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Abstract. We investigate the structure of the degrees of provability, which
measure the proof-theoretic strength of statements asserting the totality of

given computable functions. The degrees of provability can also be seen as

an extension of the investigation of relative consistency statements for first-
order arithmetic (which can be viewed as Π0

1-statements, whereas statements

of totality of computable functions are Π0
2-statements); and the structure of

the degrees of provability can be viewed as the Lindenbaum algebra of true

Π0
2-statements in first-order arithmetic. Our work continues and greatly ex-

pands the second author’s paper on this topic by answering a number of open
questions from that paper, comparing three different notions of a jump opera-

tor and studying jump inversion as well as the corresponding high/low hierar-

chies, investigating the structure of true Π0
1-statements as a substructure, and

connecting the degrees of provability to escape and domination properties of

computable functions.

1. Introduction

The topic of this paper arises from two different directions in the study of logic.
On the one hand, Gödel’s Incompleteness Theorems tell us that given any suffi-
ciently strong, consistent, effectively axiomatizable theory T for first-order arith-
metic, there are even Π0

1-statements (stating the consistency of T ) that are not
provable in T , but that are, of course, true. On the other hand, over the past
seventy years, a number of researchers studying witness functions for various com-
binatorial statements have realized the importance of fast-growing functions and
the fact that their totality is often not provable over a given sufficiently strong,
consistent, effectively axiomatizable theory T for first-order arithmetic. Two fa-
mous examples are the Paris/Harrington Theorem [2] and the Kirby/Paris [4] work
on Goodstein’s Theorem. Since the totality of a given computable function can be
formulated as a Π0

2-statement, the study of the proof-theoretic strength of state-
ments about the totality of computable functions can be viewed as an extension of
Gödel’s study of statements about consistency.

This paper continues work of the second author [1], investigating the degree
structure of the provability degrees, or p-degrees. Let TA be true arithmetic, the first
order theory of (N,+, ·, 0, 1). Fix any sufficiently strong, effectively axiomatizable
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theory T which is sound, i.e., its arithmetic consequences1 are in TA (examples
of such theories are ZFC and Peano arithmetic). A computable function ϕ is
p-reducible to a total computable function ψ if, over T , the totality of ϕ can be
proven from the totality of ψ. (Note, of course, that this really refers to algorithms
for ϕ and ψ rather than just the functions ϕ and ψ!) Two computable functions are
then p-equivalent if they are p-reducible to each other, and all computable functions
that are p-equivalent to a given total computable function ϕ form the p-degree [ϕ]
of ϕ. Clearly, the p-degrees can be thought of as true Π0

2-statements over T (i.e.,
we think of [ϕ] as “tot(ϕ)”, the statement that “for each x, there is a stage s by
which (the algorithm for) ϕ has converged on x”).

Cai’s work [1] has already shown that this structure is quite rich. He showed
that the p-degrees form a distributive lattice with least element; indeed they form
a sublattice of the Lindenbaum algebra of T with the natural interpretations of
least element, join, and meet as the (p-degree of the) trivial formula, conjunction,
and disjunction, respectively. In addition, it is natural to introduce three so-called
“jump” operators to our structure. One corresponds, loosely speaking, to the as-
sertion ConT (P ) of the consistency of T +P (for a Π0

2-statement P ), which we will
call the “skip” of P (relative to T ). Formally, the skip of ϕ will be a computable
function con(ϕ) that “codes” the consistency of T + tot(ϕ). The skip of ϕ need
not always be p-above ϕ, so we also introduce the join of ϕ and its skip as the
“hop” of ϕ, which we write as ϕ◦. Finally, and most importantly, following Cai [1],
we define the “jump” of ϕ, which is a function ϕ∗ whose totality is equivalent to
the statement that every function p-reducible to ϕ is total (i.e., the Π0

2 soundness
of T + tot(ϕ)). Note that in the Paris/Harrington result, the modified version of
Ramsey’s Theorem is equivalent to the Π0

2 soundness of Peano Arithmetic (see [2,
Theorem 3.1]).

The paper is organized as follows: In Section 2, we give some basic definitions
and notation. In Section 3, we formally introduce and compare the three jump
operators. In Section 4, we study the jump properties of Π0

1-degrees and link these
degrees to the property of escaping every provably total function. In Section 5,
we show the density of the p-degrees; in fact, given any two p-degrees [ϕ] < [ψ],
we can find two incomparable p-degrees between them with meet [ϕ] and join [ψ].
In Section 6, we study the high/low hierarchy for both the hop and the jump. In
Section 7, we study the cappable p-degrees. In Section 8, we show jump inversion
for both the hop and the jump. In Section 9, we study the connection between
lowness and highness on the one hand, and domination and escape properties of
functions on the other. We conclude in Section 10 with some open questions.

2. Preliminaries and Notation

We fix a base theory T . It must be effectively axiomatizable and sound (i.e.,
arithmetic consequences of T are in TA). It must also be sufficiently strong for
our purposes; Peano Arithmetic is more than enough. The axioms of a discretely
ordered semiring (PA−) plus Σ0

1-induction will always tacitly be assumed, and so T
proves every true Σ0

1-sentence of first-order arithmetic. We use capital Roman
letters for sentences and formulas in the language of T . We write P ` Q to mean

1If the language of T is not arithmetic (for example, the language of set theory), then we fix
a standard interpretation of arithmetic in the language of T .
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that Q follows from T + P and s : “Q” to mean that s is (the Gödel number of) a
proof of Q from T .

We use Greek letters for algorithms. Let {ϕe}e∈ω be a standard list of algorithms.
For an algorithm ϕ, we write tot(ϕ) for the sentence asserting the totality of ϕ. We
define ϕ ≤p ψ to mean that

T ` tot(ψ)→ tot(ϕ),

and ϕ ≡p ψ to mean that ϕ ≤p ψ and ψ ≤p ϕ. We use f, g and h for total
functions on ω. It is important to keep a distinction between a total algorithm and
the function it represents. Write ϕ ∼ ψ to mean that ϕ and ψ represent the same
function. It is entirely possible that ϕ ∼ ψ but the totality of ψ is much stronger,
from a proof-theoretic standpoint, than the totality of ϕ.

We adopt the convention from [1] that functions converge on initial segments,
by simply not considering ϕ(x) to converge unless ϕ(y) has already converged for
all y < x. This does not affect any of the conclusions, since (under Σ0

1-induction)
being total under this modified notion of convergence is equivalent to being total
under the usual notion. However, it simplifies a number of the arguments. There is
a natural correspondence between Π0

2-sentences and algorithms. On the one hand,
given an algorithm ϕ, the sentence tot(ϕ) is Π0

2. Conversely, given a Π0
2-sentence

(∀x)(∃y)P (x, y), there is an algorithm ϕ that, on input x, outputs the least wit-
ness y to (∃y)P (x, y); the totality of this algorithm is provably equivalent to the
original Π0

2-sentence. Moreover, the functions mapping between Gödel numbers
of algorithms and Gödel numbers of the corresponding Π0

2-sentences are primitive
recursive.

We enclose a mathematical statement in quotes to indicate a sentence in a formal
language equivalent to the given statement. For example, we write “[ϕ] ≤ [ψ]” for
the sentence ProvT (#(tot(ψ) → tot(ϕ))) in the language of arithmetic. (Here #
denotes Gödel number and ProvT is a standard provability predicate for T .) This
is much less cumbersome and more readable than carefully writing out the for-
mal sentence, and it is usually obvious how to turn a mathematical idea into the
corresponding formal sentence. We sometimes enclose what is already a sentence
in a formal language in quotes to separate it from surrounding text. Since every
sentence is equivalent to itself, this should not create any ambiguity. We also iden-
tify sentences with their Gödel numbers, and will, henceforth, omit any mention of
the # function.

If ϕ is total, then the (provability) degree of ϕ is [ϕ] = {ψ : ϕ ≡p ψ}. It is clear
that ≤p is degree invariant, so it induces an order on the provability degrees. The
provability degrees form a distributive lattice with a least element 0 (the constant
0 function, computed by the obvious algorithm). The join and meet are given by
the operations

(ϕ� ψ)(x) = ϕ(x) + ψ(x)

(which converges on input x once ϕ(x) and ψ(x) have both converged) and

(ϕ� ψ)(x) =


ϕ(x) if ϕ(x) converges at stage s and ψ(x) did not

converge at any stage t < s
ψ(x) if ψ(x) converges at stage t and ϕ(x) did not

converge at any stage s ≤ t
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(which converges on input x once either ϕ(x) or ψ(x) has converged). We use the
symbols ∨ and ∧ for the join and meet. The reader should beware not to confuse
these with disjunction and conjunction of Π0

2 statements.
Any of the results we prove in this paper hold for any theory T sufficient for

our purposes (for example, IΣ1). One important consequence is that for any total
algorithm ϕ, the results also hold for the theory T + tot(ϕ). This gives a natural
relativization of any result we prove to any provability degree [ϕ].

3. A hop, skip, and a jump

There are a few natural ways, given a provability degree [ψ], to produce a new

provability degree [ψ̂] > [ψ] (or at least [ψ̂] � [ψ]). We call these operations the
hop, the skip, and the jump.

Definition 3.1 (Cai [1]). Given an algorithm ψ, its jump ψ∗ is the algorithm

ψ∗(x) =

{
ϕe(x) if x is a proof of “ϕe ≤p ψ” for some e

0 otherwise.

We define [ψ]∗ = [ψ∗].

It is easy to see that ψ∗ �p ψ, because ψ∗ ≡p ψ∗ + 1 and ψ∗ + 1 differs from
every ϕe ≤p ψ on any input that is a proof witnessing ϕe ≤p ψ. One can also
show (Proposition 4.5 of [1]) that the jump operator ψ 7→ ψ∗ is (non-strict) order-
preserving for ≤p. One consequence is that the jump is degree-invariant, and so
[ψ]∗ = [ψ∗] is well-defined.

One helpful way to think about ψ∗ is as a single function that is universal for
every θ ≤p ψ. If θ ≤p ψ, there is a provably total function f such that tot(θ) is
equivalent to tot(ψ∗ ◦ f). Moreover, an index for f can be found uniformly from
an index for θ and proof witnessing θ ≤p ψ. (These results follow from Lemma
4.2 of [1], and the Padding Lemma.) This gives a nice analogy between the jump
function ψ∗ in this context and the jump function JA(e) = ΦAe (e) in computability
theory, which is similarly universal for all partial A-computable functions. Thinking
about ψ∗ this way makes it clear that ψ∗ >p ψ for every total algorithm ψ.

Another helpful way to think about ψ∗ is that tot(0∗) is equivalent to soundness
of T for Π0

2-statements (see also Proposition 4.3 of [1]). That is, T + tot(0∗) proves
“for every Π0

2 sentence P , (ProvT (P )→ P ).” More generally, tot(ψ∗) is equivalent
to soundness of T+tot(ψ) for Π0

2-statements. This is because of the correspondence
between Π0

2-statements and algorithms, and the fact that the totality of ψ∗ is
equivalent to the uniform totality of all T + tot(ψ)-provably total algorithms.

Definition 3.2. Given an algorithm ψ, its skip is the algorithm

con(ψ)(x) =

{
↑ if x is a proof of “¬ tot(ψ)”

0 otherwise.

We define [ψ]con = [con(ψ)].

We use the notation con(ψ) because T proves

tot(con(ψ))⇐⇒ “T + tot(ψ) is consistent.”

Gödel’s Second Incompleteness Theorem implies that con(ψ) �p ψ for every total
algorithm ψ. It is easy to see that the con operator is order preserving for ≤p,
which implies that con is degree invariant and so [ψ]con = [con(ψ)] is well-defined.
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Unlike the jump of ψ, which is always strictly above ψ, the skip of ψ may be
either above ψ or off to the side (hence the name “skip”). For this reason we also
define the “hop” as a strictly increasing version of skip.

Definition 3.3. Given an algorithm ψ, its hop is the algorithm ψ◦ = ψ � con(ψ).

It is easy to see that ψ <p ψ
◦ for every total algorithm ψ, and that the operator

ψ 7→ ψ◦ is (non-strict) order-preserving and hence degree-invariant. Define [ψ]◦ =
[ψ◦]. A hop is a small jump, and indeed for every total ψ, we have ψ <p ψ

◦ <p ψ
∗.

We prove that ψ◦ ≤p ψ∗ in this section; in the next section, we will show that the
inequality is strict.

Lemma 3.4. For every total algorithm ψ, we have ψ◦ ≤p ψ∗.

Proof. Since ψ ≤p ψ∗, it suffices to show that con(ψ) ≤p ψ∗. Fix an algorithm ϕe
that T -provably never halts (on any input). We argue within T , by contrapositive:

Suppose that con(ψ) is not total. Since tot(con(ψ)) is equivalent to the
consistency of T + tot(ψ), there is a T -proof p1 : “tot(ψ) → 0 = 1.”
Furthermore, since T proves 0 6= 1 and all propositional validities,
there is a T -proof p2 : “0 = 1 → tot(ϕe).” By adjoining p1 and p2,
there is a T -proof x : “ tot(ψ) → tot(ϕe), ” so ψ∗(x) = ϕe(x) ↑, and
hence ψ∗ is non-total.

Therefore T ` tot(ψ∗)→ tot(ψ◦). �

As we did in the proof of the above lemma, we sometimes need to argue within
the theory T . (When we are arguing within some formal theory, we will indent the
internal argument.) For that reason, we will need to show that some of the inequal-
ities between various provability degrees mentioned in this section are provable in T
or extensions of T , so that we may use this fact when we argue internally in T in
proofs in later sections. We will not worry about what base theory is necessary to
prove the results of this paper, except when this is necessary so that a result may
be used internally inside a later argument.

Lemma 3.5. For every total algorithm ψ, the theory T + tot(con(ψ)) suffices to
prove “ψ∗ �p ψ.”

Proof. Let ϕe = ψ∗ + 1. We argue within T :

Suppose there is a T -proof of tot(ψ) → tot(ψ∗). Then there is a
T -proof of tot(ψ)→ tot(ϕe), and hence T proves

“T ` tot(ψ)→ tot(ϕe).”

Therefore, T proves that if ψ is total, then (∃x)ψ∗(x) = ϕe(x) =
ψ∗(x) + 1. Hence T + tot(ψ) ` ¬(tot(ψ∗)). Putting this together with
the T -proof of tot(ψ) → tot(ψ∗), we have a T + tot(ψ)-proof of an
inconsistency. �

4. Π0
1 and Non-escaping degrees

Definition 4.1. A degree [ϕ] is Π0
1 if tot(ϕ) is provably equivalent to a (true)

Π0
1-sentence.

Definition 4.2. A degree [ϕ] is escaping if there is ψ ∈ [ϕ] such that ψ escapes
every provably total function. Otherwise, [ϕ] is non-escaping.
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Theorem 4.3. A degree is non-escaping if and only if it is bounded by a Π0
1-degree.

(There are degrees that are non-escaping but not Π0
1. See Corollary 6.7.)

Proof. First we show that every degree bounded by a Π0
1-degree is non-escaping.

Let (∀s)P (s) be a true Π0
1-statement such that T proves

(∀s)P (s)→ tot(ϕ).

Consider the following algorithm: ϕ̄, on input x, searches for the least s such that

(1) ϕ(x) converges in at most s steps, or
(2) ¬P (s).

If (1) holds, then ϕ̄(x) = ϕ(x); if (2) holds, ϕ̄(x) = 0.
Then ϕ̄ ∼ ϕ because P (s) holds for all s, and T proves that ϕ̄ is total. Hence T

proves the totality of the function ϕ̄+ 1, which dominates ϕ.
Next we show that if [ϕ] is non-escaping, then [ϕ] is bounded by a Π0

1-degree.
Suppose [ϕ] is non-escaping, and let ψ be a provably total algorithm for a function
that bounds the computing time function of ϕ. Now consider the sentence:

(∀x) ϕ(x) ↓ before stage ψ(x).

This is a true Π0
1-sentence and clearly implies the totality of ϕ. �

Corollary 4.4. The join of two non-escaping degrees is non-escaping. �

The next corollary follows from the proof of Theorem 4.3.

Corollary 4.5. A degree [ϕ] is non-escaping if and only if all ψ ≤p ϕ compute the
same function as some provably total algorithm. �

Corollary 4.6. The inequality [ϕ]◦ ≤ [ϕ]∗ proved as Lemma 3.4 is strict.

Proof. The totality of 0◦ is equivalent to the Π0
1 sentence asserting the consistency

of T , and hence [0]◦ is non-escaping. In contrast, [0]∗ is escaping by the previous
corollary. Thus we have [0]◦ < [0]∗, and hence [ϕ]◦ < [ϕ]∗ by relativization. �

Definition 4.7. A degree [ϕ] is ∆0
2 if tot(ϕ) is provably equivalent to a (true)

Σ0
2-sentence. (Note that it is already in the form of a Π0

2-sentence.)

Clearly, every Π0
1-degree is ∆0

2. It is also easy to see:

Proposition 4.8. Every ∆0
2-degree is bounded by a Π0

1-degree.

Proof. Assume that if tot(ϕ) is true and is provably equivalent to (∃y)(∀x)P (y, x)
over T . Fix y such that (∀x)P (y, x); this is a true Π0

1-statement and T proves
(∀x)P (y, x) =⇒ tot(ϕ). �

We show in Proposition 10.3 that there is a ∆0
2-degree that is not Π0

1. On
the other hand, we will see in Corollary 6.7 that not every degree bounded by
a Π0

1-degree is ∆0
2. Key to the proof will be the following result, which puts an

important limitation on the behavior of ∆0
2-degrees.

Theorem 4.9. Every ∆0
2-degree ψ is GL1, i.e., [ψ]∗ = [0]∗ ∨ [ψ].

Proof. Arguing in T + tot(0∗) + tot(ψ), we will show that ψ∗ is total. That is,
we must show that for every e, if T ` tot(ψ) → tot(ϕe) then ϕe is total. Let
Q = (∃y)(∀s)P (y, s) be a true Σ0

2-statement that is provably equivalent to tot(ψ).
We begin the internal argument in T + tot(0∗) + tot(ψ):
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Fix e, s where s : “ tot(ψ) → tot(ϕe).” Define ϕ̄e as follows. On
input x, search for the least t such that
(1) ϕe(x) converges in at most t steps, or
(2) (∀y ≤ x)(∃s ≤ t)¬P (y, s).

Let ϕ̄e(x) be either ϕe(x) or 0, respectively.
Because T proves tot(ϕe) or (∀y)(∃s)¬P (y, s), it also proves that ϕ̄e

is total. This implies (by tot(0∗), which is equivalent to soundness of T
for Π0

2-sentences) that ϕ̄e is total. But we are assuming tot(ψ), which
is equivalent to Q, so there is a y such that (∀s)P (y, s). For all x ≥ y,
ϕ̄e(x) converges if and only if ϕe(x) does, so ϕe is total.

The above shows [ψ]∗ ≤ [0]∗ ∨ [ψ]. The reverse inequality is obvious. �

Note that the proof actually shows that T + tot(0∗) proves that for every ∆0
2-de-

gree [ψ], tot(ψ)→ tot(ψ∗).

Corollary 4.10. If ψ is ∆0
2, then ([ϕ] ∨ [ψ])∗ = [ϕ]∗ ∨ [ψ].

Proof. This is because [ϕ] ∨ [ψ] is relatively ∆0
2 over [ϕ] and so ([ϕ] ∨ [ψ])∗ =

[ϕ]∗ ∨ ([ϕ] ∨ [ψ]) = [ϕ]∗ ∨ [ψ]. �

Corollary 4.11. For all ϕ, we have ([ϕ]◦)∗ = [ϕ]∗.

Proof. Since [ϕ]con is Π0
1, we have ([ϕ]◦)∗ = ([ϕ]∨[ϕ]con)∗ = [ϕ]∗∨[ϕ]con = [ϕ]∗. �

The following lemma is well known.

Lemma 4.12. If P is a Π0
1-sentence, then T ` ConT (P )→ P .

Proof. The sentence ¬P is Σ0
1, and so T ` ¬P → ProvT (¬P ), or, equivalently,

T ` ¬P → ¬ConT (P ). Now take the contrapositive. �

Restating this result in the language of provability degrees, we have:

Corollary 4.13. If [ϕ] is Π0
1, then [ϕ] < [ϕ]con, and hence [ϕ]con = [ϕ]◦. �

5. Density theorems

The Skull Action. There is a recurring idea in the proofs in this section and later
on, when we want to ensure [ψ] � [ϕ] for some ψ we build. If [ψ] ≤ [ϕ], then there
is a proof s : “tot(ϕ) → tot(ψ).” Using the Recursion Theorem, the algorithm for
ψ can know its own index, so can identify a proof of this form. When it sees such
a proof, it can replace ψ with some algorithm θ that we know is not below ϕ. We
threaten action θ: For all inputs x on which the algorithm ψ(x) has not already
converged, we simply copy θ, i.e., we set ψ(x) = θ(x) for these x. If we take action

θ, it creates a contradiction, because then [ψ] = [θ]. So merely by threatening to
perform action θ in the construction of ψ, without carrying it out, we ensure that
[ψ] � [ϕ].

Similarly, if we want to ensure [ψ] � [ϕ] for some ψ we build, we can threaten
action θ for some [θ] � [ϕ]. In this latter case, we often choose θ to be the
constant 0 function (computed with the obvious algorithm). For this reason, action

0 occurs frequently. We also refer to action 0 as annihilating ψ.
The first two theorems where this idea occurs are about the density of the p-de-

grees. We prove both theorems (though the first is a corollary of the second) since
they are interesting for other reasons.
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Theorem 5.1. Given any nonzero [ϕ], there is another degree [ψ] strictly be-
tween [0] and [ϕ].

Proof. Construction of ψ:
At stage s, if s : “tot(ψ) → tot(ϕ),” then annihilate ψ. If s : “tot(ψ),” then

perform action ϕ. Otherwise, define ψ(s) = 1.

Verification:
At every stage s, depending on some primitive recursive condition (whether there

is some p ≤ s that is a proof of one of two fixed sentences), ψ(s) outputs either 0, 1,
or copies ϕ(s). Hence T proves tot(ϕ)→ tot(ψ), i.e., [ψ] ≤ [ϕ].

If we annihilate ψ, then [ϕ] ≤ [ψ] = [0], contradicting [ϕ] being nonzero. If we
perform action ϕ, then [ϕ] = [ψ] ≤ [0], again contradicting [ϕ] nonzero. Hence

neither action is performed, which ensures [ψ] 6= [0] and [ψ] 6= [ϕ]. �

Relativizing this theorem, we obtain full density as a corollary.

Corollary 5.2. Given [θ] < [ϕ], there is some [ψ] such that [θ] < [ψ] < [ϕ]. �

By Theorem 4.3, the function ψ constructed in the proof of Theorem 5.1 is non-
escaping; the true Π0

1-sentence that implies that ψ is total is P = “action ϕ is

never taken.” In fact, tot(ψ) is equivalent to (P or tot(ϕ)). Therefore, if ϕ has
Π0

1 or ∆0
2-degree, then so does ψ. This proves that there is no minimal nonzero

Π0
1-degree, and no minimal nonzero ∆0

2-degree. Relativizing, we obtain:

Corollary 5.3. The Π0
1-degrees are dense as a substructure: given Π0

1-degrees [θ] <
[ϕ], there is a Π0

1 degree [ψ] such that [θ] < [ψ] < [ϕ]. Similarly, the ∆0
2-degrees are

dense as a substructure. �

On the other hand, if we replaced 1 with ϕ(s) in the definition of ψ in Theo-
rem 5.1, then it would still be the case that [0] < [ψ] < [ϕ], but now ϕ would be
non-escaping relative to ψ. This is because for this modified construction, tot(ϕ)
follows from tot(ψ) and the true Π0

1-statement “ψ is never annihilated.”

Theorem 5.4. Given any nonzero [ϕ], there is a pair of nonzero degrees [ψ0]
and [ψ1] below [ϕ] such that [ψ0]∨ [ψ1] = [ϕ] and [ψ0]∧ [ψ1] = [0], i.e., [ϕ] is a join
of a minimal pair.

Proof. Construction:
At stage s we have defined ψ0(x) and ψ1(y) for x < s and y < ys, respectively.

There are two basic steps taken at stage s:

(1) If s : “tot(ψ0)→ tot(ψ1),” then annihilate ψ0 and perform action ϕ on ψ1.

If s : “tot(ψ1)→ tot(ψ0),” then perform action ϕ on ψ0 and annihilate ψ1.

(2) Wait for ϕ(s) to converge. While this waiting is taking place, define
ψ1(ys) = 0, and ψ1(r) = 0 for each r > ys such that ϕ(s) does not converge
in r steps. If such t is found, define ψ0(s) = ϕ(s), and ys+1 = t.2

Verification:
If we ever perform a action, it is because we see [ψi] ≤ [ψ1−i], in which case

we make [ψi] = [ϕ] and [ψ1−i] = [0], contradicting [ϕ] nonzero. So no action is
ever performed, which means that [ψ0] and [ψ1] are incomparable.

2We could make the construction symmetric by alternating the roles of ψ0 and ψ1 in the
construction at alternate stages, but this is not required.
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By inspecting the algorithm used to define ψ0 and ψ1, it is clear that so long as ϕ
is total, ψ0 and ψ1 are both total. In fact, this can be proven in T , so [ψi] ≤ [ϕ] for
i < 2.

It is clear that if both algorithms are total, then we cannot permanently stay
in the step (2) at any stage of the construction. Then by an easy case analysis, ϕ
must also be total, which means [ψ0] ∨ [ψ1] = [ϕ].

Similarly, one of the two functions is always copying the 0 function, so T can
prove that on every input at least one of the two algorithms converges. So [ψ0] ∧
[ψ1] = [0]. �

By Theorem 4.3, the function ψ1 constructed in this proof is non-escaping, and ϕ
is non-escaping relative to ψ0. This is because the true Π0

1-sentence that implies
that ψ1 is total says that “no action is ever taken”; and the same sentence implies
that ψ0 is total if and only if ϕ is total.

6. The high/low hierarchy

Definition 6.1. We denote by ϕ(n) (or [ϕ](n)) the nth iterate of the jump operator
applied to ϕ (or [ϕ], respectively). A degree [ϕ] is lown if [ϕ](n) = [0](n). A
degree [ϕ] is highn if [ϕ](n) ≥ [0](n+1). It is intermediate if it is between [0] and [0∗]
but neither highn nor lown for every n. We write low and high rather than low1

and high1. (We can make sense of low0 and high0 as meaning provably-total and
≥p 0∗, respectively.)

Theorem 6.2. The high/low hierarchy is strict, and there are intermediate degrees.
(All results follow by direct construction, and all degrees constructed are below [0]∗.)

Proof. Fix n ≥ 0. We first define an algorithm ψ ∈ highn+1 r highn:

ψ(x) =

{
0 (∃s < x) s : “ tot(ψ(n))→ tot(0(n+1))”

0∗(x) otherwise.

Clearly [ψ] ≤ [0]∗. If ψ were highn, there would be a proof s : “tot(ψ(n)) →
tot(0(n+1)),” that implies that ψ is provably total, and therefore not highn.

By Lemma 3.5, T + tot(con(0(n))) is sufficient to show that [0](n+1) � [0](n).

Therefore, T + tot(con(0(n))) suffices to prove that annihilation never occurs. This
implies that [0]∗ ≤ [ψ] ∨ [con(0(n))], and hence [0](n+2) ≤ ([ψ] ∨ [con(0(n))])(n+1).
The degree [con(0(n))] is Π0

1, so by Corollary 4.10, we have

[0](n+2) ≤ ([ψ] ∨ [con(0(n))])(n+1) = [ψ](n+1) ∨ [con(0(n))] = [ψ](n+1).

(The last equality holds because [ψ](n+1) ≥ [0]n+1 > [con(0(n))].) This shows
that [ψ] is highn+1.

The construction for lown+1 r lown is a dual construction switching 0∗ and 0:

ψ(x) =

{
0∗(x) (∃s < x) s : “ tot(0(n))→ tot(ψ(n))”

0 otherwise.

Again, it is clear that [ψ] ≤ [0∗] and [ψ] is not lown. To see that [ψ] is lown+1,
again we use the fact that T + tot(con(0(n))) proves [0](n+1) � [0](n). This implies
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that [ψ] ≤ [con(0(n))], because [con(0(n))] proves that the first case in the definition
of ψ can never occur. Thus we have [ψ] ≤ [0∗] ∧ [con(0(n))], and hence

[ψ](n+1) ≤ ([0∗] ∧ [con(0(n))])(n+1) ≤ [con(0(n))](n+1)

= [0](n+1) ∨ [con(0(n))] = [0](n+1).

We can think of the properly highn+1 degree as simply copying 0∗ while threat-
ening annihilation if a witness is ever found that it is highn. Similarly, the properly
lown+1 degree copies 0, while threatening 0∗ if a witness is ever found that it is
lown. To construct an intermediate ψ, we combine both threats. Fix [ϕ] ≤ [0∗].
At stage s, assuming that we have not already performed a action, we check
whether s is a proof of tot(ψ(n))→ tot(0(n+1)) or tot(0(n))→ tot(ψ(n)) for some n.
If it is, we perform action 0 (in the first case) or 0∗ (in the second) on ψ. Oth-
erwise, we define ψ(s) = ϕ(s). By the same arguments as above, [ψ] ≤ [0∗], and [ψ]
is not lown or highn for any n. �

The nature of the intermediate degree we construct depends on which function ϕ
we copy (while threatening actions). If we copy 0, then the constructed interme-
diate degree is non-escaping (since its totality is provable from the true Π0

1-sentence
saying that no action occurs). If we copy 0∗, then [0∗] is non-escaping relative
to the constructed intermediate degree (since tot(0∗) is provable from tot(ψ) plus
the true Π0

1-sentence saying that annihilation never happens). These two facts will
be useful later.

Corollary 6.3. There is an intermediate degree that is non-escaping, and there is
an intermediate degree [ψ] such that [0]∗ is non-escaping relative to [ψ]. �

Two sequences of degrees. In addition to the properly highn+1, properly lown+1,
and intermediate degrees constructed in the proof of Theorem 6.2, one important
sequence of degrees made an appearance: degrees of the form [0]∗ ∧ [con(0(n))].
These degrees, and their complements, have some interesting properties.

Definition 6.4. Let πn = [0]∗∧[con(0(n))]. We additionally define its complement,
which we call π

n. We would like to define π

n as [0]∗∧ [¬ con(0(n))]. Since con(0(n))
is a Π0

1-sentence, its negation is provably equivalent to totality of some partial
computable function, which we will call ¬ con(0(n)). This function is not total,
and hence does not belong to the structure we are studying. So we actually define

π

n = [0∗ � ¬ con(0(n))], which is almost the same thing.

Observations.

• The sequence 〈πn〉 is increasing.
• The sequence 〈 πn〉 is decreasing.
• πn and π

n are complements to each other below [0]∗, i.e., πn ∨ π

n = [0]∗

and πn ∧ π

n = [0].

Theorem 6.5. Every πn is lown+1 but not lown, and every π

n is highn+1 but not
highn.

Proof. When πn first made an appearance, in the proof of Theorem 6.2, we proved
that it was lown+1 and above the properly lown+1 degree we constructed, so πn is
properly lown+1.
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For π

n, notice that [con(0(n))]∨ π

n ≥ [0]∗. By taking the n+ 1-st jumps of both

sides and using Corollary 4.10, we see that [con(0(n))] ∨ π(n+1)
n ≥ [0](n+2). Since

π(n+1)
n ≥ [0](n+1) > con(0(n)), we have π(n+1)

n ≥ [0](n+2), making it highn+1.
To see that π

n is not highn, we again refer back to Theorem 6.2. Let ψ be
the properly highn+1 degree constructed in the proof of that theorem. We argued

that [0]∗ ≤ [ψ] ∨ [con(0(n))], which means that the totality of ψ and con(0(n))
together imply tot(0∗). Equivalently, the totality of ψ implies either 0∗ is total, or
T + tot(0(n)) is inconsistent. So π

n ≤ [ψ], which we already know is not highn. �

Theorem 6.6. π1 bounds every Π0
1-degree below [0]∗.

Proof. Let P be a Π0
1-sentence provable from tot(0∗). We argue within T , by

contrapositive:

All true Σ0
1-sentences are provable (verifying the witness constitutes a

proof), so if ¬P , then T proves ¬P . Furthermore, T+tot(0∗) proves P ,
so ¬P → ¬ con(0∗). Thus T + con(0∗) ` P and T + tot(0∗) ` P , thus
T + tot(π1) ` P . �

The previous result is the reason for the name π1. However, it should be noted
that π1 is not itself Π0

1, or even ∆0
2.

Corollary 6.7. There is a non-escaping degree that is not ∆0
2.

Proof. We claim that π1 has the desired properties. It is below the Π0
1-degree

[con(0∗)], so it is non-escaping. Assume that π1 is ∆0
2. By Theorem 4.9, it is low,

so πcon
1 ≤ π∗1 ≤ [0]∗. But πcon

1 is Π0
1, so πcon

1 ≤ π1 by Theorem 6.6, contradicting
Gödel’s Second Incompleteness Theorem. �

Proposition 6.8. π◦1 ∧ [0]∗ = π1.

Proof. This follows from direct calculation using the distributive property of our
lattice:

π◦1 ∧ [0]∗ = (π1 ∨ [con(π1)]) ∧ [0]∗

= (([0]∗ ∧ [con(0∗)]) ∨ [con(π1)]) ∧ [0]∗

= ([0]∗ ∨ [con(π1)]) ∧ [con(0∗)] ∧ [0]∗

= [0]∗ ∧ [con(0∗)]

= π1. �

One consequence is that, even though π1 is low2, a single hop is sufficient to take
it outside the cone below [0]∗. Interestingly, π

1 hops inside [0]∗.

Proposition 6.9. πcon
1 = 0◦ and so π◦

1 ≤ [0]∗.

Proof. Since T + (A or B) is consistent if and only if T +A or T +B is consistent,
con( π

1) is equivalent to con(0∗) or ConT (¬ con(0∗)). We claim ConT (¬ con(0∗)) is
equivalent to con(0); the result follows. Obviously ConT (¬ con(0∗)) implies con(0).
For the other direction, Gödel’s Second Incompleteness Theorem tells us that con(0)
implies ConT (¬ con(0)), and the latter implies ConT (¬ con(0∗)). �
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7. Cappability

Definition 7.1. We call [ϕ], [ψ] a minimal pair if [ϕ], [ψ] are nonzero, and [ϕ]∧[ψ] =
[0]. If [ϕ] forms half of a minimal pair, we say that [ϕ] is cappable.

We showed in Theorem 5.4 that every degree is the join of a minimal pair,
constructing many examples of cappable degrees. The ∆0

2 degrees are another
source of examples.

Proposition 7.2. Every ∆0
2-degree is cappable.

Proof. If [ϕ] is ∆0
2, then ¬ tot(ϕ) is provably equivalent to a Π0

2-sentence. Therefore,
there is some algorithm ψ such that tot(ψ) is provably equivalent to ¬ tot(ϕ). Fix an
arbitrary total algorithm θ. We have [ϕ]∧ [θ�ψ] = [0], and [ϕ]∨ [θ�ψ] = [ϕ]∨ [θ].
If [θ] > [ϕ], this gives a minimal pair (and, in fact, a complement in the cone
below [θ]). �

The proof shows that every ∆0
2-degree is complementable to every degree above

it. This has a partial converse.

Corollary 7.3. A degree [ϕ] is ∆0
2 if and only if it is complementable to some

Π0
1-degree [θ] above it (in other words, there is a [ψ] such that [ϕ] ∨ [ψ] = [θ] and

[ϕ]∧ [ψ] = [0]), and if and only if it is complementable to every Π0
1-degree above it.

Proof. Assume that [θ] > [ϕ] is Π0
1 and [ϕ] is complementable to [θ] by [ψ]. Then

tot(ϕ) is equivalent to tot(ψ) → tot(θ), which is Σ0
2, so [ϕ] is ∆0

2. The other
directions follow from Propositions 4.8 and 7.2. �

As a result, ∆0
2-degrees are definable from Π0

1-degrees.
We saw in the previous section that π1 is not ∆0

2, so it cannot be complementable
to con(0∗). In particular, the degrees below con(0∗) do not form a boolean algebra.

Theorem 7.4. [0]∗, and consequently every degree above [0]∗, is not cappable.

Proof. Suppose that [0]∗ ∧ [ϕ] = [0]. Then 0∗ � ϕ + 1 is provably total, and by
padding, there are infinitely many proofs s of tot(0∗ � ϕ + 1). For every such s,
0∗(s) is defined to be (0∗�ϕ+1)(s). The algorithm that 0∗ follows on such input s
is (first decode the proof, then) wait for a stage when either 0∗(s) or ϕ(s) converges,
and then add one to that value. It cannot be the case that 0∗(s) converges first,
otherwise 0∗(s) = 0∗(s) + 1, so ϕ(s) must converge. Therefore, we have infinitely
many arguments where 0∗ is copying ϕ+ 1. We can carry out the above argument
in T + tot(0∗), which shows that [ϕ] ≤ [0∗]. It follows that [ϕ] = [0]. �

Corollary 7.5. Every nonzero degree bounds a nonzero degree below [0]∗. �

Theorem 7.6. There is a [ψ] < [0]∗ that is not cappable.

Proof. We define a function ψ so that ψ(〈p, x〉) = ϕe(x) if p : “ tot(ψ � ϕe)” and
there is no q ≤ p with q : “ tot(ψ) → tot(0∗)”, and ψ(〈p, x〉) = 0 otherwise. In
other words, if we witness a proof that ψ � ϕe is total, we code ϕe into a column
of ψ, but if we ever witness a proof that [0∗] ≤ [ψ], we stop any future coding of
new functions (while continuing to code any functions we already started coding).

To see that [ψ] ≤ [0]∗, we argue inside T+tot(0∗) (which, recall, proves Π0
2-sound-

ness for T ):
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Suppose that ψ is not total. For all e, by Π0
2-soundness, if T proves

tot(ψ�ϕe), then ψ�ϕe is total, which means ϕe must be total (since
we are assuming ψ is not). So for every p and x, either ψ(〈p, x〉) = 0,
or ψ(〈p, x〉) = ϕe(x) for some total function ϕe. Therefore, ψ is total.

To see that [ψ] < [0]∗, suppose to the contrary there is a q such that q : “ tot(ψ)→
tot(0∗)”. Then ψ is equivalent to a finite join of the functions ϕe that the construc-
tion began coding before finding q. The totality of each such ϕe is provable from
the totality of ψ, which means that each such ϕe is provably total (because we have
a proof of tot(ψ) or tot(ϕe)). So ψ is provably total, but then it cannot prove the
totality of 0∗.

By the same argument, for each e such that T proves tot(ψ � ϕe), ϕe is always
below ψ and so provably total. This shows that ψ is not cappable. �

8. Inverting jumps

In this structure, we have defined two natural jump-like operators (strictly in-
creasing and degree invariant). We have called these the jump and the hop. In
this section, we prove the existence of both jump-inverses and hop-inverses. We
also prove the existence of skip-inverses. We even prove a form of pseudo-jump
inversion. For the hop, the inverse has a natural self-referential definition.

Theorem 8.1. If [ϕ] ≥ [0]◦, then there is a degree [θ] such that [θ]◦ = [ϕ].

Proof. Suppose [ϕ] ≥ [0]◦. Let Φ(x) be the number of steps required for ϕ(x) to
converge (where if ϕ(x) diverges, then we set Φ(x) = +∞). Using the Recursion
Theorem, we can define θ as follows:

θ(x) =

{
0 (∃p ≤ Φ(x)) p : “ tot(θ)→ 0 = 1”

ϕ(x) otherwise.

Note that T proves tot(θ) ⇐⇒ (tot(ϕ) or “T + tot(θ) is inconsistent”).
By direct calculation, [θ]◦ = [θ] ∨ [con(θ)] = ([ϕ] ∧ [¬ con(θ)]) ∨ [con(θ)] = [ϕ] ∨

[con(θ)]. So it suffices to show that [ϕ] is above [con(θ)]. We argue in T + tot(ϕ)
as follows (using the fact that T + tot(ϕ) ` T is consistent):

Suppose that T + tot(θ) is inconsistent. Then there is some p :
“ tot(θ) → 0 = 1”, so there is a stage s such that for all x < p,
θ(x) has converged by stage s, and for all x ≥ p, θ(x) is just the
straightforward 0 algorithm. So T proves tot(θ), which means that T
itself is inconsistent, a contradiction. �

For the skip, notice that a skip is automatically Π0
1 and above [con(0)], and so

we can only possibly find skip-inverses for these degrees:

Theorem 8.2. If ϕ ≥p con(0) is Π0
1, there is a Π0

1-degree [θ] such that [con(θ)] =
[ϕ].

Proof. Assume that T proves ϕ↔ (∀n) P (n), where P has only bounded quantifi-
cation. Define θ as follows. On input n, we diverge if θ has diverged on any previous
input (as usual). If not, we check if there is a p ≤ n such that p : “ tot(θ)→ 0 = 1”.
If so, we perform action 0. (In other words, we declare that θ(s)↓= 0 for all
s ≥ n.) If no such p has yet been found, we let θ(n)↓ iff P (n).
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Note that we can computably determine if θ(n)↓, so tot(θ) is Π0
1. We claim that

con(θ) ≡p (θ + con(0)) ≡p ϕ.
First, arguing in T + Con(T ):

If action 0 occurs, then T proves tot(θ). But the action’s occurrence
implies that T + tot(θ) is inconsistent, hence so is T . This is a contra-
diction, so action 0 never occurs. Therefore, θ is total if and only ϕ
is total.

This shows that θ + con(0) ≥p ϕ. We assumed that ϕ ≥p con(0), so we also have
ϕ ≥p θ. Therefore, θ + con(0) ≡p ϕ.

Now argue in T + Con(T ) + tot(θ):

Assume ¬ con(θ). Then there is a least p such that p : “ tot(θ) →
0 = 1”. The only obstacle to performing action 0 at stage n = p
would be if θ diverged on an earlier input. But we know tot(θ), so we
must perform action 0. We have already seen that this leads to a
contradiction, hence con(θ).

This shows that θ + con(0) ≥p con(θ). Since θ is Π0
1, we know that con(θ) ≥p θ.

Therefore, θ + con(0) ≡p con(θ). Putting everything together, con(θ) ≡p ϕ. �

For the proof of jump inversion, the key idea is simply to wait, whenever we see
some [ϕe] ≤ [θ], for ϕe to give some evidence of totality, by converging on a new
input. In the meantime, we ensure that the only way θ can fail to be total is if ϕe
eventually provides this evidence.

Theorem 8.3. If [ϕ] ≥ [0]∗, then there is a degree [θ] such that [θ]∗ = [ϕ].

Proof. We will construct the jump-inverse θ. The construction of θ is divided into
two types of stages, type I stages and type II stages. Stage 0 is a type I stage.

(1) If t is a type I stage, we define θ(t) = ϕ(t), and consider the least p not
already considered. If p : “ tot(θ) → tot(ϕe)”, then t + 1 is a type (II, e)
stage; otherwise, t+ 1 is type I.

(2) If t is a type (II, e) stage, let s be the most recent type I stage. We define
θ(t) = 0. If ϕe(s)↓ by stage t, then t+ 1 is type I. Otherwise, t+ 1 is type
(II, e).

Recall our convention that functions converge on initial segments, so to prove
totality of ϕ, it suffices to show that ϕ converges on infinitely many inputs. To show
that θ∗ is above ϕ, it suffices to show that θ∗ can prove the existence of infinitely
many type I stages. We argue in T + tot(θ∗):

Suppose that we enter a type (II, e) stage from a type I stage at
stage s + 1. Then T + tot(θ) proves tot(ϕe). By Π0

2-soundness, ϕe
is total, so ϕe(s) converges, and we eventually enter another type I
stage. Hence there are infinitely many type I stages.

To show that ϕ is above θ∗, we argue in T + tot(ϕ) (using T + tot(ϕ) ` tot 0∗):

Suppose there is some least pair (s, e) such that s : “ tot(θ)→ tot(ϕe)”
but ϕe(s)↑. Then the construction enters a type (II, e) stage at stage
s+ 1, and then never leaves type (II, e) stages. This means θ is total,
because for x > s, θ(x) simply outputs another 0 as we search for a
stage x where ϕe(s)↓, which does not exist. By simply monitoring the
construction for the first s + 1 stages, T can prove ϕe(s)↓ or tot(θ).
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Since T also proves tot(θ) → tot(ϕe), we have T ` ϕe(s) ↓ (since
either it converges or ϕe is total). By Π0

2-soundness, ϕe(s) converges,
contradicting our choice of (s, e).

By induction, for all s, if s : “ tot(θ) → tot(ϕe)” then ϕe(s)↓. If
there is one proof, there are infinitely many, so in fact if T + tot(θ)
proves tot(ϕe) then ϕe is total. Thus θ∗ is total. �

Using the same idea to construct two functions, we can find a pair of low degrees
whose join is [0]∗.

Theorem 8.4. There are low degrees [ψ0] and [ψ1] such that [ψ0]∨ [ψ1] = [0]∗ and
[ψ0] ∧ [ψ1] = [0].

Proof. We will construct ψ0 and ψ1. The construction is divided into three types
of stages, type I stages, type II stages for ψ0, and type II stages for ψ1. Stage 0 is
a type I stage.

(1) If t is a type I stage, we define ψ0(s) = ψ1(s) = 0 for all s ≤ t where these
are not already defined. We consider the least p not already considered. If
p : “ tot(ψi)→ tot(ϕe)” for some i ≤ 1, then t+ 1 is a type (II, e) stage for
ψi; otherwise, t+ 1 is type I.

(2) If t is a type (II, e) stage for ψi, let s be the most recent type I stage. We
define ψi(t) = 0, and leave ψ1−i(t) undefined. If ϕe(s)↓ by stage t, then
t+ 1 is type I. Otherwise, t+ 1 is type (II, e) for ψi.

The jumps of [ψ0] and [ψ1] are below [0]∗ by the same argument as in the proof
of jump inversion. To see that their join is [0]∗, notice that both being total means
that we never stay in a type II stage forever, and so every 0-provably total function
is total, which implies that 0∗ is total. To see that their meet is [0], notice that
every stage t is type I (in which case ψ0(t) and ψ1(t) are both defined) or type II
for some ψi (in which case ψi(t) is defined). �

Relativizing this theorem allows us to combine jump inversion with lower-cone
avoidance.

Corollary 8.5. If [ϕ] ≥ [0]∗, and [θ] � [ϕ], then [ϕ] has a jump-inverse [ψ] � [θ].

Proof. By Theorem 8.3, [ϕ] has some jump inverse [γ], so we can relativize Theo-
rem 8.4 to [γ] to get [ψ0], [ψ1] that are low over [γ] and join to [ϕ]. Hence both [ψ0]
and [ψ1] are jump-inverses of [ϕ], and they cannot both be below [θ]. �

The following theorem gives us a form of pseudo-jump inversion.

Theorem 8.6. Given a computable function ψ such that [ϕi] ≤ [ϕψ(i)] ≤ [ϕ∗i ] for
every index i (in particular, if ϕi is total, then so is ϕψ(i)), there is always an
index e such that [ϕψ(e)] = [0]∗.

Proof. We will construct ϕe. Again, there are two types of stages. At a type I
stage s, we code ϕe(s) = 0∗(s), and then switch to a type II stage. At a type II
stage x (with s as the most recent type I stage), we define ϕe(x) = 0 and check
whether ϕψ(e)(s) converges at stage x. If not, the next stage is also type II. If it
does converge, the next stage is type I.

For all x, ϕe(x) copies either 0∗(x) or the zero function, so [ϕe] ≤ [0]∗. Moreover,
if ϕψ(e) and ϕe are both total, then the construction is never stuck in a type II stage,
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so there are infinitely many type I stages, and 0∗ is also total. Since [ϕe] ≤ [ϕψ(e)],
this shows that [0∗] ≤ [ϕψ(e)].

It remains to show [ϕψ(e)] ≤ [0]∗. Fix a proof p : “ tot(ϕ∗e) → tot(ϕψ(e))”. We
argue in T + tot(0∗):

The construction is never stuck in a type I stage, and so it suffices to
show that every sequence of consecutive type II stages is terminated
by a type I stage. Let Xs,k be the formalized Π0

1-sentence saying “s is
a type I stage, the code of the computation process through the first s
stages is k, and ϕψ(e)(s) diverges,” and let χs,k be the corresponding

computable function (using the correspondence between Π0
2-sentences

and functions that maps between true sentences and total functions).
This sentence clearly implies that ϕe is total, because it implies that
the construction of ϕe becomes stuck in type II stages after stage s,
and so ϕe(x) = 0 for all x > s.

Suppose that for some pair s, k, the sentence Xs,k is true (χs,k is
total). Then χ∗s,k is also total (cf. the note following Theorem 4.9),
and hence ϕ∗e is total.

Otherwise, Xs,k is false for all s, k. This implies that the construc-
tion is never stuck in type II stages, and hence ϕψ(e) is total.

The above is a proof that totality of 0∗ implies that either ϕ∗e is total, or ϕψ(e) is
total. Adjoining the proof p, we obtain a proof that tot(0∗) implies tot(ϕψe

). �

One might imagine that for this theorem to be true we would need uniformity of
proofs witnessing ϕe ≤p ϕψ(e) ≤p ϕ∗e, or else provable totality of ψ, but neither is
required. On the other hand, like most of the proofs in this paper (with the notable
exception of Corollary 8.5), the proof of Theorem 8.6 is uniform: e can be found
uniformly from an index for ψ and an index for the enumeration of T .

We end the section with an application of Theorem 8.6 completely analogous to
Jockusch and Shore’s first application of pseudo-jump inversion [3].

Example. Let ψ0 be a computable function such that [ϕψ0(i)] = [ϕi]
◦. So [ϕψ0(i)]

is always low over [ϕi]. By Theorem 8.6, there is an e such that [ϕψ0(e)] = [0]∗,
meaning that [ϕe] is properly high. Using the uniformity of the proof of Theorem 8.6
with respect to the base theory, we get a computable ψ1 such that [ϕψ1(i)] is always
properly high over [ϕi]. Applying Theorem 8.6 again, there is an e such that
[ϕψ1(e)] = [0]∗. We claim that [ϕe] is properly low2. This follows from the fact that
[0]∗ is properly high over [ϕe], so [0]∗ < [ϕe]

∗ (i.e., [ϕe] is not low) and ([0]∗)∗ ≥
[ϕe]

∗∗ (i.e., [ϕe] is low2).
Continuing in this way, we could show that the high/low hierarchy is strict below

[0]∗, reproving all of Theorem 6.2 except the existence of intermediate degrees.

9. Jump classes and domination properties

A natural question arising in our study of the provability degrees is the rela-
tionship between escape and domination notions, on the one hand, and the jump
classes on the other. In part, this is inspired by Martin’s high–domination theorem
from computability. In part, it is inspired by the fact that every Π0

1-degree is GL1

(Theorem 4.9), which implies that non-escaping degrees must also be weak in the
sense of the jump hierarchy because of the characterization of non-escaping degrees
(Theorem 4.3). However, we will see that in the setting of the provability degrees,
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the relationship between these two notions is actually quite weak. In fact, the only
interactions are the ones that follow from Π0

1-degrees being GL1.
The escape and domination notions we study are “escaping”, defined in Section 4,

along with “dominant” and “full”, defined here.

Definition 9.1. A degree is dominant if it contains a “dominant” function, that
is, a function that dominates every provably total function. A degree [ψ] is full if
for every ϕ ∈ [0]∗, there is a ρ ∈ [ψ] such that ρ ∼ ϕ. (In words, full degrees contain
every function that [0]∗ can prove to be total, but possibly computed by a different
algorithm.)

We would like to apply Corollary 4.5 to conclude that a degree [ψ] is full if and
only if [0]∗ is non-escaping relative to [ψ], but if we are not assuming that [ψ] < [0]∗,
this does not follow by an immediate relativization. However, it is true.

Theorem 9.2. The following are equivalent for a degree [ψ] :

(1) [ψ] is full,
(2) There is a Π0

1-degree [θ] such that [0]∗ ≤ [ψ] ∨ [θ],
(3) Every ϕ ∈ [0]∗ is dominated by a ρ ∈ [ψ], and
(4) There is a ξ ∈ [ψ] so ξ ∼ 0∗.

Proof. We start by showing that (1), (2) and (3) are equivalent. Clearly, (1) im-
plies (3). Now assume (3) and let ρ ∈ [ψ] dominate the computing time of 0∗.
Then tot(0∗) follows from tot(ρ) (which in turn, follows from tot(ψ)) and the true
Π0

1-statement (∀x)[0∗(x)↓ before stage ρ(x)]. This proves (2). Next assume (2).
Relativizing Theorem 4.3 and Corollary 4.5, we see that for every ϕ ∈ [0]∗, there is
a ρ ≤p ψ such that ρ ∼ ϕ. Take ρ̂ ∈ [ψ] such that ρ̂ ∼ ρ (see Proposition 7.1 of [1])
and so ρ̂ ∼ ϕ, proving (1).

All that remains is to show that (4) is equivalent to the others. Clearly, (1)
implies (4). Now assume (4). There is a primitive recursive (hence provably total)
function γ such that, for every algorithm ϕe, the function ϕγ(e) is defined by

ϕγ(e)(x) = (µs)(∀y < x)ϕe,s(y)↓ .

Furthermore, there is another primitive recursive function τ such that if p is a proof
of tot(ϕe), then τ(p) is a proof of tot(ϕγ(e)), and τ(p) > p.

Let Q be the sentence, “for all p, e and s, if p is a proof of tot(ϕe) and ξ(τ(p))
converges to s, then ϕe,s(p) converges.” This sentence is clearly Π0

1, and is true
because if p is a proof of tot(ϕe), then ϕe and ϕγ(e) are total, τ(p) is a proof of
tot(ϕγ(e)), and so ξ(τ(p)) = 0∗(τ(p)) = ϕγ(e)(τ(p)) ≥ t, where t is the number of
stages for ϕe(p) to converge. Furthermore, Q and tot(ξ) together imply the totality
of 0∗, since 0∗ is equivalent to Π0

2-soundness of T . This implies (2). �

The following diagram summarizes the relationship between the jump classes
and our escape/domination notions:
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high

highn

non-lown

non-low

full

dominant

escaping

The up-down direction implications are immediate consequences of the defini-
tions. The diagonal arrows are both consequences of Π0

1-degrees being GL1.

Theorem 9.3. Every full degree is non-lown for every n. Every highn degree is
escaping.

Proof. Let [ψ] be full. By Theorem 9.2, there is a Π0
1-degree [θ] such that [0]∗ ≤

[ψ] ∨ [θ]. Taking the n-th jump on both sides and using Corollary 4.10, we obtain
[0](n+1) ≤ [ψ](n) ∨ [θ]. If [ψ] ∈ lown, that would imply [0](n+1) ≤ [0](n) ∨ [θ], and so
[0](n+1) would be non-escaping relative to [0](n), giving us a contradiction.

The second claim is a dual version. Given a non-escaping ψ, we can find a
Π0

1-degree θ that bounds it. Then we know that [θ](n) ≤ [0](n)∨ [θ], so [θ](n) cannot
be above [0](n+1) for the same reason as above. �

In addition, by Corollary 6.3, we know that being full does not imply highn, and
being non-escaping does not imply lown. It remains to show that high degrees may
not be dominant, and that dominant degrees may be low. These two results are the
most complicated ones in the paper. (This will then imply that the right column
implications are strict, because the property of being dominant is incomparable
with anything from the left column.)

Theorem 9.4. There is a low degree that is dominant.

Proof. We will construct an algorithm θ such that [θ] is low and dominant. The
construction is a modification of the jump inversion construction used in the proof
of Theorem 8.3, with top degree [0]∗. We modify the type II stages to addition-
ally ensure that the jump-inverse θ being constructed is dominant, and we do so
by outputting, instead of 0, the maximum of the first k provably total functions,
where k gradually increases over time.

The construction of θ is divided into two types of stages, type I stages and type
II stages. Stage 0 is a type I stage. Initially, the function number is 0.

(1) If t is a type I stage, we define θ(t) = 0∗(t), and consider the least p not
already considered. If p : “ tot(θ) → tot(ϕe)”, then t + 1 is a type (II, e)
stage; otherwise, we increment the function number, and stage t+ 1 is type
I.

(2) If t is a type (II, e) stage, let s be the most recent type I stage. We define
θ(t) to be the max of the first k provably total functions, where k is the
current function number. If ϕe(s)↓ by stage t, then t+1 is type I. Otherwise,
t+ 1 is type (II, e).

The argument that [θ] is low is identical to the argument that ϕ is above θ∗ in
the proof of jump inversion. The only difference is instead of copying the 0 function,
we copy the max of the first k provably total functions. But since T + tot(0∗) is
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equivalent to T together with Π0
2-soundness of T , in the internal argument we know

that these functions are actually total, so that is no obstacle.

To show that θ is dominant, consider the function θ̂ defined by θ̂(x) = θ(s),
where s is the xth type II stage in the construction of θ. The totality of θ implies
that there are infinitely many type II stages in the construction of θ (since there

are infinitely many proofs of totality of some function), and hence that θ̂ is also

total. But θ̂(x) is defined as the max of the first k provably total functions, where k

depends on x and k →∞ as x→∞, so θ̂ is dominant. �

Theorem 9.5. There is a high degree that is not dominant.

Proof. Using the Recursion Theorem, we will simultaneously construct an algo-
rithm θ such that [θ] is high, and a computable function γ such that if [ϕe] ≤ [θ],
then ϕγ(e) is provably total and escapes ϕe (thus ensuring that θ is non-dominant).
There are three types of stages, type I stages, type II stages, and transition stages,
with stage 0 being a transition stage. At type I stages we ensure [θ] is non-dominant,
and at type II stages we follow a jump inversion strategy to make [θ] high. Transi-
tion stages just serve to decide whether the next stage should be type I or type II.

Construction of θ:

(1) If t is a transition stage, we define θ(t) = 0, and we consider the least
proof p not already considered such that p : “ tot(θ) → tot(ϕe)” or p :
“ tot(0∗)→ tot(ϕe)”. In the first case, stage t+ 1 is a type (I, e) stage. In
the second case, stage t+ 1 is a type (II, e) stage.

(2) If t is a type (I, e) stage, let s be the most recent transition stage. We
define θ(t) = 0. If ϕγ(e),t(x)↓> ϕe,t(x)↓ for some x ∈ (s, t), then stage t+ 1
is a transition stage. Otherwise, stage t+ 1 is a type (I, e) stage.

(3) If t is a type (II, e) stage, let s be the most recent transition stage. We
define θ(t) = 0∗(t). If ϕe,t(s)↓, then t+ 1 is a transition stage. Otherwise,
t+ 1 is type a (II, e) stage.

This construction may be carried out by a Turing machine, of course, but the
“stages” of the construction will not correspond to stages of the Turing machine
executing the construction. We call the stages of the Turing machine execution
“beats” to distinguish them from construction “stages”. This is important be-
cause T can prove that there are infinitely many beats, but the statement that
there are infinitely many stages is equivalent (over T ) to the totality of θ.

Construction of γ:
The function γ is defined so that, for all e, ϕγ(e) is the function

ϕγ(e)(x) =

ϕe(x) + 1 if ϕe(x) converges before there is a beat > x
of the construction not in a type (I, e) stage

0 otherwise.

Verification:
We first prove that the construction is never stuck in type I or type II, i.e., that

there are infinitely many transition stages. In fact, we will carry out this proof in
T +tot(θ∗), because we will need the fact later that T +tot(θ∗) proves the existence
of infinitely many transition stages.
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Suppose that the construction becomes stuck in type (I, e) stages at
beat s. Then afterwards ϕγ(e)(s) cannot be defined by the second case
of its definition. Therefore ϕγ(e)(s) converges if and only if ϕe(s) con-
verges, and ϕγ(e)(s) = ϕe(s) + 1. Also, there is a proof p : “ tot(θ)→
tot(ϕe)”. By Π0

2-soundness of T + tot(θ), the algorithm ϕe is actually
total. So ϕe(s) does converge, and ϕγ(e)(s) = ϕe(s) + 1. This im-
plies that some x will eventually be found causing the construction to
return to a transition stage, so it was not, in fact, stuck in type (I, e).

Suppose the construction becomes stuck in type (II, e) stages at
stage s+ 1. Then there is a proof p : “ tot(0∗)→ tot(ϕe)”, but ϕe(s)↑.
Furthermore, by monitoring the first s stages of the construction, T
can prove that stage s + 1 of the construction is type (II, e), and
therefore that either ϕe(s)↓ or tot(θ)⇔ tot(0∗). So T + tot(θ) proves
ϕe(s)↓ or tot(0∗), and must therefore also prove ϕe(s)↓ or tot(ϕe)
(by adjoining the proof p). Therefore, T + tot(θ) proves that ϕe(s)
converges. By Π0

2-soundness of this theory, ϕe(s) actually converges,
at which point there will be a transition stage.

The above shows that [0]∗∗ ≤ [θ]∗, because each proof p : “ tot(0∗) → tot(ϕe)”
puts the construction into a type (II, e) stage, so for the construction to return
to a transition stage infinitely often guarantees that ϕe(x) converges for infinitely
many x, which means that ϕe is total (by our convention that functions converge
on initial segments). Clearly [θ] ≤ [0]∗, so [θ] is high.

To show that [θ] is non-dominant, we consider some ϕe ≤p θ. There are infinitely
many type (I, e) stages and infinitely many transition stages, so ϕγ(e) escapes ϕe.
We must now argue in T that ϕγ(e) is total, using our fixed proof that if θ is total,
so is ϕe:

If there are infinitely many beats of the construction that are not in
type (I, e) stages, then ϕγ(e) is clearly total. Suppose instead that all
beats of the construction after beat t are type (I, e). Each of these
stages takes finitely many beats, because the construction only has
to check for finitely many x whether ϕγ(e),t(x)↓> ϕe,t(x)↓. So there
are infinitely many stages of the construction, hence θ is total. This
implies that ϕe is total, which in turn implies that ϕγ(e) is total. �

10. Open Questions

The Π0
1-degrees came up naturally in our study of the provability degrees, specif-

ically in the characterization of non-escaping. The ∆0
2-degrees also proved useful,

though their role is less clear. What else can be said about the ∆0
2-degrees and

their relationship to the Π0
1-degrees? For example:

Question 10.1. Is there a ∆0
2-degree that bounds no nonzero Π0

1-degree?

Question 10.2. Is every ∆0
2 degree that is below [0∗] also below π1?

To help motivate these questions, note that properly ∆0
2 degrees do exist:

Proposition 10.3. There is a ∆0
2-degree that is not Π0

1.

Proof. Construct a computable function f as follows: Output 0 until we find a
stage s such that s : “limt→∞ f(t) = 0 ↔ P,” for some Π0

1-statement P . Once we
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find such an s, and until we find that P is false (which if it is, we would eventually
see because P is Π0

1), f outputs 1. If we find that P is false, f outputs 0 forever.
It is clear that limt→∞ f(t) exists (as it changes values at most twice) and is

either 0 or 1. Consider the statement “lim f = 0”. It is ∆0
2, since f is known to

have a limit, but it cannot be provably equivalent to a Π0
1 statement (if it were, it

diagonalizes). �

Other natural questions concern jump inversion. We proved a number of jump
inversion theorems, including the analog of the Friedberg jump inversion theorem
for this structure. We ask what analog of Shoenfield jump inversion holds, and
whether jump inversion can be combined with upper cone avoidance.

Question 10.4. Is there a characterization of the degrees that are jumps of degrees
below [0]∗?

Question 10.5. Given d > [0]∗ and [ψ] > 0, is there always some [ϕ] with [ϕ]∗ = d
and [ϕ] � [ψ]?

The answer to Question 10.5 is yes in the case when d = [0]∗, by Theorem 8.4.

Question 10.6. Is there a characterization of the degrees that are cappable?

Question 10.7. Which of the following classes and operations are definable in the
lattice of p-degrees?

(1) Π0
1,

(2) ∆0
2,

(3) the jump: d 7→ d∗,
(4) the hop: d 7→ d◦.

Question 10.8. Is there a high/low hierarchy for hop?

Finally, everything we proved was independent of the theory T , only assuming
that T is effectively axiomatizable, sound and extends PA− plus Σ0

1-induction.

Question 10.9. To what extent, if any, does the structure of the provability degrees
depend on the underlying theory T? Are these structures isomorphic for different
theories?
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