6. Control of Spaces. Our requirements will be of the form (p — ) & (¢ —= ). If
@ seems to be true at a given stage of the construction, we take action to preserve the truth
of ¢, to make 1 true, and to preserve its truth. If ¢ seems to be false, we try to satisfy
and to preserve its truth. We will define a recursive true path A e [TY] for the
construction. Action taken for ¢ and y is determined by nodes § C A%, which try to

declare axioms for points in the space controlled by &, according to the apparent truth of ¢.
Thus we will assign spaces S (sets of points which have geometric dimension) to the node

€, define a functional Ag, and try to arrange that the value m for the axiom Ag(A;x,x) = m,
where OS(§) = A, is determined by the truth or falsity of a sentence M associated with &
for sufficiently many (x,x) such that (x,s,x) € S . (The coordinate s represents a stage of
the construction rather than an argument for a functional, so we separate it.) In this case, §

will control S. The exact definition of control will vary with the type of &, but we will try

to present the definitions of control for the three types of requirements in as uniform a way

as possible. Fix a requirement R = RJe”rb,C for the remainder of this section, and so consider

the type j and the dimension r of this requirement to be fixed.

Definition 6.1: The spaces assigned to requirements of type j are specified as follows.
Given & € TX, let T = up™(€). Suppose that R = Ri;fhC is assigned to T. The space Sg will
be defined only if k =, in which case we set S¢ = N'™x{wt(§)}x{E}, wt(Sg) = wt(§), and
dim(Sg) =rif j=0; we set Sg = Nr+1><{e}><{§}, wt(Sg) = e, and dim(Sg) =r+1 if j = 1; and
we set Sg = N™'x{e}x{E}, wt(Sg) = e, and dim(SE) =rif j = 2. Whenever we specify a
section S = {(x1,... . Xr) }XN"x{(x,E)} of S, we define dim(S) = u, and wt(S) = x_, if r
> k. For each i € [k,r], we let upi(S) = {(X1,...,xrﬂ)}xNix{(x,E)} if j € {0,2}, and
upi(S) = {(x1,... X ) IXN™x{(x,E)} if j = 1. Given u such that S = up“(S), we define
up(S) = up**1(S). We identify two spaces Sgand Sg whenever they agree in all but the last

coordinate and & = f3, in which case we write S¢ = Sg. N

We will define the set of spaces controlled by v& at X with initiator 5k (and
terminator T¢) below. Let S be a space assigned to a node of T If ] € {1,2}, then there
may be infinitely many nodes along a given path through T' which are candidates for
controlling S, so we may not be able to recursively identify the node which should control
S. Thus we begin to define control on T™! for requirements of types 1 or 2, spreading out
the control of sections of S among many nodes. Implication chains will be used for such j
to ensure that these nodes work together to produce the same output for the axioms they
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control on a subset of S which is large enough to ensure a particular iterated limit. We do
define control on T" when j = 0, as there is no ambiguity, in that case, as to which node
should control the space.

Controllers for S will be nodes which are derivatives of a node p = f* € T' such
that S is a section of Sg. Control of a space S associated with a node of type 0 or 2 along a

path Ake [TX] will be determined when we reach the first Ek C A¥ such that wt(‘gk) =
wt(S) and outo(fgk) is pseudotrue. We impose the latter condition in order to prevent the
specification of axioms while conflicts about the value of the axiom captured by the
implication chain machinery remain to be resolved; so assume that outo(n k) is pseudotrue.
To determine control at nk € TX, we see if there is such a §k C Y]k; if Ek exists, then the
node controlling S at N is the same as the node controlling S at Ek. If wt®) < wt(S),
then S is not controlled at n*. Nevertheless, in the latter case, we define a (potential)
controller v¥ for S at n%; this node would be the controller were control to be defined.
(Thus S may have a controller at Nk, but not be controlled at nX.) The (potential) controller
may be changed before we reach £X, but will not change thereafter. (We choose this
approach, rather than starting at £X, because when we have to define control for
requirements of type 1, we need to revise our determination of the controlling node beyond
Ek.) As we want the controller v¥ for S at n* to decide the value for axioms it controls, we
require that v€ C n¥, so that n* will have a guess at v¥’s outcome. Initiators determine
when it becomes reasonable either to first define the control, or to define a new controller,
because we see the value we want for the axioms being controlled.

Terminators for initiators will be defined if j =2 and k = r-1. A terminator T for
the initiator 8" will be the last node of a primary link [u¥,7%] such that u* C 8* C ¥ and
wt(t€) < wt(S), and will have the property that elements entering the target set for the
terminator will enable us to correct axioms. (We specify that u* C 8% in order to be able to
show that, under certain circumstances, the corresponding controller is also restrained by
the same link.) Terminators will help us show that the notion of control defined allows the
computation of iterated limits needed to satisfy requirements. When the initiator 8¥ for the
controller vX and the space S has a terminator T, then v forfeits its eligibility to control S.
However, if there is no controller to replace vk then we will still need to have derivatives
of vK controlling sections of S. We say that v¥ influences S in this situation.

Control for requirements of type 1 will have a slightly different flavor. In this case,
we have an extra dimension for the spaces controlled at each level, so in order to compute
iterated limits, we can allow finitely many axioms to produce the incorrect value on each
space of dimension 2 (one of the dimensions specifies stages for the construction, so we
are really computing a single limit). This will be important, as we will not have the
automatic correction feature which is available for requirements of type 2. To make use of
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this added flexibility, we allow terminators ¥ to be defined even if wt(t¥) = wt(S), but do
not allow new initiators to have large weight. We will thus eventually settle on a final
initiator for S along any given path, or decide that no initiator exists along that path.

As mentioned above, we will have to keep track of primary links [uX,n¥] on Tk
which restrain vk and are safe for vk, and those which are not safe. The links which may
not be safe cause an element to be placed into some A, € RS(v¥) by switching ¥, and are
called v&-injurious. If such nodes also place elements into A, € OS(v), they will allow
axioms to be corrected. When this is the case, [uX,n¥] will be called vK-correcting. In
order to remove [uX,m¥] while preserving the admissibility of strings, additional nodes may
have to have their outcomes switched; these are the nodes in the set ﬁ(&k) defined below,
where EX is the immediate successor of ¢ which determines that [u¥,7X] is a primary link
along the given path. ﬁ(&k) is the set of nodes in PL(vk,Ek) which need to be switched to
make V¥ free, and which come from a specified component of PL(vk,?.f,k), or from the end

of a primary g€ link restraining v,

Definition 6.2: Fix k <n, v & TX and uk C nk = (Ek)' C Ek C nk € TX such that
[uk, 5] is a primary n*-link. If 7X is the primary completion of some node oX, let PL(EY)
= PL((0%)",EXU{(0%)}, and let PL(EY) = {nX} otherwise. We say that [uk,xtk] is vk-
injurious if RSWVO)NTS(BY) = @ for some p* € PL(EY), and is vE-correcting it OS(v) C
TS(B) for some * € PLEY). n

We note that if [uX,7t¥] is a vX-injurious primary n*-link, dim(v¥) = k, and tp(v¥) =
1, then [uX,n¥] is vK-correcting. For as uX = ¢ and up(u¥) = up(st®), it follows from (2.9)
that dim(uX) = k+1. Hence by Lemma 2.2(iii) (Interaction), [uk, 7k is vk—correcting.

We will determine the spaces controlled by v€ at mX below. This notion of control
will have the following properties. If v& € TX is assigned the requirement R and controls S
at T]k, then vk C nk, vk will be the unique node which controls S at nk, and if j € {0,2},
then vk will control S at all [Sk D 1k such that outO(Bk) is pseudotrue. The initiator for S at
n* will be the longest initiator appointed at any £ C n* which has no terminator along 1.
Also, if X is a space of the proper dimension to have sections X controlled on TX, then
either only finitely many sections of X will be controlled along any A¥e [TX], or cofinitely
many sections of X will be controlled along A" by nodes which are derivatives of a fixed

node vk+! € T&*1; and if X is controlled along Ak+1, then v&*1 will be the controller for X
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along Ak+1. The definition below is arranged to ensure these properties.

We proceed by induction on r-k if j = 0, and on r-k-1 if j € {1,2}, and then by
induction on 1h(n¥) for nk C Ak. (Control will not be defined on T" if j € {1,2};
implication chains will ensure the existence of the iterated limit for r = k.) Let X be a
section of the space for which R wants to define axioms, with dim(X) = k+1 if j € {0,2},
and dim(X) = k+2 if j = 1. For each i € N and n* € TX, we determine the node vk C n¥

which is the controller for X!l at ¥, the node o C n* which is the initiator for X[l at n,

and those nodes C X which are terminators for X!l and some initiator for X!l at nX.

Definition 6.3 (Initiators, Controllers, and Terminators): Fixk <rif j=0,k <
rif je {1,2}, nk € TX such that lh(nk) > 0, and a space S, and let 5« and vK be,
respectively, the initiator and controller for S at (n¥)7, if these exist. We determine whether

the the controller, initiator, and terminator for S at nk exist, and if so, define those strings.
We will assume by induction that:

(6.1) 8% exists iff V¥ exists.

Case 1: We define controllers when a new initiator is found. There are two
subcases. Subcase 1.1 handles the base step, and Subcase 1.2 handles the inductive step.

Subcase 1.1: Eitherk=r,j=0,and S = Sy or k =1-1, j € {1,2}, wt(m*) =
wt(S), and up(S) = Sup((n“)i)§ and in both cases, the principal derivative (outj(nk))' of (nk)'
along outi(n¥) is implication-free for all j < k, and outo(nk) is pseudotrue. Then N is the
initiator for S at n* and (M¥) is the controller for S at n*.

Subcase 1.2: k<rifj=0,k<r-1ifj€E {1,2}, wt(m¥) = wt(S), there is an
initiator 8! for up(S) at A(m¥), but 8! is not the initiator for up(S) at A(M*)7). Let v&*!

be the controller corresponding to 81, Then nX is the initiator for S at n¥.  The
controller v for S at ¥ is the longest derivative of vk+l such that vk C nk. (By (6.2)

below inductively, it will be the case that vkt 6k+1, so such a derivative will exist.)

Case 2: (We switch controllers and initiators when a new derivative of up(Vk) is
found.) Case 1 is not followed, either k <rand j=0ork <r-1 and j € {1,2}, wt(nk) <
wt(S), up(Vk) controls up(S) at AMX), and up((m K7y = up(\?k). Then nk is the initiator for
S at Nk and (M¥)" is the controller for S at nk.

98



Case 3: Neither of the previous cases is followed, j € {1,2}, vX and 8 exist, and
there is a primary Vk—correcting n*-link [u¥,(%)] such that uk C 8 C M5 and if j = 2,
then wt(n*) = wt(S) and k = r-1. (Again note, as in the earlier description of terminators,

that we require that u* = §)) We call m*)" a terminator for S and 8% at n*. (Note that if j
= 1, then we allow v¥-correcting primary links to cause a change of control, even if we
discover them at a node whose weight exceeds wt(S). This is necessary, else we would
not be able to correct axioms for a thick subset of up(S) when control is switched.)

Subcase 3.1: There is no controller for S at uX. If j = 1, then there is no

controller or initiator for S at nX. If j = 2, then v¥ (Sk, resp.) is the controller (initiator,
resp.) for S at n*.

Subcase 3.2: Otherwise. By (6.1) inductively, let 85 and v be, respectively,
the initiator and controller for S at uX. Then V¥ is the controller for S at n%; and the

initiator for S at ¥ is 8" if wtm*) > wt(S), and is N if wtm*) = wi(S).

Case 4: Otherwise. The initiator and controller for S at n* are 85 and vk,
respectively, if these exist, and fail to exist otherwise.

In all cases, we say that % is a terminator for S and &% along nk (Ak = [Tk],
resp.) if T is a terminator for S and 8* at some Ek Cnk (Ek C A, resp.). N

The following properties are easily verified by induction on Ih(n¥), as is (6.1).
(6.5)(i1) follows from Lemma 4.1 (Nesting), (6.2), and Case 3 of Definition 6.3, where
terminators are defined to restrain the previous initiator.

(6.2) If vK controls S at nX with initiator 8%, then vk C 8* C nk,

(6.3) If 8¥ is the initiator for S at both n* and ﬁk and vk and ¥¥ are the controllers for S at

n* and ﬁk, respectively, then v¥ = vk,

(6.4) If 8" is the initiator for S at n%, then wt(8%) < wt(S).

(6.5) Suppose that n* C ﬁk, and 8* and 8" are the initiators for S at n* and ﬁk,
respectively. Then:

() If wt(ii¥) = wi(S), then 8 C 8.
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(i) If wt(S) = wt(n®), then 8" C 8%; and if j € {0,2}, then 8 = 8.

We are now ready to define control. Recall that control is supported only on
pseudotrue nodes, as defined in Definition 5.9. There is a corresponding notion at non-
pseudotrue nodes which we call weak control. Control is replaced by influence for
requirements of type 2, when the initiator has a terminator.

Definition 6.4 (Control): We say that v weakly controls S at n* if vK is the
controller for S at m* corresponding to the initiator 8%, there is no terminator for 6% and S
along %, and

(6.6) wt(S) = wt(m¥).

If v¥ is the controller for S at n* with initiator 8%, there is a terminator for 6% and S along

k controls

n%, and (6.6) holds, then we say that V& weakly influences S at nk. v
(influences, resp.) S at nk if vk weakly controls (influences, resp.) S at nk and outo(nk) is
pseudotrue. Given Afe T we say that V€ weakly controls (weakly influences, resp.) S
(8% is the initiator for S, resp.) along AR if vE weakly controls S (8% is the initiator for S,
resp.) at all sufficiently long n* C A¥, and that v¥ controls ( influences, resp.) S along AF
if there are infinitely many n* C A¥ such that outO(nk) is pseudotrue, and v¥ controls

(influences, resp.) S at all sufficiently long n* C A such that outo(nk) is pseudotrue. N

We note that control along A¥ and weak control along A¥ coincide if there are
infinitely many pseudotrue n* C AX,

Suppose that Ak e [Tk]. The following fact now follows easily from (2.1), Lemma
4.1 (Nesting), (6.5), and (6.6), as there must be a longest initiator along any path if there is
any initiator along that path:

(6.7) Suppose that Ek C AF and ?gk extends all initiators and properly extends all
terminators for S at any n* C AK, (If j € {0,2}, this will be the case if wt(%k) >
wt(S).) Then vk weakly controls (weakly influences, resp.) S (6k is the initiator for
S, resp.) along AR iff vE weakly controls (weakly influences, resp.) S (6k is the
initiator for S, resp.) at Ek iff vk weakly controls (weakly influences, resp.) S (6k is
the initiator for S, resp.) at every n* such that Ekl:l CnkC A, Furthermore, if v&
weakly controls S along AF, EXCnkC AX and 8 is the initiator for S at nX, then
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O is the longest node which is an initiator for S at some vk C ¥ and which has no
terminator along k.

The next lemma specifies some properties of the control process.

Lemma 6.1 (Finite Control Lemma): Fix k < n, an admissible Ak e [TX], and a
space S assigned to a node working for requirement R, where k < dim(R) if j = tp(R) =0,
and k < dim(R) if tp(R) € {1,2}. Then:
(i) {vke T* Ink(vk weakly controls or weakly influences S at n*)} is finite.
(i) Ifj e {0,2} then:
(@) Hvk C A% Infmkc Ak &

vk

weakly controls or weakly influences S at n*)} < 1; and
(b) 18" C A% Ink C AX®" is an initiator for S at Nk &
S is weakly controlled or weakly influenced at M =< 1.
(iii) Suppose that k < dim(R). Let F be the set of initiators for S on TX. Then F is finite
and for all A € [TX], S is weakly controlled along A iff there is a 8" € F such that
8" C A and there is no terminator for 8 and S at any Nk C A.
(iv) If vk C 8% C A¥, (8%)~ = VK, k = dim(R)-1, and VX is a controller at some nX C

Ak, then 8¥ is an initiator at 8.

Proof: (i): If k = dim(R), then tp(R) = 0, and there is a unique node on T¥ which
controls S. Suppose that k < dim(R), and that vK € T¥ and v¥ weakly controls or weakly
influences S at n*. By (2.1), (6.2), and (6.4), wt(vK) = wt(S). But as the weight function
is one-to-one, there are only finitely many vk & T* such that wt(v¥) = wt(S).

(i1): If k = dim(R), then tp(R) = 0, and there is a unique controller vk for S on Tk
Furthermore, for any n* € TX, if S is weakly controlled at n* with initiator 8%, then vk C
Nk and 8¥ is the immediate successor of v along nk.

Suppose that k < dim(R). By (6.6) and Definition 6.4, if S is weakly controlled or
weakly influenced at n¥, then wt(S) = wt(¥). (ii)(b) now follows from (6.5)(ii). (ii)(a)
follows from (6.3).

(ii1): Suppose that k < dim(R). If 8% € F then by (6.4), Wt(6k) < wt(S). As the
weight function is one-to-one, F is finite. By Definitions 6.3 and 6.4, if vk weakly controls
S along A € [TX] then A must extend some element 8* of F such that there is no terminator
for 8% and S along A. Conversely, suppose that A extends an element 8" of F such that
there is no terminator for 8" and S along A. By (6.7) and Definitions 6.3 and 6.4, S is
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weakly controlled along A.
(iv): We note that if tp(R) = 0, then X(ék) D up(vk), so 7\(61() extends an immediate

successor of up(v¥), and so S is weakly controlled along K(ék). Thus (iv) can fail for
tp(R) = 2 only if v¥ is defined as the controller for some space through Case 3 of Definition

6.3. Suppose that v¥ is defined by that case. Then vX must be a controller at some Ek C
nk. Hence if we fix the shortest gk C A" at which vK is a controller, then Subcase 1.1,
Subcase 1.2, or Case 2 of Definition 6.3 must be followed at Ek. But then Ek = 8%, and 8"
is the initiator corresponding to v¥ at 8. n

Our next lemma spells out some important relationships between initiators,
terminators, and weak control for requirements of type 1.

Lemma 6.2 (Terminator Lemma): Fix k < n-1 and Ak e [Tk], and let AK! = 7\.(Ak).
Fix a space X which is assigned to a requirement of type 1 and is weakly controlled by
some node of T**!, and fix i € N. Then:

1 If 8 C A¥is an initiator for X'!! at 8%, and u = i, then 8* is an initiator for X'
at 8%

(i) Suppose that 81 C nk*! C A*! are given such that 8**! is the initiator for X
at all y¥*! such that n**! C y¥*! € A¥*!| and there is no initiator 55 nk+!
for X (the latter condition includes those 8! which may not lie along )
Let n* = outm**!). Suppose that nk C 8% C AX, 8% is an initiator for X!,

and 8! is not the initiator for X at k(ék). Then there is a terminator for X!

and & along AX,

Proof: (i): By (6.4), wt(d") =< wtX!") =i; so as u = i, wt(®") = wt(xX!") = u.
By induction on Ih(8%) and (2.1), if an initiator for one of X! or X! exists at (8%)-, then
that node is the initiator for both X" and X! at (8)-. (i) now follows from Definition 6.3.

(ii): Let 5! be the initiator for X at MO5). As 8% D nk = outm**!) and nk+l C
AR (8% D+ by (2.4) and (2.6). Hence by choice of n**1, §*' C 0+, Now by

(6.7), §¥*! is the initiator for X at y<+! iff 8*! is the longest node which is an initiator at
Y g
i) 6k+l, else

some EX*! C v+ and which does not have a terminator along y**1. Thus &
5! would have a terminator along n**!. Hence as 7\(61() D n*! and 8! is not the
initiator for X at Mék), 5 ot By (6.7), this is only possible if there is a y**! C

}\(E‘)k) such that (y¥*1)~ is a terminator for X and gkt along y**!. Let vX be the initial
derivative of (y**!)" along 8%, and note, by Lemma 3.1(i) (Limit Path), that vk C 8%, As
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(v**1)" is a terminator for X and 8**"! along y**!, (y**1)~ must have infinite outcome along
yk+l ¥ must have finite outcome along 8*. Now y¥*! @ A¥*! as there is no terminator

for X and 8! along A¥*!, else 8! would not be the initiator for X along A*!.
6k+1

, SOV
Furthermore, as C Ak+l, by (2.10), some extension of 5~ along A¥ must switch
(v**1), so there must be a derivative EX D 8% of (yk+1y along AX which has infinite outcome
along AX. Tt now follows that EX is a terminator for 8" along A¥ via the primary A¥link
[vE, €. n

The next definition is notational in nature. Given A* € [Tk], a node vk*1 of Tk+1,
and a space X whose sections X! may be weakly controlled by nodes of TX, we define
CON(Vk+1,Ak,X) to be the set of sections of X which are weakly controlled by derivatives
vk of vk such that vk C A This set is partitioned into two sets, ACT(vk“,Ak,X)
corresponding to the derivatives of vK+! which are activated along Ak, and VAL(vk”,Ak,X)

k+1

corresponding to the derivatives of v which are validated along AX,

Definition 6.5: Letk <n, vkl & Tk+1, Ak e [Tk], and a space X be given. We define
CON(VK AR X) = U{S C X: 3vk C AXup(vK) = vE*+! & vK weakly controls S along A¥)},

VALV AR X) = U{S C X: 3vk C AXup(vK) = v¥*! & vK weakly controls S along A¥ &
vK is validated along Ak)}, and

ACT(V! AR X) = U{S C X: 3vk C AXup(v¥) = v¥*! & vk weakly controls S along A¥ &
vKis activated along Ak)}. n

In the next definition, we introduce thick and thin subsets. Thick subsets of a
space S of dimension k+1 are the union of cofinitely many sections S of S. Thin subsets
are the complements of thick subsets.

Definition 6.6: Fix a space S of dimension k. We say that S is a thick subset of S if S
= U{S[i]: i €1} where I is a cofinite set of natural numbers. We say that S is a thin subset
of Sif S C S and S\S is a thick subset of S. N

We now show that a node weakly controlling a space passes down weak control of
a thick subset of that space to its derivatives.

O
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Lemma 6.3 (Thick Control Lemma): Fix an admissible A e [TO], and for all u < n,
let A" = Xu(AO). Fix k < n, and suppose that v&*! C AR weakly controls the space X
along A Then:
(i) If vk*!is validated along A*!, then VAL(VK*! AX X) is a thick subset of X.
(i) If vK*! is activated along A*!, then ACT(v¥*!, A¥ X) is a thick subset of X.

Proof: If tp(v¥*!) =0 and dim(v*!) = k+1, then v¥*! is the unique controller for
X on T*!, and its immediate successor 8*' along A¥*! is the unique initiator for X at any
node extending 81 Thus let Nk = 8! in this case. Otherwise, we note that as X is
weakly controlled along AX"!, dim(v¥*') > k+1. By (6.5)(ii), (6.7), (2.4), and Lemma 3.1
(Limit Path), we can fix the shortest n**! C A¥*! such that wtm**!) > wt(X) and v&*! is
the controller for X with fixed initiator 8*! at all y**! such that nk*! C yk+! C A Note
that as wt(nk+1) > wt(X), it follows from (6.4) that there is no initiator for X (along any
path through Tk+1) which extends n*+*!
3.2(i) (Out), M(n*) = L.

We first show that for all iO0= Wt(]k), the controller of X! along A¥is a derivative

. In both cases, let n* = out(m**+). By Lemma

of vk+1, By Definition 6.3, for all iC0= wt(]k), X will have a controller vk at nk, and vk

will be a derivative of v¥*!; furthermore, by Lemma 3.1(i1) (Limit Path), vk D 7k, where m*

1 along AX. By (4.1), the initiator corresponding to v¥ is

is the principal derivative of v
restrained by a primary link along AN iff it is restrained by that same link at n*. Also by
Lemma 6.2(ii) (Terminator) and Definition 6.3, if il0= wog¥), n* C 8 C A¥ and 8" is an
initiator for X' at 8%, then either 8! is the initiator for X at 7\(6](), or tp(v¥*!) = 1 and

there is a terminator for 8" and X! along AX. Thus the controller of X!! along A¥ must be a

derivative of v¥+1,

Fix i = wt(¥). By (6.7), X! is weakly controlled along A*. If n* has infinite

outcome alongllkk, then by (2.8), m* weakly controls X! along A¥. And if ¥ has finite

k+1

outcome along A¥, then every derivative of v along A¥ has finite outcome along A¥ so if

k

v& weakly controls Xl along Ak, then v has finite outcome along AX, (i) and (ii) now

follow, as by Definition 2.1, vk is validated along AXiff vE+1 is validated along A n

The next two lemmas combine to show that if a space X is not weakly controlled
along A¥*! then either a thick subset of X is weakly controlled along A¥, or cofinitely
many sections of X of dimension k have only a thin subset weakly controlled along AL
Also, if X is weakly influenced along A then a thick subset of X is weakly controlled
along AX,
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Lemma 6.4 (Indirect Control Lemma): Fix k < n and an admissible Ak e [Tk], and
let A = A (AY). Let X be a section of the space assigned to the requirement R of
dimension r, where r = k+1 if tp(R) =0, and r > k+1 if tp(R) € {1,2}. Suppose that X is
not weakly controlled along A1 but that X is weakly controlled along A¥ for infinitely
many i. Then there is a vk C A such that vk weakly controls a thick subset of X along A,
In particular, this will be the case if X is weakly influenced along AR

Proof: First suppose that k+1 = dim(R), and so, that tp(R) = 0. By hypothesis,
X is not weakly controlled along A1 and we note that as tp(R) = 0, there is at most one

k+1

controller for X on T™"" and there are no terminators for X along A Hence if there is a

k+1

controller for X on T" ", then that controller is not C A¥! 1t thus follows from Lemma

3.1(ii) (Limit Path) that there is a EX C A¥ such that for all € D g%, if EX C A, then A(EY)
does not extend an initiator for X.
Suppose that k+1 < dim(R). By Lemma 6.1(iii) (Finite Control), we can fix a finite

subset F of T**! such that for all A € [Tk+1], X is weakly controlled along A iff A extends
some element of F which does not have a terminator along A. As X is not weakly
controlled along Ak+1, it follows from the finiteness of F and Lemma 3.1(ii) (Limit Path)
that there is a £ C A¥ such that for all X D €%, if EX C A" and A(EX) extends an element

81 & F, then 8! C A**! and both AEX) and A" properly extend the same terminator
for 8! and X along A",

In either case, we conclude that there are only finitely many initiators for sections of
X along A", As infinitely many sections of X are weakly controlled along A¥, there must be
a 8" C A¥ such that k(ék) extends an element of F, some vk C 8% weakly controls a section
of X at 8%, and 8" is not restrained by any vX-correcting primary AX-link. By choice of gk,
8% C £X for each such 8%. Fix the longest such 8%, and the unique v for 8%, By Definition
6.3 and (6.7), vk will weakly control all but finitely many sections of X along AX,

We now note that if X is weakly influenced along AX*!, then X has a controller vk+!

and an initiator 8! along A¥*!. By Lemma 3.1(i) (Limit Path), v¥*! will have a derivative
vk C A and 8% = out(8*!) is an initiator for a section of X at 8. Furthermore, tp(vk+l) =

2, so there will be no terminators for sections of X along A", Thus by Definitions 6.3 and
6.4, 8" will will witness the fact that infinitely many sections of X are weakly controlled

along A¥. The last sentence of the lemma now follows from the first part of the lemma. N

The next lemma shows that if X is a space which is not weakly controlled along
A and no section Y of X is weakly controlled along A¥, then for cofinitely many sections
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Y of X, there is very little weak control of sections of Y along A¥! More precisely, for
cofinitely many sections Y of X, the number of sections of Y which are weakly controlled
at some node along A1 s finite, and if X is assigned to a requirement of type O or 2, then
kKl (Because of the

definition of terminators, the set of sections of X weakly controlled along A will be a

this number is O (so no section of Y is weakly controlled along A
(possibly proper) subset of the set of sections of X weakly controlled at some y**! C AL

Lemma 6.5 (Non-Control Lemma): Fix an admissible A e [TO], and for all u < n,
let A" = XU(AO). Fix k € (0,n-1) and a requirement R of dimension r and type j, where r =
k+1if j=0,and r >k+1 if j € {1,2}. Let X be a section of a space assigned to R which is
not weakly controlled along AR Suppose that X s weakly controlled along A¥ for at
most finitely many 1 € N. Then:

(1) Foralli€& N, either {u: (X[i])[u] is weakly controlled along Akﬂ} is cofinite,

k=1 C Akil

or {u: (X[i])[u] is weakly controlled at some y } is finite.

(i) For cofinitely many 1 € N, {u: (X[i])[u] is weakly controlled at some e
A1 s finite.

(iii) If j € {0,2}, then for cofinitely many i € N, {u: (X)) is weakly controlled
at some Y1 C A = @,

Proof: By Lemma 3.7 (Infinite Injury), Lemma 6.1(iii) (Finite Control), and as,
if j =0 and r = k+1, then there can be no controller for X along A¥ ! and there is at most
one controller for X on Tk+1, we can choose ﬁkﬂ C A*! guch that for all initiators pk+l e
T*! for X such that p**! @ A and all 2%, if 1! C €1 A*! then 2} (&) 2
p**1 By hypothesis, the preceding sentence, and Lemma 6.1(iii) (Finite Control), we can
fix n¥*! C A**! such that for all initiators p**! C AM*! for X, there is a terminator for p*+!
and X along n**!. Let n* = outm**!) and n**! = out(m), and note that by (2.5), n* C A*
and n**! C A®*!, Without loss of generality, we may assume that n**! D #**!. By (2.5)
and (2.6), for all £*! such that n**! C gk c AML p & h) Dnk,

By (2.5), A\(m") = n**1. Now %)™ = (out(**!))" is the principal derivative of
M1 along A, so by Lemma 4.3(i)(c) (Link Analysis), there is no primary AMlink
which restrains (n¥)". Hence by hypothesis, there is no initiator 8% for any section of X at
M¥y, else by (4.1) and Lemma 4.4 (Free Implies True Path), 8" would have no terminator
along A¥, so by Definition 6.3, cofinitely many sections of X would have initiators along
A, But then by Definition 6.4, infinitely many sections of X would be weakly controlled
along AK, contrary to hypothesis. Furthermore, n* cannot be an initiator for a section of X,
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k+1

else either X would be weakly controlled at n**! = A(n¥), or some section of X would

have an initiator at ()", neither of which is possible. Hence there is no initiator for any

section of X at n¥. Also, A(n¥ 1) =mK and (¥1) = (out(n¥)) is the principal derivative of
(M%) along AL 5o again by Lemma 4.3(i)(c) (Link Analysis), there is no primary AL
link which restrains (n%-1)-.

Fix i. First assume that i < wt(n¥). By (6.4) and (2.1), there is no initiator 8D nk
for X', Hence as there is no initiator for X' at nk, if 81  AM!is first defined to be an
initiator for a section of X! by Case 1 or Case 2 of Definition 6.3, then skl c n*1. Also,
as there is no primary A*L]ink which restrains &1y, if 8" C AM! s first defined to be
an initiator for a section of XU by Case 3 of Definition 6.3, then ol nk‘l. We conclude
that if 8**! is an initiator for a section of X! at any gl C AL then 8**! C n*1 Now if
there is a 8! C A¥! such that 8**' is an initiator for a section of X! and there is no

terminator for §**! along A*! then by Definition 6.3, infinitely many sections of X will

Akil

have initiators along , 50 (i) follows for i from (6.7) and Definition 6.4. Otherwise, as

Akil

there is no primary AL link which restrains (M*1)-, each initiator sl ¢ for a

section of X! has a terminator ™! C %1, so by Definition 6.4, for all u = wt(n*!),

k+1 - Akil

(X[i])[u] is not weakly controlled at any & , and again, (1) follows for this i.

Suppose that i = wt(n¥). As there is no initiator 8" for X! at ¥ and A(nk!) = nk,

X! cannot be an initiator for a section of XU, Furthermore, for any §ki1 C nk1, it follows

from (2.4) that A(E®!) = A(nk1), so by (2.11) and (6.6), X! is not weakly controlled at

X(Ekﬂ). Hence any initiator for a section of X' at some Ekil C A

T]k'l.

must properly extend

The broad outline of the verification of (ii) in this case is as follows. We first show
that if 8**! is an initiator for a section of X! at some Ekﬂ C A*!, then k(ékﬂ) extends an
initiator for X! which, in turn, extends a node which switches a terminator for X along
A¥! We then show that the node on T* which switched the terminator must have its
immediate predecessor switched back by a node on T**! in order to return the terminator
for X to A¥"!, and that this switching process can be characterized in terms of PL sets, in a
way to ensure correction of axioms. The switching process will ensure that 8*! has a

Akil

terminator along , so only finitely many sections of X are weakly controlled along

AL Furthermore, we will be able to obtain a uniform bound on these terminators, so (ii)

will follow.

Suppose that 81 ¢ A¥!is an initiator for a section of X', 'We have shown that

81 5 n*1, so K(ékﬂ) D nk. By Definition 6.3, there must be an initiator 8¢ C K(ékﬂ) for
X1 at k(ékil), and again by the second paragraph of the proof and (6.4), ) n*. By

Definition 6.3, there is an initiator 8! for X at A(8%) with corresponding initiator v&+!,
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But by (2.5), 8**! D out(8*) D outm*) = m*! and by Lemma 3.2(i) (Out), A (out(8%)) =
AM05), so by choice of &1, 8! € A¥! and 8! has a terminator ™! C nk+! C AKL
Fix ! C n**+! such that (**")" = ©*!, and let ¥* = out(¥**!). By Definition 6.2 and
Case 3 of Definition 6.3, there is a ¢! € PL&"*") such that OS(vk*1) C TS(C**).

We now note that T™*! has infinite outcome along ! = A(%¥), and if ¥+ C 8",
then T™*! does not have infinite outcome along 7»(6](). Furthermore, T C nk C 8¢ C
MO, so by (2.4), if T™*! were to have infinite outcome along AX*1(8"*!), then that
K+ along 5! = M(%Y), and by (2.6), T&+!

would have that outcome along My¥) for all y* € [%k,k(ék”)]. In particular, T

outcome would be the same as the outcome of t
would
have that same infinite outcome along Mék), which we have shown not to be the case.
Hence ©™*! does not have infinite outcome along X1 (8**1). As A(8%) 2 8**! and there is a
primary AMY)-link [u¥*!,t&*1] which restrains 8! with u**! C 8*! it follows from
(2.10) that there is a node £~ such that £ C n* C t* C 8" and t* switches T+, ((2.10)
implies that a node can be switched only when it is free; and by (2.6), 81 C A(ak) for all
ok such that T C X C 8%, So no node C ©*! can be switched by such an o D %* until
™+ is switched.) Let T = (£%), and let t = (£%)". Then [t*,¥] is a primary A(0*))-link,
and up(t¥) = T+,

AsnkC = (f:k)‘ C ¢ C 8, it follows from (2.5) and Lemma 3.1 (Limit Path)
that T has an initial derivative T such that n**! C #**! C out(ék) C 8L fix ¥ C gkl
such that (- = ¢! T~ k1) so up(tk) = k+!

derivative of T¢*! along both nX and A¥, Furthermore, by (2. 10) and as MK is AX-free and

. Now 7" =out(T , and T* is the principal

™ C nk C 7, T must be sw1tched by some proper extension gl of gkl along AL Let

= (¥**!), and note that ©*!is the principal derivative of T ™ along AR kel gkl jg

—k+1 C 6k_1 C 'Ck_l

so [T

a primary AL link with
We now show that ™! is a terminator for 8*' along A**!. First assume that t&*! is
: . — .kt kel

not a primary completion. Then PL(% " ) = {1 =l e PL(* ), and up*t!(tkl) =

k£l iq 2 terminator for 8! AL

k+1 3

k+1 Hence t along

k+1

Now assume that T is a primary completion of some p**', which we fix, and let

o+l = (p**1)-. As ©*! has infinite outcome along T<*! but finite outcome along A(Y), it
follows from Lemma 5.1(i),(ii) (PL Analysis) and Definition 5.3 that

ﬁ(%k+l) — PL(O-k+1,_~Ck+1)U{O.k+1} — PL(Ok+1,Tk+1)U{Tk+1}U{O'k+1},

and by Lemma 5.1(iv) (PL Analysis),
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PL(o*+! tk+1) = PL(0¥*! 0\ (39)).

By Lemma 5.3(ii) (Implication Chain), Lemma 5.2 (Requires Extension), and (5.5)(ii), K
requires extension for some derivative ok of o1, As A%is admissible, and, by (2.5),
out(®) C A it follows from (5.27), Lemma 5.15(ii) (Admissibility), and Lemma 5.4
(Compatibility) that ¥ has a (k-1)-completion **' C A¥! and that k* = up(B**!) is the
primary completion of ¥ Furthermore, by Lemma 5.12(i1) (PL),

{up(T®): ¢ € PL(E*, 5} = PL(0*! A (ZY)).

Fix ' € A*! such that (") = p**", let &% = M), and note that since **' the initial
derivative of kX, follows from (2.4) that (k*)- = k. Now o**! C n¥*! and by (5.2), oK is
an initial derivative of o**!; hence by Lemma 3.1(i) (Limit Path), okCnkC #C Kk We
now recall that there is no primary AX-link which restrains (N¥)". Thus there must be a ©**!
C A*! such that up(f(kil) = k¥ and ©**! has infinite outcome along Akil, else by (2.6) and
(2.10), [0%,k¥] would be a primary AX-link restraining (nk)‘. Fix &' c A*! such that

(- = %1, By Lemma 5.1(iv) (PL Analysis),
PLGEX M (&) = PLEX, k).

As ©*! is the initial derivative of along ﬁkil, it follows from Lemma 5.3(ii)
(Implication Chain) and Lemma 5.2 (Requires Extension) that el requires extension for
=1 As A is admissible, it follows from Lemma 5.15(1),(i1) (Admissibility) and Lemma
5.3(i1) (Implication Chain) that there are aktl C 7 AT guch that 7! is the primary
completion of gt (@1 = 71 and 7**! has infinite outcome along kel By (5.19),
up(h) = T, so by (2.8), 7! = v and 7! = ¥ By Lemma 5.12(ii) (PL),

PL(E (&) = {up@*h): ¢! € PLR"!, k).
Now by Lemma 5.1(i),(ii) (PL Analysis) and Definitions 5.3 and 6.3,

ﬁ,(ﬁjkil) — PL(Kki]’ﬁ:ﬁl)U{Kkil} — PL(Kkil’nkt])u{nkil}u{f(kil} )

Furthermore, up(m*!) = T, up(Kkil) = «k, up(‘i:k) =t and up(x*) = 6**!. Hence
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{uph (@ £ e PLGE ™)} = PLE),

k+1 k+1

so 7! = tk*1 g a terminator for §**! along AR

We now verify (ii) by showing that only finitely many sections of X are weakly
controlled at nodes C A*!. By (2.11) and Lemma 3.1 (Limit Path), fix a**! € A*! such
that wt(A(o*t1)) > i, a¥*! D n**! and A(a**!) C A¥. By Lemma 6.1(iii) (Finite Control),
there are only finitely many initiators for X on T since X' is not weakly controlled
along A¥, we can assume without loss of generality that every initiator for X at some node
along A has a terminator C A(o**!). Furthermore, by (2.4) and Lemma 3.1 (Limit Path),
we can assume that for all £*! such that o1 C X! ¢ AR! i A (E**!) extends an initiator
for X!, then that initiator lies along AL Suppose that a**! is given such that o**! C k!
C A¥! By (2.4) and (2.6), A(&**") D A(akt!). As wi(h(okh)) > i, it follows from the
choice of a*!, (2.1), and (6.4) that there is no initiator for X1 at )»(&kil), so X is not
weakly controlled at k(&kil). Hence & *! cannot be an initiator for a section of X'!! at any
node. Thus there are only finitely many initiators for sections of xt! along AL By the
preceding paragraph, every initiator along A*! for a section of X! has a terminator along
Akil, so we can fix ékﬂ C A*! such that each such terminator is C ékil. It now follows
from Definition 6.4 that if u = wt(ékil), then (X[i])[u] is not weakly controlled at any node
C Akil, so (i1) follows.

Fix i and u and assume that j € {0,2}. Then there are no terminators for sections
of X along A¥'. Hence if (X" is weakly controlled at some y*! C A, then by
Definition 6.4, there is an initiator for (X[i])[u] which has no terminator along AL By

AX! which has no

AL

Definition 6.3, for all v = u, (X[i])[v] will have an initiator along
terminator along AL 5o by Definition 6.4, XM will be weakly controlled along
(ii1) now follows from (ii). N

As we extend nodes along AF, the path approximation to A via the function A
will occasionally switch paths. We show that for requirements of types O and 2, the choice
of initiators is invariant under switches of paths, as long as the initiator remains on the
switched path and no terminators are eliminated.

Lemma 6.6 (Constancy of Initiator Lemma): Fix k <= n and nk & TX. Let S be a
space associated with the requirement R of dimension r and type j € {0,2}, and assume
thatk < r-1if j =0, and k < r-1 if j = 2. Suppose that S is weakly controlled at A(m*)")
with initiator 8*', and that Am¥) 2 8*!. Then 8"*! is the initiator for S at A(n¥).
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Proof: First assume that j = 0 and k = r-1. Let v&*! be the controller for S at

AMY). Then v¥*! is the only controller for S on T¥*!

k+1

, and the initiator for S along any path

properly extending v¥*! is the immediate successor of v¥*! along that path. The lemma
now follows in this case.

Suppose that k < r-1. Let p*! = A(m¥AM"¥)"), and note, by hypothesis, that
pk*1 D 85 We assume that p¥+! = A(m¥), else by (2.4), A(n¥) = A(M¥)"). Under this
assumption, it follows from (2.4) that MM = pk“. As S is weakly controlled along
MM5)), it follows from (6.6) and (2.11) that wt(S) = wt(M((M*)")) < wt(A(m¥)), so by
(6.4), M(m¥) cannot be an initiator for S, and by Case 3 of Definition 6.3, pk+1 cannot be a
terminator for S at An¥). Hence as p**! = (A(m¥))-, all terminators for S along A(n) are
C p**1. By (6.7), 81 is the longest initiator for S along A(M*)") which has no terminator
along M(M5)"), so as 81 C pk*!1 C (AM¥))-, %! is the longest initiator for S along A(n*)

which has no terminator along Am¥). By (6.7), 81 is the initiator for S at M5, n

In order to show later that the functionals which we define are total on certain
oracles, we want to show that for requirements of types O and 2, if a space is weakly

controlled along an approximation to A but not along a later approximation, then that space
is never weakly controlled again. This will fail to be the case only when a terminator is

switched. As the proof does not depend on Al we prove the general case.

Lemma 6.7 (Loss of Control Lemma): Fix k < n, a space S for a requirement R of
type 0 or 2 with k+1 < dim(R), and nk € T* such that wt(S) = wt(M((m¥)")). Suppose that
S has no initiator at M(¥)7). Then S has no initiator at A(n¥).

Proof: Suppose that S has an initiator 8! at A(MY) in order to obtain a
contradiction. By (2.4), %) C A(M")7). As wt(S) = wt(A((n¥))), either M(M¥)") =
AMK), or by (2.11), wi(S) < wt(A(n¥)); and in the latter case, it follows from (6.4) that
A(MY) is not an initiator for S at any node. Hence skl C M™Y. By Case 3 of Definition

k41 of any terminator for S along M(M¥)") is an initiator for

6.3, the immediate successor p
S at p¥*1; hence the longest node which is an initiator for S at some node C A((m*)") can
have no terminator along A(M¥)7). As 8! C A(M¥)), it follows that there is an initiator

for S at M(Mm*)"), contrary to hypothesis. N

When a node v! relinquishes control of a space to a node v!, we will need to know
that, often enough, the axioms which were defined by derivatives of v are either the same

axioms that would have been defined by derivatives of \71, or are corrected. The next
lemma is a key ingredient in showing that this happens. It allows us to trace the process of
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switching initiators, and will be used to show that we can correct axioms for requirements
of types 0 and 2. We consider the case where 1 switches k! € T', causing weak control of
a space S to pass from a node v! to a node v!. We will show that this can occur only when

2l ol . e .. ~
§ C «!'C 8!, where 8' and & are, respectively, the initiators for v! at A(n") and o1 at

AMn). By Lemma 3.3 (A-Behavior), for all t = 1,  will switch up'(k!) = k. We try to
carry this situation up to successive trees, by showing that up'(v') weakly controls up(S)

along A'(1") with some initiator &', up‘(\All) weakly controls up(S) along A'(n) with some
initiatorst, and é‘)t/\fﬁ)t CxtC Btvst. Furthermore, the shortest element of {628 t} will

o o t4l
alternate by level, i.e., 3'CHo ' iff & " C 8!, We will be able to carry this alternation up
inductively through TP where p+1 is the smallest j such that v! = ¥', and in some cases, to

TP, (In the other cases for t = p+1, we will have to resort to a different proof, as some of
the arguments will fail.) The remaining lemmas of this section will then enable us to show,
in the next section, that we can correct axioms when necessary.

Lemma 6.8 (Alternating Initiator Lemma): Fixn € T and let S be a section of a
space assigned to the requirement R of dimension r = 2 and type O or 2. Suppose that S is

weakly controlled by v! at A(n") with initiator 8, S is weakly controlled by vl at A(n) with

ol N
initiator & , and 8! = & . Let p be the smallest t such that up*!(v!) = up*!(¥!) if such a t
exists, and let p = r-1 otherwise. (Note that, if tp(R) = 0, then t must exist by the definition

of = for type 0 nodes.) Then for all t € [1,p], there are v! C §' C A'(n), v' C §' C A,
K'= A()AA(M), and a space S' such that vt = up(v!), v' = up'(¥!), S C S', and:

(6.8) v'weakly controls S'at A{(n") with initiator 8', and if t > 1, then A(8%") D 8",

N ~ 1] N
(6.9) v'weakly controls S' at A'(n)) with initiator & t, andift>1,then A0 )20 g
(6.10) ' C k' C 8 iftiseven, and &' C k' C 8\ if t is odd.

Furthermore, if t € [2,p], then by (6.8) inductively and Definitions 6.3 and 6.4, v' weakly
controls S' at A(8%1), so we can fix the initiator 5 C M%) such that v weakly controls S'
at M(O™") with initiator 8 . Similarly, by (6.9) inductively and Definitions 6.3 and 6.4, ¥'
weakly controls S'at x(S til), so we can fix the initiator 8' C k(S til) such that V' weakly
controls S' at A(8 til) with initiator 8'. (We need to introduce §' and 8' here, as the

A txl
initiators for S' at MM and M(v) may differ from those at )\(6&1) and A(d ),
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~ t£1
respectively). Let pt= A8“H)ANS ). Then forall t € [2.p]:
6.11) (i) 8'Cp'cdiftisevenandd Cp'C 8 iftis odd.

(i1) St = 8" if t is even, and 8 = St if t is odd.

In addition:

(6.12) (6.8)-(6.11) will hold for t = p+1 unless either:
(i) p+l=r;or

(i) VP has finite outcome along AP(n") iff 9" has finite outcome along AP(1)).

Proof: First assume that t = 1. Then (6.8) and (6.9) follow by hypothesis. As &!

N
= O , it follows from (6.7) and Definition 6.7 that A(n)IA(1), so by Lemma 3.3 (A-
Behavior), A(m)" C A(N"). Thus by Lemma 6.6 (Constancy of Initiator), A(n)AA(n) C 5!,

By (6.4), (6.6), and (2.11), wt(sl) = wt(S) = wt(A(n)) < wt(A(n)), so 81 = M(1). Hence

N
0 CA(M) =AM)AANM), and (6.10) holds.

Suppose that t = 2. We first verify (6.11)(i), assuming that t is odd. (An
analogous argument gives the proof for even t by interchanging the hatted and unhatted

nodes, the nodes with bars and tildes, ) and 1", and odd and even in the proof below.) By
A~ t£]

(6.10) inductively, 8= C §

A tx1 _
Case 1: X(étil)l?»(é ). We begin with the proof that d' C p'. By (2.4) and

SN (T 1 el el g =l
Lemma 3.1(ii) (Limit Path), there must be a &~ such that 68— C &~ C o ,

~ tx] _
AOEDIMESY), (€1 is a derivative of !, MEEY CAG ), and (MEE)) = pt. As pl.8"

~ t£l - -
C MO ) by (6.2), p' and &' are comparable. Suppose that p' C &' in order to obtain a
contradiction. Then AE™!) C §". By (6.4) and Definition 6.7,

(6.13) wit(d") = wt(S') = wt(M(S™1))
and
(6.14) wi(d)) = wi(SY) = wth(d ).

(Note that (6.13) and (6.14) do not make sense when t = r.) As M%) = A(EED), it
follows from (6.13), (2.11), (2.1), and (6.14) that
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wi(Sh) = wtM(8%™)) < wtME™!)) < wi@") = wi(SY,

a contradiction. Hence &' C p.

We complete the proof of (6.11)(i) for Case 1 by showing that p' C 8", By (6.2),
p',d t - k(éttl), so p'and § ' must be comparable. It suffices to assume that 5 C p, and
show that t = p+1 and (6.12)(ii) holds. By (6.10), S ¢ 8&1, so iterating Lemma 6.6

o o &l <t .
(Constancy of Initiator) for 81 C§ , we see that & =8'; thus by (6.3), vt =+'. Hence t
=p+1. There are two cases to consider.

. . . . e AL
First consider the case in which vP*! has infinite outcome along & = 8P *1 Then

<ptl P
vP*! has infinite outcome along both A(8P) D 8" and A ) 2 8" 50 all derivatives of

A

p
vP*! along 8P (8 , resp.) have finite outcome along 8° (8 , resp.). In particular, by (6.2)
and inductively by (6.8) and (6.9), vP has finite outcome along AP(°) 2 &P and ¥* has
~p
finite outcome along AP(n7) D & , so (6.12)(ii) holds.
opHl
Now consider the case in which vP*! has finite outcome yP along 8 = 87!, Then
~p+l P p+l ~p
vP*! has outcome yP along both A(8%) D 8™ and MO ) D 87" , so by (2.5), YP C &P.8 .
By (2.4) and (2.8), (YP)” has 1nf1n1te outcome along yP and is the longest (and principal)

derivative of vP*! along either 8 or 6 Now by Lemma 4.3(i)(c)(a), any primary &P-link
(g -link, resp.) which restrains (yP)” restrains all derivatives of ypH along &P (g resp )
Hence by Definitions 6.3 and 6.4, the controllers for upP(S) corresponding to 8P and 6
respectively, are the longest derivatives of vP*! properly contained in 8° and 6

respectively, so vP = P = (yP)” and (6.12)(ii) holds. Thus §'o p' unless (6.12)(i) or (ii)
holds, concluding the proof of (6.11)(i) for this case.

tzl
Case 2: A (6&1) and A (8 ) are comparable. By Definition 6.7,
A txl ~t =
WtOME=)), Wi ) = wi(SY), so by Case 3 of Definition 6.3 and (6.4), 8 (8", resp.)
ot - ]
has a terminator along 7»(6&1) iff & ", resp.) has a terminator along A(0 ). Thus by

Definitions 6.3 and 6.4, §'= 8", so by (6.3), vi="". Hence t = p+1. We now proceed as
in the preceding two paragraphs, showing that (6.12)(ii) holds, and thus that this case is
contrary to hypothesis, and concluding the proof of Case 2.

We now verity (6.8)-(6.10) and (6.11)(ii). Assume that t is odd. (If t is even, then
an analogous proof is obtained by interchanging the hatted and unhatted nodes, the nodes
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with bars and tildes, ) and 1", odd and even, and (6.8) and (6.9).) We begin by showing
that 8' C k' (a portion of (6.10)) by eliminating the other possibilities. Let ' = k'Ad", and
assume that C' C 8' in order to obtain a contradiction. First suppose that T' has finite
outcome C*! along 8", and so that (**!)- has infinite outcome along £*' and up((C*')) =
T As 8'C §'C M%) by (6.11)(1) and the definition of & ', it follows from (2.5) that
! c 8! By (6.10) inductively, T*! C A*!m)ar™*!(1)) = !, Hence by (2.4) and
Lemma 3.1 (Limit Path), ',8' D ¢'A(¢*"), contrary to the choice of T'.

Suppose that C' has infinite outcome ?A;til along 5. By Lemma 3.3 (A-Behavior)
and as t is odd and 1 switches k!, k' has finite outcome [3&1 along A'(m). Now it cannot be
the case that k' C &', else as k! C ! C 8&1 C A%l(n) by (6.10), it would follow from
(2.4) that k' = T' has finite outcome along St, contrary to our assumption. Hence as ¢ c
5 K8t As A )28 D e, we have £ C 8 by (2.5), and so (£ ) s the initial
derivative of ' along 8&1. By Lemma 3.1 (Limit Path) and as T' C !, T' has an initial
derivative along k®!; and by (6.10) inductively, Stﬂ and k*! are comparable; hence this
initial derivative must also be (C til)‘. As €' = kA8 and k8", it follows from (2.4) that C'
must have finite outcome £*! along !, so by (2.7), ¢*! C !, By (6.10) inductively,
k=l 8 g0 Ty C A8 by (2.4). Thus & = k'an@™) and TAEEY C
KOS til), a contradiction. We thus conclude that §' C k.

We next verify (6.11)(ii) and (6.9). By Definition 6.4, we noted in the hypothesis
of the lemma that V' weakly controls S' at 7»(8 til) with initiator &', and 7»(8 til) D 3. By
(6.9) inductively, 8&1 C ktil(n ). As S'is weakly controlled at )\(8&1), wt(Sh) =
wti ) by Definition 6.7. By (2.11), for all u*! such that 5wl C A% (M) and
S ) = D, W) > wih(® ) = wiSY), so by (6.4), A(ul) cannot be an
initiator for S, and (Mu®h)- cannot be a terminator for st along (DY
(6.5)(ii), we have St = St, verifying (6.11)(ii). Also note, by (6.7), that St is the longest
initiator for S' at M(m) which has no terminator along A'(v). (6.9) now follows from
Definition 6.3 and (6.3).

We now verify (6.8). By (6.8) inductively, 8"! C A=), so by Definition 6.7
and (2.11), wt(S) = wt(A(3™1)) = wt\'(1)). As &' = 8'C k' C Alay) and &' is the

ot
initiator for S"at A'(n) D !, it follows from Definition 6.3 that & has no terminator along

Hence by

k'; and as k' is A'(1)-free by (2.10), there is no primary A'(1)-link which restrains x'. It
thus follows from (6.5) that there is an initiator &' for S'at A'("). Hence by Definition 6.4
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and as wt(S)= Wt(}\t(n')), S'is weakly controlled at M), We complete the proof that
(6.8) holds by showing that 7»(6&1) D &'. Assume to the contrary, i.e., that 8' C NG R
in order to obtain a contradiction. As 8! C 7»&1(7]'), &' C A (8™, and &' C M), it
follows from Lemma 3.1 (Limit Path) that there must be a u*! such that sl u*l C
A% and A(u™") = 8'. But then by Definition 6.7, (2.11), and (6.4), wt(S") =
wt(AM(8%1)) < wtv(uh) = wt(8') < wit(S"), a contradiction. Hence (6.8) holds.

Finally, we complete the verification of (6.10). Since we have already shown that
§'=38'C !, it remains only to show that k' C 8'. As 8'is an initiator at A'(n) 2 «, it
follows from (6.2) that k! and 8" are comparable. We assume that d' C !, and obtain a
contradiction. By (6.7), the initiator for a space at a node vy is the longest initiator for that
space at any node o € y which has no terminator along y. We showed earlier that § =8
C kL Now o%, 8 C xt= AMa)ari(n), &' is the initiator for S' at A7), and & is the
initiator for S'at A'(n). By (2.10) or Lemma 4.5 (Free Extension), any terminator y! for &'
along A'(") 6 talong A(1), resp.) must be C k. If y* = «', then by Definition 6.3, the
immediate successor B’ of k' along A'(°) (A'(n), resp.) must be an initiator for S'at B!, so
by (6.7), must have a terminator along )\t(n') (Xt(n), resp.). But this would imply that
there is a primary A'()-link (A'(n)-link, resp.) restraining ', contradicting (2.10) or
Lemma 4.5 (Free Extension). Hence, y' C k', so y! is the terminator for 8' (& t, resp.)
along both A1) and A{(17). By (6.7), it must then be the case that 8' = & . But then by
(6.3), v! =V, so t = p+1 and (6.12)(ii) follows from (6.2).

As we have noted above throughout the proof, (6.12) also holds. n

We now show that, under the hypotheses and notation of the Alternating Initiator
Lemma, activation (validation, resp.) for v' along A'(W") corresponds to activation
(validation, resp.) for vt along 7»”1(7]‘) for t € [1,p]; and activation (validation, resp.) for

v' along A'(m) corresponds to activation (validation, resp.) for yi along XHI(n) for t €
[1,p]. Furthermore, the same will be true for t = p+1 if VP is activated along AP(v") iff WP is

validated along AP(n)) and up(vP) = up(\A/p). (If the latter fails, then we will not need the
lemma, as correction of axioms will be unnecessary.) We need to add the hypothesis that

no El € T! such that El = v! is switched at v; if some El = v!is switched at 1, axioms
which are newly weakly controlled by vlat 1 are corrected, so we will not have to use the
Outcome Lemma below. For requirements of type 0, we only need the simpler, but

equivalent condition that no & such that upE!) = up'(v!) for some t < dim(v!) is switched

at . The more general condition is needed for requirements of type 2.
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Lemma 6.9 (Outcome Lemma): Fix 1 € T?. Suppose that S is weakly controlled by
v! at A(n") with initiator 8!, Siis weakly controlled by vl at A(n) with initiator 81, no El €
T! such that El = v! is switched at m, 8! = 81, and tp(vl) € {0,2}. For all t € [1,n], let V!
=up'(v!) and ¥' = up'(¥'!). Let p be the smallest t such that vt*! = v*! if such a t exists,
and letp = dim(v!)-1 otherwise. Then for all t € [1,p], v'is activated along Kt(n') iff v!is
activated along A(n); and ¥' is activated along A'(n)) iff v! is activated along A(m). If,
furthermore, VP is activated along AP(n") iff ¥" is validated along AP(n) and vP*! = $P*1,
then vP*! is activated along AP (1) iff v! is activated along A1), and vP*! is activated

along M (1) iff 9! is activated along A(1)).

Proof: We proceed by induction on t. We will prove the lemma for v' only (a
similar argument yields a proof for ¥'). The lemma is vacuous for t = 1. Fix notation as in
Lemma 6.8 (Alternating Initiator). Let q = p+1. As the Alternating Initiator Lemma cannot
be applied if t=q = dim(v!), we first prove a weak version, (6.15), of (6.8) to cover the
case in which t = q = dim(v'), v4 = up(vP) = up(x?p) = Vq, and VP is activated along AP(1)")
iff v* is validated along AP(n)). This weak version of (6.8) will suffice for this case. (Note
that a similar proof will also yield a weak version, (6.16), of (6.9).) By hypothesis,

(6.12)(ii) will not preclude the use of Lemma 6.8 (Alternating Initiator).

Suppose that t = q = p+1 = dim(v!) and v = v, By hypothesis, v C

2907, A9). Fix 89 C A907°) such that (8%) = viand & C 29(n) such that (5 ) = 9. We
will show that:

(6.15) If v9 has finite outcome along Ad(1"), then v4 C 89 C A(8%).

We leave it to the reader to verify with a similar proof that:

~q ~qxl
(6.16) If v7 has finite outcome along A%(n), then v1cd C MO ).
We have noted that:
(6.17) v4C k9 =Am)ANY(n).

We note that, in the notation of Lemma 6.8 (Alternating Initiator), 1 switches k! =

<
M) AAM). By hypothesis, (8 ) =97 =vi= (89" By (6.17), A)ard(n) = k4D vi.
Fix p¥! such that that v9 has finite outcome B! along A (1), let 1! = (B¥')-, and let
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u%! be the initial derivative of v4 along B¥!. As 84 C A% and (8%)" = v4, it follows
from (2.4) that vIA(B%!) = 9. By Definition 2.1, 7! has infinite outcome along %! C
A%1(), and by (6.2) and (6.10), u%*! C k1. As p¥!, k! C A% (1)), B! and k! are
comparable. It cannot be the case that 79! D k%!, else [u¥!,n%!] would be a primary
)»qil(n')—link restraining k%!, so by (2.10), n could not switch k, contrary to assumption.
By hypothesis, 1 does not switch any node = v!, so n%! = k%!, Hence n®! C k%! and
so p¥! C ke, By (2.8), %! is the longest derivative of v4 along A%!(1)), so all
initiators for S™! at nodes C )»qil(n') whose corresponding controller is a derivative of v
are C k%!, Now no initiator for S™! at any node along A%'(1") can have n%! as its
controller via Case 3 of Definition 6.3 unless there is a shorter initiator for S*! which has
n%! as its controller via Subcase 1.1 of Definition 6.3 ; and by Case 1 of Definition 6.3,
that shorter initiator must be p¥1. As v¥! is activated along A%!() iff ¥9*! is validated
along kqﬂ(n) and v¥! and ¥%! are derivatives of v4 and are controllers for sections of
S¥! it must therefore be the case that %! is an initiator for S¥! at p¥!. As A%!'() D
k%! D %! we have 89! D %! by Definition 6.3. So as v4 C A(8%Y), up(v¥!) = vd and
(%" has infinite outcome along p%*', it follows that A(8%1) D var(BH1) = 89, 50 (6.15)
holds.

Now consider any t such that 2 < t < q. First consider the case where v' has infinite
outcome along A'(1)"). Then all derivatives of v! along ktil(n‘) must have finite outcome
along 7\&1(7]‘). In particular, v*! has finite outcome along Ktil(n'), so the lemma follows
by induction in this case.

Next consider the case where v! has finite outcome [3&1 along M'(). By (2.5), Btil
- Xtil(n‘), so by (2.8), ([:’)til)‘ is the longest (and principal) derivative of v' along ktil(n‘);
hence v&! C (Btil)‘. As 8'is an initiator at A'(n°) if t < q, and by choice of ' if t = q, V!C
8'C A (), so vIABEN C 8'. By (6.8) or (6.15), 8' C A(d™h), so by (2.5), p=! C 8.
Now 8%! is an initiator for S*! and v&! at A®!(y), v C (B!, and up((B™')) =
up(v#!). By Lemma 4.3(i)(c),(a), (B=))" is restrained by a primary 8"!-link iff every
derivative of v'is restrained by the same primary 8“1 link; hence by Definition 6.3, the
controller v&! chosen for the initiator 8! is the longest derivative of v' along 8! 5o vl
= ([3&1)‘. Thus the lemma follows by induction. N

We now want to show that when the controlling node on T'is changed, then either
the new controller inherits axioms with the value it desires, or the axioms are corrected,
allowing the new controller to redefine those axioms. The situation differs with the type of
the requirement, so we prove different lemmas for each type.
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We begin with a requirement R of type 0. The situation will be as follows. M will
be 1-switching, causing weak control of a space to pass from v! to vlon TL If n=vl,
then - will cause something to be placed into the oracle set for the axioms newly weakly
controlled by ¥!, thus allowing ¥! to correct the axioms to the value which it predicts.
Otherwise, we will show that both v! and ¥ predict the same value for those axioms, so
no correction is necessary. To show that the predictions by v! and vl agree, we need to
go up to the smallest q such that upd(v!) = upq(Ol). An analysis of the situation on T9 will
enable us to go down to T%! and show that up®l(vl) is activated along kqﬂ(n') iff

g+l

upqﬂ(f/l) is activated along A" (1)). It will then follow from Lemma 6.9 (Outcome) that vl

is activated along A1) iff v is activated along A(m).

Lemma 6.10 (0-Correction Lemma): Fix n € TO. Suppose that S is weakly
controlled by v! at A(1") with initiator 8', S is weakly controlled by v!at M) with initiator

N N
§,8"' =8 ,and tp(v!) =0. Let k' = A(n)AMM). Then one of the following holds:

. . . S . 1
(i) v!isactivated along 8! iff v is activated along 0 .
1

(i) m switches k! C 8! and k! = v1.
Proof: Fix notation as in Lemma 6.8 (Alternating Initiator), and fix the least q

such that vd =%, If q = 1, then by hypothesis, either (i) holds, or | must switch v! and
(i1) will hold. So we may assume thatq > 1. Letp =q-1.
If vP is activated along AP(n)") iff 9P is activated along AP(n), then (i) follows from

1

Lemma 6.9 (Outcome) if " # v!, and (ii) follows if " = v!. So we assume that VP is

activated along AP(n") iff 9" is validated along AP()).

Suppose that q < dim(v!). By our assumptions, the conditions of (6.12) fail, so
we can apply Lemma 6.8 (Alternating Initiator) with t = q. By (6.10), k! C 8!, Asvi=
v3, it follows from (6.10) that v = viav? C 598" C x4 = AYm)ari(m). Thus the
outcome of v4 along A1) is the same as the outcome of v along A9(1), so vYis activated
along along Ad(n") iff 94 is activated along A4(n). (i) now follows from the second

conclusion of Lemma 6.9 (Outcome) if " # v!, and (ii) follows if " = v'.

Ny Ny
Suppose that q = dim(v'). By (6.10), A0 C P C 8°vd . Furthermore, as
tp(v 1y = 0, Subcase 1.2 or Case 2 of Definition 6.3 must be followed to define controllers
<P
and initiators on TP, so vP = (8P)- and P = (® ). (We note that if Subcase 1.2 is followed,
then as, by Subcase 1.1, all initiators for up(vP) = up(\A/p) are immediate successors of

up(Vp), it follows from Lemma 3.1 (Limit Path) and Lemma 3.3 (A-Behavior) that vP =

~ <P N N A
(8P)- and P = (& ).) Thus vPAYP C kP, Tt cannot be the case that vPv9’ D «P, else vPvv'
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would be the last node of a primary AP(n°)-link or AP(1))-link which restrains P, contrary to

(2.10) or Lemma 4.5 (Free Derivative). It cannot be the case that vPviP C kP, else &P v6
C kP. Hence vPv¥’ = kP, and (ii) holds. n

Suppose R is a requirement of dimension r and type 1 and that the space X is
assigned to R. Control of sections of X along a path A™!is divided among derivatives of
many different nodes of T". The following lemma, together with the requirement that the
construction of Section 7 respect implication chains, will ensure that all but finitely many of
these sections are controlled by nodes which are activated along A™! or all but finitely
many of these sections are controlled by nodes which are validated along A™! The lemma
will be used to analyze the situations which can occur when control of a space is
relinquished by 6™ to o™!. Condition (i) says that both 6™! and o™! want to declare
axioms with the same value, so the axioms declared by derivatives of ™! are safe for o™
Conditions (ii) and (iv) will be used to show that enough of the axioms declared by
derivatives of 0™! are corrected when control is interchanged. And condition (iii) will
allow us to show that the set of conflicting axioms is sufficiently thin, and so will not
interfere with the existence of the desired limit. The hypotheses placed on the lemma are
chosen to capture exactly the cases for which the lemma is used.

Lemma 6.11 (1-Similarity Lemma): Fix an admissible Al e [TO] and for all t < n,
let A' = AYAY). Fix r < nand 0! C 6! C ¢! C A™! such that 0! = 6™, up(o™l) =
up(6™h), (=)™ = 6™, tp(o™!) = 1, dim(c™!") = r, and 0™*! and ™! control (different)
sections of a space X at T=!. Fix ™! C v™*! such that (t*!)" = 6™! and assume that if ™!

has infinite outcome along !, then there is no derivative of up(6™ h along 6™!. Then one
of the following conditions holds:
(i)  o™!has finite outcome along t*! iff Gr_l has finite outcome along ™!,

r+1 r+1

(ii) o©"™!has infinite outcome along © ™1 has finite outcome along ™", and

there is a 0™*!-injurious primary rrﬂ—hnk [w=L 7™ such that
J.crtl c PL(O.ril ‘l:ril)
(iii) o™! has finite outcome along T

there is a primary T*!-link which restrains o™,

£l 5™! has infinite outcome along !, and

r+1 r+1

(iv) o™! has finite outcome along Tt 6™! has infinite outcome along T
up(o™!) C up(6™?), there is no primary t*!-link which restrains ™!, but

there is a ©* € PL(up(c™"),A(t"*!)) such that OS(c™") C TS(x").
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Proof: Suppose that (i)-(iv) fail, in order to obtain a contradiction. By choice of

r+1

r, as 0"! and 6™! control spaces at T, and by Subcase 1.1 of Definition 6.3, for all i < r-

1, the principal derivatives of o™! along out'(t*!) and 6™! along out'(t™!) must be
implication-free.
=1 We can assume, without loss

of generality, that 0™! is the shortest string satisfying the hypotheses, but not the

First suppose that 6™ has finite outcome along t
conclusion of the lemma for 6™, By the failure of (i), 6™ has infinite outcome along T*'.
As o™! controls a space at vl it follows from Definitions 6.3 and 6.4 that 6™! controls a
space at T, and so that out’(¥™*") is pseudotrue. Thus T*! must be implication-free, and
cannot require extension.

=1 and let T™! be the immediate

Let ™! be the initial derivative of up(6™') along ©
successor of 3™ along v™*!. We show that 3! controls a section of X at =L If ™! =
6™, then this follows by hypothesis. Otherwise, it follows from (2.8) that &"™*! has finite
outcome along T*!. Now by Lemma 4.5 (Free Extension), up(6™') = up(Gril) C M=
and up(6™) is A(t™!)-free. Furthermore, up(6™!) must be implication-free, else by
(5.23), ™! would not be implication-free and would not control a section of X at T
Hence by Lemma 5.16(iv) (Implication-Freeness), outo(%rﬂ) is pseudotrue. Now by

Lemma 4.5 (Free Extension), up®(&™') C A"%™!) must be A"(%™)-free, and by (2.9) and

&"™!is both the initial and principal derivative of up™(G™!) along ™!, By Lemma 5.17(iii)

(Assignment), 5= is *!-free and implication-free. Now iterating Lemma 4.6(1) (Free
Derivative) and Lemma 5.16(ii) (Implication-Freeness), we see that for all i < r-1, the
principal derivative of ™! along ™! is implication-free. It follows from Definitions 6.3
and 6.4 that 3™ controls a section of X at ¥™*!. Hence without loss of generality, we may

assume that 6™ = ™!

As up(Grﬂ) has no derivative along o™! and (ii) fails, (5.16) holds; hence as o™*!

controls a space at v#l it follows from Definition 5.2 and Subcase 1.1 of Definition 6.3
that for some 6™' C oL ((6™!,6™!,v™*1)) is an amenable (r-1)-implication chain along
A™!. But this contradicts Lemma 5.15(1) (Admissibility).

Now suppose that 3™! has infinite outcome along 1. As (i) fails, 6™! has finite
outcome along vl As (iii) fails, it follows from Lemma 4.3(i)(a) (Link Analysis) that
up(o™!) C M. As 6! = (t™*1), it follows from Lemma 4.5 (Free Extension) that

up(6™") C A(v™®!). Hence up(6™') and up(c™!) are comparable. Now ™! has infinite

r+1 r+1

outcome along T, so 6™ is the principal derivative of up(éril) along T™'. It cannot be
the case that up(6rﬂ) C up(o™)), else by Lemma 3.1 (Limit Path), there would be no
derivative of up(0™!) which is C 6™/, contrary to the hypothesis that ™! C 6™!. Thus by

the above, up(0™!) C up(6™").
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We now show that t™! requires extension for 6™, (5.1), (5.2), and (5.5)(i) follow
easily from hypothesis and the observations already made. The failure of (iii) implies
(5.3). We noted, following Definition 6.2, that every o™*!-injurious primary A(t™!)-link
[wh, 7] is 0™ !-correcting. Suppose that y* € PL(up(c™=!),A(t™1)) and TS(Y)NRS(0™)) =
@, in order to obtain a contradiction. First suppose that (5.13) causes y' to enter
PL(up(c™",M(t™!)). Then there is a u’ such that [u',y'] is a primary A(t™")-link
restraining up(0™!). Let E" be the immediate successor of y" along A(t™=!). Then y" €
PL(E), so [u,,y1] is up(c™"-injurious and restrains up(c™"). But then [u',y"] is up(c™})-
correcting, contrary to our assumption that (iv) fails.

Now suppose that (5.14) causes y" to enter PL(up(c™%),A(t™")), but (5.13) does
not. Then there are u* C up(c™!) C 8" = (6")- C 0" C &' such that 0" requires extension
but has no primary completion with infinite outcome along &', and as (5.13) did not apply,
y' € PL®LEHU{Y.  As out’(x™!) is pseudotrue, it follows from Lemma 5.5(ii)
(Completion-Respecting) that 6" has a primary completion k" along A(t™!) which has
infinite outcome along A(t™!). Fix of C A(t™*!) such that (o) = k*. By Definition 5.3
and Lemma 5.1(i) (PL Analysis), y' € PL(8",k")U{8"} C PL(E"). Thus [u',k"] is up(c™*!)-
injurious and restrains up(c™'). But then [, k"] is up(c™")-correcting, contrary to our
assumption that (iv) fails.

We conclude that (5.4) holds, and so that T™! requires extension for some o™l C
o™!. By Definition 5.6, T is not the completion of T*! for ™!, Hence by (5.21), t**!is
implication-restrained, and so outo(‘crﬂ) is not pseudotrue. But then by Subcase 1.1 of

r+1

Definition 6.3, 3™! is not a controller for a section of X at T, contrary to hypothesis. N

Because of the finiteness of the number of initiators for a given space X, we can
settle on an initiator which will control a given space along a path. However, it is possible
to have comparable initiators along a given path, each determining control of sections of the
same space at infinitely many nodes along the approximation to the path. The switching of
control is determined by the terminators. The next lemma will allow us to show that all but
finitely many axioms declared for a space controlled by a node of type 1 along A will have
the correct value.

Lemma 6.12 (1-Correction Lemma): Fix an admissible AeTand let A = K(AO).
Suppose that v C A! controls the space S along A" with initiator 8, and that tp(vl) = 1.
Assume that m C k C A%, wi(m®) = wt(S), 8' is the initiator for S at M(n*) and at A(k), but
not at any A(y) such that n C y C k. Then there is a u!' such that for all y € [n,k),
[ul,(A(n))1is a Vl—correcting primary A(y)-link with ul C 8' C (M(M))-, and ¥ switches
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(AMm))-. Furthermore, if § is the shortest pseudotrue node such that k € & C AO, then for
every node B! € PL(A(1))), there is a  such that k C p C € and f switches p.

Proof: By hypothesis, for all y such that y Cy C k, AM((1)) = A(y). As wt(n*) =
wt(S), it follows from (2.11) that wt(A(y)) > wt(S) for all y such that n € y C k. Thus
Case 3 of Definition 6.3 must be followed at A(n) to define (A(n))- as a terminator for 5!,
so there is a v!-correcting primary A(n)-link [u!,(A(n))-] with u! C 8! C (A(m))-, and
(M) has infinite outcome along A(1)).

As 8! C Al it follows from (2.6) that no vy such that n C y C k can switch any p'
c . By (2.10), no such y can switch any p! such that ' C p' C (AM(n))-. Hence by
(2.10), Mx) and (A(m)) must be comparable. Also, no y such that n € y C K can switch
(AM(Mm))-, else by Lemma 3.3 (A-Behavior), (A(y))- = (Mn))- and (A(y))- would have finite
outcome along A(y), so 8! would be the initiator for S at A(y). Hence for all y such that n C
vy C x, [ul,(M(n))] is a v!-correcting primary A(y)-link which restrains 5!,

Now as k cannot switch any p! C (A(1))-, as A(x) and (M(n)))- are comparable, and
as 8! is the initiator for S at Mx), [u!,(A(1))-] cannot be a primary A(x)-link, so Kk must
switch (A(m))-. If (M(n))- is not a primary completion, then PL(A(1)) = {(A(n))-}.
Otherwise, let (A(1))- be the primary completion of the immediate successor y!' of a node
ol along A(n). Then PL(A(n)) = PL(c!,A(m))U{c!'}. By Lemma 5.3(ii) (Implication
Chain) and Lemma 5.2 (Requires Extension), Kk must require extension for a derivative of
o, and so as € is pseudotrue, it follows from Lemma 5.5(ii) (Completion-Respecting) that
K must have a primary completion K C § which has infinite outcome along . By (5.19),
up(¥) = o!. Hence the immediate successor of K along € switches o!. By Lemma 5.1(ii)
(PL Analysis), PL(c!',A(n)) C PL(c!,(A(n))U{(A(M))}. As k switches (A(n))-, it
follows from (2.4) that A(k) = (A(1))(k), and that (A(r)))" has finite outcome along A(K).
Hence by Lemma 5.1(iv) (PL Analysis), PL(c!,A(1))) = PL(c',(A()))"). It now follows
from Lemma 5.12(i) (PL) and as x switches (A(n))- that every node in PL(c!,A(r))) must

be switched by some node in [K,K]. N

Suppose that X is a space assigned to a requirement of dimension r and type 2.
When k = r-1, control of sections of X along a path A™! s divided among derivatives of
many different nodes of T". The following lemma will allow us to use implication chains
to ensure that all but finitely many of these sections are controlled by nodes which are
activated along A™! or all but finitely many of these sections are controlled by nodes

which are validated along AL
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Lemma 6.13 (2-Similarity Lemma): Fix an admissible n € T, and o™! C ¥ C

6™ C vl C A™l(1) such that 0™! and 6™ are nodes to which the requirement R of

dimension r and type 2 has been assigned. Assume that 0™! = ™!, up(o™!) = up(6™",
(v = 6™ @) = 6™, and 6™! and 6™ are controllers at T and !, respectively.

Then one of the following conditions holds:

(i)  o™!has finite outcome along t"*! iff ™! has finite outcome along T™!,

el 6™ has infinite outcome along vl and

there is a primary t™!-link which restrains o™,

(ii) o™ has finite outcome along T

Proof: We assume that (i) and (ii) fail, and obtain a contradiction. We will be

showing, under additional assumptions, either that ((c™*!, ™! v™*!)) is an amenable

implication chain, or that T™! requires extension for ™!, We begin by showing that

certain clauses from (5.1)-(5.12), (5.15) and (5.16) hold without any additional
assumptions. (5.5)-(5.9) and (5.12) follow from hypothesis.

—r+1

As o™! and 6™! are controllers at T*!' and t*!

, respectively, it follows from

Subcase 1.1 of Definition 6.3 that for all i < r-1, the principal derivatives of o™!
r+1

along

outi(i ) and 6™! along outi(rril), are implication-free, and that out’@*) and out’(t*!)
are pseudotrue. Hence (5.1) and (5.10) hold.

We next show that we may assume, without loss of generality, that o™! (6&1,
resp.) is the principal derivative of up(c™!) (up(6™"), resp.) along T*' (!, resp.). This

r+l r+1 (.cril

is clearly the case if ™! (6™, resp.) has infinite outcome along T , resp.). Suppose

A~ 1]

that ™! (&6
derivative of up(0™!) (up(6™"), resp.) along T*!' (%!, resp.). By Lemma 5.15(iv)

, resp.) has finite outcome along gl (gl resp.), and let 5™ be the initial

(N).r: 1

(Implication-Freeness), one of the conclusions of the lemma must hold for in place of

A~

o™ (6™ resp.). If (i) holds for 3™, then (i) also holds for o™*! (6™, resp.). Suppose
that (ii) holds for 5™, and let [uW=!,™!] be the associated primary vl-link. If up(6™") C
M), then by Lemma 4.3(i)(a), (Link Analysis) [u™!,n™!] restrains o™! (Grﬂ, resp.).

Otherwise, by Lemma 4.3(i)(d) (Link Analysis), u™! = ™! so by (2.8), [u™!,n"™]
restrains 0™! (™!, resp.).

We next note that tp(a™!) = tp(6™)) = 2, so (5.4) holds, and if 6™! is a
pseudocompletion of ™!, then 6! is an amenable pseudocompletion of ™!, so (5.16)
will follow once the appropriate clauses of (5.6)-(5.12) are verified.

We now proceed by cases.

Case 1: 6™ has finite outcome along !, Then by the failure of (i), 6™! has

r+1

infinite outcome along T='. We will obtain a contradiction in this case, so may assume

without loss of generality that ™! has shortest possible length satisfying the properties of
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the lemma. (5.11) follows from the case assumption, so ("1, ™!, 1)} is an implication

chain. Now we have assumed that 5™/ is the principal derivative of up(6™ h along !, so

r+1 Aartl

as G™! has finite outcome along T, 0~ is an initial derivative. Hence up(Grﬂ) has no

derivative C 0™!, We have already noted that (5.16) holds, so ((o™*!,6™! t™#!)) is an
amenable (r-1)-implication chain. But then by Lemma 5.2 (Requires Extension), out(t=)
requires extension, so outO(rril) is implication-restrained, hence cannot be pseudotrue,
yielding a contradiction.

r+1

Case 2: 6™ has infinite outcome along !, We first show that ©*! requires

extension for some ™' C ™!, by showing that (5.1)-(5.5) hold for 6™! in place of v¥,
6™ in place of 8, and ! in place of n*. (5.2) and (5.5)(i) follow easily from
hypothesis. (5.1) follows from Case 1 of Definition 6.3 and the comments at the

beginning of the proof. (5.3) follows from the failure of (i1). And we have already noted
that (5.4) holds. Thus ! requires extension for some ™! C o™! But then, by
Definition 5.6, T*! is implication-restrained, so outO(trﬂ) cannot be pseudotrue. Hence by

r+1

Subcase 1.1 of Definition 6.3, 6™ cannot be a controller at T , contradicting our

assumption. N

The next lemma will be used to show that whenever necessary, axioms for type 2
requirements which need to be corrected when control is changed, will be corrected.

Lemma 6.14 (2-Correction Lemma): Fix an admissible n € ", Suppose that S is
weakly controlled by v! at A(n") with initiator 8!, S is weakly controlled by o1 at A(m) with

o1 o1
initiator & , 8' = & , and tp(vl) =2. Let k! = up(n"). Then one of the following holds:
N
(i) v!isactivated along 8 iff v! is activated along 0 .
(i) m switches k! C &' and dim(x!) = dim(v?).

Proof: Letr=dim(v!). Fix notation as in Lemma 6.8 (Alternating Initiator). If

viEl = ™1 then the proof follows as in the third paragraph of the proof of Lemma 6.10 (0-
1

ATE
A

Correction). Suppose that v
contradiction. As (i) and (ii) fail, it follows from Lemma 6.9 (Outcome) that v

We assume that (i) and (ii) fail, and derive a
r+l is
activated along iff v is validated along N,

We assume that r is even. A similar proof holds when r is odd. By (6.10) and
Definition 6.3, vi¥Iav™! C viEIAg™! € Al (y). Fix T 1! C A™!(1)) such that (T*!)- =
viEIAGEL and (o) = viElvg™L It follows by an easy induction that ' and ™! are
initiators for up™!(S), else either viELAGEL o viEl ™! would not be a controller for

up™!(S). There are two cases.
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Case 1: v' = v'. By the preceding paragraph, we can apply Lemma 6.13 (2-

r+l r+1A r+1

Similarity), to conclude that there is a primary Krﬂ(n)—link [u™! ™1 restraining v*'Av

By (2.10) and Lemma 4.5 (Free Derivative), k™! is both kril(n')—free and kril(n)—free; and
by (6.10), vIAv™! C k™! Hence n'*! C k=L,

r+1 o Tl
By (6.10), 8™'v& D k™ s0 by (2.1), wt(k™)) < wt(®™'v8 ). Now ! €
K else n"! would be a terminator for T along both A™!(1") and A™!(1)), so by (6.19)

r+l r+1

*1 could not be a controller at either of these nodes. Thus ! = k™!, 5o by Lemma

r+1

v
3.3 (X—Behawor), 1 switches ®™=". But then n't! is not an initial derivative, so by (2.9),

dim(me™!) > r-1; so (ii) must hold, yielding a contradiction.

r+l ~ Tl
Case 2: v/ =v". By (6.10), vi¥av! C §™!Ip §7 Cxlc ol By the
A 1l

rel el must form a primary (8'vd )-

+1 I'+1]

case assumption and as (i) fails, [v ,VIEIvY

link, so by (2.10) or Lemma 4.5 (Free Extension), k™! D vi=lvg™!  We now set n*! =

r+1

v ! and proceed as in the last paragraph of Case 1. n

Our final lemma shows that nodes coming from the true path of the construction
control spaces.

Lemma 6.15 (Initial Control Lemma): Fix an admissible A e [T O] and for all k <
n, let A¥ = A5(A%). Fix " C A"and r < n such that dim(Z") =r and tp(C") € {1,2}, let T™*!
be the principal derivative of C" along A™!, and let T" = up(C™*!). Let S be the space, Ser,
assigned to up(Z™?), and fix 8™ C A™! such that (8™!)" = C™*!. Then:
i) T* controls gIw@™)] along A™! with initiator ™.
(i) If T has infinite outcome along A', then infinitely many derivatives of T’
control spaces along A™!.

Proof: By Lemma 5.17(ii),(iii) (Assignment), T" and C™! are implication-free, T is
A'free, and T is A™!free.

By Lemma 4.6(ii) (Free Derivative) and Lemma 5.16(ii) (Implication-Freeness), we
see that if T' has infinite outcome along A', then ' has infinitely many implication-free

derivatives which are A*!-free. Fix a A™'-free and implication-free derivative &' of ¢’
along A™!, and fix E*' C A™' such that (E"") = €™, Note that, by definition, for all i <

r-1, the principal derivative of iril along Alis ii = (outi(‘grﬂ))'. By repeated applications
of Lemma 4.6(1) (Free Derivative) and Lemma 5.16(ii) (Implication-Freeness), we see that

for all i < r-1, ?;i is Al-free and implication-free. By Lemma 5.17(iv) (Assignment), § =
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out’(E™) is pseudotrue.
r+l
By Lemma 6.1(iv), (Finite Control), E*' is an initiator for S™C 1 at ™!, with

corresponding controller C™'. As E is pseudotrue, it follows from Definition 6.4 that &'

r+l _ ~
controls S™E T at €% with initiator £*!.  As €' is A™free and (™)) = T, g™!
cannot have a terminator along A™! else iril would be restrained by a primary A=!_Jink.
= r+l
Hence by Definition 6.4, Crﬂ controls SIE™)] along A™ln

7. Construction and Proof. Fix k = n and (b,c) € Z;. In order to show that AED

£T Af,kil), we wish to define a partial recursive functional Ag:lc( which is total on domain N
from oracle A, such that for each e € N, there is an x such that lim;®,(A,u,x) = limy
APS(AGV,X), and for all y, limg APK(AGV,y) exists. ApS(A:v,x) will be the value defined
by some C controlling (v,s,x,C) along AP for some s whenever such a C exists, where RC =

RS,{f,C for some e. (We recall that there is an additional limit which enters into the
computation, namely, the limit over stages at which we place elements into A and declare

axioms, which we must also take into account.) Thus all axioms declared for such A¢ will
be axioms for Ag:lé. We will take additional steps to ensure that Ag:lé is total on oracle A, by
defining this functional on arguments which are not in spaces being controlled, and will
prove that Agjlc( is a well-defined partial recursive functional and Ag:]é(AC) is total in Lemma
7.2 (Well-Definedness and Totality). Similarly, for j € {1,2}, the requirement RIX

e,b,c
requires us to define a functional A{;}Z for each (b,c) € Z; i, uniformly in e. We define this
function to contain the union of all functionals A¢ such that T deals with a requirement for
this fixed <b,c> e Zj’k, and take additional steps to ensure that A{;,kc is total on oracle A, by
defining this functional on arguments which are not in spaces being controlled. We identify
A,, with Az whenever A, and Ag are components of the same functional A{;}Z. (Thus if n

M
defines an axiom for A, , then that axiom is in existence for Ag as well.)

The decision about the action taken for a requirement associated with n € T is
based on our ability to force M,, to be true. M, will be equivalent to a IT;-sentence with a
single unbounded (universal) quantifier which will be part of a quantifier block

ds<swt(n)Vt=s, which is equivalent to Vt=wt(n)). (This quantifier will range over stages.)

[(wtm)]
’}"I 9
obtained from M, by dropping the quantifier block Is<wt(n)Vt=s and replacing all

Definition 7.1: Form € T, we say that M, is potentially true if the sentence M
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occurrences of s and t with wt(n)), is true.

The Construction

We define an admissible path A e [TO] by induction on lh(n) for n C A% We
begin by specifying that { ) C A%, Fix ncC A% If lh(n) = 0, then no axioms are declared
and all sets A® are empty for s < wt(r)). Assume that lh(n) = 0. We assume, by induction,
that 1 is admissible and completion-consistent via { ). In Step 1, we will determine an
admissible node?] such that n C ?] C A% We begin, in Step 1.1, by determining an
immediate successor 3 of 1. There will be three cases to the definition of 8, designed to
ensure that f§ is preadmissible. If § is completion-consistent via ( ), then we will set ?] = B.
Otherwise, Kk(n) will require extension for a unique k, and we will define 1?] to be the 0-

completion of 3 in Step 1.2. We will determine which elements are placed into sets in Step
2, and this will depend on the path chosen in Step 1. New axioms for our functionals are
declared in Step 3.

Step 1: (Path Definition.) We note, by induction, that n} is admissible and

completion-consistent via { ).

Step 1.1: There are three cases.
Case 1: m is a primary O-completion or a pseudocompletion. Set 3 = nA().

Case 2: The previous case is not followed and 7 is implication-restrained. Let 3

be a nonswitching extension of 1. (We take the activated extension if both possible
extensions are nonswitching, in order to satisfy (5.17)(ii).)

Case 3: Otherwise. Set p = nA(e0) C AU if M,, is potentially true, and f = n*(0)

C A otherwise.

It follows from (5.17) and (5.18) that B is preadmissible, and from Lemma 5.8
(Completion-Respecting Admissible Extension) that {3 is admissible. If 3 is completion-

consistent via { ), then the induction hypothesis holds at (3, and we set ﬁ = [ and go to Step
2. Otherwise, by Lemma 5.8 (Completion-Respecting Admissible Extension) and Lemma
5.6 (Uniqueness of Requiring Extension), there is a unique k, which we fix, such that

kk(ﬁ) requires extension. We now go to Step 1.2.
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Step 1.2: By Lemma 5.14 (Completion) we can effectively obtain the 0-
completion?] of kk(ﬁ). By (5.19) and Lemma 5.14 (Completion), ?] is admissible and

completion-consistent via { ), so the induction condition holds. Now go to Step 2.

Step 2: (Set Definition.) For each node it such that n C w C TA] , 7t is validated
along ?] and m is not the initial derivative of up(s) along ?], place wt(up(sr)) into AV
for all A € TS(;t). For each set A and all s such that wt(n) < s = wt(?]), we let A® =

AV MUx: x is placed in AY™*! for some m such that n €t C 1) and wi(w) < s}.

Step 3: (Declaration of Axioms.) We carry out this step only if TA] is pseudotrue.
Leto = ?] This step is carried out for each functional A = A{;}é and each (i,s,x) which is

potentially in the domain of A such that x < wt(Ma)), and x; < wt(A(o)) for all coordinates
x; of x. (Note that we identify functionals whose last coordinates are =, so choose to

ignore the last coordinate. If such an (x,t,x) is not controlled at o for any t and tp(R) €
{0,2}, then we will show in Lemma 7.2 (Well-Definedness and Totality) that (x,t,x) will
not be controlled at any p C A? for any t; hence it is safe to declare an axiom
Awt(a)(AWt(“);i,x) =0, and we do so in Case 3.3. And if tp(R) = 1, then terminators will

let us correct such axioms as required.) Let A = A_ be the oracle for A.

Case 1: Awt(Y)(AWt(O‘);i,x)J, = q for some q and y C . Set A(AV¥:x,x) =
Awt(v)(AWt(a) :x,x) for all t such that wt(y) < t = wt(a). The use of all such axioms is the use

of the axiom Awt(y)(AWt(o‘);i,x) = q.

Case 2: Case 1 does not apply, and there is a t < wt(c) such that (x,t,x) is in the
space controlled at a.. (Note that we identify functionals whose last coordinates are =, so
choose to ignore the last coordinate.) Fix the largest such t, and let <i,t,x> be in the space
controlled by v at a with initiator 8. We declare the axiom Awt(a)(AWt(a);i,x) =1if 62
vA(e) and Awt(a)(AWt(a);i,x) =0 if 8 2 vA(0). The use of each axiom so defined is
wt(Ma))-1.

Awt((x)

Case 3: Otherwise. Declare the axiom Ay q( ;X,X) = 0 with use

wt(Ma))-1.

The construction is now complete. For allr <n, let A" = kr(AO). We note that as

the induction hypotheses are satisfied, A is admissible. N
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Our first lemma provides upper and lower bounds on the use of any axiom on a
point controlled by some § € T°. The upper bound is used to prove that all functionals are

total on the required oracles. The lower bound is obtained only if tp(€) € {0,2}, and is
used to show that axioms are corrected when necessary. (Recall that correction of axioms
is unnecessary on a thin subspace of the space assigned to a requirement of type 1, so a
lower bound is unnecessary in that case.)

Lemma 7.1 (Use Lemma): Let & C A’ be given such that § is pseudotrue, and let s =
wit(E). Let A = A{-;’kc be a functional, and fix (x,wt(€),x) potentially in the domain of A such
that x < wt(M&)) and for all coordinates x; of X, x; < wt(ME)). Then:

(i) AJA%X,x) converges with some use u < wt(ME)).

(i) If ME) C MAY), then A wt(ME)) = A3l wt(M(E)).

(i) If j € {0,2}, v C &' C A(E) and (x,s,x) is in the space S such that v!

controls S at A(E) with initiator 8!, then wt(vl) < wt(él) < u, where u is the
use determined in (1).

Proof: (i): By (2.11) and Step 3 of the construction, A(A%X,x)| with some use
u < wt(M(E)).

(i1): By Step 2 of the construction, if z enters A, there is a &t C A such that z €
AVENAWCD) - s validated along m, and z = wt(up(rr)). If wt(up(rr)) < wt(A(E)), then
as ME) C k(AO), it follows from (2.1), (2.4), and (2.6) that &~ C § and so that wt(x) <
wt(E). Hence z € AV O wi(A(E)).

(iii): Suppose that v! C 8! C A(E) and (x,s,x) is in the space S such that v!
controls S at A(§) with initiator 8! (Note that we identify functionals whose last
coordinates are =, so choose to ignore the last coordinate.) By (2.1), wt(vl) < wt(él). Let
y=xifk=dim(vl)=1andj=tp(v!) =0, and let y = X, if k = dim(v!) > 1. By (6.4)
and (6.6), Wt(él) <y =< wt(A(§)). By Step 3 of the construction, At(AE;i,x) diverges
unless t = wt(u) for some u C A such that wt(A(n)) >y. Hence by (2.11) and Step 3 of
the construction, all axioms At(AE;i,x) = q which are ever declared have use u = wt(A(n))-

1 for some such u, souz=y = wt(dh). n
We now begin to show that all requirements are satisfied. We first show that the

functionals which we define are partial recursive, total on the appropriate oracles, and well-
defined.
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Lemma 7.2 (Well-Definedness and Totality Lemma): For all jO< 2, k < n and
(b.c) EZjy, A{;}Z(AC) is total and A{;}Z is a well-defined partial recursive functional.

Proof: By Step 3 of the construction, all functionals are partial recursive, and new
axioms are not defined when an axiom from an oracle compatible with A_ already exists, so

A{;E(AC) is well-defined. Fix x and X. Any axiom A{;i(AC;X,X) = q which is ever declared
at 1 C A" has use < wt(A(m)), and furthermore, wt(A(s)) > x and wt(A(m)) > x; for all
coordinates x; of x. By Lemma 5.17(v) (Assignment), there are infinitely many nodes 5t C
AY such that m is Atrue and pseudotrue, x < wt(A(m)), and x; < wt(A(m)) for all
coordinates x; of X. By Lemma 7.1(ii) (Use), Al wt(A()) = AV wt(A(%)), so as the
use of ALS(AXX) = q is < wt(h()), ALS(AXX) = ALK(AY™ixx). Thus ALK(A) is
total. N

The next lemma establishes the existence of all (iterated) limits except for the
outermost limit, and relates the limiting value to the outcome of a controller, should the
latter exist.

Lemma 7.3 (Convergence and Correctness Lemma): Fix a requirement R =
Rjé”rb’c, and let A = A%;fc be the functional associated with R. Fix k € [1,r-1]. (Thus we
explicitly exclude the case where dim(R) = 1.) Letp =r-k+1. Fix uy,...,up.1,x € N, and
let S = {(u},....up ) IxN*x{(x)} if ] € {0,2} and S = {(uy,....up)}xN " x{(x)} if j =
1. (Note that we use identification of axioms here, so that S = {(uy,... ,upil)}xka{(xE)}
or {(uy,... upy ) }xN*"'x{(x,E)} for some &.) Then:

(i) If tp(R) € {0,2}, then limup...limumA(AC;ul,...,uril,x)J, € {0,1}; and if
tp(R) = 1, then limup...limuIA(AC;ul,...,ur,x)J, € {0,1}. In both cases,
define this value to be L(uy,...,up.1,X).

(i) If vK controls S along A¥, then L(u;,...,u,,x) = 1 iff V¥ is validated along
AX,

(ii1) If S is not controlled along A¥ and only finitely many sections of S are
controlled along A*! then L(uyp,...,ups,x) = 0.

Proof: We proceed by induction on k, considering various cases.
Case 1: k=1 (sop=r).

Subcase 1.1: j=1. By clause (iii) of Lemma 6.1 (Finite Control), there are only
finitely many initiators for S on T'. Suppose first that S is controlled along Al By (6.7),
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we can fix v! C 8! C 1! C Al such that for all p! C A with p! 2 <!, S has controller v!
and initiator 8' at p!. By Lemma 3.1 (Limit Path), we can fix  C A such that M) =Tl
Suppose that u, = wt(n)) and an axiom Awt(g)(AZVt(g) ;Up,...,Uu,X) = qis declared at & where 1
C e C A% If S has controller v! and initiator &' at A(E), then we set q=0if v!is activated
along 8!, and q = 1 if v! is validated along &'.

If the controller of S at A(E) is not v! or the initiator for S at A(E) is not 8!, then by
Lemma 6.12 (1-Correction), there is a v!-correcting ME)-link [u!,7!] such that u! C 8! C

1

nt'. By the construction and (2.1), any axiom Awt@(AZVt(E) ;Uup,...,u,x) = q declared at §

(but not in existence at € *) has use wt(A(E))-1 = wt(nt'). As S is controlled by v! with
initiator 8' along Al, it follows from Lemma 3.1 (Limit Path) that there is a shortest p D §
such that S is controlled by v! with initiator 5! at A(p), and note p that is pseudotrue. By
Lemma 6.12 (1-Correction) and the construction, as [u',x'] is a primary v!-correcting
link, there is a [31 C n! such that A, € TS(BI) and wt(Bl) is placed in A, at some 7y such that
E Cy C p. Furthermore, when axioms are changed on a fixed argument at any node ﬁ C
AO, the use of the axiom declared at ﬁ is Wt(k(ﬁ)—l), so by (2.11) and (2.1), if an axiom
Awt@(A‘CNt@ ;up,...,U,X) = q is in existence at y*, then it has use = wt(t!) = wt(ﬁl). But
this allows us to define a new axiom Awt(p)(AX’t(p);ul,...,ur,x) = q, where q = 0 if vl is
activated along 8!, and q = 1 if v! is validated along ', By Lemma 7.2 (Well-Definedness
and Totality), we see that (i) and (ii) hold in this case.

Suppose that S is not controlled along Aland only finitely many sections of S are
controlled along A’. We note that by Lemma 5.17(v) (Assignment), there are infinitely
many pseudotrue nodes C AC. By Lemma 6.1(iii) (Finite Control), there are only finitely
many initiators for S on T!, and as S is not controlled along Al every initiator for S at

some node C A! has a terminator along Al Thus there is an ncC A such that for all o C
A such that o D 1, S has no controller at A(a); so every initiator & C A for a section of S
at any node along A® must satisfy & € m. As only finitely many sections of S are

controlled along A and there are infinitely many pseudotrue nodes along AY, each such &
has a terminator along A% If nCncC A and n properly extends each such terminator,
then no section of S is controlled at any node along A which extends 1, so by (6.6), if sti!

is controlled along AY, theni < wt(n). (i) and (iii) now follow from Case 3 of Step 3 of the
construction.

Suppose that S is not controlled along Al but infinitely many sections of S are
controlled along AY. As in the preceding paragraph, we see that there are only finitely
many initiators for sections of X along A% As infinitely many sections of S are controlled
along A% there is a longest initiator, for a section of S, along A% which has no terminator
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along along A. Let v be the controller corresponding to this initiator. Then by (6.7), for
all but finitely many sections Y of S, v will control Y at all sufficiently long pseudotrue p C
A% So for all but finitely many u,, the axioms Awt(‘g)(Ayt@;ul,.--,Ur,X) = q which are

declared have value q determined by the outcome of v along A, (i) now follows.

Subcase 1.2: j&€ {0,2}. (Note that no limit is being computed, and
L(uy,...,u4q,X) just gives the value of an axiom.) Recall that, by (6.7), a space is
controlled by a node along a path iff it is controlled by that node at all sufficiently long

pseudotrue nodes along the path. If S is not controlled along A' and no section of S is
controlled along AO, then as controllers are never terminated along AO, all axioms
Awt@(Al’Vt@ ;Uup,...,U,1,X) = q will be declared in Case 3 of Step 3 of the construction and
will set q =0, so (1) and (iii) follow from Lemma 7.2 (Well-Definedness and Totality). If

S is not controlled along A! but some section of S is controlled along AY, then (i) follows
from Lemma 7.2 (Well-Definedness and Totality). As controllers are never terminated

along A, infinitely many sections of S will be controlled along A% so the hypothesis of
(iii) fails.

In order to complete the verification of (i) and (ii) for j = 1, it suffices to verify the
following condition, under the assumption that S is controlled along Al

(7.1) Forallmandv!, ifn C Alis pseudotrue and v! controls S at A(n), then
Ao AY ™ 3u g, upy,x) = 1iff v! is validated along A",

We proceed by induction on lh(n) for n pseudotrue. Given u,,;, let 1 be the shortest
string for which Awt(no)(AZ”(”");u] ,...,Ur.1,X){, and note that by Step 3 of the construction,
Ny is pseudotrue. If n = m, then by the construction, we define
Awt(n)(AZVt(“);ul,...,ur_l,x) = q for some g, and the value chosen for q is the one satisfying
(7.1) if there is a v! which controls S at A(v). Suppose, by induction on lh(n) with n
pseudotrue, that (7.1) holds for p, where ny € p and p is the longest pseudotrue node C
1. By Lemma 6.7 (Loss of Control), (7.1) will hold at  through the absence of a
controller, unless there is a controller v! and initiator 8' for S at A(p); so we may fix such
vland 8'. Let u be the use of the axiom A
Lemma 7.1(iii) (Use), wt(d') =< u.

If 8! C M), then by Lemma 6.6 (Constancy of Initiator), v! controls S at A(1)
with initiator 8', so (7.1) follows by induction. Suppose that 8! & AMm), and fix the
shortest B such that p C f C m and 8! € A(B), and fix «! such that p switches x!. By
Lemma 6.7 (Loss of Control), (7.1) will hold for n if S does not have an initiator and

wipy AL P, %) = g, and note that by
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controller at A(f3); thus we may fix an initiator 61 and controller v! for S at k([ﬁ) and note

that, by our assumption, 8! = 61. By (6.10), 61 C AP CAPBH, so 61 C x!c sl
Hence we may apply Lemmas 6.10 or 6.14 (Correction).

If conclusion (i) of the relevant Correction Lemma holds, then (7.1) follows by

induction. If conclusion (ii) of the Correction Lemma holds and tp(vl) =0, then f* = v!

and we place wt(x!) € AZVt(ﬁ)\A‘CNt(Bi). And if conclusion (ii) of the Correction Lemma
holds and tp(vl) = 2, then dim(p*) = dim(v!) and by Lemma 2.2(iv) (Interaction), we
place wt(x!) € A;Vt(ﬁ)\A‘c’Vt(ﬁi). As k! C 8!, it follows from (2.1) that wt(k!) < wt(d') = u,
and so that szt(n) I u = A?t(p) I" u. Now axioms are only defined at pseudotrue nodes, so

the construction declares a new axiom A (Ag’t(m;ul, ...,Up1,X) | to satisfy (7.1).

wt(n)

Case 2: k > 1. By induction, the lemma holds for k-1.

Subcase 2.1: S is controlled by v¥ along AX, By Lemma 6.3 (Thick Control), a
thick subset of S is controlled along Ak by derivatives of vK which are validated along
AM1if vE is validated along A¥, and are activated along A**!if v¥ is activated along A¥. (i)
and (ii) now follow by induction.

Subcase 2.2: S is not controlled along A¥and only finitely many sections of S

are controlled along AL By Lemma 6.5(iii) (Non-Control), there are only finitely many i

such that a section of Sl is controlled along AR

(i) and (iii) for k-1.

. (1) and (iii) now follow inductively from

Subcase 2.3: S is not controlled along A¥, but infinitely many sections of S are
controlled along AR By Lemma 6.4 (Indirect Control), all but finitely many sections of S
are controlled by a fixed node along AR (i) now follows from (i) and (ii) inductively. n

The next lemma relates the outcomes of nodes which are critical for axiom
definition, to the truth of the sentences assigned to those nodes.

Lemma 7.4 (Accuracy Lemma): Fix k <n and Ek C AX such that k = dim(‘gk) and Ek
is A¥-free and implication-free. Then ?gk is validated along AR iff Mgk is true.

Proof: Case 1: k=0. Let £ = £°. Recall that M is a I1;-sentence beginning
with a block of bounded quantifiers and followed by Isswt(n!)Vt=s S, where S is
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quantifier-free and n! = up(€).

Case 1.1: € is validated along A’ We first show that M is potentially true, and
all uses in Mg are < wt(E), under the weaker assumption that § C Ais implication-free.

We proceed by induction on Ih(§). There are two cases.

Case 1.1.1: E is not a primary O-completion or an amenable pseudocompletion.
Then by the construction, M is potentially true, and by (0.1), all uses in M are < wt(§).

Case 1.1.2: § is a primary O-completion or an amenable pseudocompletion.
Thus tp(§) € {1,2}. If € is a primary completion, fix 1 such that § is a primary completion
of 1, and let y =n* And if € is a pseudocompletion, fix the shortest y such that € is a
pseudocompletion of vy, and fix n C & such thatn* =vy. By (5.5)(ii) and Lemma 5.13
(Amenable Implication Chain) if dim(§) > 1 and by (5.1) or (5.10)(i) if dim(§) = 1, y is
implication-free.

By (5.2) or (5.11)(i), y is validated along &, so it follows by induction that MY is
potentially true, and by (0.1) and (2.1), all uses in M, are < wt(y) < wt(E). First suppose
that § is a primary O-completion. By Lemma 5.12(i) (PL) and (5.19), all nodes [31 of T!
which are switched by nodes in (n,E] are in PL(up(§),Mn)). If dim(§) = 1 (and hence
tp(§) = 1), it follows from (5.4) that TS(Bl)ﬂRS(E) = () for each such [31. Suppose that
dim(€) =r > 1. Then by (5.5)(ii), there is an amenable 1-implication chain ((Oj,Gj,tj) r-1 =
j = 1) such that out(t!) =v. By Lemma 5.12(ii),(iii) (PL), {up™'(p"): p' €

PL(up(€),AM(1))} = PL(c™!, 1), and if we fix T%' C 1! such that (¥"*')- = 0™, then

1 r+1

either 6™' is a pseudocompletion of 6™!, or T*! requires extension. If T! requires
extension, then by (5.11)(i1), 6™ has finite outcome along =l 50 by Lemma 5.1(iv) (PL
Analysis) and Lemma 5.12(ii) (PL) and (5.19), {up(zt)): n™! € PL (o™ 1))} =
{up(=h): w#! € PL(0™!, 6™} = PL(up(6™'),A(T"*!)). Hence by Definition 5.4 if ™' is
an amenable pseudocompletion and by (5.4) otherwise, TS(Bl)ﬂRS(E) = @ for each such
61. Thus by Lemma 2.2(i) (Interaction) and the construction, Mg must be potentially true,
and all uses in Mg are < wt(E).

Now suppose that § is an amenable pseudocompletion. By (5.11)(i), vy is the
principal derivative of up(y) along §&. Hence by (2.11), (2.2), and (2.4), any element <
wt(y) placed in a set at any &t € (,E] is of the form wt(up(r)) with up(;t) C up(y), and 7 is
validated along €. By Lemma 3.1(i) (Limit Path), there must be a u C & such that [u,x] is

a primary &-link which restrains y. As § is an amenable pseudocompletion of vy,
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TS(wt)NRS(E) = @ for each such . Thus by Lemma 2.2(i) (Interaction) and the
construction, Mg must be potentially true, and all uses in Mg are < wt(§).

For both Subcase 1.1.1 and Subcase 1.1.2, we note that elements placed into sets
are of the form z = wt(up(v)) for v C AO, and z is first placed in a set A when s = wt(0)
and up(v) is validated along A(8) but not along A(8 *). Hence by Lemma 3.1 (Limit Path),
M will be true if no element < wt(€) is first placed in any A € RS(E) by any v 2 € such
that v C A", By Lemma 2.2(i) (Interaction), § does not place elements into any set in
RS(E). Fixn C A such that * = €. By Lemma 3.1 (Limit Path), it follows that that
M) = up(§) and for all v such that 1 C v C A°, A(v) 2 M). Hence the elements placed
into sets by v D & are of the form wt(a), where up(v) = o 2 A(w). By (2.1) and (2.2),
wi(up(v)) = wt(A(T)) > wi(out(A(m))) = wi(rt) > wi(E). Hence M is true.

Case 1.2: k =0 and § is activated along AC. M cannot be potentially true, else

the action taken for § would force § to be validated along A, Hence M cannot be true.

Case 2: k>0. By induction, we may assume that the lemma holds for k-1. Letv
be the principal derivative of § along AL 1t follows from Lemma 4.6 (Free Derivative)
and Lemma 5.16(ii) (Implication-Freeness), that v is A¥Lfree and implication-free, and if
€ has infinite outcome along AF, then E has infinitely many A free, implication-free

derivatives u along A**!,
Suppose that k is odd. By Definitions 2.9 and 2.10, M is a sentence of the form

Qlyl...prpEliP(y,i) where P is II}, and the Qj are bounded quantifiers, and M, is
Quy;.. .prpEliswt(v)P@,i). If M, is true, then M is true. But then by induction, v is
validated along A**!, i.e., v has infinite outcome along A**!, so by the definition of the
function A, § has finite outcome along A¥ and € is validated along AXIf M, is not true,
then as v is the principal derivative of § along A it follows from (2.4) that all derivatives

Akil Ak:l Aktl

of § along are activated along , 1.e., have finite outcome along

Akil

. Hence by
induction, for every derivative u of § along which is A*Lfree and implication-free,
M,, is not true. For each such u, M, is Qlyl...prpfliswt(u)P(y,i). As there are
infinitely many such u, wt(u) is unbounded as we range over these u. Thus Mg is not
true. By induction, p has finite outcome along A for each such u, so by the definition of

the function A, § has infinite outcome along Ak, so & is activated along AK,
Suppose that k is even. We proceed as in the preceding paragraph, interchanging

universal and existential quantifiers, I and Z, and true and not true. N
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We now show that all requirements are satisfied.

Lemma 7.5 (0-Satisfaction Lemma): Every requirement of type O is satisfied.

O,r
¢,D0,C
for the requirement R as described at the beginning of this section. By Lemma

Proof: Fix arequirement R =R}, . of type O, and let A = Agji be the functional

5.17(i),(ii),(iv) (Assignment), R is assigned to a unique o' C A" such that 6" is A'-free and
implication-free, and that if t' is the immediate successor of o' along A', then out9(t") is
pseudotrue.

First assume that r = 1. Let x = wt(col). By Lemma 7.2 (Well-Definedness and
Totality), we can fix q such that A(A;x) = q. Let v (s, resp.) be the initial (principal,
resp.) derivative of o! along A and let B (8, resp.) be the immediate successor of v (i,
resp.) along AL, By Lemma 5.17(iv) (Assignment), 0 is pseudotrue, and by Lemma
5.17(iii) (Assignment), it is O-free and implication-free. By Lemma 5.16(iv) (Implication-
Freeness), 3 is pseudotrue and v is implication-free, and by Lemma 4.5 (Free Extension),
v is B-free. By Definition 6.4 and the construction, we declare an axiom Awt(B)(AZVt(B);x) =
z for some z € {0,1} with use wt(A(B)) -1, where z = 0 iff v is activated along p. As o' C
Al it follows from (2.6) that no a such that f C a C AY can switch any p! C o!. Hence
by Lemma 7.1(ii) (Use) and (2.1), A(A;x) = z unless D v, i.e., MP) & Al Suppose
this to be the case. Then the construction places wt(o!) into Ag’t(é). By (2.1), wt(o!) =
wt(M(B)) -1, so we define a new axiom Awt(g,)(AZVt(é);x) = 1 with use wt(A(d)) -1, and v is
activated along 6 C A AsolC Al, it follows from (2.8) and (2.6) that no o such that d
C o C A can switch any p' C 0!, so A(d) C A'. Hence by Lemma 7.1(ii) (Use) and
(2.1), A(Asx) = 1. Hence o! is activated along Aifz= 0, and o! is validated along Alif
z=1. By Lemma 7.4 (Accuracy), ¢! is validated along ALiff My, is true. Hence if M is
true then z = I, and if M5 is not true then z =0. Thus R is satisfied in this case.

Now assume that r > 1. Fix a space S = N'x{x} in the domain of the functional A.
First suppose that S is not controlled along A'. If infinitely many sections of S are
controlled along A™! then by Lemma 6.4 (Indirect Control), cofinitely many sections of S

are controlled along A™! by the same node v™*!

, so by Lemma 7.3(i),(ii) (Convergence and
Correctness) applied separately to each section of S, limu]. . .limumA(Ac;ul yeensUpy,X) = L
exists, L = 0 if vl is activated along A™', and L = 1 if v**! is validated along A™!.
Otherwise, by Lemma 6.5(iii), (Non-Control) and Lemma 7.3(iii) (Convergence and

Correctness) applied separately to each section of S, lim,, ...Iim, A(Aguy,...,u.,x) = 0.

Now suppose that S =S, : for some y' C A" associated with A such that y' controls
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S along A". Then by Lemma 6.3 (Thick Control) either cofinitely many sections of S are
controlled, along AL by derivatives of y' which are activated along A™! or cofinitely
many sections of S are controlled, along AL by derivatives of y" which are validated
along A™!. It now follows from Lemma 7.3(1),(i1) (Convergence and Correctness) applied
separately to each section X of S,: that lim .. lim, A(Aguy,...,up,wt(y") = L(wt(y"))
exists, and that y' is validated along A" iff L(wt(y")) = 1.

Recall that R is assigned to a 6* C A’ such that o' is A'-free and implication-free,
and that if t' is the immediate successor of 6" along A', then out(t") is pseudotrue. Hence
by Definition 6.4, o' controls S along A'. By the preceding paragraph,
lim, ...lim, A(Aguy,...u.,wt(o")) = L(wt(a")) exists, and o' is validated along A" iff
L(wt(o")) = 1. By Lemma 7.4 (Accuracy), 0" is validated along A" iff M is true. Hence
if My is true then L(wt(o")) = 1, and if M- is not true then L(wt(c")) = 0. Thus R is
satisfied. n

Lemma 7.6 (1-Satisfaction Lemma): Every requirement of type 1 is satisfied.

Proof: Fix a requirement R = Ré”f),c of type 1, and let A = Aé;fz be the functional
for the requirement R as described at the beginning of this section. By Lemma 7.3(i)
(Convergence and Correctness) for r > 1, L(i,e) = lirnUZ. . .limuIA(AC;i,uz,...,ur,e) exists
and takes a value in {0,1} for all e,i € N.

By Lemma 5.17(i),(ii) (Assignment), R is assigned to a unique k' C A" such that "
is A"-free and implication free. Let v™*! be the principal derivative of k" along A™! and fix
8! € A™! such that (8™")- = v*. By Lemma 6.15(i) (Initial Control), v'*! controls
{wt(d™!)}xN"x{e} with initiator 8! along A™!. By Case 1.1 of Definition 6.3, 8! is
also the initiator for {i}xN'x{e} at 8! for all i = wt(8™!). Now if i = wt(d™"), then
{i}xN'x{e} is controlled along A™! iff there is an initiator y**! C A™! for {i}xN'x{e}
such that there is no v™*!-correcting primary A™!-link [w=!,7=!] with w=! C y=! C
and by (6.7), if {i}xN'x{e} is controlled along A™!, then the initiator for {i}xN'x{e}
along A™! is the longest such y"=!. As vl is A™!-free, 8! is such a y™=!.
= wt(d™?), {i}xN'x{e} is controlled along A™', and if {i}xN'x{e} is controlled at any
v C A™! with initiator 8!, then &' D 8™,

Fix i and 6{*1 as in the preceding paragraph such that 61&1 has no terminator along

Hence for all i

A™!. Let v*! be the controller corresponding to 87*!. As v is A™!-free and implication-
free, it follows from (4.1) and Case 3 of Definition 6.3 that v{ﬂ D vl
First suppose that v'*! has infinite outcome along A™! We note that as v'*! is

r+1

A™!free, there is no primary A™!-link restraining v'*!. Furthermore, by Lemma 5.17(v)
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(Assignment), there are infinitely many t™*! C A™! such that out0(v™*!) is pseudotrue, so
by (5.28), every node along A™! which requires extension has a primary completion along

A™! which has infinite outcome along A™!; hence every component of PL(v'L g™ for

150 no such

some E%! C A™! gives rise to a primary A™!-link which restrains v
component can exist. If up(v*!) = up(viril), then by (2.8), v&*! = Vfil; SO vfil has infinite
outcome along A™'. And if up(v'*!) = up(vih), then as v*! is A" free, it follows from
Lemma 6.11 (1-Similarity, with 0™! = v**! and 6"™! = vI*!) that v*! has infinite outcome
along A™!.

Suppose that v"! has finite outcome along A™!. If up(v'*!) = up(v{il), then as v™!
is the principal derivative of k" along A™! it follows from (2.4) that vrﬂ has finite outcome
along AL Suppose that up(v®!) = up(vi* 1), and let nlﬂ be the immediate successor of

v along A™!. By Subcase 1. 2 of Definition 6.3, out’(m*!) must be pseudotrue, else vr”
Would not be a controller at n;*", so could not be a controller at any node extending nl- .

T Arﬂ—free, there is no primary A™!link restraining v,

We note that as v
Furthermore, by Lemma 5.17(v) (Assignment), there is a A™!-free node £*' C A™! such
that out®(E™!) is pseudotrue and N C £™! Fix the shortest such E=!. We show that
there is no p* € PL(up(v'h), ?\(nrﬂ)) such that OS(v'*!) C TS(p"). For suppose that such
a p" exists, in order to obtain a contradiction. By hypothesis, v'*! is A= free, so up(v'h)

is A'-free. By (4.1) and Lemma 4.3(iii) (Link Analysis), there are no primary k(%rﬂ)—links
restraining up(v'*!). Hence we may apply Lemma 5.18(ii) (Nonamenable Backtracking)
(with EX = %1 (n%)- = fil, N = A, 8 = up(v®!), and nk = n™ to conclude
that PL(up(v'®?), k(nfﬂ)) C {up(yr+1) y=le PL(\/r+1 =1y Hence we may fix p™! €
PL(v!E™) such that up(p™!) =

As out®(E™) is pseudotrue and by Definition 5.3, there are wW*! C p™*! C nf*! C
B! C €™ such that (B = w®!, [W*!, 7] is a primary E*"-link, and p™' € ﬁ(ﬁfﬂ) C
PL(Vr+1 =) Furthermore, either PL(Bm) = {ﬂ:”l} and [W*!m r+1] restrains vi*', or by
Definitions 5.3 and 6.2, ﬂ:{— is the primary completion of some node for Mi_ and ui—
v C w*! As vi*!is a principal derivative along E™!, it follows that u™! C v*! in both
cases. Hence as OS(v™®!) = OS(V”l) C TS(p") = TS(p™), [, r+1] is a vi* *L injurious

r+1 r+1 r+l

link. By the comments following Definition 6.2, [u; ] is a vi* -correcting link.

Recall that niril is the immediate successor of Vi along §rﬂ Now nrﬂ s a

terminator for n™! along £™!. By Case 3 of Definition 6.3, When a terminator for nf*! is

r+l

found at a'*! C Ari1 it is a terminator for all initiators for V ! which are C a , and so

vl cannot be a controller at any &™! such that a*! C &™!' C A™!. Thus by Case 3 of

Definition 6.3, vir— cannot control a space along AL contrary to assumption. This
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1)) such that OS(v!) C

1

contradiction shows that there is no p' € PL(up(Vr’-'l),k(n

TS(p".

It now follows from Lemma 6.11 (1-Similarity, with o™! = v*! and 6! = viril)
that Viril has finite outcome along A™! We thus conclude that for all i = wt(nf—'l), vf"l is
validated along A™Liff vi£! s validated along A™!. There are two cases:

Case 1: r > 1. By Lemma 7.3(ii) (Convergence and Correctness), Viril 18
validated along A™iff L(i,e) = 1. Butas v*!is the principal derivative of k" along A™ it
follows from (2.4) that v**! is validated along A™Liff " is validated along A". By Lemma
7.4 (Accuracy), K" is validated along A" iff M is true. Hence if M. is true then L(i,e) = 1
for cofinitely many i, and if M, is not true then L(i,e) = O for cofinitely many i. Thus R is
satisfied.

1 1

Case 2: r = 1. First suppose that M. is true. Forall o!,t' € T! ifol =t
then M1 = M. Hence for all sufficiently long & C AY, if € = «! then M is potentially

= K

true, so A(Agi,e) = 1 for cofinitely many 1.

Suppose that M, is not true. By Lemma 7.4 (Accuracy), v = vV is the initial
derivative of k! along A and v has finite outcome along A°. By the last sentence of the
paragraph preceding Case 1, v; = v has finite outcome along A’ But then by the

construction, A(Ai,e) = 0 for cofinitely many i, and R is satisfied. n

Lemma 7.7 (2-Satisfaction Lemma): Every requirement of type 2 is satisfied.

2,r

Proof: Fix a requirement R = R} . of type 2, and let A = A%ZE be the functional

for the requirement R as described at the beginning of this section. By Lemma 7.3(i)
(Convergence and Correctness), L(i,e) = limUZ...limumA(Ac;i,uz,...,urﬂ,e) exists and
takes a value in {0,1} for all i € N.

By Lemma 5.17(i),(ii) (Assignment), R is assigned to a unique k' C A" such that k*
is A"-free and implication-free. Let v™*!be the principal derivative of k" along A™! and fix
8! € A™! such that (8™')- = v*1. By Lemma 6.15(i) (Initial Control) and Definition 6.3,
vl controls {wt(8™!)}xN™!x{e} with initiator 8*' along A™', and 8™! is also the
initiator for {i}erilx{e} at 8! for all i = wt(8). Now if i = wt(8™"), then {i}erilx{e}
is controlled along A"V iff there is an initiator e A™! for {i}erilx{e} such that there
is no primary A™!-link [u*!, =1 with p*! C y**! C a1 and if o'*! C A™! and (o))" =
n™*! then wt(a™®!) < i. (By Lemma 2.2(iv) (Interaction), every primary A link is vi=EL

correcting.) Also, if {i}erilx{e} is controlled along Aril, then the initiator for
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{i}xN™!x{e} along A™' is the longest such y™=!. As v*! is A™ free, 8™ is such a y",
Hence for all i = wt(8™"), {i}xN™!x{e} is controlled along A™', and if {i}xN"=!x{e} is
controlled at any y™*' C A™!' with initiator 8!, then 8/*' 2 8™!. Fix such an i and let v'*!
be the controller corresponding to the initiator 8! for {i}xN"™!x{e} at y*I. As v'!is

A™! free, it follows from Case 3 of Definition 6.3 that vi*!' D v'*l.
+]
i

vEEL D vl it follows from (2.8) and (2.4) that vi*! has finite outcome along A™' iff v*!

has finite outcome along A™! And if up(vh) = up(v

r+l :

If up(vh = up(v*'), then as v™!is the principal derivative of k" along A™! and

1), then we note that as v'*! is AEL
free, there is no primary A™!link restraining v"*!; hence by Lemma 6.13 (2-Similarity,
with ™! = vl and 6™' = v*!), v*! has finite outcome along A™' iff v**! has finite
outcome along A™!. Thus for all i = wt(d™"), vI*! is validated along A™! iff v'*! is

1is validated

validated along AL By Lemma 7.3(i1) (Convergence and Correctness), viri
along A™! iff L(i,e) = 1. But as v"!is the principal derivative of k' along A™!, it follows
from (2.4) that v*! is validated along A™! iff k" is validated along A". By Lemma 7.4
(Accuracy), k" is validated along A" iff M is true. Hence if M, is true then L(i,e) = 1 for
cofinitely many i, and if M, is not true then L(i,e) = O for cofinitely many i. Thus R is

satisfied. N

Our main theorem is now immediate from the definition of the functionals A{;”kc,
Lemmas 1.1, 2.1, Lemma 7.2 (Well-Definedness and Totality), and Lemmas 7.5-7.7 (j-
Satisfaction for j < 2).

Theorem 7.8: Fix m € N, and let P = (Py,=<(,Py,=<(,f},...,Pp,<p.f) be a finite m-jump
poset such that P has least element O and greatest element 1. Then there is a finite set G

of r.e. degrees, and there are finite sets Gy = {d: 3a € G, a®O=0d)} for each k € [1,m]
such that the following diagram commutes.
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fy f fin

<P0,50> —><P1’51> ....... <Pmasm>
| | |
= | = | OO0 = |
! ' i ' \o
<G0a5>—> <G135> ....... <Gm95>
\ == |
C | C |Ooo C |
! ' i ! \o
R R(()') ........ eR(O(m))
Figure 7.1

Furthermore, the embedding maps 0 € Pyto 0 and 1 € P, to 0'. N

We have the following corollary, as proved in the introduction.

Corollary 7.9: The existential theory of RC<® =(R,0,0',s,=,...,<,,...) is decidable.
n

If J is any recursively presented <w-jump-poset, then we can modify our

construction to embed J into R(<®). Requirements are listed as before, and form a
recursive list. Each requirement has a well-defined dimension. We assign a given

requirement to a tree of the correct dimension. As only finitely many trees will have been

k+1

defined at any stage of the construction, and when a new tree T" "~ is needed, we assign the

finitely many requirements already assigned to T* and which need to be assigned to T in
the same order that the requirements were assigned to TX. All lemmas now can be proved

as before. It is also not difficult to show that there is a countable universal recursively-

presented <w-jump poset. Hence:

Theorem 7.10: Let P = (P, <q,P,<,f},....Pp,<m,fm--.) be a countable <w-jump poset
such that P has least element O and greatest element 1. Then for all m, (Pm,sm> can be
embedded isomorphically into R[O(m), 0(m+1)] so that Figure 7.1 commutes for all m € N.
Furthermore, the embedding maps 0 EPyto0 and 1 EPyto 0'. n

Slaman and Sui have noted that the methods of proof of Theorem 7.8 should work

for <w-jump usls in place of posets, and that we can add joins at all levels to our language
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and decide the corresponding 3I-theory if 1 is removed from the language. The
construction need not be modified. The fact that the target sets are complements of prime
ideals suffices to show that joins are preserved.

The methods presented in this paper will carry over to other priority arguments, if
certain basic properties are satisfied. One can weaken the requirement assignment process
to simultaneously assign requirements, and their derivatives, to the trees at all levels. Each
requirement will have a basic module on each tree, which will be a segment of the tree of
finite height. This assignment should provide the sentences generating action at each node
of each tree. To study the interaction between requirements, an injury analysis similar to
that provided by Lemma 2.2 (Interaction) is needed. A notion of control, different for each
requirement, will be needed to determine how axioms are to be declared and elements
placed into sets, and implication chains will be needed whenever a requirement needs to act
off the true path. One can isolate a guiding principle for the definition of implication
chains. Thus implication chains are to be built (and control relinquished) when there is a
primary link which, if later switched, corrects any action for the requirement.
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