

(n) to (roughly) stand for the ation of '

e

after exeuting s many

instrutions in its program. Thus, '

e

(n) is de�ned if and only if there is a t 2 N suh that

'

e;s

(n) is de�ned for all s � t. That is, the program for '

e

on input n halts if and only

if it halts at some �nite stage. (By de�nition, one a omputation halts, it remains halted

forever.)

To view a partial omputable funtion on N as a funtion on Q , we �x an e�etive 1-1
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enumeration q

n

, n 2 N , of Q . We treat '

e

as the e�etive partial funtion on Q whih sends

q

n

to q

'

e

(n)

if '

e

(n) is de�ned, and is unde�ned if '

e

(n) is unde�ned. We routinely use the

notation '

e

(q) for q 2 Q with the understanding that '

e

is de�ned in this way.

Any two ountable dense linear orders without endpoints an be shown to be isomorphi

using a bak-and-forth argument that an be made e�etive in the ase when the orders are

omputable. (Formally, any omputable opy of the ordering Q is omputably ategorial.)

Therefore, the theorems in this artile do not depend on the hoie of our e�etive enumeration

of Q . That is, if q

n

and r

n

are di�erent omputable 1-1 enumerations of Q , then there is a total

omputable funtion f suh that the map q

n

7! r

f(n)

is an isomorphism between the ountable

dense linear orders given by fq

n

jn 2 N g and fr

n

jn 2 N g. Hene questions of e�etiveness with

respet to the enumeration q

n

will have exatly the same answers as questions of e�etiveness

with respet to the enumeration r

n

.

In Setion 3, we show that the method of de�ning an automorphism uniformly on the

orbitals of another automorphism annot be used in the ontext of Aut



(Q ) beause there is

no e�etive proedure to determine when two elements are in the same orbital. Formally,

we onstrut an f 2 Aut



(Q ) suh that the relation p � q, whih holds if and only if

orbital(p) = orbital(q), is as ompliated as the halting problem. Similar onstrutions are

impliit in [5℄, but we present the details to emphasize a method whih is repeated in all of

our negative results.

One we know that the method of de�ning automorphisms uniformly on orbitals does not

work in the ontext of Aut



(Q ), we onsider eah of the properties in Theorem 1.6 separately

to see if we an onstrut a omputable ounter-example or if we an �nd an e�etive proof

of the property whih applies to Aut



(Q ).

In most ases, we de�ne our omputable automorphisms by an e�etive bak-and-forth

argument, utilizing the fat that (Q ;�) is homogeneous. If we have an order preserving

bijetion f : F

0

! F

1

between �nite subsets of Q , then for any x 62 domain(f) and for any

y 62 range(f), there is a �nite extension

^

f of f suh that x 2 domain(

^

f) and y 2 range(

^

f).

Starting in Setion 4, we onsider the various properties in Theorem 1.6. Conerning

divisibility, we show in Theorem 4.1 that there are elements of Aut



(Q ) whih are not divisible

by k in Aut



(Q ) for any k � 2. We have already mentioned the impliations of this result for

e�etive algebra and reverse mathematis.

We examine the more subtle question of ommutators in Setion 5. The stronger statement

in Property 2 of Theorem 1.6 fails in the omputable ontext. That is, there is an f 2 Aut



(Q )

suh that for every g 2 Aut



(Q ), f 6= [f; g℄. However, it turns out that every element

of Aut



(Q ) is a ommutator. In terms of reverse mathematis, we are in the interesting

situation that RCA

0

suÆes to prove that every element automorphism is a ommutator, but

does not suÆe to prove the stronger property. As with divisibility, ACA

0

is strong enough

to prove the stronger property, but it is unknown whether WKL

0

suÆes and there are no

known reversals.

In Setion 5, we also show why the failure of the stronger form of Property 2 of Theorem

1.6 implies that the e�etive version of Property 3 also fails. Morozov and Truss [5℄ give

a ounter-example to the e�etive version of this property by noting that if f and g are

onjugate in Aut



(Q ), then the orbital strutures of f and g have the same Turing degree.
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They build omputable automorphisms f and g whih have isomorphi orbital strutures,

but for whih the orbital struture for f is omputable and the orbital struture for g is not.

In our ounter-example to Property 3, the automorphisms f and g not only have isomorphi

orbital strutures, but they have idential orbitals. Hene their orbital strutures have the

same Turing degree.

The fat that there are f; g 2 Aut



(Q ) whih have isomorphi orbital strutures, but are

not onjugate in Aut



(Q ) indiates that onjugation behaves quite di�erently in Aut(Q ) and

Aut



(Q ). Therefore, one might expet that there would be more than three nontrivial normal

subgroups in Aut



(Q ). However, it turns out that L



(Q ), R



(Q ), and B



(Q ) are the only

nontrivial normal subgroups in Aut



(Q ). This result is proved in Setion 6.

3 Orbital strutures

For any f 2 Aut



(Q ), the relation q 2 orbital(x) for q; x 2 Q is learly omputably enumer-

able. That is, for eah pair q; x 2 Q and eah n 2 N with n > 0, we an omputably hek

the onditions suh as f

�n

(x) � q � f

n

(x) whih would indiate that q 2 orbital(x). By

systematially searhing over all suh q, x and n, we an e�etively list the pairs q and x suh

that q 2 orbital(x). If q and x are in the same orbital, then they will eventually be listed

as being in the same orbital. However, our searh proedure does not tell us if two elements

of Q are in di�erent orbitals. The hallenge here is to determine if q 62 orbital(x) sine our

proedure only lists positive information.

We show that the relation q 2 orbital(x) an be as ompliated as possible, that is, as

ompliated as the halting problem. Let K = fej'

e

(e) onverges g denote the halting set

and let K

n

denote the set of e < n for whih '

e;n

(e) onverges. K is a nonomputable

set and it is the most ompliated (in the sense of Turing reduibility) set whih an be

e�etively listed. In the next theorem, we onstrut a omputable automorphism f suh that

3e + 1 2 orbital(3e + 2) if and only if e 2 K. Therefore, if we ould determine in general if

q 2 orbital(x) for the omputable automorphism f , then we ould determine if e 2 K. Sine

K is not omputable, this fat tells us that determining if q 2 orbital(x) is not in general

omputable.

Theorem 3.1. There is an f 2 Aut



(Q ) for whih the set of pairs hq; xi suh that q and x

are in the same orbital is Turing equivalent (in fat 1-equivalent) to K.

Proof. The proof of this fat is quite straightforward, but we present it in some detail, beause

all of our other negative results use variations on the same idea. The funtion f 2 Aut



(Q ) we

build has some additional properties that are not neessary for this argument, but whih will

be needed in more ompliated onstrutions later. First of all, we guarantee that f satis�es

f(q) � q for all q and f(q) = q if and only if q � 0 or q = 3n for some n 2 N . We refer to these

as global properties of f , sine we de�ne these parts of f before the onstrution begins. This

leaves an in�nite number of intervals of the form (3n; 3(n+1)) in whih to ode K, or in later

onstrutions to diagonalize. We also make sure that eah of these intervals onsists of either

exatly one positive orbital or exatly two positive orbitals. This requirement is unneessary

for this onstrution, but it will be useful later.
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We have to meet the following requirements.

D

n

: q

n

2 domain(f):

R

n

: q

n

2 range(f):

P

e

: e 2 K $ orbital(3e+ 1) = orbital(3e+ 2):

We use the interval (3e; 3(e + 1)) to meet P

e

and our onstrution allows us to meet eah

P

e

independently with no injury. We desribe the onstrution on (0; 3), guaranteeing that 1

and 2 are in the same orbital if and only if 0 2 K. We assume that similar onstrutions are

simultaneously ourring in eah interval (3e; 3(e+ 1)).

Constrution:

Stage 0: Set f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set m

1

= m

2

= p

1

=

p

2

= 1.

Stage s + 1: Assume that we have not met P

0

yet and that we have de�ned a partial

isomorphism f on some �nite subset of (0; 3). Assume, for i 2 f1; 2g, that m

i

is the highest

power suh that f

m

i

(i) is de�ned and p

i

is the highest power suh that f

�p

i

(i) is de�ned.

Assume by indution that f satis�es the following properties.

1. f

m

1

(1) < f

�p

2

(2).

2. (0; 3) \ domain(f) � [f

�p

1

(1); f

m

1

�1

(1)℄ [ [f

�p

2

(2); f

m

2

�1

(2)℄.

3. (0; 3) \ range(f) � [f

�p

1

+1

(1); f

m

1

(1)℄ [ [f

�p

2

+1

(2); f

m

2

(2)℄.

4. f(x) > x for all x 2 (0; 3) at whih f(x) is de�ned.

Case s = 3n: Let q = q

n

. If q 2 (0; 3), then extend f (if neessary) so that q 2 domain(f).

To perform this extension, �nd the �rst ase below that applies.

1. If 0 < q < f

�p

1

(1), then set f

�p

1

�1

(1) = q. Reset p

1

to p

1

+ 1.

2. If f

m

1

�1

(1) < q < f

m

1

(1), then pik x; y suh that f

m

1

(1) < x < y < f

�p

2

(2) and set

f(q) = x and f

m

1

+1

(1) = y. Reset m

1

to m

1

+ 1.

3. If q = f

m

1

(1), then pik x suh that q < x < f

�p

2

(2) and set f(q) = x. Reset m

1

to

m

1

+ 1.

4. If f

m

1

(1) < q < f

�p

2

(2), then set f

�p

2

�1

(2) = q. Reset p

2

to p

2

+ 1.

5. If f

m

2

�1

(2) < q < f

m

2

(2), then pik x; y suh that f

m

2

(2) < x < y < 3 and set f(q) = x

and f

m

2

+1

(2) = y. Reset m

2

to m

2

+ 1.

6. If q = f

m

2

(2), then pik x suh that q < x < 3 and set f

m

2

+1

(2) = x. Reset m

2

to

m

2

+ 1.

7. If f

m

2

(2) < q, then pik x suh that q < x < 3 and set f

m

2

+1

(2) = q and f(q) = x.

Reset m

2

to m

2

+ 2.
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8. If no ase so far applies, extend f in any onsistent manner to put q into its domain.

Proeed to the next stage, noting that in eah ase, the extension of f we de�ned was onsis-

tent with our previous de�nitions and that the indution hypotheses still hold.

Case s = 3n+1: Let q = q

n

. If q 2 (0; 3), then extend f (if neessary) so that q 2 range(f).

To aomplish this extension, �nd the �rst ase that applies below.

1. If 0 < q < f

�p

1

(1), then pik x suh that 0 < x < q and set f

�p

1

�1

(1) = q and

f

�1

(q) = x. Reset p

1

to p

1

+ 2.

2. If q = f

�p

1

(1), then pik x suh that 0 < x < q and set f

�1

(q) = x. Reset p

1

to p

1

+ 1.

3. If f

�p

1

(1) < q < f

�p

1

+1

(1), then pik x; y suh that 0 < x < y < f

�p

1

(x) and set

f(y) = q and f(x) = f

�p

1

(1). Reset p

1

to p

1

+ 1.

4. If f

m

1

(1) < q < f

�p

2

(2), then set f

m

1

+1

(1) = q. Reset m

1

to m

1

+ 1.

5. If q = f

�p

2

(2), then pik x suh that f

m

1

(1) < x < q and set f(x) = q. Reset p

2

to

p

2

+ 1.

6. If f

�p

2

(2) < q < f

�p

2

+1

(2), then pik x; y suh that f

m

1

(1) < x < y < f

�p

2

(2) and set

f

�1

(q) = y and f

�p

2

�1

(2) = x. Reset p

2

to p

2

+ 1.

7. If f

m

2

(2) < q, then set f

m

2

+1

(2) = q. Reset m

2

to m

2

+ 1.

8. If no ase so far applies, extend f in any onsistent manner to put q into its range.

Proeed to the next stage, noting that the extension of f we de�ned is onsistent with our

previous de�nition and that the indution hypotheses still apply.

Case s=3n+2: Chek if 0 2 K

n+1

�K

n

. If so, set f

m

1

+1

(1) = f

�p

2

(2) and starting with the

next stage ontinue the onstrution with the alternate ontinuation given below.

Alternate Continuation: One we have oded 0 2 K (or diagonalized in the ase of later

onstrutions), we want to ontinue de�ning f , making sure that (0; 3) is a single positive

orbital. At stage s + 1 when s = 3n, we put q = q

n

into the domain of f (if neessary and

if q 2 (0; 3)). Assume by indution that p

1

is the highest power suh that f

�p

1

(1) is de�ned,

m

2

is the highest power suh that f

m

2

(2) is de�ned, and that both the domain and range of

f are ontained in [f

�p

1

(1); f

m

2

(2)℄. To extend f so that q 2 domain(f), pik the �rst ase

that applies.

1. If q < f

�p

1

(1), then set f

�p

1

�1

(1) = q and reset p

1

to be p

1

+ 1.

2. If q = f

m

2

(2), then pik x suh that f

m

2

(2) < x < 3. Set f

m

2

+1

(2) = x and reset m

2

to

be m

2

+ 1.

3. If f

m

2

(2) < q, then pik x suh that q < x < 3. Set f

m

2

+1

(2) = q and f(q) = x. Reset

m

2

to be m

2

+ 2.

4. If none of these ases apply, extend f in any onsistent manner suh that q 2 domain(f).
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Proeed to the next stage of the alternate ontinuation. A similar onstrution works at stages

s+ 1 where s = 3n+ 1 to put q = q

n

into the range of f . If s = 3n+ 2, skip immediately to

the next stage of the alternate ontinuation.

End of Constrution

The onstrution learly works, assuming that the indution hypotheses are met at the

end of eah stage as laimed. Verifying this fat involves heking eah of the possibilities in

eah ase. We give one example below.

Lemma 3.2. Suppose we are at stage s + 1 where s = 3n and P

0

is not met yet. If none of

onditions 1-7 apply to q, then the extension of f still satis�es the indution hypotheses.

Proof. Under these assumptions, there must be an i 2 Z suh that either�p

1

� i < m

1

�1 and

f

i

(1) < q < f

i+1

(q) or �p

2

� i < m

2

� 1 and f

i

(2) < q < f

i+1

(q). Assume the former ase.

Then, f

i+2

(1) is de�ned, so any onsistent extension of f must satisfy f

i+1

(1) < f(q) < f

i+2

.

Notie that the values for p

1

and m

1

stay the same and f(q) > q. Therefore, the indution

hypotheses are satis�ed.

We verify that at the end of the onstrution, the interval (0; 3) is either a single positive

orbital or two positive orbitals.

Lemma 3.3. If 0 62 K, then the interval (0; 3) onsists of exatly two positive orbitals, with

orbital(1) below orbital(2).

Proof. If 0 62 K, then at eah stage we have f

m

1

(1) < f

�p

2

(2). The bak-and-forth nature of

the argument guarantees that both m

1

and p

2

approah in�nity as the onstrution proeeds.

Therefore, 1 and 2 lie in di�erent orbitals. Furthermore, eah q

n

is either put in orbital(1)

or orbital(2) when f(q

n

) is de�ned. Therefore, the orbitals for 1 and 2 over the interval

(0; 3).

Lemma 3.4. If 0 2 K, then the interval (0; 3) onsists of a single positive orbital.

Proof. If 0 2 K

n+1

�K

n

, then at stage s+1, where s = 3n+2, we make orbital(1) = orbital(2).

In the alternate ontinuation, eah q

n

is put into orbital(1) = orbital(2) when f(q

n

) is de�ned.

Therefore, orbital(1) overs (0; 3).

This ompletes the proof of Theorem 3.1.

4 Divisibility

In this setion, we show that Aut



(Q ) is not divisible by proving the following theorem.

Theorem 4.1. There is an f 2 Aut



(Q ) suh that for all g 2 Aut



(Q ) and all k 2 N with

k � 2, g

k

6= f .

11



Proof. We build f 2 Aut



(Q ) whih meets the requirements D

n

and R

n

from Theorem 3.1 as

well as

P

e

: If '

e

2 Aut



(Q ); then '

k

e

6= f for any k � 2:

To meet P

e

, if '

e

looks like it might be a k

th

root of f for some k � 2, then we make sure

that for some q 2 Q and some n 2 N , f

n

('

e

(q)) 6= '

e

(f

n

(q)). This ation satis�es P

e

, sine

if '

k

e

= f , then '

e

and f ommute.

We begin with a funtion f whih has the same global properties as in Theorem 3.1 and

we use the witnesses 3e + 1 and 3e + 2 in the interval (3e; 3(e + 1)) to meet P

e

. As before,

the parts of the onstrution working in di�erent intervals at independently and there is no

injury. Therefore, we desribe only the ation in (0; 3).

Constrution:

Stage 0: De�ne f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set p

1

= m

1

=

p

2

= m

2

= 1.

Stage s + 1: Assume we have not met P

0

yet and the indution hypotheses from Theorem

3.1 hold.

Case s = 3n: Proeed as in stage s+ 1 where s = 3n in Theorem 3.1.

Case s = 3n+ 1: Proeed as in stage s+ 1 where s = 3n+ 1 in Theorem 3.1.

Case s = 3n+2: If either '

0;s

(1) or '

0;s

(2) fails to onverge, then go to the next stage. If both

these omputations onverge, then hek whether 1 < '

0

(1) < f(1) and 2 < '

0

(2) < f(2). If

either inequality fails, then '

0

annot be a k

th

root of f , so we go on to the next stage.

If both of these inequalities hold, then we need to atively diagonalize to meet P

0

. Let

m̂ and p̂ be the highest powers suh that f

m̂

('

0

(1)) and f

�p̂

('

0

(2)) are de�ned. By the

indution assumptions, it must be that m̂ � m

1

� 1 and p̂ � p

2

. Extend f onsistently so

that f

i

('

0

(1)) and f

�j

('

0

(2)) are de�ned for all i � m

1

� 1 and all j � p

2

. We have

f

m

1

�1

(1) < f

m

1

�1

('

0

(1)) < f

m

1

(1) and f

�p

2

(2) < f

�p

2

('

0

(2)) < f

�p

2

+1

(2):

Fix b;  2 Q suh that

f

m

1

(1) < b < f

�p

2

(2) and f

�p

2

('

0

(2)) <  < f

�p

2

+1

(2):

Set f

m

1

+1

(1) = f

�p

2

(2), f

m

1

('

0

(1)) = b, and f(b) = . The inequalities above imply that this

gives a onsistent extension of f .

We now have f

m

1

+p

2

+1

(1) = 2, so '

0

(f

m

1

+p

2

+1

(1)) = '

0

(2). Furthermore, f

m

1

+1

('

0

(1)) =

 implies that f

�p

2

('

0

(2)) < f

m

1

+1

('

0

(1)). Therefore, as long as f is eventually extended

to an automorphism, we will have '

0

(2) < f

m

1

+p

2

+1

('

0

(1)), and so '

0

(f

m

1

+p

2

+1

(1)) <

f

m

1

+p

2

+1

('

0

(1)), satisfying P

0

. From this stage on (sine the indution hypotheses are now

violated) ontinue exatly as in the alternate ontinuation of Theorem 3.1.

End of onstrution

The veri�ation that the diagonalization sueeds is ontained in the s = 3n+2 ase.

5 Commutators

Reall the standard notation for onjugation, f

g

= g

�1

fg, and for ommutators, [f; g℄ =

f

�1

g

�1

fg. We begin this setion by skething the lassial proofs for two fats about Aut(Q ).
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Theorem 5.1. If f; g 2 Aut(Q ) have isomorphi orbital strutures, then they are onjugate

in Aut(Q ).

Proof. De�ne the onjugating map h on eah f -orbital separately. Suppose q represents an

f -orbital and r represents the orresponding g-orbital. If orbital(q) is neutral, then h(q) = r.

If orbital(q) is positive, then let h be an arbitrary order preserving bijetion from [q; f(q)℄

onto [r; g(r)℄. For any x 2 orbital(q), there is a unique n 2 Z suh that x 2 [f

n

(q); f

n+1

(q)).

De�ne h(x) = g

n

(h(f

�n

(x))). If orbital(q) is negative, de�ne h similarly.

This proof does not work for Aut



(Q ) beause of Theorem 3.1. However, if the orbital

strutures of f and g are omputable and are omputably isomorphi, then this proof shows

that f and g are onjugate in Aut



(Q ). We refer to this fat as the e�etivization of Theorem

5.1 and we use this fat repeatedly.

Classially, the fat that every f 2 Aut(Q ) is a ommutator of the form [f; g℄ is a trivial

onsequene of Theorem 5.1. That is, �x f and notie that the identity map on Q mathes

up the orbitals of f and the orbitals of f

2

. Therefore, f and f

2

have isomorphi orbitals

strutures and must be onjugate. But, if f

2

= g

�1

fg, then f = [f; g℄. This gives a quik

proof that every element of Aut(Q ) is a ommutator.

This proof does not work in the omputable ase, sine Theorem 5.1 fails for Aut



(Q )

(as we shall see below). For Aut



(Q ), we replae the onnetion from that theorem with the

following de�nition and lemma to show that every element in Aut



(Q ) is a ommutator.

De�nition 5.2. We say that f has a single unbounded positive orbital if f(0) > 0 and

orbital(0) = Q .

Lemma 5.3. For any h 2 Aut



(Q ), there is a p 2 Aut



(Q ) suh that both p and ph onsist

of a single unbounded positive orbital.

Proof. De�ne p(x) = maxfh(x); h

�1

(x)g + 1. Sine either h(x) � x or h

�1

(x) � x, we

have p(x) � x + 1, so p onsists of one unbounded positive orbital. Furthermore, p(h(x)) =

maxfh(h(x)); h

�1

(h(x))g + 1, and so satis�es p(h(x)) � x + 1. Again, this implies that it

onsists of a single unbounded positive orbital.

Theorem 5.4. Every element of Aut



(Q ) is a ommutator.

Proof. Fix f 2 Aut



(Q ). By Lemma 5.3, there is a p 2 Aut



(Q ) suh that both p and pf

onsist of a single unbounded positive orbital. Therefore, by the e�etivization of Theorem

5.1, there is an h 2 Aut



(Q ) suh that pf = h

�1

ph and so f = p

�1

h

�1

ph = [p; h℄.

Theorem 5.5. There is an f 2 Aut



(Q ) suh that for all h 2 Aut



(Q ), f 6= [f; h℄.

Proof. The requirements for this theorem are the D

n

and R

n

requirements of Theorem 3.1

plus

P

e

: '

e

2 Aut



! f

2

6= '

�1

e

f'

e

:

To satisfy P

e

, it suÆes to make sure that for some n and q, f

2n

(q) 6= '

�1

e

(f

n

('

e

(q))).

As in Setion 3, we onstrut f without injury. We require the global properties from

Theorem 3.1, and for the �rst time, we use the fat that eah interval (3e; 3(e + 1)) onsists

of either exatly one positive orbital or exatly two positive orbitals.
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Lemma 5.6. Assume f has the global properties from Theorem 3.1. If f

2

= h

�1

fh, then h

must map eah interval (3n; 3(n+ 1)) bijetively onto itself.

Proof. Write f

2

= h

�1

fh as hf

2

= fh. For any a suh that f(a) = a, we have h(f

2

(a)) = h(a),

and so f(h(a)) = h(a). Consider h(0) = q. Either q < 0, q = 0, or q = 3n for some n � 1.

Suppose q < 0 and �x any x suh that 0 < x < 3 and q < h(x) < 0. Then f(h(x)) = h(x),

but f

2

(x) > x, so h(f

2

(x)) > h(x), whih gives a ontradition. It is not hard to see that

q = 3n for n � 1 also leads to a ontradition. Therefore, h(0) = 0. Continuing by indution,

we get h(3n) = 3n for all n. Sine h is an automorphism, it must map eah (3n; 3(n + 1))

bijetively onto itself.

Consider the situation when f has two orbitals in (0; 3), say (0; r) and (r; 3). The boundary

point r must be irrational, sine a rational boundary point between two positive orbitals would

be mapped to itself, violating the global properties for f .

Lemma 5.7. Assume f is as in the last paragraph. If f

2

= h

�1

fh, then h must map (0; r)

bijetively onto itself and (r; 3) bijetively onto itself.

Proof. For a ontradition, suppose �rst x 2 (0; r) and h(x) 2 (r; 3). Fix any y 2 (r; 3). Sine

h preserves order and h(3) = 3, we know h(x) < h(y) < 3. Sine h(x) and h(y) are in the same

f -orbital, there is an n suh that f

n

(h(x)) > h(y). Therefore, f

2n

(x) = h

�1

(f

n

(h(x))) > y,

whih ontradits the fat that x and y are in di�erent f -orbitals. A similar argument applies

when y 2 (r; 3) and h(y) 2 (0; r).

As with the proofs in Setions 3 and 4, we use the interval (3e; 3(e+1)) with the witnesses

3e+ 1 and 3e + 2 to meet P

e

, and we present the onstrution on (0; 3). Unlike the proof of

Theorem 4.1, where we ould assume that 1 < '

0

(1) < f(1) and 2 < '

0

(2) < 2, our urrent

opponent has onsiderably more freedom in de�ning '

0

(1) and '

0

(2). However, Lemma 5.6

does tell us that we an ignore P

0

unless '

0

(1) and '

0

(2) onverge to numbers in (0; 3). Also,

Lemma 5.7 gives us a new strategy to beat P

0

. If '

0

(1) and '

0

(2) onverge to numbers whih

we an guarantee are in the same f -orbital without ollapsing 1 and 2 in the same f -orbital,

then we do so and win P

0

.

Constrution:

Stage 0: Set f

�1

(1) = 1=2, f(1) = 5=4, f

�1

(2) = 7=4, and f(2) = 5=2. Set m

1

= p

1

= m

2

=

p

2

= 1.

Stage s + 1: Assume we have not met P

0

yet and the indution hypotheses from Theorem

3.1 hold.

Case s = 3n: Proeed exatly as in stage s+ 1 when s = 3n in Theorem 3.1.

Case s = 3n+ 1: Proeed exatly as in stage s+ 1 when s = 3n+ 1 in Theorem 3.1.

Case s = 3n + 2: If either '

0;s

(1) or '

0;s

(2) fails to onverge, then go to the next stage. If

both omputations onverge, hek if 0 < '

0

(1) < '

0

(2) < 3. If not, then '

0

annot onjugate

f

2

and f , so proeed to the next stage. Otherwise, we need to atively diagonalize to meet

P

0

. Choose the �rst subase whih applies.

Subase 1: Assume f

m

1

(1) < '

0

(1). To win P

0

, it suÆes (by Lemma 5.7) to guarantee

that (0; 3) has two orbitals suh that 1 is in the bottom orbital and '

0

(1) is in the top orbital.

There are two possibilities: if '

0

(1) < f

�p

2

(2), then set f('

0

(1)) = f

�p

2

(2) (guaranteeing
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that '

0

(1) is in the same orbital as 2), and if f

�p

2

(2) � '

0

(1), then do nothing (sine '

0

(1)

is already in the same orbital as 2). In either ase, proeed to the next stage, noting that the

indution hypotheses still hold. After this point, skip all diagonalization stages.

Subase 2: Assume subase 1 does not apply, and '

0

(2) < f

�p

2

(2). We win P

0

by making

sure (0; 3) has two orbitals with 2 in the top orbital and '

0

(2) in the bottom orbital. Again,

there are two possibilities: if f

m

1

(1) < '

0

(2), then set f

m

1

+1

(1) = '

0

(2) (guaranteeing that

'

0

(2) is in the same orbital as 1), and if '

0

(2) � f

m

1

(1), then do nothing (sine '

0

(2) is

already in the same orbital as 1). In either ase, proeed to the next stage, noting that the

indution hypotheses still hold. After this point, skip all diagonalization stages.

Subase 3: Assume that '

0

(1) � f

m

1

(1) and f

�p

2

(2) � '

0

(2). To redue the number of

possibilities in this subase, we extend f as follows.

1. Pik y suh that f

m

1

(1) < y < f

�p

2

(2). Set f

m

1

+1

(1) = y and reset m

1

to m

1

+ 1.

2. If '

0

(2) > f

m

2

(2), then pik x suh that '

0

(2) < x < 3. Set f

m

2

+1

(2) = '

0

(2),

f

m

2

+2

(2) = x, and reset m

2

to m

2

+ 2.

3. If '

0

(1) < f

�p

1

(1), then set f

�p

1

�1

(1) = '

0

(1) and reset p

1

to p

1

+ 1.

The point of extending f in this manner is that we an now assume that there are integers i

and j with �p

1

� i < m

1

and �p

2

� j < m

2

suh that

f

i

(1) � '

0

(1) < f

i+1

(1) and f

j

(2) � '

0

(2) < f

j+1

(2):

There are four possibilities to onsider. Our ation in eah of these possibilities will violate

the indution hypotheses. Therefore, after this stage, we ontinue the onstrution with the

alternate ontinuation given in Theorem 3.1.

Subase 3(a): Assume that '

0

(1) = f

i

(1) and f

j

(2) < '

0

(2). The ruial observation here is

that f

j

(2) < '

0

(2) < f

j+1

(2) implies that regardless of how f is extended to an automorphism

8k 2 Z (f

k

(2) 6= '

0

(2)): (1)

If we make f

2k

(1) = 2 for some k, then '

0

(f

2k

(1)) = '

0

(2). But, f

k

('

0

(1)) = f

k+i

(1) =

f

i�k

(2), whih by Equation (1) annot be equal to '

0

(2).

To make f

2k

(1) = 2 for some k, we at as follows. If m

1

+ p

2

+ 1 is even, then set

f

m

1

+1

(1) = f

�p

2

(2) (thus making f

m

1

+p

2

+1

(1) = 2). If m

1

+ p

2

+ 1 is odd, then pik a point

x suh that f

m

1

(1) < x < f

�p

2

(2) and set f

m

1

+1

(1) = x and f(x) = f

�p

2

(2) (thus making

f

m

1

+p

2

+2

(1) = 2).

Subase 3(b): Assume f

i

(1) < '

0

(1) and f

j

(2) = '

0

(2). We perform exatly the same

ation as in subase 3(a). The veri�ation that this suessfully diagonalizes is essentially the

same as subase 3(a).

Subase 3(): Assume that we have '

0

(1) = f

i

(1) and '

0

(2) = f

j

(2). Our strategy is again

to make f

2k

(1) = 2, for some k, to obtain

'

0

(f

2k

(1)) = '

0

(2) = f

j

(2) = f

2k+j

(1) and f

k

('

0

(1)) = f

k+i

(1):
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As long as k is hosen suh that k + j 6= i, we will win P

0

. Pik points x

1

; : : : ; x

l

suh that

f

m

1

(1) < x

1

< � � � < x

l

< f

�p

2

(2), m

1

+ l + p

2

+ 1 is even, and ((m

1

+ l + p

2

+ 1)=2) + j 6= i.

Set f

m

1

+1

(1) = x

1

, f(x

n

) = x

n+1

for 1 � n < l and f(x

l

) = f

�p

2

(2). We have made

f

m

1

+l+p

2

+1

(1) = 2 as desired.

Subase 3(d): Assume f

i

(1) < '

0

(1) and f

j

(2) < '

0

(2). Extend f so that f

m

1

�i�1

('

0

(1))

and f

�p

2

�j

(2) are de�ned. Notie that

f

m

1

�1

(1) < f

m

1

�i�1

('

0

(1)) < f

m

1

(1) and f

�p

2

(2) < f

�p

2

�j

('

0

(2)) < f

�p

2

+1

(2):

Therefore, we have extended f as far as possible to maintain the indution hypotheses. Our

goal is to make f

2k

(1) = 2, so that '

0

(f

2k

(1)) = '

0

(2), and to guarantee that f

n

('

0

(1)) 6=

'

0

(2) for any n.

If m

1

+ p

2

+ 1 is even, then set f

m

1

+1

(1) = f

�p

2

(2), whih makes f

m

1

+p

2

+1

(1) = 2.

Pik points x; y suh that f

m

1

(1) < x < f

�p

2

(2) and f

�p

2

(2) < y < f

�p

2

�j

('

0

(2)). Set

f

m

1

�i

('

0

(1)) = x and f(x) = y. We have

f

�p

2

(2) < f

m

1

�i+1

('

0

(1)) < f

�p

2

�j

('

0

(2)):

When f is extended to an automorphism, we will have f

�p

2

�j�1

('

0

(2)) < f

�p

2

(2), whih

shows that f

n

('

0

(1)) 6= '

0

(2) for any n.

If m

1

+ p

2

+ 1 is odd, then pik four points v; w; x; y suh that f

m

1

(1) < v < w < x <

f

�p

2

(2) and f

�p

2

(2) < y < f

�p

2

�j

('

0

(2)). Set f

m

1

+1

(1) = w and f(w) = f

�p

2

(2), so that

f

m

1

+p

2

+2

(1) = 2. Set f

m

1

�i

('

0

(1)) = v, f(v) = x, and f(x) = y. The veri�ation that this

sueeds is as above.

End of Constrution

Lemma 5.8. P

0

is satis�ed.

Proof. Assume '

0

(1) and '

0

(2) onverge. If either number is not in (0; 3), then Lemma 5.6

shows that P

0

is satis�ed. If both numbers are in (0; 3), then we must eventually onsider

one of the subases when s = 3n+ 2. In the �rst two subases, the numbers 1 and 2 remain

in distint orbitals by Lemma 3.3, while either '

0

(1) 2 orbital(2) or '

0

(2) 2 orbital(1).

Therefore, P

0

is satis�ed by Lemma 5.7. In the third subase, we veri�ed that P

0

was satis�ed

in the onstrution.

This ompletes the proof of Theorem 5.5.

Corollary 5.9 (Morozov and Truss, [5℄). There are f; g 2 Aut



(Q ) suh that f and g are

onjugate in Aut(Q ) but not in Aut



(Q ).

As noted in the introdution, the proof of Corollary 5.9 in [5℄ builds f and g for whih

the Turing degrees of the orbital strutures for f and g are di�erent. We an strengthen this

result as follows.

Corollary 5.10. There are f; g 2 Aut



(Q ) suh that f and g are onjugate in Aut(Q ), f and

g are not onjugate in Aut



(Q ), and the Turing degrees of the orbital strutures of f and g

are equal. In fat, f and g an be hosen to have the same orbitals.
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Proof. For any automorphism f (regardless of omputational properties), f and f

2

have the

same orbitals and therefore are onjugate in Aut(Q ). Let f be as in Theorem 5.5. Rewriting

f 6= [f; h℄ as f

2

6= f

h

, it is lear that the funtions f and g = f

2

satisfy Corollary 5.10.

6 Normal subgroups

The standard proof that Aut(Q ) ontains exatly three nontrivial normal subgroups, B(Q ),

L(Q ), and R(Q ), relies heavily on both the fat that Aut(Q ) is divisible and the fat that if

two elements in Aut(Q ) have isomorphi orbital strutures then they are onjugate. In this

setion, we show that B



(Q ), L



(Q ), and R



(Q ) are the only nontrivial normal subgroups in

Aut



(Q ). As with Theorem 5.4, our proof must di�er from the lassial proof.

Theorem 6.1. B



(Q ), L



(Q ), and R



(Q ) are the only nontrivial normal subgroups in

Aut



(Q ).

The rest of this setion is devoted to the proof of Theorem 6.1. To see these three

subgroups are normal in Aut



(Q ), suppose r 2 Q is suh that f(q) = q for all q � r and let

h 2 Aut



(Q ) be arbitrary. Let q

0

= h

�1

(r). Then, for any x � q

0

, we have h(x) � r and so

h

�1

(f(h(x))) = x. The veri�ation when f(q) = q for all q � s is similar.

For the remainder of this setion, we assume that all automorphisms mentioned are om-

putable.

The task of showing these are the only normal subgroups in Aut



(Q ) an be broken into

four piees. First, we show that if f 2 Aut



(Q ) is not in these subgroups, then the normal

losure of f is all of Aut



(Q ). Seond, we show that if f 2 L



(Q ) n R



(Q ), then the normal

losure of f is L



(Q ). Third, we show that if f 2 R



(Q ) n L



(Q ), then the normal losure of

f is R



(Q ). Finally, we show that if f 2 B



(Q ), then the normal losure of f is B



(Q ).

De�nition 6.2. We say that f has positive orbitals whih are o�nal as x ! +1 (as

x ! �1, respetively) if for every n 2 N , there is an x 2 Q suh that x > n (x < �n,

respetively) and f(x) > x. We say f has positive orbitals whih are o�nal in both

diretions if f has positive orbitals whih are o�nal as x! +1 and as x! �1.

Lemma 6.3. Let f 2 Aut



(Q ) have positive orbitals whih are o�nal in both diretions. Then

there is a g 2 Aut



(Q ) suh that f

g

f onsists of a single unbounded positive orbital.

Proof. Choose a sequene of rationals z

n

for n 2 Z suh that f(z

2i

) = z

2i+1

for all i, the

sequene z

2i

is unbounded in both diretions, and n < m implies z

n

< z

m

. Suh points an

be hosen e�etively by our assumption on f .

De�ne g e�etively suh that g([z

n

; z

n+1

℄) = [z

n+1

; z

n+2

℄ for all n 2 Z. Notie that

g

�1

(f(g(f(z

2i

)))) = z

2i+2

. Therefore, f

g

f maps eah interval [z

2i

; z

2i+2

℄ onto [z

2i+2

; z

2i+4

℄

and hene onsists of one unbounded positive orbital.

Lemma 6.4. Let f 2 Aut



(Q ) be suh that f 62 R



(Q ), f has positive orbitals as x ! +1,

but f does not have positive orbitals as x! �1. Then, there is a g 2 Aut



(Q ) in the normal

losure of f suh that g has positive orbitals o�nal in both diretions.
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Proof. By the onditions on f , we an e�etively pik points z

i

for i 2 Z suh that

1. z

i

are o�nal in both diretions,

2. for i � 0, z

i

< f(z

i

) < f

�1

(z

i+1

) < z

i+1

,

3. z

�1

< f

�1

(z

�1

) < f

�1

(z

0

) < z

0

, and

4. for i < 0, z

i�1

< f

�1

(z

i�1

) < f(z

i

) < z

i

.

By an e�etive bak-and-forth argument, de�ne � 2 Aut



(Q ) suh that

1. for i � 0, the interval (z

i

; f(z

i

)) is a single positive �-orbital,

2. for i < 0, the interval (f(z

i

); z

i

) is a single negative �-orbital, and

3. �(x) = x for all other x.

Set g(x) = �

�1

f

�1

�f(x), and notie that g is in the normal losure of f . It is straightforward

to hek that for all i � 0, (f

�1

(z

i

); z

i

) is a positive g-orbital and (z

i

; f(z

i

)) is a negative g-

orbital. Also, for i < 0, (f(z

i

); z

i

) is a positive g-orbital and (z

i

; f

�1

(z

i

)) is a negative g-orbital.

At all other points, g(x) = x. Therefore, g meets the requirements of the lemma.

Using Lemmas 6.3 and 6.4, we an show that for any f 2 Aut



(Q ), if f 62 L



(Q ) [R



(Q ),

then the normal losure of f is all of Aut



(Q ). Applying Lemma 6.4, we an assume without

loss of generality that f has positive orbitals whih are o�nal in both diretions. By Lemma

6.3, there is a g is the normal losure of f whih onsists of a single unbounded positive

orbital. Consider any h 2 Aut



(Q ). By Lemma 5.3, there is a p suh that both p and ph

onsist of single positive unbounded orbitals. But, by the e�etivization of Theorem 5.1, both

p and ph are in the normal losure of f , and hene h is in the normal losure of f , as required.

We next onsider automorphisms f 2 L



(Q ) nR



(Q ).

De�nition 6.5. If f 2 L



(Q ) n R



(Q ), then we say a real r is the upper boundary for

supp(f) if supp(f) \ [r;+1) = ; and for any rational q < r, supp(f) \ (q; r) 6= ;.

The ase we are most interested in is when the upper boundary r is a rational. In this

ase, f(r) = r.

Lemma 6.6. If f 2 L



(Q )nR



(Q ), then there is a g 2 L



(Q ) in the normal losure of f suh

that g has positive orbitals whih are o�nal as x ! �1 and the upper boundary of supp(g)

is a rational point.

Proof. Without loss of generality, we an assume that f has positive orbitals as x ! �1.

Pik points z

i

for i 2 N suh that z

i

! �1 as i ! 1 and z

i+1

< f(z

i+1

) < f

�1

(z

i

) <

z

i

for all i. By an e�etive bak-and-forth argument, de�ne �(x) suh that eah interval

(z

i

; f(z

i

)) is a positive �-orbital and �(x) = x for all x not in an interval of this type. Set

g(x) = �

�1

f

�1

�f(x) and notie that g is in the normal losure of f . As in Lemma 6.4, it is

straightforward to hek that g has positive orbitals whih are o�nal as x ! �1 and the

upper boundary of g is f(z

0

).
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Lemma 6.7. If f 2 L



(Q ) n R



(Q ) has positive orbitals whih are o�nal as x ! �1 and

has a rational upper boundary point, then there is a g 2 L



(Q ) in the normal losure of f

suh that g onsists of a single positive orbital (whih is unbounded as x ! �1) and has a

rational upper boundary point.

Proof. The proof is similar to that of Lemma 6.3.

Lemma 6.8. If h 2 L



(Q ), then there is a p 2 L



(Q ) suh that both p and ph onsist of

single positive orbitals (whih are unbounded as x! �1) and have rational upper boundary

points.

Proof. Fix any rational number r suh that r is greater than all the numbers in supp(h).

De�ne p(x) as follows. On the interval [r + 2;+1), p is the identity. p maps the interval

(r; r + 2) as a single positive orbital onto the interval (r + 1; r + 2). On the interval (�1; r℄,

p(x) = max(h(x); h

�1

(x))+1. Notie that sine p(r) = r+1, the intervals (�1; r℄ and (r; r+2)

join together in a single positive p-orbital. Therefore, p has a single positive orbital whih is

unbounded as x ! �1 and p has the rational upper boundary point r + 2. Furthermore,

sine h is the identity on all numbers bigger than r, ph has exatly the same orbital struture

as p. Therefore, we have met the requirements of the lemma.

We are now in a position to show that for any f 2 L



(Q ) nR



(Q ), the normal losure of f

is all of L



(Q ). Applying Lemmas 6.6 and 6.7, there is a g in the normal losure of f whih

onsists of a single positive orbital whih is unbounded as x ! �1 and g has a rational

upper boundary point. For any h 2 L



(Q ), by Lemma 6.8, there is a p suh that both p and

ph have the same orbital struture as g. Applying the e�etivization of Theorem 5.1, g must

be onjugate to both p and ph, and therefore, h is in the normal losure of g.

A similar argument shows that if f 2 R



(Q ) n L



(Q ), then the normal losure of f is all

of R



(Q ). It remains to show that if f 2 B



(Q ), then the normal losure of f is all of B



(Q ).

De�nition 6.9. We say that the orbital struture of f onsists of two orbitals separated

by a rational point if there are rationals q < r < s suh that (q; r) and (r; s) are both

f -orbitals, and f is the identity on all other points.

Lemma 6.10. If f 2 B



(Q ) is not the identity, then there is a g 2 B



(Q ) in the normal

losure of f suh that the orbital struture of g onsists of two orbitals separated by a rational

point. Furthermore, the labels of the two nontrivial g-orbitals are di�erent.

Proof. Without loss of generality, we an assume there is a point z suh that z < f(z). Fix

suh a z. De�ne � e�etively suh that (z; f(z)) is a single positive �-orbital, and �(x) = x

for all points outside this interval. Let g(x) = �

�1

f

�1

�f(x). It is straightforward to hek

that (f

�1

(z); z) is a positive g-orbital, (z; f(z)) is a negative g-orbital, and g(x) = x for all

points outside these intervals. Therefore, g meets the requirements of the lemma.

Lemma 6.11. For any h 2 B



(Q ), there is a p 2 B



(Q ) suh that the orbital strutures of

both p and ph onsist of two orbitals separated by a rational point. Furthermore, the labels on

the nontrivial orbitals for both p and ph are di�erent.
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Proof. Fix rational numbers q < r suh that supp(h) lies in the interval (q; r). De�ne an

automorphism p(x) e�etively suh that

1. p restrited to [r + 2;+1) is the identity,

2. p maps (r; r + 2) onto (r + 1; r + 2) as a single positive orbital,

3. for x 2 [q; r℄, p(x) = max(h(x); h

�1

(x)) + 1),

4. p maps (q � 1; q) onto (q � 1; q + 1) as a single positive orbital,

5. p(q � 1) = q � 1,

6. p maps (q � 2; q � 1) onto (q � 2; q � 1) as a single negative orbital, and

7. p restrited to (�1; q � 2℄ is the identity.

Beause p(q) = q+1 and p(r) = r+1, the intervals (q�1; q), [q; r℄ and (r; r+2) join together

in a single positive p-orbital. Therefore, the orbital struture of p onsists of two orbitals

separated by the rational point q � 1. Furthermore, the lower orbital is negative and the

higher orbital is positive.

Sine h is the identity outside of (q; r), it is lear that ph has the same orbital struture

as p, and so we have ful�lled the requirements of the lemma.

We an now �nish the proof of Theorem 6.1. Suppose f 2 B



(Q ) and �x any h 2 B



(Q ).

By Lemmas 6.10 and 6.11, there is a g in the normal losure of a p 2 B



(Q ) suh that the

orbital strutures of g, p

�1

and (ph)

�1

are all e�etively the same. Therefore, one more

applying the e�etive version of Lemma 5.1, we get that g is onjugate to p

�1

and (ph)

�1

and

hene h is in the normal losure of f .
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