
6.  Control of Spaces.  Our requirements will be of the form (j ® y) & (Øj ® c).  If

j seems to be true at a given stage of the construction, we take action to preserve the truth
of j, to make y true, and to preserve its truth.  If j seems to be false, we try to satisfy c

and to preserve its truth.  We will define a recursive true path   L0 Î  [T0] for the

construction.  Action taken for y and c is determined by nodes x Ì   L0, which try to

declare axioms for points in the space controlled by x, according to the apparent truth of j.
Thus we will assign spaces S (sets of points which have geometric dimension) to the node

x, define a functional Dx, and try to arrange that the value m for the axiom Dx(A;x,x) = m,

where OS(x) = A, is determined by the truth or falsity of a sentence Mx associated with x

for sufficiently many áx,xñ such that áx,s,xñ Î S .  (The coordinate s represents a stage of

the construction rather than an argument for a functional, so we separate it.)  In this case, x

will control S.  The exact definition of control will vary with the type of x, but we will try
to present the definitions of control for the three types of requirements in as uniform a way

as possible.  Fix a requirement R =  Re,b,c
j,r  for the remainder of this section, and so consider

the type  j and the dimension r of this requirement to be fixed.

Definition 6.1:  The spaces assigned to requirements of type j are specified as follows.

Given x Î Tk, let z = upn(x).  Suppose that R =  Re,b,c
j,r  is assigned to z.  The space Sx will

be defined only if k = r, in which case we set Sx = N r´{wt(x)}´{x}, wt(Sx) = wt(x), and

dim(Sx) = r if j = 0; we set Sx =   N r+1´{e}´{x}, wt(Sx) = e, and dim(Sx) = r+1 if j = 1; and

we set Sx = N r´{e}´{x}, wt(Sx) = e, and dim(Sx) = r if j = 2.  Whenever we specify a

section S = {áx1, . . . ,xr-kñ}´   Nu´{áx,xñ} of Sx, we define dim(S) = u, and wt(S) = xr-k if r

> k.  For each i Î  [k,r], we let  upi(S) = {áx1, . . . ,  xr±iñ}´   N i´{áx,xñ} if j Î  {0,2}, and

 upi(S) = {áx1, . . . ,  xr±iñ}´   N i+1´{áx,xñ} if j = 1.  Given u such that S =  upu(S), we define

up(S) = upu+1(S).  We identify two spaces Sx and   Sb whenever they agree in all but the last

coordinate and x º b, in which case we write Sx º   Sb.  n

We will define the set of spaces controlled by   nk at   hk  with initiator   dk (and

terminator   tk) below.  Let S be a space assigned to a node of  Tk.  If j Î {1,2}, then there
may be infinitely many nodes along a given path through  Tr which are candidates for
controlling S, so we may not be able to recursively identify the node which should control
S.  Thus we begin to define control on  Tr±1  for requirements of types 1 or 2, spreading out
the control of sections of S among many nodes.  Implication chains will be used for such j
to ensure that these nodes work together to produce the same output for the axioms they
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control on a subset of S which is large enough to ensure a particular iterated limit.  We do
define control on  Tr when j = 0, as there is no ambiguity, in that case, as to which node
should control the space.

Controllers for S will be nodes which are derivatives of a node b =   br Î   Tr such
that S is a section of   Sb.  Control of a space S associated with a node of type 0 or 2 along a

path   Lk Î  [Tk] will be determined when we reach the first   xk Ì    Lk such that wt(   xk) ³

wt(S) and  out0(   xk) is pseudotrue.  We impose the latter condition in order to prevent the
specification of axioms while conflicts about the value of the axiom captured by the
implication chain machinery remain to be resolved; so assume that  out0(   hk) is pseudotrue.

To determine control at   hk Î  Tk, we see if there is such a   xk Í   hk; if   xk exists, then the
node controlling S at   hk is the same as the node controlling S at   xk.  If wt(   hk) < wt(S),
then S is not controlled at   hk.  Nevertheless, in the latter case, we define a (potential)
controller   nk for S at   hk; this node would be the controller were control to be defined.
(Thus S may have a controller at   hk, but not be controlled at   hk.)  The (potential) controller
may be changed before we reach   xk, but will not change thereafter.  (We choose this
approach, rather than starting at   xk, because when we have to define control for
requirements of type 1, we need to revise our determination of the controlling node beyond

  xk.)  As we want the controller   nk for S at   hk to decide the value for axioms it controls, we

require that   nk Ì    hk, so that   hk will have a guess at   nkÕs outcome.  Initiators determine
when it becomes reasonable either to first define the control, or to define a new controller,
because we see the value we want for the axioms being controlled.   

Terminators for initiators will be defined if j = 2 and k = r-1.  A terminator   tk for

the initiator   dk will be the last node of a primary link [   mk,   tk] such that   mk Ì   dk Í   tk and
wt(   tk) < wt(S), and will have the property that elements entering the target set for the

terminator will enable us to correct axioms.  (We specify that   mk Ì   dk in order to be able to
show that, under certain circumstances, the corresponding controller is also restrained by
the same link.)  Terminators will help us show that the notion of control defined allows the
computation of iterated limits needed to satisfy requirements.  When the initiator   dk for the
controller   nk and the space S has a terminator   tk, then   nk forfeits its eligibility to control S.
However, if there is no controller to replace   nk, then we will still need to have derivatives
of   nk  controlling sections of S. We say that   nk influences S in this situation.

Control for requirements of type 1 will have a slightly different flavor.  In this case,
we have an extra dimension for the spaces controlled at each level, so in order to compute
iterated limits, we can allow finitely many axioms to produce the incorrect value on each
space of dimension 2 (one of the dimensions specifies stages for the construction, so we
are really computing a single limit).  This will be important, as we will not have the
automatic correction feature which is available for requirements of type 2.  To make use of
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this added flexibility, we allow terminators   tk to be defined even if wt(   tk) ³ wt(S), but do
not allow new initiators to have large weight.  We will thus eventually settle on a final
initiator for S along any given path, or decide that no initiator exists along that path.

As mentioned above, we will have to keep track of primary links [mk,pk] on Tk

which restrain nk and are safe for nk, and those which are not safe. The links which may

not be safe cause an element to be placed into some Aa Î RS(nk) by switching pk, and are

called nk-injurious. If such nodes also place elements into Ac Î  OS(nk), they will allow

axioms to be corrected.  When this is the case, [mk,pk] will be called nk-correcting.  In

order to remove [mk,pk] while preserving the admissibility of strings, additional nodes may

have to have their outcomes switched; these are the nodes in the set   PL(xk) defined below,

where   xk is the immediate successor of pk which determines that [mk,pk] is a primary link

along the given path.    PL(xk) is the set of nodes in PL(nk,   xk) which need to be switched to

make nk free, and which come from a specified component of PL(nk,   xk), or from the end

of a primary   xk-link restraining nk.

Definition 6.2:  Fix k < n, nk Î  Tk, and mk Ì  pk = (   xk)- Ì   xk Í hk Î  Tk such that

[mk,pk] is a primary hk-link.  If pk is the primary completion of some node   sk, let   PL(xk)

= PL((   sk)-,   xk)È{(   sk)-}, and let   PL(xk) = {pk} otherwise.  We say that [mk,pk] is nk-

injurious if RS(nk)ÇTS(b
k
) ¹ ¯ for some b

k
 Î   PL(xk), and is nk-correcting if OS(nk) Í

TS(b
k
) for some b

k
 Î   PL(xk).    n

We note that if [mk,pk] is a nk-injurious primary hk-link, dim(nk) = k, and tp(nk) =

1, then [mk,pk] is nk-correcting. For as mk ¹ pk and up(mk) = up(pk), it follows from (2.9)

that dim(mk) ³ k+1. Hence by Lemma 2.2(iii) (Interaction), [mk,pk] is nk-correcting. 

We will determine the spaces controlled by nk  at hk below.  This notion of control

will have the following properties.  If nk Î Tk is assigned the requirement R and controls S

at hk, then nk Ì hk, nk will be the unique node which controls S at hk, and if j Î {0,2},

then nk will control S at all b
k
 Ê hk such that  out0(b

k
) is pseudotrue.   The initiator for S at

hk will be the longest initiator appointed at any x
k
 Í hk which has no terminator along hk.

Also, if X is a space of the proper dimension to have sections  X[i] controlled on Tk, then

either only finitely many sections of X will be controlled along any L
k
 Î [Tk], or cofinitely

many sections of X will be controlled along L
k
 by nodes which are derivatives of a fixed

node nk+1 Î Tk+1; and if X is controlled along L
k+1

, then nk+1 will be the controller for X
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along L
k+1

. The definition below is arranged to ensure these properties.

We proceed by induction on r-k if j = 0, and on r-k-1 if j Î {1,2}, and then by

induction on lh(hk) for hk Ì  L
k
.  (Control will not be defined on Tr if j Î  {1,2};

implication chains will ensure the existence of the iterated limit for r = k.)  Let X be a

section of the space for which R wants to define axioms, with dim(X) = k+1 if j Î {0,2},

and dim(X) = k+2 if j = 1.  For each i Î N and hk Î  Tk, we determine the node nk Ì  hk

which is the controller for X[i] at hk, the node d
k
 Í hk which is the initiator for X[i] at   hk,

and those nodes Í   hk which are terminators for X[i] and some initiator for X[i] at   hk.    

Definition 6.3 (Initiators, Controllers, and Terminators):  Fix k £ r if j = 0, k <

r if j Î  {1,2},   hk Î   Tk such that lh(   hk) > 0, and a space S, and let   dk and   nk be,

respectively, the initiator and controller for S at (   hk)-, if these exist.  We determine whether
the the controller, initiator, and terminator for S at   hk exist, and if so, define those strings.
We will assume by induction that:

(6.1)   dk exists iff   nk exists.

Case 1:  We define controllers when a new initiator is found.  There are two
subcases.  Subcase 1.1 handles the base step, and Subcase 1.2 handles the inductive step. 

Subcase 1.1:  Either k = r, j = 0, and S =   S(hk)±; or k = r-1, j Î {1,2}, wt(   hk) £

wt(S), and up(S) =   Sup((hk)±); and in both cases, the principal derivative (outj(   hk))- of (   hk)-

along outj(   hk) is implication-free for all j £ k, and  out0(   hk) is pseudotrue.  Then   hk is the

initiator for S at   hk and (   hk)- is the controller for S at   hk. 

Subcase 1.2:  k < r if j = 0, k < r-1 if j Î  {1,2}, wt(   hk) £ wt(S), there is an

initiator   dk+1 for up(S) at l(   hk), but   dk+1 is not the initiator for up(S) at l((   hk)-).  Let   nk+1

be the controller corresponding to   dk+1.  Then   hk is the initiator for S at   hk.  The

controller   nk for S at   hk is the longest derivative of   nk+1 such that   nk Ì    hk.  (By (6.2)

below inductively, it will be the case that nk+1 Ì   dk+1, so such a derivative will exist.)

Case 2:  (We switch controllers and initiators when a new derivative of up(   nk) is

found.)  Case 1 is not followed, either k < r and j = 0 or k < r-1 and j Î {1,2}, wt(   hk) £

wt(S), up(   nk) controls up(S) at l(   hk), and up((   hk)-) = up(   nk).  Then   hk is the initiator for

S at   hk and (   hk)- is the controller for S at   hk.

98



Case 3:  Neither of the previous cases is followed, j Î {1,2},   nk and   dk exist, and

there is a primary   nk-correcting   hk-link [mk,(   hk)-] such that   mk Ì    dk Í  (   hk)-; and if j = 2,
then wt(   hk) £ wt(S) and k = r-1.  (Again note, as in the earlier description of terminators,

that we require that   mk ¹   dk.)  We call (   hk)- a terminator for S and   dk at   hk.  (Note that if j
= 1, then we allow   nk-correcting primary links to cause a change of control, even if we
discover them at a node whose weight exceeds wt(S).  This is necessary, else we would
not be able to correct axioms for a thick subset of up(S) when control is switched.) 

Subcase 3.1:  There is no controller for S at mk.  If j = 1, then there is no

controller or initiator for S at   hk.  If j = 2, then   nk (   dk, resp.) is the controller (initiator,
resp.) for S at   hk.

Subcase 3.2:  Otherwise.  By (6.1) inductively, let   dk and   nk be, respectively,
the initiator and controller for S at mk.  Then   nk is the controller for S at   hk; and the

initiator for S at   hk is   dk if wt(   hk) > wt(S), and is   hk if wt(   hk) £ wt(S).

Case 4:  Otherwise.  The initiator and controller for S at   hk are   dk and   nk,
respectively, if these exist, and fail to exist otherwise.

In all cases, we say that   tk is a terminator for S and   dk along   hk (   Lk Î  [  Tk],

resp.) if   tk is a terminator for S and   dk at some   xk Í   hk (   xk Ì   Lk, resp.).  n

The following properties are easily verified by induction on lh(   hk), as is (6.1).
(6.5)(ii) follows from Lemma 4.1 (Nesting), (6.2), and Case 3 of Definition 6.3, where
terminators are defined to restrain the previous initiator.  

(6.2) If   nk controls S at   hk with initiator   dk, then   nk Ì   dk Í   hk.

(6.3) If   dk is the initiator for S at both   hk and   hk and   nk and   nk are the controllers for S at
hk and   hk, respectively, then   nk =   nk.

(6.4) If   dk is the initiator for S at   hk, then wt(   dk) £ wt(S).

(6.5) Suppose that   hk Ì    hk, and   dk and   dk are the initiators for S at   hk and   hk, 
respectively.  Then:

(i) If wt(   hk) £ wt(S), then   dk Í   dk.
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(ii) If wt(S) £ wt(hk), then   dk Í   dk; and if j Î {0,2}, then   dk =   dk.

We are now ready to define control.  Recall that control is supported only on
pseudotrue nodes, as defined in Definition 5.9.  There is a corresponding notion at non-
pseudotrue nodes which we call weak control.  Control is replaced by influence for
requirements of type 2, when the initiator has a terminator.

Definition 6.4 (Control):  We say that   nk weakly controls S at   hk if   nk is the
controller for S at   hk corresponding to the initiator   dk, there is no terminator for   dk and S
along   hk, and

(6.6) wt(S) £ wt(   hk).

If   nk is the controller for S at   hk with initiator   dk, there is a terminator for   dk and S along
  hk, and (6.6) holds, then we say that   nk weakly influences S at   hk.    nk controls

(influences, resp.) S at   hk if   nk weakly controls (influences, resp.) S at   hk and  out0(   hk) is

pseudotrue. Given   Lk Î   Tk, we say that   nk weakly controls (weakly influences, resp.) S
(   dk is the initiator for S, resp.) along   Lk if   nk weakly controls S (   dk is the initiator for S,

resp.) at all sufficiently long   hk Ì    Lk; and that   nk controls (influences, resp.) S along   Lk

if there are infinitely many   hk Ì    Lk such that  out0(   hk) is pseudotrue, and   nk controls

(influences, resp.) S at all sufficiently long   hk Ì   Lk such that  out0(   hk) is pseudotrue.  n

We note that control along   Lk and weak control along   Lk coincide if there are

infinitely many pseudotrue   hk Ì   Lk.

Suppose that   Lk Î [  Tk].  The following fact now follows easily from (2.1), Lemma
4.1 (Nesting), (6.5), and (6.6), as there must be a longest initiator along any path if there is
any initiator along that path:

(6.7) Suppose that   xk Ì    Lk and   xk extends all initiators and properly extends all 

terminators for S at any   hk Ì    Lk.  (If j Î {0,2}, this will be the case if wt(   xk) ³ 

wt(S).)  Then   nk weakly controls (weakly influences, resp.) S (d
k
 is the initiator for

S, resp.) along   Lk iff   nk weakly controls (weakly influences, resp.) S (d
k
 is the 

initiator for S, resp.) at   xk iff   nk weakly controls (weakly influences, resp.) S (d
k
 is

the initiator for S, resp.) at every   hk such that   xkÊÍ    hk Ì    Lk.  Furthermore, if   nk 

weakly controls S along   Lk,   xk Í   hk Ì   Lk, and d
k
 is the initiator for S at   hk, then 
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d
k
 is the longest node which is an initiator for S at some   gk Í   hk and which has no 

terminator along   hk.

The next lemma specifies some properties of the control process.

Lemma 6.1 (Finite Control Lemma):  Fix k £ n, an admissible   Lk Î  [Tk], and a
space S assigned to a node working for requirement R, where k £ dim(R) if j = tp(R) = 0,

and k < dim(R) if tp(R) Î {1,2}.  Then:

(i) {   nk Î Tk: $   hk(   nk weakly controls or weakly influences S at   hk)} is finite.

(ii) If j Î {0,2} then:

 (a)  |{   nk  Ì   Lk: $   hk(   hk Ì   Lk & 
  nk weakly controls or weakly influences S at   hk)}| £ 1; and

(b) |{   dk Ì   Lk: $   hk Ì   Lk(   dk is an initiator for S at   hk & 
S is weakly controlled or weakly influenced at   hk)}| £ 1.

(iii) Suppose that k < dim(R).  Let F be the set of initiators for S on Tk. Then F is finite

and for all L Î [Tk], S is weakly controlled along L iff there is a   dk Î F such that 
  dk Ì L and there is no terminator for   dk and S at any   hk Ì L.

(iv) If   nk  Ì   dk Ì   Lk, (   dk)- =   nk, k = dim(R)-1, and   nk is a controller at some   hk Ì 
  Lk, then   dk is an initiator at   dk.

Proof:  (i):  If k = dim(R), then tp(R) = 0, and there is a unique node on Tk which

controls S.  Suppose that k < dim(R), and that   nk Î  Tk and   nk weakly controls or weakly
influences S at   hk.  By (2.1), (6.2), and (6.4), wt(   nk) £ wt(S).  But as the weight function

is one-to-one, there are only finitely many   nk Î Tk such that wt(   nk) £ wt(S).

(ii):  If k = dim(R), then tp(R) = 0, and there is a unique controller   nk for S on Tk.

Furthermore, for any   hk Î Tk, if S is weakly controlled at   hk with initiator   dk, then   nk Ì
  hk and   dk is the immediate successor of   nk along   hk.  

Suppose that k < dim(R).  By (6.6) and Definition 6.4, if S is weakly controlled or
weakly influenced at   hk, then wt(S) £ wt(   hk).  (ii)(b) now follows from (6.5)(ii).  (ii)(a)
follows from (6.3).

(iii): Suppose that k < dim(R).  If   dk Î F then by (6.4), wt(   dk) £ wt(S). As the

weight function is one-to-one, F is finite. By Definitions 6.3 and 6.4, if nk weakly controls

S along L Î [Tk] then L must extend some element   dk of F such that there is no terminator

for   dk and S along L. Conversely, suppose that L extends an element   dk of F such that

there is no terminator for   dk and S along L. By (6.7) and Definitions 6.3 and 6.4, S is
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weakly controlled along L.

(iv):  We note that if tp(R) = 0, then l(   dk) É up(   nk), so l(   dk) extends an immediate

successor of up(   nk), and so S is weakly controlled along l(   dk).  Thus (iv) can fail for
tp(R) £ 2 only if   nk is defined as the controller for some space through Case 3 of Definition

6.3.  Suppose that   nk is defined by that case.  Then   nk must be a controller at some   xk Ì
  hk.  Hence if we fix the shortest   xk Ì    Lk at which   nk is a controller, then Subcase 1.1,

Subcase 1.2, or Case 2 of Definition 6.3 must be followed at   xk.  But then   xk =   dk, and   dk

is the initiator corresponding to   nk at   dk.  n

Our next lemma spells out some important relationships between initiators,
terminators, and weak control for requirements of type 1.

Lemma 6.2 (Terminator Lemma):  Fix k < n-1 and   Lk Î  [  Tk], and let   Lk+1 = l(   Lk).
Fix a space X which is assigned to a requirement of type 1 and is weakly controlled by

some node of  Tk+1, and fix i Î N.  Then:

(i) If   dk Ì   Lk is an initiator for  X[i] at   dk, and u ³ i, then   dk is an initiator for  X[u]

at   dk.

(ii) Suppose that   dk+1 Í   hk+1 Ì   Lk+1 are given such that   dk+1 is the initiator for X

at all   gk+1 such that   hk+1 Í   gk+1 Ì   Lk+1, and there is no initiator   dk+1 É   hk+1 

for X (the latter condition includes those   dk+1 which may not lie along   Lk+1).  

Let   hk  = out(   hk+1).  Suppose that   hk Í   dk Ì   Lk,   dk is an initiator for  X[i], 

and   dk+1 is not the initiator for X at l(   dk).  Then there is a terminator for  X[i] 
and   dk along   Lk.  

Proof:  (i):  By (6.4), wt(   dk) £ wt(  X[i])  = i; so as u ³ i, wt(   dk) £ wt(  X[u]) = u.
By induction on lh(   dk) and (2.1), if an initiator for one of  X[i] or  X[u] exists at (   dk)-, then
that node is the initiator for both  X[i] and  X[u] at (   dk)-.  (i) now follows from Definition 6.3.

(ii):  Let   dk+1 be the initiator for X at l(   dk).  As   dk Ê   hk = out(   hk+1) and hk+1 Ì

  Lk+1, l(   dk) Ê   hk+1 by (2.4) and (2.6).  Hence by choice of   hk+1,   dk+1 Í   hk+1.  Now by

(6.7),   dk+1 is the initiator for X at   gk+1 iff   dk+1 is the longest node which is an initiator at

some   xk+1 Í   gk+1 and which does not have a terminator along   gk+1.  Thus   dk+1   É/    dk+1, else
  dk+1 would have a terminator along   hk+1.  Hence as l(   dk) Ê   hk+1 and   dk+1 is not the

initiator for X at l(   dk),   dk+1 Ì   dk+1.  By (6.7), this is only possible if there is a   gk+1 Í

l(   dk) such that (gk+1)- is a terminator for X and   dk+1 along   gk+1.  Let   nk be the initial

derivative of (   gk+1)- along   dk, and note, by Lemma 3.1(i) (Limit Path), that   nk Ì   dk.  As
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(   gk+1)- is a terminator for X and   dk+1 along   gk+1, (   gk+1)- must have infinite outcome along
  gk+1, so   nk must have finite outcome along   dk.  Now   gk+1 Ì/    Lk+1 as there is no terminator

for X and   dk+1 along   Lk+1, else   dk+1 would not be the initiator for X along   Lk+1.

Furthermore, as   dk+1 Ì   Lk+1, by (2.10), some extension of   dk along   Lk must switch

(   gk+1)-, so there must be a derivative   xk Ê   dk of (   gk+1)- along   Lk which has infinite outcome
along   Lk.  It now follows that   xk is a terminator for   dk along   Lk via the primary   Lk-link

[   nk,   xk].  n

The next definition is notational in nature.  Given   Lk Î  [  Tk], a node   nk+1 of  Tk+1,
and a space X whose sections  X[i] may be weakly controlled by nodes of  Tk, we define
CON(   nk+1,   Lk,X) to be the set of sections of X which are weakly controlled by derivatives

  nk of   nk+1 such that   nk Ì    Lk.  This set is partitioned into two sets, ACT(   nk+1,   Lk,X)
corresponding to the derivatives of   nk+1 which are activated along   Lk, and VAL(   nk+1,   Lk,X)
corresponding to the derivatives of   nk+1 which are validated along   Lk.

Definition 6.5:  Let k < n,   nk+1 Î  Tk+1,   Lk Î [  Tk], and a space X be given.  We define

CON(   nk+1,   Lk,X) = È{S Í X: $   nk Ì   Lk(up(   nk) =   nk+1 &   nk weakly controls S along   Lk)},

VAL(   nk+1,   Lk,X) = È{S Í X: $   nk Ì   Lk(up(   nk) =   nk+1 &   nk weakly controls S along   Lk &
   nk is validated along   Lk)}, and 

ACT(   nk+1,   Lk,X) = È{S Í X: $   nk Ì   Lk(up(   nk) =   nk+1 &   nk weakly controls S along   Lk &
   nk is activated along   Lk)}.  n

In the next definition, we introduce thick and thin subsets.  Thick subsets of a
space S of dimension k+1 are the union of cofinitely many sections  S[i] of S.  Thin subsets
are the complements of thick subsets.  

Definition 6.6:  Fix a space S of dimension k.  We say that S is a thick subset of S if S

= È{  S[i]: i Î I} where I is a cofinite set of natural numbers.  We say that S is a thin subset

of S if S Í S and S\S is a thick subset of S.  n

We now show that a node weakly controlling a space passes down weak control of
a thick subset of that space to its derivatives.

�
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Lemma 6.3 (Thick Control Lemma):  Fix an admissible   L0 Î [  T0], and for all u £ n,

let   Lu =   lu(   L0).  Fix k < n, and suppose that   nk+1 Ì    Lk+1 weakly controls the space X
along   Lk+1.  Then:

(i) If   nk+1 is validated along   Lk+1, then VAL(   nk+1,   Lk,X) is a thick subset of X.
(ii) If   nk+1 is activated along   Lk+1, then ACT(   nk+1,   Lk,X) is a thick subset of X.

Proof:  If tp(   nk+1) = 0 and dim(   nk+1) = k+1, then    nk+1 is the unique controller for
X on  Tk+1, and its immediate successor   dk+1 along   Lk+1 is the unique initiator for X at any
node extending   dk+1.  Thus let   hk+1 =   dk+1 in this case.  Otherwise, we note that as X is
weakly controlled along   Lk+1, dim(   nk+1) > k+1.  By (6.5)(ii), (6.7), (2.4), and Lemma 3.1

(Limit Path), we can fix the shortest   hk+1 Ì    Lk+1 such that wt(   hk+1) > wt(X) and   nk+1 is

the controller for X with fixed initiator   dk+1 at all   gk+1 such that   hk+1 Í    gk+1 Ì    Lk+1.  Note
that as wt(   hk+1) > wt(X), it follows from (6.4) that there is no initiator for X (along any
path through  Tk+1) which extends   hk+1.  In both cases, let   hk = out(   hk+1).  By Lemma

3.2(i) (Out), l(   hk) =   hk+1.    
We first show that for all iÊ³ wt(   hk), the controller of  X[i] along   Lk is a derivative

of nk+1.  By Definition 6.3, for all iÊ³ wt(hk),  X[i] will have a controller   nk at   hk, and   nk

will be a derivative of   nk+1; furthermore, by Lemma 3.1(ii) (Limit Path),   nk Ê   pk, where   pk

is the principal derivative of   nk+1 along   Lk.  By (4.1), the initiator corresponding to   nk is
restrained by a primary link along   Lk iff it is restrained by that same link at   hk.  Also by

Lemma 6.2(ii) (Terminator) and Definition 6.3, if iÊ³ wt(   hk),   hk Ì   dk Ì   Lk and   dk is an

initiator for  X[i] at   dk, then either   dk+1 is the initiator for X at l(   dk), or tp(   nk+1) = 1 and
there is a terminator for   dk and  X[i] along   Lk.  Thus the controller of  X[i] along   Lk must be a

derivative of nk+1.  
Fix i ³ wt(hk).  By (6.7),  X[i] is weakly controlled along   Lk.  If   pk has infinite

outcome alongÊ   Lk, then by (2.8),   pk weakly controls  X[i] along   Lk.  And if   pk has finite

outcome along   Lk, then every derivative of nk+1 along   Lk has finite outcome along   Lk; so if
  nk weakly controls  X[i] along   Lk, then   nk has finite outcome along   Lk.   (i) and (ii) now

follow, as by Definition 2.1,   nk is validated along   Lk iff nk+1 is validated along   Lk+1.  n

The next two lemmas combine to show that if a space X is not weakly controlled
along   Lk+1, then either a thick subset of X is weakly controlled along   Lk, or cofinitely
many sections of X of dimension k have only a thin subset weakly controlled along   Lk±1.
Also, if X is weakly influenced along   Lk+1, then a thick subset of X is weakly controlled
along   Lk.
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Lemma 6.4 (Indirect Control Lemma):  Fix k < n and an admissible   Lk Î  [  Tk], and

let   Lk+1 = l (   Lk).  Let X be a section of the space assigned to the requirement R of

dimension r, where r ³ k+1 if tp(R) = 0, and r > k+1 if tp(R) Î {1,2}.  Suppose that X is
not weakly controlled along   Lk+1, but that  X[i] is weakly controlled along   Lk for infinitely

many i.  Then there is a nk Ì   Lk such that nk weakly controls a thick subset of X along   Lk.
In particular, this will be the case if X is weakly influenced along   Lk+1.

Proof:  First suppose that k+1 = dim(R), and so, that tp(R) = 0.  By hypothesis,
X is not weakly controlled along   Lk+1, and we note that as tp(R) = 0, there is at most one
controller for X on  Tk+1 and there are no terminators for X along   Lk+1.  Hence if there is a

controller for X on  Tk+1, then that controller is not Ì   Lk+1. It thus follows from Lemma

3.1(ii) (Limit Path) that there is a   xk Ì   Lk such that for all   xk Ê    xk, if   xk Ì  L
k
, then l(   xk)

does not extend an initiator for X.
Suppose that k+1 < dim(R).  By Lemma 6.1(iii) (Finite Control), we can fix a finite

subset F of  Tk+1 such that for all L Î [  Tk+1], X is weakly controlled along L iff L extends

some element of F which does not have a terminator along L.  As X is not weakly
controlled along   Lk+1, it follows from the finiteness of F and Lemma 3.1(ii) (Limit Path)

that there is a   xk Ì   Lk such that for all   xk Ê    xk, if   xk Ì  L
k
 and l(   xk) extends an element

  dk+1 Î F, then   dk+1 Ì   Lk+1 and both l(   xk) and   Lk+1 properly extend the same terminator
for   dk+1 and X along   Lk+1.
  In either case, we conclude that there are only finitely many initiators for sections of

X along L
k
. As infinitely many sections of X are weakly controlled along   Lk, there must be

a   dk Ì   Lk such that l(   dk) extends an element of F, some   nk Ì   dk weakly controls a section
of X at   dk, and   dk is not restrained by any   nk-correcting primary   Lk-link.  By choice of   xk,

  dk Í   xk for each such   dk.  Fix the longest such   dk, and the unique   nk for   dk.  By Definition
6.3 and (6.7),   nk will weakly control all but finitely many sections of X along   Lk.

We now note that if X is weakly influenced along   Lk+1, then X has a controller  vk+1

and an initiator   dk+1 along   Lk+1.  By Lemma 3.1(i) (Limit Path),  vk+1 will have a derivative

  nk Ì L
k
 and   dk = out(   dk+1) is an initiator for a section of X at   dk.  Furthermore, tp(  vk+1) =

2, so there will be no terminators for sections of X along L
k
.  Thus by Definitions 6.3 and

6.4,   dk will will witness the fact that infinitely many sections of X are weakly controlled

along L
k
.  The last sentence of the lemma now follows from the first part of the lemma.  n

The next lemma shows that if X is a space which is not weakly controlled along
  Lk+1 and no section Y of X is weakly controlled along   Lk, then for cofinitely many sections

105



Y of X, there is very little weak control of sections of Y along   Lk±1.  More precisely, for
cofinitely many sections Y of X, the number of sections of Y which are weakly controlled
at some node along   Lk±1 is finite, and if X is assigned to a requirement of type 0 or 2, then
this number is 0 (so no section of Y is weakly controlled along   Lk±1).  (Because of the
definition of terminators, the set of sections of X weakly controlled along   Lk±1 will be a

(possibly proper) subset of the set of sections of X weakly controlled at some   gk±1 Ì   Lk±1.)
 

Lemma 6.5 (Non-Control Lemma):  Fix an admissible   L0 Î  [  T0], and for all u £ n,

let   Lu =   lu(   L0).  Fix k Î (0,n-1) and a requirement R of dimension r and type j, where r ³

k+1 if j = 0, and r > k+1 if j Î {1,2}.  Let X be a section of a space assigned to R which is
not weakly controlled along   Lk+1.  Suppose that  X[i] is weakly controlled along   Lk for at

most finitely many i Î N.  Then:

(i) For all i Î N, either {u:  (X[i])[u] is weakly controlled along   Lk±1} is cofinite, 

or {u:  (X[i])[u] is weakly controlled at some   gk±1 Ì   Lk±1} is finite.

(ii) For cofinitely many i Î N, {u:  (X[i])[u] is weakly controlled at some   gk±1 Ì  
  Lk±1} is finite.

(iii) If j Î {0,2}, then for cofinitely many i Î N, {u:  (X[i])[u] is weakly controlled

at some   gk±1 Ì   Lk±1} = ¯.  

Proof:  By Lemma 3.7 (Infinite Injury),  Lemma 6.1(iii) (Finite Control), and as,
if j = 0 and r = k+1, then there can be no controller for X along   Lk+1 and there is at most

one controller for X on  Tk+1, we can choose   hk±1 Ì   Lk±1 such that for all initiators   rk+1 Î
 Tk+1 for X such that   rk+1 Ì/    Lk+1 and all   xk±1, if   hk±1 Í    xk±1 Ì    Lk±1 then   lk+1(   xk±1) Ê/
  rk+1.  By hypothesis, the preceding sentence, and Lemma 6.1(iii) (Finite Control), we can

fix   hk+1 Ì   Lk+1 such that for all initiators   rk+1 Ì   Lk+1 for X, there is a terminator for   rk+1

and X along   hk+1.  Let   hk = out(   hk+1) and   hk±1 = out(   hk), and note that by (2.5),   hk Ì    Lk

and   hk±1 Ì   Lk±1.  Without loss of generality, we may assume that   hk±1 Ê    hk±1.  By (2.5)

and (2.6), for all   xk±1 such that   hk±1 Í   xk±1 Ì   Lk±1, l(   xk±1) Ê   hk.  

By (2.5), l(   hk) = hk+1.  Now (   hk)- = (out(   hk+1))- is the principal derivative of
(   hk+1)- along   Lk, so by Lemma 4.3(i)(c) (Link Analysis), there is no primary   Lk-link
which restrains (   hk)-.  Hence by hypothesis, there is no initiator   dk for any section of X at
(   hk)-, else by (4.1) and Lemma 4.4 (Free Implies True Path),   dk would have no terminator
along   Lk, so by Definition 6.3, cofinitely many sections of X would have initiators along

  Lk.  But then by Definition 6.4, infinitely many sections of X would be weakly controlled
along   Lk, contrary to hypothesis.  Furthermore,   hk cannot be an initiator for a section of X,
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else either X would be weakly controlled at   hk+1 = l (   hk), or some section of X would
have an initiator at (   hk)-, neither of which is possible.  Hence there is no initiator for any

section of X at   hk.  Also, l(hk-1) =   hk and (hk-1)- = (out(   hk))- is the principal derivative of
(   hk)- along   Lk±1, so again by Lemma 4.3(i)(c) (Link Analysis), there is no primary   Lk±1-
link which restrains (hk-1)-.

Fix i. First assume that i < wt(   hk).  By (6.4) and (2.1), there is no initiator   dk Ê   hk

for  X[i].  Hence as there is no initiator for  X[i] at   hk, if   dk±1 Ì   Lk±1 is first defined to be an

initiator for a section of  X[i] by Case 1 or Case 2 of Definition 6.3, then   dk±1 Ì hk-1.  Also,

as there is no primary   Lk±1-link which restrains (hk-1)-, if   dk±1 Ì   Lk±1 is first defined to be

an initiator for a section of  X[i] by Case 3 of Definition 6.3, then   dk±1 Ì hk-1.  We conclude

that if   dk±1 is an initiator for a section of  X[i] at any   xk±1 Ì   Lk±1, then   dk±1 Ì hk-1.  Now if

there is a   dk±1 Ì   Lk±1 such that   dk±1 is an initiator for a section of  X[i] and there is no

terminator for   dk±1 along   Lk±1, then by Definition 6.3, infinitely many sections of X will
have initiators along   Lk±1, so (i) follows for i from (6.7) and Definition 6.4.  Otherwise, as

there is no primary   Lk±1-link which restrains (hk-1)-, each initiator   dk±1 Ì   Lk±1  for a

section of  X[i] has a terminator   tk±1 Ì hk-1, so by Definition 6.4, for all u ³ wt(hk-1),
 (X[i])[u] is not weakly controlled at any   xk±1 Ì   Lk±1, and again, (i) follows for this i.

Suppose that i ³ wt(   hk).  As there is no initiator   dk for  X[i] at   hk and l(hk-1) =   hk,

hk-1 cannot be an initiator for a section of  X[i]. Furthermore, for any   xk±1 Ì hk-1, it follows
from (2.4) that l(   xk±1) ¹ l(hk-1), so by (2.11) and (6.6),  X[i] is not weakly controlled at

l(   xk±1).  Hence any initiator for a section of  X[i] at some   xk±1 Ì    Lk±1 must properly extend
hk-1.  

The broad outline of the verification of (ii) in this case is as follows.  We first show

that if   dk±1 is an initiator for a section of  X[i] at some   xk±1 Ì    Lk±1, then l(   dk±1) extends an
initiator for  X[i] which, in turn, extends a node which switches a terminator for X along

  Lk+1.  We then show that the node on  Tk which switched the terminator must have its
immediate predecessor switched back by a node on  Tk±1 in order to return the terminator
for X to   Lk+1, and that this switching process can be characterized in terms of PL sets, in a
way to ensure correction of axioms.  The switching process will ensure that   dk±1 has a
terminator along   Lk±1, so only finitely many sections of  X[i] are weakly controlled along

  Lk±1.  Furthermore, we will be able to obtain a uniform bound on these terminators, so (ii)
will follow.

Suppose that   dk±1 Ì   Lk±1 is an initiator for a section of  X[i].  We have shown that
  dk±1 É hk-1, so l(   dk±1) Ê   hk.  By Definition 6.3, there must be an initiator   dk Í l(   dk±1) for
 X[i] at l(   dk±1), and again by the second paragraph of the proof and (6.4),   dk É    hk.  By

Definition 6.3, there is an initiator   dk+1 for X at l(   dk) with corresponding initiator   nk+1.

107



But by (2.5),   dk±1 Ê out(   dk) É out(   hk) = hk-1 and by Lemma 3.2(i) (Out),   lk+1(out(   dk)) =

l(   dk), so by choice of hk-1,   dk+1 Ì   Lk+1 and   dk+1 has a terminator   tk+1 Ì hk+1 Ì    Lk+1.

Fix   tk+1 Í hk+1 such that (   tk+1)- =   tk+1, and let   tk = out(   tk+1).  By Definition 6.2 and

Case 3 of Definition 6.3, there is a   zk+1 Î   PL(tk+1) such that OS(   nk+1) Í TS(   zk+1).  

We now note that   tk+1 has infinite outcome along   tk+1 = l(   tk), and if   tk+1 Ì l(   dk),

then   tk+1 does not have infinite outcome along l(   dk).  Furthermore,   tk Í    hk Ì    dk Í

l(   dk±1), so by (2.4), if   tk+1 were to have infinite outcome along   lk+1(   dk±1), then that

outcome would be the same as the outcome of   tk+1 along   tk+1 = l(   tk), and by (2.6),   tk+1

would have that outcome along l(   gk) for all   gk Î  [   tk,l(   dk±1)].  In particular,   tk+1 would

have that same infinite outcome along l(   dk), which we have shown not to be the case.

Hence   tk+1 does not have infinite outcome along   lk+1(   dk±1). As l(   dk) Ê   dk+1 and there is a

primary l(   hk)-link [   mk+1,   tk+1] which restrains   dk+1 with   mk+1 Ì    dk+1, it follows from

(2.10) that there is a node   tk such that   tk Í    hk Ì    tk Í    dk and   tk switches   tk+1.  ((2.10)

implies that a node can be switched only when it is free; and by (2.6),   dk+1 Í l(   ak) for all
  ak such that   tk Í   ak Í   dk.  So no node Ì   tk+1 can be switched by such an   ak É   tk until
  tk+1 is switched.)  Let   tk = (   tk)-, and let   tk = (   tk)-.  Then [   tk,   tk] is a primary l(   dk±1)-link,

and up(   tk) =   tk+1.

As   hk Í    tk = (   tk)- Ì    tk Í    dk, it follows from (2.5) and Lemma 3.1 (Limit Path)

that   tk has an initial derivative   tk±1 such that   hk±1 Í    tk±1 Ì out(   dk) Í    dk±1; fix   tk±1 Í    dk±1

such that (   tk±1)- =   tk±1.  Now    tk = out(   tk+1), so up(   tk) =   tk+1, and   tk is the principal
derivative of   tk+1 along both   hk and   Lk.  Furthermore, by (2.10) and as   hk is   Lk-free and

  tk Ì   hk Í   tk,   tk must be switched by some proper extension   tk±1 of   dk±1 along   Lk±1.  Let
  tk±1 = (   tk±1)-, and note that   tk±1 is the principal derivative of   tk along   Lk±1, so [   tk±1,   tk±1] is

a primary   Lk±1-link with   tk±1 Ì   dk±1 Í   tk±1. 
We now show that   tk±1 is a terminator for   dk±1 along   Lk±1.  First assume that   tk+1 is

not a primary completion.  Then   PL(t
k+1

) = {   tk+1},   tk±1 Î    PL(t
k±1

), and  upk+1(   tk±1) =
  tk+1.  Hence   tk±1 is a terminator for   dk±1 along   Lk±1.

Now assume that   tk+1 is a primary completion of some   rk+1, which we fix, and let
  sk+1 = (   rk+1)-.  As   tk+1 has infinite outcome along   tk+1 but finite outcome along l(   tk), it

follows from Lemma 5.1(i),(ii) (PL Analysis) and Definition 5.3 that 

  PL(t
k+1

) = PL(   sk+1,   tk+1)È{   sk+1} = PL(   sk+1,   tk+1)È{   tk+1}È{   sk+1},  

and by Lemma 5.1(iv) (PL Analysis),
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PL(   sk+1,   tk+1) = PL(   sk+1,l(   tk)).

By Lemma 5.3(ii) (Implication Chain), Lemma 5.2 (Requires Extension), and (5.5)(ii),   tk

requires extension for some derivative   sk of   sk+1.  As   L0 is admissible, and, by (2.5),

out(   tk) Ì    Lk±1, it follows from (5.27), Lemma 5.15(ii) (Admissibility), and Lemma 5.4

(Compatibility) that   tk has a (k-1)-completion   bk±1 Ì    Lk±1, and that   kk = up(   bk±1) is the
primary completion of   tk.  Furthermore, by Lemma 5.12(ii) (PL), 

{up(   zk):   zk Î PL(   tk,   kk)} = PL(   sk+1,l(   tk)).

Fix   bk±1 Ì   Lk±1 such that (   bk±1)- =   bk±1, let   kk = l(   bk±1), and note that since   bk±1 the initial

derivative of   kk, follows from (2.4) that (   kk)- =   kk.  Now   sk+1 Ì   hk+1 and by (5.2),   sk is

an initial derivative of   sk+1; hence by Lemma 3.1(i) (Limit Path),   sk Ì   hk Ì    tk Ì    kk.  We
now recall that there is no primary   Lk-link which restrains (   hk)-.  Thus there must be a   kk±1

Ì   Lk±1 such that up(   kk±1) =   kk and   kk±1 has infinite outcome along   Lk±1, else by (2.6) and

(2.10), [   sk,   kk] would be a primary   Lk-link restraining (   hk)-.  Fix   kk±1 Ì    Lk±1 such that
(   kk±1)- =   kk±1.  By Lemma 5.1(iv) (PL Analysis), 

PL(   tk,l(   kk±1)) = PL(   tk,   kk).

As   tk±1 is the initial derivative of   tk along   kk±1, it follows from Lemma 5.3(ii)
(Implication Chain) and Lemma 5.2 (Requires Extension) that   kk±1 requires extension for

  tk±1.  As   L0 is admissible, it follows from Lemma 5.15(i),(ii) (Admissibility) and Lemma

5.3(ii) (Implication Chain) that there are   pk±1 Ì    pk±1 Ì    Lk±1 such that   pk±1 is the primary
completion of   kk±1, (   pk±1)- =   pk±1, and   pk±1 has infinite outcome along   pk±1.  By (5.19),
up(   pk±1) =   tk, so by (2.8),   pk±1 =   tk±1 and   pk±1 =   tk±1.  By Lemma 5.12(ii) (PL), 

PL(   tk,l(   kk±1)) = {up(   zk±1):   zk±1 Î PL(   kk±1,   pk±1)}.

Now by Lemma 5.1(i),(ii) (PL Analysis) and Definitions 5.3 and 6.3,

  PL(pk±1) = PL(   kk±1,   pk±1)È{   kk±1} = PL(   kk±1,   pk±1)È{   pk±1}È{   kk±1}.

Furthermore, up(   pk±1) =   tk, up(   kk±1) =   kk, up(   tk) =   tk+1, and up(   kk) =   sk+1.  Hence 
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{  upk+1(   zk±1):   zk±1 Î   PL(pk±1)} =   PL(t
k+1

),

so   pk±1 =   tk±1 is a terminator for   dk±1 along   Lk±1.
We now verify (ii) by showing that only finitely many sections of  X[i] are weakly

controlled at nodes Ì   Lk±1.  By (2.11) and Lemma 3.1 (Limit Path), fix   ak±1 Ì    Lk±1 such

that wt(l(   ak±1)) > i,   ak±1 É   hk±1, and l(   ak±1) Ì   Lk.  By Lemma 6.1(iii) (Finite Control),
there are only finitely many initiators for  X[i] on  Tk; since  X[i] is not weakly controlled
along   Lk, we can assume without loss of generality that every initiator for  X[i] at some node

along   Lk has a terminator Ì l(   ak±1).  Furthermore, by (2.4) and Lemma 3.1 (Limit Path),

we can assume that for all   xk±1 such that   ak±1 Í   xk±1 Ì   Lk±1, if l(   xk±1) extends an initiator

for  X[i], then that initiator lies along   Lk±1.  Suppose that   ak±1 is given such that   ak±1 Í   ak±1

Ì    Lk±1.  By (2.4) and (2.6), l(   ak±1) Ê l(   ak±1). As wt(l(   ak±1)) > i, it follows from the

choice of   ak±1, (2.1), and (6.4) that there is no initiator for  X[i] at l(   ak±1), so  X[i] is not

weakly controlled at l(   ak±1).  Hence   ak±1 cannot be an initiator for a section of  X[i] at any
node. Thus there are only finitely many initiators for sections of  X[i] along   Lk±1.  By the
preceding paragraph, every initiator along   Lk±1 for a section of  X[i] has a terminator along

  Lk±1, so we can fix   xk±1  Ì   Lk±1 such that each such terminator is Ì   xk±1.  It now follows
from Definition 6.4 that if u ³ wt(   xk±1), then  (X[i])[u] is not weakly controlled at any node

Ì   Lk±1, so (ii) follows.
Fix i and u and assume that j Î {0,2}.  Then there are no terminators for sections

of  X[i] along   Lk±1.  Hence if  (X[i])[u] is weakly controlled at some   gk±1 Ì    Lk±1, then by
Definition 6.4, there is an initiator for  (X[i])[u] which has no terminator along   Lk±1.  By
Definition 6.3, for all v ³ u,  (X[i])[v] will have an initiator along   Lk±1 which has no
terminator along   Lk±1, so by Definition 6.4,  (X[i])[v] will be weakly controlled along   Lk±1.
(iii) now follows from (ii).  n

As we extend nodes along   Lk, the path approximation to   Lk+1 via the function l
will occasionally switch paths.  We show that for requirements of types 0 and 2, the choice
of initiators is invariant under switches of paths, as long as the initiator remains on the
switched path and no terminators are eliminated.  

Lemma 6.6 (Constancy of Initiator Lemma):  Fix k £ n and   hk Î   Tk.  Let S be a

space associated with the requirement R of dimension r and type j Î {0,2}, and assume

that k £ r-1 if j = 0, and k < r-1 if j = 2.  Suppose that S is weakly controlled at l((   hk)-)

with initiator   dk+1, and that l(   hk) Ê   dk+1.  Then   dk+1 is the initiator for S at l(   hk).
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Proof:  First assume that j = 0 and k = r-1.  Let   nk+1 be the controller for S at

l(   hk).  Then   nk+1 is the only controller for S on  Tk+1, and the initiator for S along any path
properly extending   nk+1 is the immediate successor of   nk+1 along that path.  The lemma
now follows in this case.

Suppose that k < r-1.  Let   rk+1 = l(   hk)Ùl((   hk)-), and note, by hypothesis, that
  rk+1 Ê   dk+1.  We assume that   rk+1 ¹ l(   hk), else by (2.4), l(   hk) = l((   hk)-).  Under this

assumption, it follows from (2.4) that (l(   hk))- =   rk+1.  As S is weakly controlled along

l((   hk)-), it follows from (6.6) and (2.11) that wt(S) £ wt(l((   hk)-)) < wt(l(   hk)), so by
(6.4), l(   hk) cannot be an initiator for S, and by Case 3 of Definition 6.3,   rk+1 cannot be a

terminator for S at l(   hk).  Hence as   rk+1 = (l(   hk))-, all terminators for S along l(   hk) are

Ì   rk+1.  By (6.7),   dk+1 is the longest initiator for S along l((   hk)-) which has no terminator
along l((   hk)-), so as   dk+1 Í   rk+1 Í (l(   hk))-,   dk+1 is the longest initiator for S along l(   hk)

which has no terminator along l(   hk).  By (6.7),   dk+1 is the initiator for S at l(   hk).    n

In order to show later that the functionals which we define are total on certain
oracles, we want to show that for requirements of types 0 and 2, if a space is weakly
controlled along an approximation to   L1 but not along a later approximation, then that space
is never weakly controlled again.  This will fail to be the case only when a terminator is
switched.  As the proof does not depend on   L1, we prove the general case.

Lemma 6.7 (Loss of Control Lemma):  Fix k < n, a space S for a requirement R of

type 0 or 2 with k+1 < dim(R), and   hk Î  Tk such that wt(S) £ wt(l((   hk)-)).  Suppose that

S has no initiator at l((   hk)-).  Then S has no initiator at l(   hk).

Proof:   Suppose that S has an initiator   dk+1 at l (   hk) in order to obtain a

contradiction.  By (2.4), (l(   hk))- Í l((   hk)-).  As wt(S) £ wt(l((   hk)-)), either l((   hk)-) =

l(   hk), or by (2.11), wt(S) < wt(l(   hk)); and in the latter case, it follows from (6.4) that
l(   hk) is not an initiator for S at any node.  Hence   dk+1 Í l((   hk)-). By Case 3 of Definition
6.3, the immediate successor   rk+1 of any terminator for S along l((   hk)-) is an initiator for

S at   rk+1; hence the longest node which is an initiator for S at some node Ì l((   hk)-) can

have no terminator along l((   hk)-).  As   dk+1 Í l((   hk)-), it follows that there is an initiator

for S at l((   hk)-), contrary to hypothesis.  n

When a node   n1 relinquishes control of a space to a node   n1, we will need to know
that, often enough, the axioms which were defined by derivatives of   n1 are either the same
axioms that would have been defined by derivatives of   n1, or are corrected.  The next
lemma is a key ingredient in showing that this happens.  It allows us to trace the process of
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switching initiators, and will be used to show that we can correct axioms for requirements

of types 0 and 2.  We consider the case where h switches   k1 Î  T1, causing weak control of
a space S to pass from a node   n1 to a node   n1.  We will show that this can occur only when

  d
1
 Í   k1 Ì    d1, where   d1 and   d

1
 are, respectively, the initiators for   n1 at l(h-) and   n1 at

l(h).  By Lemma 3.3 (l-Behavior), for all t ³ 1, h will switch  upt(   k1) =   kt. We try to
carry this situation up to successive trees, by showing that  upt(   n1) weakly controls  upt(S)

along   lt(h-) with some initiator   dt,  upt(   n1) weakly controls  upt(S) along   lt(h) with some

initiator   d
t
, and   dtÙ   d

t
 Í    kt Ì   dtÚ   d

t
.  Furthermore, the shortest element of {   dt,   d

t
} will

alternate by level, i.e.,   dt Ì   d
t
 iff   d

t+1
 Ì   dt+1.  We will be able to carry this alternation up

inductively through  Tp where p+1 is the smallest j such that   nt =   nt, and in some cases, to
 Tp+1.  (In the other cases for t = p+1, we will have to resort to a different proof, as some of

the arguments will fail.)  The remaining lemmas of this section will then enable us to show,
in the next section, that we can correct axioms when necessary.  

Lemma 6.8 (Alternating Initiator Lemma):  Fix h Î  T0 and let S be a section of a
space assigned to the requirement R of dimension r ³ 2 and type 0 or 2.  Suppose that S is

weakly controlled by   n1 at l(h-) with initiator   d1, S is weakly controlled by   n1 at l(h) with

initiator   d
1
, and   d1 ¹   d

1
.  Let p be the smallest t such that  upt+1(   n1) =  upt+1(   n1) if such a t

exists, and let p = r-1 otherwise.  (Note that, if tp(R) = 0, then t must exist by the definition

of º for type 0 nodes.)  Then for all t Î [1,p], there are   nt Ì   dt Í    lt(h-),   nt Ì   d
t
 Í   lt(h),

  kt =   lt(h-)Ù   lt(h), and a space  St such that   nt =  upt(   n1),   nt =  upt(   n1), S Í  St, and:

(6.8)   nt weakly controls  St at   lt(h-) with initiator   dt, and if t > 1, then l(   dt±1) Ê   dt.

(6.9)   nt weakly controls  St at   lt(h) with initiator   d
t
, and if t > 1, then l(   d

t±1
) Ê   d

t
.

(6.10)   dt Í   kt Ì   d
t
 if t is even, and   d

t
 Í   kt Ì   dt if t is odd.

Furthermore, if t Î [2,p], then by (6.8) inductively and Definitions 6.3 and 6.4,   nt weakly

controls  St at l(   dt±1), so we can fix the initiator   d
t
 Í l(   dt±1) such that   nt weakly controls  St

at l(   dt±1) with initiator   d
t
.  Similarly, by (6.9) inductively and Definitions 6.3 and 6.4,   nt

weakly controls  St at l(   d
t±1

), so we can fix the initiator   dt Í  l(   d
t±1

) such that   nt weakly

controls  St at l(   d
t±1

) with initiator   dt.  (We need to introduce   d
t
 and   dt here, as the

initiators for  St at   lt(h-) and   lt(h) may differ from those at l(   dt±1) and l (   d
t±1

),
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respectively).  Let   rt = l(   dt±1)Ùl(   d
t±1

).  Then for all t Î [2,p]:

(6.11) (i)   d
t
 Í   rt Ì   dt if t is even and   dt Í   rt Ì   d

t
 if t is odd.

(ii)   d
t
 =   dt if t is even, and   dt =   d

t
 if t is odd.

In addition:

(6.12) (6.8)-(6.11) will hold for t = p+1 unless either:
(i) p+1 = r; or 

(ii)   np has finite outcome along   lp(h-) iff   n
p
 has finite outcome along   lp(h).

Proof:  First assume that t = 1.  Then (6.8) and (6.9) follow by hypothesis. As   d1

¹    d
1
, it follows from (6.7) and Definition 6.7 that l(h)|l(h-), so by Lemma 3.3 (l-

Behavior), l(h)- Ì l(h-). Thus by Lemma 6.6 (Constancy of Initiator), l(h-)Ùl(h) Ì   d1.

By (6.4), (6.6), and (2.11), wt(   d
1
) £ wt(S) £ wt(l(h-)) < wt(l(h)), so   d

1
 ¹ l(h). Hence

  d
1
 Í l(h)- = l(h-)Ùl(h), and (6.10) holds.

Suppose that t ³ 2.  We first verify (6.11)(i), assuming that t is odd.  (An
analogous argument gives the proof for even t by interchanging the hatted and unhatted

nodes, the nodes with bars and tildes, h and h-, and odd and even in the proof below.)  By

(6.10) inductively,   dt±1 Ì   d
t±1

.  

Case 1:  l(   dt±1)|l(   d
t±1

).  We begin with the proof that   dt Í    rt.  By (2.4) and

Lemma 3.1(ii) (Limit Path), there must be a   xt±1 such that   dt±1 Ì    xt±1 Í    d
t±1

,

l(   dt±1)|l(   xt±1), (   xt±1)- is a derivative of   rt, l(   xt±1) Í l(   d
t±1

), and (l(   xt±1))- =   rt.  As   rt,   dt

Í l(   d
t±1

) by (6.2),   rt and   dt are comparable.  Suppose that   rt Ì    dt in order to obtain a
contradiction.  Then l(   xt±1) Í   dt.  By (6.4) and Definition 6.7,

(6.13) wt(   d
t
) £ wt(  St) £ wt(l(   dt±1))

and

(6.14) wt(   dt) £ wt(  St) £ wt(l(   d
t±1

)).

(Note that (6.13) and (6.14) do not make sense when t = r.)  As l(   dt±1) ¹  l(   xt±1), it
follows from (6.13), (2.11), (2.1), and (6.14) that 
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wt(  St) £ wt(l(   dt±1)) < wt(l(   xt±1)) £ wt(   dt) £ wt(  St),

a contradiction.  Hence   dt Í   rt.  

We complete the proof of (6.11)(i) for Case 1 by showing that   rt Ì    d
t
.  By (6.2),

  rt,   d
t
 Í l(   dt±1), so   rt and   d

t
 must be comparable.  It suffices to assume that   d

t
 Í    rt, and

show that t = p+1 and (6.12)(ii) holds.  By (6.10),   dt±1 Ì    d
t±1

, so iterating Lemma 6.6

(Constancy of Initiator) for   dt±1 Ì   d
t±1

, we see that   d
t
 =   dt; thus by (6.3),   nt =   nt.  Hence t

= p+1.  There are two cases to consider.

First consider the case in which   np+1 has infinite outcome along   d
p+1

 =   dp+1.  Then

  np+1 has infinite outcome along both l(   dp) Ê    d
p+1

 and l(d
p
) Ê    dp+1, so all derivatives of

  np+1 along   dp (d
p
, resp.) have finite outcome along   dp (d

p
, resp.).  In particular, by (6.2)

and inductively by (6.8) and (6.9),   np has finite outcome along   lp(h-) Ê    dp and   n
p
 has

finite outcome along   lp(h-) Ê d
p
, so (6.12)(ii) holds.

Now consider the case in which   np+1 has finite outcome   gp along   d
p+1

 =   dp+1.  Then

  np+1 has outcome   gp along both l(   dp) Ê    d
p+1

 and l(d
p
) Ê  d

p+1
, so by (2.5),   gp Í   dp,d

p
.

By (2.4) and (2.8), (   gp)- has infinite outcome along   gp and is the longest (and principal)

derivative of np+1 along either   dp or d
p
.  Now by Lemma 4.3(i)(c)(a), any primary   dp-link

(d
p
-link, resp.) which restrains (   gp)- restrains all derivatives of   np+1 along   dp (d

p
, resp.).

Hence by Definitions 6.3 and 6.4, the controllers for  upp(S) corresponding to   dp and d
p
,

respectively, are the longest derivatives of   np+1 properly contained in   dp and d
p
,

respectively, so   np =   n
p
 = (   gp)- and (6.12)(ii) holds.  Thus   d

t
 É    rt unless (6.12)(i) or (ii)

holds, concluding the proof of (6.11)(i) for this case.

Case 2:   l (   dt±1) and l (   d
t±1

) are comparable.  By Definition 6.7,

wt(l(   dt±1)),wt(l(   d
t±1

)) ³ wt(  St), so by Case 3 of Definition 6.3 and (6.4),   d
t
 (   dt, resp.)

has a terminator along l(   dt±1) iff   d
t
 (   dt, resp.) has a terminator along l(   d

t±1
).  Thus by

Definitions 6.3 and 6.4,   d
t
 =   dt, so by (6.3),   nt =   nt.  Hence t = p+1.  We now proceed as

in the preceding two paragraphs, showing that (6.12)(ii) holds, and thus that this case is
contrary to hypothesis, and concluding the proof of Case 2.

We now verify (6.8)-(6.10) and (6.11)(ii).  Assume that t is odd.  (If t is even, then
an analogous proof is obtained by interchanging the hatted and unhatted nodes, the nodes
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with bars and tildes, h and h-, odd and even, and (6.8) and (6.9).)  We begin by showing

that   dt Í   kt (a portion of (6.10)) by eliminating the other possibilities.  Let   zt =   ktÙ   dt, and

assume that   zt Ì    dt in order to obtain a contradiction.  First suppose that   zt has finite

outcome   zt±1 along   dt, and so that (   zt±1)- has infinite outcome along   zt±1 and up((   zt±1)-) =

  zt.  As   dt Ì    d
t
 Í  l(   dt±1) by (6.11)(i) and the definition of   d

t
, it follows from (2.5) that

  zt±1 Ì    dt±1.  By (6.10) inductively,   zt±1 Ì    lt±1(h-)Ù   lt±1(h) =   kt±1.  Hence by (2.4) and

Lemma 3.1 (Limit Path),   kt,   dt Ê   zt^á   zt±1ñ, contrary to the choice of   zt.  

Suppose that   zt has infinite outcome   z
t±1

 along   dt.  By Lemma 3.3 (l-Behavior)

and as t is odd and h switches   k1,   kt has finite outcome   bt±1 along   lt(h).  Now it cannot be

the case that   kt Ì   dt, else as   kt±1 Ì   bt±1 Í    d
t±1

 Í    lt±1(h) by (6.10), it would follow from

(2.4) that   kt =   zt has finite outcome along   dt, contrary to our assumption.  Hence as   zt Ì

  dt,   kt|   dt.  As l(   d
t±1

) Ê   dt É   zt, we have   z
t±1

 Í    d
t±1

 by (2.5), and so (   z
t±1

)- is the initial

derivative of   zt along   d
t±1

.  By Lemma 3.1 (Limit Path) and as   zt Ì    kt,   zt has an initial

derivative along   kt±1; and by (6.10) inductively,   d
t±1

 and   kt±1 are comparable; hence this

initial derivative must also be (   z
t±1

)-.  As   zt =   ktÙ   dt and   kt|   dt, it follows from (2.4) that   zt

must have finite outcome   zt±1 along   kt, so by (2.7),   zt±1 Í    kt±1.  By (6.10) inductively,

  kt±1 Ì    d
t±1

, so   zt^á   zt±1ñ Í  l(   d
t±1

) by (2.4).  Thus   zt =   ktÙl(   d
t±1

) and   zt^á   zt±1ñ Í

  kt,l(   d
t±1

), a contradiction.  We thus conclude that   dt Í   kt.  
We next verify (6.11)(ii) and (6.9).  By Definition 6.4, we noted in the hypothesis

of the lemma that   nt weakly controls  St at l(   d
t±1

) with initiator   dt, and l(   d
t±1

) Ê    dt.  By

(6.9) inductively,   d
t±1

 Í    lt±1(h ).  As  St is weakly controlled at l(   d
t±1

), wt(  St) £

wt(l(   d
t±1

)) by Definition 6.7.  By (2.11), for all   mt±1 such that   d
t±1

 Ì    mt±1 Í    lt±1(h) and

l(   d
t±1

) ¹ l(   mt±1), wt(l(   mt±1)) > wt(l(   d
t±1

)) ³ wt(  St), so by (6.4), l(   mt±1) cannot be an
initiator for  St, and (l(   mt±1))- cannot be a terminator for  St along l(   mt±1).  Hence by

(6.5)(ii), we have   d
t
 =   dt, verifying (6.11)(ii).  Also note, by (6.7), that   d

t
 is the longest

initiator for  St at   lt(h) which has no terminator along   lt(h).  (6.9) now follows from
Definition 6.3 and (6.3).

We now verify (6.8).  By (6.8) inductively,   dt±1 Í    lt±1(h-), so by Definition 6.7

and (2.11), wt(  St) £ wt(l(   dt±1)) £ wt(   lt(h-)).  As   d
t
 =   dt Í    kt Í    lt(h-) and   d

t
 is the

initiator for  St at   lt(h) Ê   kt, it follows from Definition 6.3 that   d
t
 has no terminator along

  kt; and as   kt is   lt(h-)-free by (2.10), there is no primary   lt(h-)-link which restrains   kt.  It
thus follows from (6.5) that there is an initiator   dt for  St at   lt(h-).  Hence by Definition 6.4
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and as wt(  St)£ wt(   lt(h-)),  St is weakly controlled at   lt(h-).  We complete the proof that

(6.8) holds by showing that l(   dt±1) Ê   dt.  Assume to the contrary, i.e., that   dt Í/  l(   dt±1),

in order to obtain a contradiction.  As   dt±1 Í    lt±1(h-),   dt Í/  l(   dt±1), and   dt Í    lt(h-), it

follows from Lemma 3.1 (Limit Path) that there must be a   mt±1 such that   dt±1 Ì    mt±1 Í
  lt±1(h-) and l(   mt±1) =   dt. But then by Definition 6.7, (2.11), and (6.4), wt(  St) £

wt(l(   dt±1)) < wt(l(   mt±1)) = wt(   dt) £ wt(  St), a contradiction.  Hence (6.8) holds.
Finally, we complete the verification of (6.10).  Since we have already shown that

  d
t
 =   dt Í    kt, it remains only to show that   kt Ì    dt.  As   dt is an initiator at   lt(h-) Ê    kt, it

follows from (6.2) that   kt and   dt are comparable.  We assume that   dt Í    kt, and obtain a

contradiction.  By (6.7), the initiator for a space at a node g is the longest initiator for that

space at any node a Í g which has no terminator along g.  We showed earlier that    d
t
 =   dt

Í    kt.  Now   dt,   d
t
 Í    kt =   lt(h-)Ù   lt(h),   dt is the initiator for  St at   lt(h-), and   d

t
 is the

initiator for  St at   lt(h).  By (2.10) or Lemma 4.5 (Free Extension), any terminator   gt for   dt

along   lt(h-) (   d
t
along   lt(h), resp.) must be Í   kt. If   gt =   kt, then by Definition 6.3, the

immediate successor   bt of   kt along   lt(h-) (   lt(h), resp.) must be an initiator for  St at   bt, so

by (6.7), must have a terminator along   lt(h-) (   lt(h), resp.).  But this would imply that

there is a primary   lt(h-)-link (   lt(h)-link, resp.) restraining   kt, contradicting (2.10) or

Lemma 4.5 (Free Extension).  Hence,   gt Ì    kt, so   gt is the terminator for   dt (   d
t
, resp.)

along both   lt(h-) and   lt(h).   By (6.7), it must then be the case that   dt =    d
t
.  But then by

(6.3),   nt =   nt, so t = p+1 and (6.12)(ii) follows from (6.2).
As we have noted above throughout the proof, (6.12) also holds.  n

We now show that, under the hypotheses and notation of the Alternating Initiator
Lemma, activation (validation, resp.) for   nt along   lt(h-) corresponds to activation

(validation, resp.) for   nt+1 along   lt+1(h-) for t Î [1,p]; and activation (validation, resp.) for
  nt along   lt(h) corresponds to activation (validation, resp.) for   nt+1 along   lt+1(h) for t Î

[1,p].  Furthermore, the same will be true for t = p+1 if   np is activated along   lp(h-) iff   n
p
 is

validated along   lp(h) and up(   np) = up(   n
p
).  (If the latter fails, then we will not need the

lemma, as correction of axioms will be unnecessary.)  We need to add the hypothesis that

no   x1 Î T1 such that   x1 º    n1 is switched at h; if some   x1 º    n1 is switched at h, axioms

which are newly weakly controlled by   n1 at h are corrected, so we will not have to use the
Outcome Lemma below.  For requirements of type 0, we only need the simpler, but

equivalent condition that no x such that  upt(   x1) =  upt(   n1) for some t £ dim(   n1) is switched

at h.  The more general condition is needed for requirements of type 2.
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Lemma 6.9 (Outcome Lemma):   Fix h Î T0.  Suppose that S is weakly controlled by

  n1 at l(h-) with initiator   d1, S is weakly controlled by   n1 at l(h) with initiator   d
1
, no   x1 Î

T1 such that   x1 º   n1 is switched at h,   d1 ¹   d
1
, and tp(   n1) Î {0,2}.  For all t Î [1,n], let   nt

=  upt(   n1) and   nt =  upt(   n1).  Let p be the smallest t such that   nt+1 =   nt+1 if such a t exists,

and let p = dim(   n1)-1 otherwise.  Then for all t Î [1,p],   nt is activated along   lt(h-) iff   n1 is

activated along l(h-); and   nt is activated along   lt(h) iff   n1 is activated along l(h).  If,

furthermore,   np is activated along   lp(h-) iff   n
p
 is validated along   lp(h) and   np+1 =   np+1,

then   np+1 is activated along   lp+1(h-) iff   n1 is activated along l(h-), and   np+1 is activated

along   lp+1(h) iff   n1 is activated along l(h).

Proof:  We proceed by induction on t.  We will prove the lemma for   nt only (a
similar argument yields a proof for   nt).  The lemma is vacuous for t = 1.  Fix notation as in
Lemma 6.8 (Alternating Initiator). Let q = p+1.  As the Alternating Initiator Lemma cannot
be applied if t = q = dim(   n1), we first prove a weak version, (6.15), of (6.8) to cover the
case in which t = q = dim(   n1),   nq = up(   np) = up(   n

p
) =   n

q
, and   np is activated along   lp(h-)

iff   n
p
 is validated along   lp(h).  This weak version of (6.8) will suffice for this case.  (Note

that a similar proof will also yield a weak version, (6.16), of (6.9).)  By hypothesis,
(6.12)(ii) will not preclude the use of Lemma 6.8 (Alternating Initiator).

Suppose that t = q = p+1 = dim(   n1) and   nq =   n
q
.  By hypothesis,   nq Ì

  lq(h-),   lq(h). Fix   dq Í   lq(h-) such that (   dq)- =   nq and   d
q
 Í   lq(h) such that (   d

q
)- =   n

q
.  We

will show that:

(6.15) If   nq has finite outcome along   lq(h-), then   nq Ì   dq Í l(   dq±1).

We leave it to the reader to verify with a similar proof that:

(6.16) If   n
q
 has finite outcome along   lq(h), then   n

q
 Ì   d

q
 Í l(

  
d

q±1
).

We have noted that:

(6.17)   nq Í   kq =   lq(h-)Ù   lq(h).

We note that, in the notation of Lemma 6.8 (Alternating Initiator), h switches k1 =

l(h-)Ùl(h).  By hypothesis, (   d
q
)- =   n

q
 =   nq = (   dq)-.  By (6.17),   lq(h-)Ù   lq(h) =   kq Ê    nq.

Fix   bq±1 such that that   nq has finite outcome   bq±1 along l
q
(h-), let   pq±1 = (   bq±1)-, and let
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  mq±1 be the initial derivative of   nq along   bq±1.  As   dq Í  l
q
(h-) and (   dq)- =   nq, it follows

from (2.4) that   nq^á   bq±1ñ =   dq.  By Definition 2.1,   pq±1 has infinite outcome along   bq±1 Í
  lq±1(h-), and by (6.2) and (6.10),   mq±1 Ì   kq±1.  As   bq±1,   kq±1 Í   lq±1(h-),   bq±1 and   kq±1 are

comparable.  It cannot be the case that   pq±1 É    kq±1, else [   mq±1,   pq±1] would be a primary
  lq±1(h-)-link restraining   kq±1, so by (2.10), h could not switch k, contrary to assumption.

By hypothesis, h does not switch any node º   n1, so   pq±1 ¹   kq±1.  Hence   pq±1 Ì    kq±1 and

so   bq±1 Í    kq±1.  By (2.8),   pq±1 is the longest derivative of   nq along   lq±1(h-), so all

initiators for  Sq±1 at nodes Í   lq±1(h-) whose corresponding controller is a derivative of   nq

are Í   kq±1.  Now no initiator for  Sq±1 at any node along   lq±1(h-) can have   pq±1 as its
controller via Case 3 of Definition 6.3 unless there is a shorter initiator for  Sq±1 which has

  pq±1 as its controller via Subcase 1.1 of Definition 6.3 ; and by Case 1 of Definition 6.3,
that shorter initiator must be   bq±1.  As   nq±1 is activated along   lq±1(h-) iff   nq±1 is validated

along   lq±1(h) and   nq±1 and   nq±1 are derivatives of   nq and are controllers for sections of
 Sq±1, it must therefore be the case that   bq±1 is an initiator for  Sq±1 at   bq±1.  As   lq±1(h-) Ê
  kq±1 Ê   bq±1, we have   dq±1 Ê   bq±1 by Definition 6.3.  So as   nq Í l(   dq±1), up(   nq±1) =   nq and

(   bq±1)- has infinite outcome along   bq±1, it follows that l(   dq±1) Ê    nq^á   bq±1ñ =   dq, so (6.15)
holds.

Now consider any t such that 2 £ t £ q.  First consider the case where   nt has infinite
outcome along   lt(h-). Then all derivatives of   nt along   lt±1(h-) must have finite outcome
along   lt±1(h-).  In particular,   nt±1 has finite outcome along   lt±1(h-), so the lemma follows
by induction in this case.

Next consider the case where   nt has finite outcome   bt±1 along   lt(h-). By (2.5),   bt±1

Í   lt±1(h-), so by (2.8), (   bt±1)- is the longest (and principal) derivative of   nt along   lt±1(h-);

hence   nt±1 Í (   bt±1)-.  As   dt is an initiator at   lt(h-) if t < q, and by choice of   dt if t = q,   nt Ì
  dt
 Í   lt(h-), so   nt^á   bt±1ñ Í   dt.  By (6.8) or (6.15),   dt Í  l(   dt±1), so by (2.5),   bt±1 Í    dt±1.

Now   dt±1 is an initiator for  St±1 and   nt±1 at   lt±1(h-),   nt±1 Í  (   bt±1)-, and up((   bt±1)-) =
up(   nt±1).  By Lemma 4.3(i)(c),(a), (   bt±1)- is restrained by a primary   dt±1-link iff every
derivative of   nt is restrained by the same primary   dt±1-link; hence by Definition 6.3, the
controller   nt±1 chosen for the initiator   dt±1 is the longest derivative of   nt along   dt±1, so   nt±1

= (   bt±1)-.  Thus the lemma follows by induction.  n

We now want to show that when the controlling node on  T1 is changed, then either
the new controller inherits axioms with the value it desires, or the axioms are corrected,
allowing the new controller to redefine those axioms.  The situation differs with the type of
the requirement, so we prove different lemmas for each type.
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We begin with a requirement R of type 0.  The situation will be as follows.  h will

be 1-switching, causing weak control of a space to pass from   n1 to   n1 on T1.  If h- º   n1,
then h- will cause something to be placed into the oracle set for the axioms newly weakly
controlled by   n1, thus allowing   n1 to correct the axioms to the value which it predicts.
Otherwise, we will show that both   n1 and   n1  predict the same value for those axioms, so
no correction is necessary.  To show that the predictions by   n1 and   n1  agree, we need to
go up to the smallest q such that  upq(   n1) =  upq(   n1).  An analysis of the situation on  Tq will
enable us to go down to  Tq±1 and show that  upq±1(   n1) is activated along   lq±1(h-) iff

 upq±1(   n1) is activated along   lq±1(h).  It will then follow from Lemma 6.9 (Outcome) that   n1

is activated along l(h-) iff   n1 is activated along l(h).

Lemma 6.10 (0-Correction Lemma):  Fix h  Î  T0.  Suppose that S is weakly

controlled by   n1 at l(h-) with initiator   d1, S is weakly controlled by   n1 at l(h) with initiator
  d

1
,   d1 ¹   d

1
, and tp(   n1) = 0.  Let   k1 = l(h-)Ùl(h).  Then one of the following holds:

(i)   n1 is activated along   d1 iff   n1 is activated along   d
1
.

(ii) h switches   k1 Ì   d1 and   k1 º   n1.

Proof:  Fix notation as in Lemma 6.8 (Alternating Initiator), and fix the least q

such that   nq =   n
q
.  If q = 1, then by hypothesis, either (i) holds, or h must switch   n1 and

(ii) will hold.  So we may assume that q > 1.  Let p = q-1.

If   np is activated along   lp(h-) iff   n
p
 is activated along   lp(h), then (i) follows from

Lemma 6.9 (Outcome) if h- º/    n1, and (ii) follows if h- º    n1.  So we assume that   np is

activated along   lp(h-) iff   n
p
 is validated along   lp(h).  

Suppose that q < dim(   n1).  By our assumptions, the conditions of (6.12) fail, so

we can apply Lemma 6.8 (Alternating Initiator) with t = q.  By (6.10),   k1 Ì    d1.  As   nq =

  n
q
, it follows from (6.10) that   nq =   nqÙ   n

q
 Ì    dqÙ   d

q
 Í    kq =    lq(h-)Ù   lq(h).  Thus the

outcome of   nq along   lq(h-) is the same as the outcome of   n
q
 along   lq(h), so   nq is activated

along along   lq(h-) iff   n
q
 is activated along   lq(h).  (i) now follows from the second

conclusion of Lemma 6.9 (Outcome) if h- º/    n1, and (ii) follows if h- º   n1. 

Suppose that q = dim(   n1). By (6.10),   dpÙ   d
p
 Í    kp Ì    dpÚ   d

p
.  Furthermore, as

tp(   n1) = 0, Subcase 1.2 or Case 2 of Definition 6.3 must be followed to define controllers

and initiators on  Tp, so   np = (   dp)- and   n
p
 = (   d

p
)-.  (We note that if Subcase 1.2 is followed,

then as, by Subcase 1.1, all initiators for up(   np) = up(   n
p
) are immediate successors of

up(   n
p
), it follows from Lemma 3.1 (Limit Path) and Lemma 3.3 (l-Behavior) that   np =

(   dp)- and   n
p
 = (   d

p
)-.)  Thus   npÙ   n

p
 Ì   kp.  It cannot be the case that   npÚ   n

p
 É    kp, else   npÚ   n

p
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would be the last node of a primary   lp(h-)-link or   lp(h)-link which restrains   kp, contrary to

(2.10) or Lemma 4.5 (Free Derivative).  It cannot be the case that   npÚ   n
p
 Ì    kp, else   dpÚ   d

p

Í   kp.  Hence   npÚ   n
p
 =   kp, and (ii) holds.  n

Suppose R is a requirement of dimension r and type 1 and that the space X is
assigned to R.  Control of sections of X along a path   Lr±1 is divided among derivatives of
many different nodes of  Tn.  The following lemma, together with the requirement that the
construction of Section 7 respect implication chains, will ensure that all but finitely many of
these sections are controlled by nodes which are activated along   Lr±1, or all but finitely
many of these sections are controlled by nodes which are validated along   Lr±1.  The lemma
will be used to analyze the situations which can occur when control of a space is
relinquished by   sr±1 to   sr±1.  Condition (i) says that both   sr±1 and   sr±1 want to declare
axioms with the same value, so the axioms declared by derivatives of   sr±1 are safe for   sr±1.
Conditions (ii) and (iv) will be used to show that enough of the axioms declared by
derivatives of   sr±1 are corrected when control is interchanged.  And condition (iii) will
allow us to show that the set of conflicting axioms is sufficiently thin, and so will not
interfere with the existence of the desired limit.  The hypotheses placed on the lemma are
chosen to capture exactly the cases for which the lemma is used.

Lemma 6.11 (1-Similarity Lemma):  Fix an admissible   L0 Î  [  T0] and for all t £ n,

let   Lt =   lt(   L0).  Fix r £ n and   sr±1 Ì   sr±1 Ì    tr±1 Ì    Lr±1, such that   sr±1 º    sr±1, up(   sr±1) ¹

up(   sr±1), (   tr±1)- =   sr±1, tp(   sr±1) = 1, dim(   sr±1) = r, and   sr±1 and   sr±1 control (different)

sections of a space X at   tr±1.  Fix   tr±1 Ì   tr±1 such that (   tr±1)- =   sr±1 and assume that if   sr±1

has infinite outcome along   tr±1, then there is no derivative of up(   sr±1) along   sr±1.  Then one
of the following conditions holds:

(i)   sr±1 has finite outcome along   tr±1 iff   sr±1 has finite outcome along   tr±1.
(ii)   sr±1 has infinite outcome along   tr±1,   sr±1 has finite outcome along   tr±1, and 

there is a   sr±1-injurious primary   tr±1-link [   mr±1,   pr±1] such that 
  pr±1 Î PL(   sr±1,   tr±1).

(iii)   sr±1 has finite outcome along   tr±1,   sr±1 has infinite outcome along   tr±1, and 
there is a primary   tr±1-link which restrains   sr±1.  

(iv)   sr±1 has finite outcome along   tr±1,   sr±1 has infinite outcome along   tr±1, 

up(   sr±1) Ì up(   sr±1), there is no primary   tr±1-link which restrains   sr±1, but 

there is a   pr Î PL(up(   sr±1),l(   tr±1)) such that OS(   sr±1) Í TS(   pr).  
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Proof:  Suppose that (i)-(iv) fail, in order to obtain a contradiction.  By choice of
r, as   sr±1 and   sr±1 control spaces at   tr±1, and by Subcase 1.1 of Definition 6.3, for all i £ r-
1, the principal derivatives of   sr±1 along  outi(   tr±1) and   sr±1 along  outi(   tr±1) must be
implication-free.   

First suppose that   sr±1 has finite outcome along   tr±1.  We can assume, without loss
of generality, that   sr±1 is the shortest string satisfying the hypotheses, but not the
conclusion of the lemma for   sr±1. By the failure of (i),   sr±1 has infinite outcome along   tr±1.
As   sr±1 controls a space at   tr±1, it follows from Definitions 6.3 and 6.4 that   sr±1 controls a
space at   tr±1, and so that  out0(   tr±1) is pseudotrue.  Thus   tr±1 must be implication-free, and
cannot require extension.  

Let   sr±1 be the initial derivative of up(   sr±1) along   tr±1, and let   tr±1 be the immediate
successor of   sr±1 along   tr±1.  We show that   sr±1 controls a section of X at   tr±1.  If   sr±1 =

  sr±1, then this follows by hypothesis.  Otherwise, it follows from (2.8) that   sr±1 has finite
outcome along   tr±1.  Now by Lemma 4.5 (Free Extension), up(   sr±1) = up(   sr±1) Ì l(   tr±1)

and up(   sr±1) is l (   tr±1)-free.  Furthermore, up(   sr±1) must be implication-free, else by
(5.23),   sr±1 would not be implication-free and would not control a section of X at   tr±1.
Hence by Lemma 5.16(iv) (Implication-Freeness),  out0(   tr±1) is pseudotrue.  Now by

Lemma 4.5 (Free Extension),  upn(   sr±1) Ì   ln(   tr±1) must be   ln(   tr±1)-free, and by (2.9) and
  sr±1 is both the initial and principal derivative of  upn(   sr±1) along   tr±1.  By Lemma 5.17(iii)

(Assignment),   sr±1 is    tr±1-free and implication-free. Now iterating Lemma 4.6(i) (Free
Derivative) and Lemma 5.16(ii) (Implication-Freeness), we see that for all i £ r-1, the
principal derivative of   sr±1 along   tr±1 is implication-free.  It follows from Definitions 6.3
and 6.4 that   sr±1 controls a section of X at   tr±1.  Hence without loss of generality, we may
assume that   sr±1 =   sr±1 .

As up(   sr±1) has no derivative along   sr±1 and (ii) fails, (5.16) holds; hence as   sr±1

controls a space at   tr±1, it follows from Definition 5.2 and Subcase 1.1 of Definition 6.3

that for some   sr±1 Í    sr±1, á á   sr±1,   sr±1,   tr±1ññ is an amenable (r-1)-implication chain along
  Lr±1.  But this contradicts Lemma 5.15(i) (Admissibility).

Now suppose that   sr±1 has infinite outcome along   tr±1.  As (i) fails,   sr±1 has finite
outcome along   tr±1.  As (iii) fails, it follows from Lemma 4.3(i)(a) (Link Analysis) that

up(   sr±1) Í l(   tr±1).  As   sr±1 = (   tr±1)-, it follows from Lemma 4.5 (Free Extension) that

up(   sr±1) Í l(   tr±1).  Hence up(   sr±1) and up(   sr±1) are comparable.  Now   sr±1 has infinite

outcome along   tr±1, so   sr±1 is the principal derivative of up(   sr±1) along   tr±1.  It cannot be

the case that up(   sr±1) Ì up(   sr±1), else by Lemma 3.1 (Limit Path), there would be no

derivative of up(   sr±1) which is Ì   sr±1, contrary to the hypothesis that   sr±1 Ì   sr±1.  Thus by

the above, up(   sr±1) Ì up(   sr±1).  
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We now show that   tr±1 requires extension for   sr±1. (5.1), (5.2), and (5.5)(i) follow
easily from hypothesis and the observations already made.  The failure of (iii) implies

(5.3). We noted, following Definition 6.2, that every   sr±1-injurious primary l(   tr±1)-link

[   mr,   pr] is   sr±1-correcting.  Suppose that   gr Î PL(up(   sr±1),l(   tr±1)) and TS(   gr)ÇRS(   sr±1) ¹
¯, in order to obtain a contradiction.  First suppose that (5.13) causes   gr to enter

PL(up(   sr±1),l(   tr±1)).  Then there is a   mr such that [   mr,   gr] is a primary l (   tr±1)-link

restraining up(   sr±1).  Let   xr be the immediate successor of   gr along l(   tr±1).  Then   gr Î
  PL(x

r
), so [   mr,   gr] is up(   sr±1)-injurious and restrains up(   sr±1).  But then [   mr,   gr] is up(   sr±1)-

correcting, contrary to our assumption that (iv) fails.

Now suppose that (5.14) causes   gr to enter PL(up(   sr±1),l(   tr±1)), but (5.13) does

not.  Then there are   mr Ì up(   sr±1) Ì    dr = (   sr)- Ì    sr Í    xr such that   sr requires extension
but has no primary completion with infinite outcome along   xr, and as (5.13) did not apply,

  gr Î  PL(   dr,   xr)È{   dr}.  As  out0(   tr±1) is pseudotrue, it follows from Lemma 5.5(ii)

(Completion-Respecting) that   sr has a primary completion   kr along l(   tr±1) which has

infinite outcome along l(   tr±1).  Fix   ar Í  l(   tr±1) such that (   ar)- =   kr.  By Definition 5.3

and Lemma 5.1(i) (PL Analysis),   gr Î PL(   dr,   kr)È{   dr} Í   PL(x
r
).  Thus [   mr,   kr] is up(   sr±1)-

injurious and restrains up(   sr±1).  But then [   mr,   kr] is up(   sr±1)-correcting, contrary to our
assumption that (iv) fails.

We conclude that (5.4) holds, and so that   tr±1 requires extension for some   sr±1 Í
  sr±1.  By Definition 5.6,   tr±1 is not the completion of   tr±1 for   sr±1.  Hence by (5.21),   tr±1 is

implication-restrained, and so  out0(   tr±1) is not pseudotrue.  But then by Subcase 1.1 of
Definition 6.3,   sr±1 is not a controller for a section of X at   tr±1, contrary to hypothesis.  n

Because of the finiteness of the number of initiators for a given space X, we can
settle on an initiator which will control a given space along a path.  However, it is possible
to have comparable initiators along a given path, each determining control of sections of the
same space at infinitely many nodes along the approximation to the path.  The switching of
control is determined by the terminators.  The next lemma will allow us to show that all but
finitely many axioms declared for a space controlled by a node of type 1 along   L1 will have
the correct value.

Lemma 6.12 (1-Correction Lemma):  Fix an admissible   L0 Î  T0 and let   L1 = l(   L0).

Suppose that   n1 Ì   L1 controls the space S along   L1 with initiator   d1, and that tp(   n1) = 1.

Assume that h Ì k Ì   L0, wt(   h±) ³ wt(S),   d1 is the initiator for S at l(   h±) and at l(k), but

not at any l(g) such that h Í  g Ì  k. Then there is a   m1 such that for all g Î  [h ,k),

[   m1,(l(h))-] is a   n1-correcting primary l(g)-link with   m1 Ì    d1 Í (l(h))-, and k switches

122



(l(h))-. Furthermore, if x is the shortest pseudotrue node such that k Í x Ì   L0, then for

every node   b1 Î PL(l(h)), there is a b such that k Í b Í x and b switches   b1.

Proof:  By hypothesis, for all g such that h Í g Ì k, l((h)-) ¹ l(g).   As wt(   h±) ³

wt(S), it follows from (2.11) that wt(l(g)) > wt(S) for all g such that h Í g Ì k.  Thus

Case 3 of Definition 6.3 must be followed at l(h) to define (l(h))- as a terminator for   d1,

so there is a   n1-correcting primary l(h)-link [   m1,(l(h))-] with   m1 Ì    d1 Í (l(h))-, and

(l(h))- has infinite outcome along l(h).

As   d1 Ì   L1, it follows from (2.6) that no g such that h Í g Ì k can switch any   r1

Ì    d1.  By (2.10), no such g can switch any   r1 such that   m1 Í    r1 Ì (l(h))-.  Hence by
(2.10), l(k) and (l(h))- must be comparable.  Also, no g such that h Í g Ì k can switch

(l(h))-, else by Lemma 3.3 (l-Behavior), (l(g))- = (l(h))- and (l(g))- would have finite

outcome along l(g), so   d1 would be the initiator for S at l(g). Hence for all g such that h Í

g Ì k, [   m1,(l(h))-] is a   n1-correcting primary l(g)-link which restrains   d1.  

Now as k cannot switch any   r1 Ì (l(h))-, as l(k) and (l(h))- are comparable, and

as   d1 is the initiator for S at l(k), [   m1,(l(h))-] cannot be a primary l(k)-link, so k must

switch (l(h))-.  If (l(h))- is not a primary completion, then PL(l(h)) = {(l(h))-} .

Otherwise, let (l(h))- be the primary completion of the immediate successor   g1 of a node
  s1 along l(h).  Then PL(l(h)) = PL(   s1,l(h))È{   s1}.  By Lemma 5.3(ii) (Implication

Chain) and Lemma 5.2 (Requires Extension), k must require extension for a derivative of
  s1, and so as x is pseudotrue, it follows from Lemma 5.5(ii) (Completion-Respecting) that

k must have a primary completion  k Ì x which has infinite outcome along x.  By (5.19),

up(  k) =   s1.  Hence the immediate successor of  k along x switches   s1.  By Lemma 5.1(ii)

(PL Analysis), PL(   s1,l(h)) Í  PL(   s1,(l(h))-)È{(l(h))-}.  As k switches (l(h))-, it

follows from (2.4) that l(k) = (l(h))-^ákñ, and that (l(h))- has finite outcome along l(k).

Hence by Lemma 5.1(iv) (PL Analysis), PL(   s1,l(h)) = PL(   s1,(l(h))-).  It now follows

from Lemma 5.12(i) (PL) and as k switches (l(h))- that every node in PL(   s1,l(h)) must

be switched by some node in [k,  k].  n

Suppose that X is a space assigned to a requirement of dimension r and type 2.
When k = r-1, control of sections of X along a path   Lr±1 is divided among derivatives of
many different nodes of  Tn.  The following lemma will allow us to use implication chains
to ensure that all but finitely many of these sections are controlled by nodes which are
activated along   Lr±1, or all but finitely many of these sections are controlled by nodes
which are validated along   Lr±1.
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Lemma 6.13 (2-Similarity Lemma):  Fix an admissible h Î  T0, and   sr±1 Ì   tr±1 Í
  sr±1 Ì    tr±1 Í    lr±1(h) such that   sr±1 and   sr±1 are nodes to which the requirement R of

dimension r and type 2 has been assigned.  Assume that   sr±1 º   sr±1, up(   sr±1) ¹ up(   sr±1),

(   tr±1)- =   sr±1, (   tr±1)- =   sr±1, and   sr±1 and   sr±1 are controllers at   tr±1 and   tr±1, respectively.
Then one of the following conditions holds:

(i)   sr±1 has finite outcome along   tr±1 iff   sr±1 has finite outcome along   tr±1.
(ii)   sr±1 has finite outcome along   tr±1,   sr±1 has infinite outcome along   tr±1, and 

there is a primary   tr±1-link which restrains   sr±1.

Proof:  We assume that (i) and (ii) fail, and obtain a contradiction.  We will be

showing, under additional assumptions, either that áá   sr±1,   sr±1,   tr±1ññ is an amenable
implication chain, or that   tr±1 requires extension for   sr±1.  We begin by showing that
certain clauses from (5.1)-(5.12), (5.15) and (5.16) hold without any additional
assumptions.  (5.5)-(5.9) and (5.12) follow from hypothesis.

As   sr±1 and   sr±1 are controllers at   tr±1 and   tr±1, respectively, it follows from
Subcase 1.1 of Definition 6.3 that for all i £ r-1, the principal derivatives of   sr±1 along

 outi(   tr±1) and   sr±1 along  outi(   tr±1), are implication-free, and that  out0(   tr±1) and  out0(   tr±1)
are pseudotrue. Hence (5.1) and (5.10) hold.  

We next show that we may assume, without loss of generality, that   sr±1 (   sr±1,
resp.) is the principal derivative of up(   sr±1) (up(   sr±1), resp.) along   tr±1 (   tr±1, resp.).  This

is clearly the case if   sr±1 (   sr±1, resp.) has infinite outcome along   tr±1 (   tr±1, resp.).  Suppose

that   sr±1 (   sr±1, resp.) has finite outcome along   tr±1 (   tr±1, resp.), and let   sr±1 be the initial
derivative of up(   sr±1) (up(   sr±1), resp.) along   tr±1 (   tr±1, resp.).  By Lemma 5.15(iv)
(Implication-Freeness), one of the conclusions of the lemma must hold for   sr±1 in place of

  sr±1 (   sr±1, resp.).  If (i) holds for   sr±1, then (i) also holds for   sr±1 (   sr±1, resp.).  Suppose
that (ii) holds for   sr±1, and let [   mr±1,   pr±1] be the associated primary   tr±1-link.  If up(   sr±1)   Í/

l(   tr±1), then by Lemma 4.3(i)(a), (Link Analysis) [   mr±1,   pr±1] restrains   sr±1 (   sr±1, resp.).
Otherwise, by Lemma 4.3(i)(d) (Link Analysis),   mr±1 =   sr±1, so by (2.8), [   mr±1,   pr±1]

restrains   sr±1 (   sr±1, resp.).  
We next note that tp(   sr±1) = tp(   sr±1) = 2, so (5.4) holds, and if   sr±1 is a

pseudocompletion of   sr±1, then   sr±1 is an amenable pseudocompletion of   sr±1, so (5.16)
will follow once the appropriate clauses of (5.6)-(5.12) are verified.

We now proceed by cases.
  

Case 1:    sr±1 has finite outcome along   tr±1.  Then by the failure of (i),   sr±1 has
infinite outcome along   tr±1.  We will obtain a contradiction in this case, so may assume
without loss of generality that   sr±1 has shortest possible length satisfying the properties of
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the lemma.  (5.11) follows from the case assumption, so áá   sr±1,   sr±1,   tr±1ññ is an implication
chain.  Now we have assumed that   sr±1 is the principal derivative of up(   sr±1) along   tr±1, so
as   sr±1 has finite outcome along   tr±1,   sr±1 is an initial derivative.  Hence up(   sr±1) has no

derivative Ì   sr±1.  We have already noted that (5.16) holds, so áá   sr±1,   sr±1,   tr±1ññ is an
amenable (r-1)-implication chain.  But then by Lemma 5.2 (Requires Extension), out(   tr±1)
requires extension, so  out0(   tr±1) is implication-restrained, hence cannot be pseudotrue,
yielding a contradiction.

Case 2:    sr±1 has infinite outcome along   tr±1.  We first show that    tr±1 requires

extension for some   sr±1 Í    sr±1, by showing that (5.1)-(5.5) hold for   sr±1 in place of   nk,
  sr±1 in place of   dk, and   tr±1 in place of   hk.  (5.2) and (5.5)(i) follow easily from

hypothesis.  (5.1) follows from Case 1 of Definition 6.3 and the comments at the
beginning of the proof.  (5.3) follows from the failure of (ii).  And we have already noted

that (5.4) holds.  Thus   tr±1 requires extension for some   sr±1 Í    sr±1.  But then, by
Definition 5.6,   tr±1 is implication-restrained, so  out0(   tr±1) cannot be pseudotrue.  Hence by
Subcase 1.1 of Definition 6.3,   sr±1 cannot be a controller at   tr±1, contradicting our
assumption.  n

The next lemma will be used to show that whenever necessary, axioms for type 2
requirements which need to be corrected when control is changed, will be corrected.  

Lemma 6.14 (2-Correction Lemma):  Fix an admissible h Î  T0.  Suppose that S is

weakly controlled by   n1 at l(h-) with initiator   d1, S is weakly controlled by   n1 at l(h) with

initiator   d
1
,   d1 ¹   d

1
, and tp(   n1) = 2.  Let   k1 = up(h-).  Then one of the following holds:

(i)   n1 is activated along   d1 iff   n1 is activated along   d
1
.

(ii)  h switches   k1 Ì   d1 and dim(   k1) ³ dim(   n1).

Proof:  Let r = dim(   n1).  Fix notation as in Lemma 6.8 (Alternating Initiator).  If
  nr±1 =   nr±1, then the proof follows as in the third paragraph of the proof of Lemma 6.10 (0-

Correction).  Suppose that   nr±1 ¹    nr±1.  We assume that (i) and (ii) fail, and derive a
contradiction.  As (i) and (ii) fail, it follows from Lemma 6.9 (Outcome) that   nr±1 is
activated along iff   nr±1 is validated along   hr±1.  

We assume that r is even.  A similar proof holds when r is odd.  By (6.10) and

Definition 6.3,   nr±1Ù   nr±1 Ì   nr±1Ù   nr±1 Ì   lr±1(h).  Fix   tr±1,   tr±1 Í    lr±1(h) such that (   tr±1)- =
  nr±1Ù   nr±1, and (   tr±1)- =   nr±1Ú   nr±1.  It follows by an easy induction that   tr±1 and   tr±1 are

initiators for  upr±1(S), else either   nr±1Ù   nr±1 or   nr±1Ú   nr±1 would not be a controller for
 upr±1(S).  There are two cases.
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Case 1:    nr ¹    nr.  By the preceding paragraph, we can apply Lemma 6.13 (2-

Similarity), to conclude that there is a primary   lr±1(h)-link [   mr±1,   pr±1] restraining   nr±1Ù   nr±1.

By (2.10) and Lemma 4.5 (Free Derivative),   kr±1 is both   lr±1(h-)-free and   lr±1(h)-free; and

by (6.10),   nr±1Ù   nr±1 Ì   kr±1.  Hence   pr±1 Í   kr±1.  

By (6.10),   dr±1Ú   d
r±1

 É    kr±1, so by (2.1), wt(   kr±1) < wt(   dr±1Ú   d
r±1

).  Now   pr±1   Ì/
  kr±1, else   pr±1 would be a terminator for   tr±1 along both   lr±1(h-) and   lr±1(h), so by (6.19)
  nr±1Ù   nr±1 could not be a controller at either of these nodes.  Thus   pr±1 =   kr±1, so by Lemma

3.3 (l-Behavior), h switches   pr±1.  But then   pr±1 is not an initial derivative, so by (2.9),
dim(   pr±1) > r-1; so (ii) must hold, yielding a contradiction. 

Case 2:    nr =   nr.  By (6.10),   nr±1Ù   nr±1 Ì   dr±1Ù   d
r±1

 Í   kr±1 Ì    dr±1Ú   d
r±1

.  By the

case assumption and as (i) fails, [   nr±1Ù   nr±1,   nr±1Ú   nr±1] must form a primary (   dr±1Ú   d
r±1

)-

link, so by (2.10) or Lemma 4.5 (Free Extension),   kr±1 Ê   nr±1Ú   nr±1.  We now set   pr±1 =
  nr±1Ú   nr±1, and proceed as in the last paragraph of Case 1.  n

Our final lemma shows that nodes coming from the true path of the construction
control spaces.
 

Lemma 6.15 (Initial Control Lemma):  Fix an admissible   L0 Î  [  T0] and for all k £

n, let   Lk =   lk(   L0).  Fix   zn Ì   Ln and r £ n such that dim(   zn) = r and tp(   zn) Î {1,2}, let   zr±1

be the principal derivative of   zn along   Lr±1, and let   zr = up(   zr±1).  Let S be the space,   Szr,

assigned to up(   zr±1), and fix   dr±1 Ì   Lr±1 such that (   dr±1)- =   zr±1.  Then:

(i)   zr±1 controls   S[wt(dr±1)] along   Lr±1 with initiator   dr±1.
(ii) If   zr has infinite outcome along   Lr, then infinitely many derivatives of   zr 

control spaces along   Lr±1.

Proof: By Lemma 5.17(ii),(iii) (Assignment),   zr and   zr±1 are implication-free,   zr is
  Lr-free, and   zr±1 is   Lr±1-free.  

By Lemma 4.6(ii) (Free Derivative) and Lemma 5.16(ii) (Implication-Freeness), we
see that if   zr has infinite outcome along   Lr, then   zr has infinitely many implication-free

derivatives which are   Lr±1-free.  Fix a   Lr±1-free and implication-free derivative   zr±1 of   zr

along   Lr±1, and fix   xr±1 Ì   Lr±1 such that (   xr±1)- =   zr±1.  Note that, by definition, for all i £

r-1, the principal derivative of   zr±1 along   Li is   zi = (  outi(   xr±1))-.  By repeated applications
of Lemma 4.6(i) (Free Derivative) and Lemma 5.16(ii) (Implication-Freeness), we see that

for all i £ r-1,   zi is   Li-free and implication-free. By Lemma 5.17(iv) (Assignment), x =
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 out0(   xr±1) is pseudotrue.  

By Lemma 6.1(iv), (Finite Control),   xr±1 is an initiator for   S[wt(xr±1)] at   xr±1, with

corresponding controller   zr±1.  As x is pseudotrue, it follows from Definition 6.4 that   zr±1

controls   S[wt(xr±1)] at   xr±1 with initiator   xr±1.  As   zr±1 is   Lr±1-free and (   xr±1)- =   zr±1,   xr±1

cannot have a terminator along   Lr±1, else   zr±1 would be restrained by a primary   Lr±1-link.

Hence by Definition 6.4,   zr±1 controls   S[wt(xr±1)] along   Lr±1.  n

7.  Construction and Proof.  Fix k £ n and áb,cñ Î  Z0,k.  In order to show that  Ac
(k±1)

£/ T  Ab
(k±1), we wish to define a partial recursive functional   Db,c

0,k which is total on domain   Nk

from oracle  Ac  such that for each e Î N, there is an x such that  limu   Fe(  Ab;u,x) ¹   limv
  Db,c

0,k(  Ac;v,x), and for all y,  limv   Db,c
0,k(  Ac;v,y) exists.    Db,c

0,k(  Ac;v,x) will be the value defined

by some z controlling áv,s,x,zñ along   L0 for some s whenever such a z exists, where   Rz =
 Re,b,c
0,k  for some e.  (We recall that there is an additional limit which enters into the

computation, namely, the limit over stages at which we place elements into  Ac and declare
axioms, which we must also take into account.)  Thus all axioms declared for such  Dz will

be axioms for   Db,c
0,k.  We will take additional steps to ensure that   Db,c

0,k is total on oracle  Ac by
defining this functional on arguments which are not in spaces being controlled, and will
prove that   Db,c

0,k is a well-defined partial recursive functional and   Db,c
0,k(  Ac) is total in Lemma

7.2 (Well-Definedness and Totality). Similarly, for j Î {1,2}, the requirement  Re,b,c
j,k

requires us to define a functional   Db,c
j,k  for each áb,cñ Î Zj,k, uniformly in e.  We define this

function to contain the union of all functionals  Dz such that z deals with a requirement for

this fixed áb,cñ Î  Zj,k, and take additional steps to ensure that   Db,c
j,k  is total on oracle  Ac by

defining this functional on arguments which are not in spaces being controlled. We identify

 Dh with  Dx whenever  Dh and  Dx are components of the same functional   Db,c
j,k .  (Thus if h

defines an axiom for  Dh, then that axiom is in existence for  Dx as well.)  

The decision about the action taken for a requirement associated with h Î  T0 is
based on our ability to force   Mh to be true.    Mh will be equivalent to a   P1-sentence with a
single unbounded (universal) quantifier which will be part of a quantifier block

$s£wt(h)"t³s, which is equivalent to "t³wt(h).  (This quantifier will range over stages.)

Definition 7.1:  For h Î  T0, we say that   Mh is potentially true if the sentence   Mh
[wt(h)],

obtained from   Mh by dropping the quantifier block $s£wt(h)"t³s and replacing all
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occurrences of s and t with wt(h), is true. 

The Construction

We define an admissible path   L0 Î  [  T0] by induction on lh(h) for h Ì   L0.  We

begin by specifying that á ñ Ì   L0.  Fix h Ì   L0.  If lh(h) = 0, then no axioms are declared

and all sets  As are empty for s £ wt(h).  Assume that lh(h) ³ 0.  We assume, by induction,

that h is admissible and completion-consistent via á ñ.  In Step 1, we will determine an

admissible node h such that h  Ì  h Ì    L0.  We begin, in Step 1.1, by determining an

immediate successor b of h.  There will be three cases to the definition of b, designed to

ensure that b is preadmissible.  If b is completion-consistent via á ñ, then we will set h = b.

Otherwise,   lk(h) will require extension for a unique k, and we will define h to be the 0-

completion of b in Step 1.2.  We will determine which elements are placed into sets in Step
2,  and this will depend on the path chosen in Step 1.  New axioms for our functionals are
declared in Step 3.

Step 1:  (Path Definition.)  We note, by induction, that h is admissible and

completion-consistent via á ñ.  

Step 1.1:  There are three cases.

Case 1:  h is a primary 0-completion or a pseudocompletion.  Set b = h^á¥ñ.

Case 2: The previous case is not followed and h is implication-restrained.  Let b

be a nonswitching extension of h.  (We take the activated extension if both possible
extensions are nonswitching, in order to satisfy (5.17)(ii).)  

Case 3:  Otherwise. Set b = h^á¥ñ Í   L0 if   Mh is potentially true, and b = h^á0ñ

Í   L0 otherwise.  

It follows from (5.17) and (5.18) that b is preadmissible, and from Lemma 5.8

(Completion-Respecting Admissible Extension) that b is admissible.  If b is completion-

consistent via á ñ, then the induction hypothesis holds at b, and we set h = b and go to Step
2.  Otherwise, by Lemma 5.8 (Completion-Respecting Admissible Extension) and Lemma
5.6 (Uniqueness of Requiring Extension), there is a unique k, which we fix, such that

  lk(b) requires extension.  We now go to Step 1.2.
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Step 1.2:  By Lemma 5.14 (Completion) we can effectively obtain the 0-

completion h of   lk(b).  By (5.19) and Lemma 5.14 (Completion), h is admissible and

completion-consistent via á ñ, so the induction condition holds.  Now go to Step 2.

Step 2:  (Set Definition.)  For each node p such that h Í p Ì h , p is validated

along h, and p is not the initial derivative of up(p) along h, place wt(up(p)) into   Awt(p)+1

for all A Î TS(p).  For each set A and all s such that wt(h) < s £ wt(h), we let  As =
  Awt(h)È{x: x is placed in   Awt(p)+1 for some p such that h Í p Ì h and wt(p) < s}.

Step 3:  (Declaration of Axioms.)  We carry out this step only if h is pseudotrue.

Let a = h.  This step is carried out for each functional D =   Db,c
j,k  and each áx,s,xñ which is

potentially in the domain of D such that x < wt(l(a)), and xi < wt(l(a)) for all coordinates
x i of x.  (Note that we identify functionals whose last coordinates are  º, so choose to

ignore the last coordinate. If such an áx,t,xñ is not controlled at a for any t and tp(R) Î

{0,2}, then we will show in Lemma 7.2 (Well-Definedness and Totality) that áx,t,xñ will

not be controlled at any r Ì   L0 for any t; hence it is safe to declare an axiom

  Dwt(a)(   Awt(a);x,x) = 0, and we do so in Case 3.3.  And if tp(R) = 1, then terminators will

let us correct such axioms as required.)  Let A =  Ac be the oracle for D.

Case 1:   Dwt(g)(   Awt(a);x,x)¯  = q for some q and g Ì a. Set   Dt(   Awt(a);x,x) =

  Dwt(g)(   Awt(a);x,x) for all t such that wt(g) < t £ wt(a).  The use of all such axioms is the use

of the axiom   Dwt(g)(   Awt(a);x,x) = q.

Case 2:  Case 1 does not apply, and there is a t < wt(a) such that áx,t,xñ is in the

space controlled at a.  (Note that we identify functionals whose last coordinates are  º, so

choose to ignore the last coordinate.)  Fix the largest such t, and let áx,t,xñ be in the space

controlled by n at a with initiator d.  We declare the axiom   Dwt(a)(   Awt(a);x,x) = 1 if d Ê

n^á¥ñ and   Dwt(a)(   Awt(a);x,x) = 0 if d Ê  n^á0ñ. The use of each axiom so defined is

wt(l(a))-1.

Case 3:  Otherwise.  Declare  the axiom   Dwt(a)(   Awt(a);x,x) = 0 with use

wt(l(a))-1.   

The construction is now complete.  For all r £ n, let   Lr =   lr(   L0).  We note that as

the induction hypotheses are satisfied,   L0 is admissible.  n
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Our first lemma provides upper and lower bounds on the use of any axiom on a

point controlled by some x Î  T0.  The upper bound is used to prove that all functionals are

total on the required oracles.  The lower bound is obtained only if tp(x) Î {0,2}, and is
used to show that axioms are corrected when necessary.  (Recall that correction of axioms
is unnecessary on a thin subspace of the space assigned to a requirement of type 1, so a
lower bound is unnecessary in that case.)

Lemma 7.1  (Use Lemma):  Let x Ì   L0 be given such that x is pseudotrue, and let s =

wt(x). Let D =   Db,c
j,k  be a functional, and fix áx,wt(x),xñ potentially in the domain of D such

that x < wt(l(x)) and for all coordinates xi of x, xi < wt(l(x)).  Then:

(i)   Ds(  Ac
s;x,x) converges with some use u < wt(l(x)).

(ii) If l(x) Ì l(   L0), then  Ac |̀ wt(l(x)) =  Ac
s |̀ wt(l(x)).

(iii) If j Î  {0,2},   n1 Ì    d1 Í  l(x) and áx,s,xñ is in the space S such that   n1 

controls S at l(x) with initiator   d1, then wt(   n1) < wt(   d1) £ u, where u is the 
use determined in (i).

Proof:  (i):  By (2.11) and Step 3 of the construction,   Ds(  Ac
s;x,x)¯ with some use

u < wt(l(x)).  

(ii):  By Step 2 of the construction, if z enters  Ac, there is a p Ì   L0 such that z Î
  Ac
wt(p)  \   Ac

wt(p ±), p- is validated along p, and z = wt(up(p-)).  If wt(up(p-)) < wt(l(x)), then

as l(x) Ì l(   L0), it follows from (2.1), (2.4), and (2.6) that p- Ì x and so that wt(p-) <

wt(x).  Hence z Î   Ac
wt(x) |̀ wt(l(x)).

(iii):  Suppose that   n1 Ì    d1 Í  l(x) and áx,s,xñ is in the space S such that   n1

controls S at l(x) with initiator   d1.  (Note that we identify functionals whose last
coordinates are  º, so choose to ignore the last coordinate.)  By (2.1), wt(   n1) < wt(   d1).  Let
y = x if k = dim(   n1) = 1 and j = tp(   n1) = 0, and let y =  xk±1 if k = dim(   n1) > 1.  By (6.4)

and (6.6), wt(   d1) £ y £ wt(l(x)).  By Step 3 of the construction,    Dt(  Ac
t;x,x) diverges

unless t ³ wt(m) for some m Ì   L0 such that wt(l(m)) > y.  Hence by (2.11) and Step 3 of

the construction, all axioms D t(  Ac
t;x,x) = q which are ever declared have use u ³ wt(l(m))-

1 for some such m, so u ³ y ³ wt(   d1).  n

We now begin to show that all requirements are satisfied.  We first show that the
functionals which we define are partial recursive, total on the appropriate oracles, and well-
defined.
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Lemma 7.2 (Well-Definedness and Totality Lemma):  For all jÊ£ 2, k £ n and

áb,cñ Î  Zj,k,   Db,c
j,k (  Ac) is total and   Db,c

j,k  is a well-defined partial recursive functional.

Proof:  By Step 3 of the construction, all functionals are partial recursive, and new
axioms are not defined when an axiom from an oracle compatible with  Ac already exists, so

  Db,c
j,k (  Ac) is well-defined.  Fix x and x.  Any axiom   Db,c

j,k (  Ac;x,x) = q which is ever declared

at p Ì   L0 has use < wt(l(p)), and furthermore, wt(l(p)) > x and wt(l(p)) >  xi for all

coordinates  xi of x.  By Lemma 5.17(v) (Assignment), there are infinitely many nodes p Ì
  L0 such that p  is   L0-true and pseudotrue, x < wt(l(p)), and  xi < wt(l (p )) for all

coordinates  xi of x.  By Lemma 7.1(ii) (Use),  Ac |̀ wt(l(p)) =   Ac
wt(p) |̀ wt(l(p)), so as the

use of   Db,c
j,k (  Ac;x,x) = q is < wt(l(p)),   Db,c

j,k (  Ac;x,x) =   Db,c
j,k (Ac

wt(p);x,x).  Thus   Db,c
j,k (  Ac) is

total.  n

The next lemma establishes the existence of all (iterated) limits except for the
outermost limit, and relates the limiting value to the outcome of a controller, should the
latter exist.

Lemma 7.3 (Convergence and Correctness Lemma):  Fix a requirement R =
 Re,b,c
j,r , and let D =   Db,c

j,r  be the functional associated with R.  Fix k Î [1,r-1].  (Thus we

explicitly exclude the case where dim(R) = 1.)  Let p = r-k+1.  Fix  u1, . . . ,up-1,x Î N , and

let S = {á  u1, . . . ,  up±1ñ}´   Nk´{áxñ} if j Î {0,2} and S = {á  u1, . . . ,  up±1ñ}´   Nk+1´{áxñ} if j =

1.  (Note that we use identification of axioms here, so that S = {á  u1, . . . ,  up±1ñ}´   Nk´{áx,xñ}

or {á  u1, . . . ,  up±1ñ}´   Nk+1´{áx,xñ} for some x.)  Then:

(i)  If tp(R) Î {0,2}, then  limup
. . .  limur±1

D(  Ac;  u1, . . . ,  ur±1,x)¯ Î  {0,1}; and if 

tp(R) = 1, then  limup
. . .  limur

D(  Ac;  u1, . . . ,  ur,x)¯  Î  {0,1}.  In both cases, 
define this value to be L(  u1, . . . ,  up±1,x). 

(ii) If   nk controls S along   Lk, then L(  u1, . . . ,  up±1,x) = 1 iff   nk is validated along 
  Lk.

(iii) If S is not controlled along   Lk and only finitely many sections of S are 
controlled along   Lk±1, then L(  u1, . . . ,  up±1,x) = 0.

Proof:  We proceed by induction on k, considering various cases.

Case 1:  k = 1 (so p = r).  

Subcase 1.1:  j = 1.  By clause (iii) of Lemma 6.1 (Finite Control), there are only
finitely many initiators for S on  T1.  Suppose first that S is controlled along   L1.  By (6.7),
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we can fix   n1 Ì   d1 Í   t1 Ì   L1 such that for all   r1 Ì    L1 with   r1 Ê    t1, S has controller   n1

and initiator   d1 at   r1.  By Lemma 3.1 (Limit Path), we can fix h Ì   L0 such that l(h) =   t1.

Suppose that  ur ³ wt(h) and an axiom   Dwt(x)(   Ac
wt(x);  u1, . . . ,  ur,x) = q is declared at x where h

Í x Ì   L0.  If S has controller   n1 and initiator   d1 at l(x), then we set q = 0 if   n1 is activated
along   d1, and q = 1 if   n1 is validated along   d1.  

If the controller of S at l(x) is not   n1 or the initiator for S at l(x) is not   d1, then by

Lemma 6.12 (1-Correction), there is a   n1-correcting l(x)-link [   m1,   p1] such that   m1 Ì    d1 Í

  p1.  By the construction and (2.1), any axiom   Dwt(x)(   Ac
wt(x);  u1, . . . ,  ur,x) = q declared at x

(but not in existence at   x ±) has use wt(l(x))-1 ³ wt(   p1).  As S is controlled by   n1 with

initiator   d1 along   L1, it follows from Lemma 3.1 (Limit Path) that there is a shortest r É x

such that S is controlled by   n1 with initiator   d1 at l(r), and note r that is pseudotrue.  By
Lemma 6.12 (1-Correction) and the construction, as [   m1,   p1] is a primary   n1-correcting

link, there is a   b1 Í   p1 such that  Ac Î TS(   b1) and wt(   b1) is placed in Ac at some g such that

x Ì g Í r.  Furthermore, when axioms are changed on a fixed argument at any node h Ì
  L0, the use of the axiom declared at h is wt(l(h)-1), so by (2.11) and (2.1), if an axiom
  Dwt(x)(   Ac

wt(x);  u1, . . . ,  ur,x) = q is in existence at   g ±, then it has use ³ wt(   p1) ³ wt(   b1).  But

this allows us to define a new axiom   Dwt(r)(   Ac
wt(r);  u1, . . . ,  ur,x) = q, where q = 0 if   n1 is

activated along   d1, and q = 1 if   n1 is validated along   d1.  By Lemma 7.2 (Well-Definedness
and Totality), we see that (i) and (ii) hold in this case.

Suppose that S is not controlled along   L1 and only finitely many sections of S are
controlled along   L0.  We note that by Lemma 5.17(v) (Assignment), there are infinitely

many pseudotrue nodes Ì   L0.  By Lemma 6.1(iii) (Finite Control), there are only finitely
many initiators for S on  T1, and as S is not controlled along   L1, every initiator for S at

some node Ì   L1 has a terminator along   L1.  Thus there is an h Ì   L0 such that for all a Ì

  L0 such that a É h, S has no controller at l(a); so every initiator d Ì   L0 for a section of S

at any node along   L0  must satisfy d Í h.  As only finitely many sections of S are

controlled along   L0 and there are infinitely many pseudotrue nodes along   L0, each such d

has a terminator along   L0.  If h Ì h Ì   L0 and h properly extends each such terminator,

then no section of S is controlled at any node along   L0 which extends h, so by (6.6), if  S[i]

is controlled along   L0, then i £ wt(h).  (i) and (iii) now follow from Case 3 of Step 3 of the
construction.

Suppose that S is not controlled along   L1 but infinitely many sections of S are
controlled along   L0.  As in the preceding paragraph, we see that there are only finitely
many initiators for sections of X along   L0.  As infinitely many sections of S are controlled
along   L0, there is a longest initiator, for a section of S, along   L0 which has no terminator
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along along   L0.  Let n be the controller corresponding to this initiator.  Then by (6.7), for

all but finitely many sections Y of S, n will control Y at all sufficiently long pseudotrue r Ì
  L0.  So for all but finitely many  ur, the axioms   Dwt(x)(   Ac

wt(x);  u1, . . . ,  ur,x) = q which are

declared have value q determined by the outcome of n along   L0.  (i) now follows.

Subcase 1.2:  j Î  {0,2}.  (Note that no limit is being computed, and
L(  u1, . . . ,  ur±1,x) just gives the value of an axiom.)  Recall that, by (6.7), a space is
controlled by a node along a path iff it is controlled by that node at all sufficiently long
pseudotrue nodes along the path.  If S is not controlled along   L1 and no section of S is
controlled along   L0, then as controllers are never terminated along   L0, all axioms

  Dwt(x)(   Ac
wt(x);  u1, . . . ,  ur±1,x) = q will be declared in Case 3 of Step 3 of the construction and

will set q = 0, so (i) and (iii) follow from Lemma 7.2 (Well-Definedness and Totality).  If
S is not controlled along   L1 but some section of S is controlled along   L0, then (i) follows
from Lemma 7.2 (Well-Definedness and Totality).  As controllers are never terminated
along   L0, infinitely many sections of S will be controlled along   L0, so the hypothesis of
(iii) fails.

In order to complete the verification of (i) and (ii) for j ¹ 1, it suffices to verify the
following condition, under the assumption that S is controlled along   L1:

(7.1) For all h and   n1, if h Ì   L0 is pseudotrue and   n1 controls S at l(h), then
   Dwt(h)(   Ac

wt(h);  u1, . . . ,  ur±1,x) = 1 iff   n1 is validated along   L1.

We proceed by induction on lh(h) for h pseudotrue.  Given  ur±1, let   h0 be the shortest

string for which   Dwt(h0)(   Ac
wt(h0);  u1, . . . ,ur-1,x)¯, and note that by Step 3 of the construction,

  h0 is pseudotrue.  If h  =   h0, then by the construction, we define

  Dwt(h)(   Ac
wt(h);  u1, . . . ,ur-1,x) = q for some q, and the value chosen for q is the one satisfying

(7.1) if there is a   n1 which controls S at l(h).  Suppose, by induction on lh(h) with h

pseudotrue, that (7.1) holds for r, where   h0 Í r and r is the longest pseudotrue node Ì

h.  By Lemma 6.7 (Loss of Control), (7.1) will hold at h through the absence of a
controller, unless there is a controller   n1 and initiator   d1 for S at l(r); so we may fix such

  n1 and   d1.  Let u be the use of the axiom   Dwt(r)(   Ac
wt(r);  u1, . . . ,  ur±1,x) = q, and note that by

Lemma 7.1(iii) (Use), wt(   d1) £ u.

If   d1 Í l(h), then by Lemma 6.6 (Constancy of Initiator),   n1 controls S at l(h)

with initiator   d1, so (7.1) follows by induction.  Suppose that   d1 Í/  l(h), and fix the

shortest b such that r Ì b Í h and   d1 Í/  l(b), and fix   k1 such that b switches   k1.  By

Lemma 6.7 (Loss of Control), (7.1) will hold for h if S does not have an initiator and
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controller at l(b); thus we may fix an initiator d1 and controller n1 for S at l(b), and note

that, by our assumption,   d1 ¹ d1.  By (6.10), d1 Í  l(b)- Ì  l(   b ±), so d1  Í    k1 Ì    d1.
Hence we may apply Lemmas 6.10 or 6.14 (Correction).

If conclusion (i) of the relevant Correction Lemma holds, then (7.1) follows by

induction.  If conclusion (ii) of the Correction Lemma holds and tp(   n1) = 0, then   b ± º    n1

and we place wt(   k1) Î    Ac
wt(b)\   Ac

wt(b±).  And if conclusion (ii) of the Correction Lemma
holds and tp(   n1) = 2, then dim(   b ±) ³ dim(   n1) and by Lemma 2.2(iv) (Interaction), we

place wt(   k1) Î   Ac
wt(b)\   Ac

wt(b±).  As   k1 Ì   d1, it follows from (2.1) that wt(   k1) < wt(   d1) £ u,
and so that   Ac

wt(h) |` u ¹   Ac
wt(r) |` u.  Now axioms are only defined at pseudotrue nodes, so

the construction declares a new axiom   Dwt(h)(   Ac
wt(h);  u1, . . . ,  ur±1,x)¯ to satisfy (7.1).

Case 2:  k > 1.  By induction, the lemma holds for k-1.  

Subcase 2.1:  S is controlled by   nk along   Lk.  By Lemma 6.3 (Thick Control), a
thick subset of S is controlled along   Lk±1 by derivatives of   nk which are validated along

  Lk±1 if   nk is validated along   Lk, and are activated along   Lk±1 if   nk is activated along   Lk.  (i)
and (ii) now follow by induction.

Subcase 2.2:  S is not controlled along   Lk and only finitely many sections of S
are controlled along   Lk±1.  By Lemma 6.5(iii) (Non-Control), there are only finitely many i

such that a section of S[i] is controlled along   Lk±2.  (i) and (iii) now follow inductively from
(i) and (iii) for k-1.

Subcase 2.3:  S is not controlled along   Lk, but infinitely many sections of S are
controlled along   Lk±1.  By Lemma 6.4 (Indirect Control), all but finitely many sections of S
are controlled by a fixed node along   Lk±1.  (i) now follows from (i) and (ii) inductively.  n

The next lemma relates the outcomes of nodes which are critical for axiom
definition, to the truth of the sentences assigned to those nodes.  

Lemma 7.4 (Accuracy Lemma):  Fix k £ n and   xk Ì   Lk such that k £ dim(   xk) and   xk

is   Lk-free and implication-free.  Then   xk is validated along   Lk iff   Mxk is true.
 

Proof:  Case 1:  k = 0.  Let x =   x0.  Recall that   Mx is a   P1-sentence  beginning

with a block of bounded quantifiers and followed by $s£wt(   h1)  "t³  s S, where S is
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quantifier-free and   h1 = up(x).

Case 1.1: x is validated along   L0.  We first show that   Mx is potentially true, and

all uses in   Mx are < wt(x), under the weaker assumption that x Ì   L0 is implication-free.

We proceed by induction on lh(x).  There are two cases.

Case 1.1.1:  x is not a primary 0-completion or an amenable pseudocompletion.

Then by the construction,   Mx is potentially true, and by (0.1), all uses in   Mx are < wt(x).  

Case 1.1.2:  x is a primary 0-completion or an amenable pseudocompletion.

Thus tp(x) Î {1,2}.  If x is a primary completion, fix h such that x is a primary completion

of h, and let g =   h ±.  And if x is a pseudocompletion, fix the shortest g such that x is a

pseudocompletion of g, and fix h Í x such that   h ± = g.  By (5.5)(ii) and Lemma 5.13

(Amenable Implication Chain) if dim(x) > 1 and by (5.1) or (5.10)(i) if dim(x) = 1, g is
implication-free.   

By (5.2) or (5.11)(i), g is validated along x, so it follows by induction that   Mg is

potentially true, and by (0.1) and (2.1), all uses in   Mg are £ wt(g) < wt(x).  First suppose

that x is a primary 0-completion.  By Lemma 5.12(i) (PL) and (5.19), all nodes   b1 of  T1

which are switched by nodes in (h,x] are in PL(up(x),l(h)).  If dim(x) = 1 (and hence

tp(x) = 1), it follows from (5.4) that TS(   b1)ÇRS(x) = ¯ for each such   b1.  Suppose that

dim(x) = r > 1.  Then by (5.5)(ii), there is an amenable 1-implication chain áá   sj,   sj,   tjñ r-1 ³

j ³ 1ñ  such that out(   t1) = h .  By Lemma 5.12(ii),(iii) (PL), {  upr±1(   b1):   b1 Î

PL(up(x),l(h))} = PL(   sr±1,   tr±1), and if we fix   tr±1 Ì    tr±1 such that (   tr±1)- =   sr±1, then
either   sr±1 is a pseudocompletion of   sr±1, or   tr±1 requires extension. If   tr±1 requires
extension, then by (5.11)(ii),   sr±1 has finite outcome along   tr±1, so by Lemma 5.1(iv) (PL

Analysis) and Lemma 5.12(ii) (PL) and (5.19), {up(   pr±1):   pr±1 Î P L (   sr±1,   tr±1)} =

{up(   pr±1):   pr±1 Î PL(   sr±1,   sr±1)} = PL(up(   sr±1),l(   tr±1)).  Hence by Definition 5.4 if   sr±1 is

an amenable pseudocompletion and by (5.4) otherwise, TS(   b1)ÇRS(x) = ¯ for each such
  b1.  Thus by Lemma 2.2(i) (Interaction) and the construction,   Mx must be potentially true,

and all uses in   Mx are < wt(x).

Now suppose that x is an amenable pseudocompletion.  By (5.11)(i), g is the

principal derivative of up(g) along x.  Hence by (2.11), (2.2), and (2.4), any element £

wt(g) placed in a set at any p Î (h,x] is of the form wt(up(p)) with up(p) Ì up(g), and p is

validated along x.  By Lemma 3.1(i) (Limit Path), there must be a m Ì x such that [m,p] is

a primary x-link which restrains g.  As x is an amenable pseudocompletion of g,
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TS(p)ÇRS(x) = ¯ for each such p.  Thus by Lemma 2.2(i) (Interaction) and the

construction,   Mx must be potentially true, and all uses in   Mx are < wt(x).

For both Subcase 1.1.1 and Subcase 1.1.2, we note that elements placed into sets

are of the form z = wt(up(n)) for n Ì   L0, and z is first placed in a set  As+1 when s = wt(d)

and up(n) is validated along l(d) but not along l(   d ±).  Hence by Lemma 3.1 (Limit Path),

  Mx will be true if no element < wt(x) is first placed in any A Î RS(x) by any n Ê x such

that n Ì   L0.  By Lemma 2.2(i) (Interaction), x does not place elements into any set in

RS(x).  Fix p Ì   L0 such that   p ± = x.  By Lemma 3.1 (Limit Path), it follows that that

l(p)- = up(x) and for all n such that p Í n Ì   L0, l(n) Ê l(p).  Hence the elements placed
into sets by n É x are of the form wt(a), where up(n) = a Ê l(p).  By (2.1) and (2.2),

wt(up(n)) ³ wt(l(p)) > wt(out(l(p))) = wt(p) > wt(x).  Hence   Mx is true.

Case 1.2:  k = 0 and x is activated along   L0.    Mx cannot be potentially true, else

the action taken for x would force x to be validated along   L0.  Hence   Mx cannot be true.

Case 2:  k > 0.  By induction, we may assume that the lemma holds for k-1.  Let n
be the principal derivative of x along   Lk±1.  It follows from Lemma 4.6 (Free Derivative)
and Lemma 5.16(ii)  (Implication-Freeness), that n is   Lk±1-free and implication-free, and if
x has infinite outcome along   Lk, then x has infinitely many   Lk±1-free, implication-free
derivatives m along   Lk±1. 

Suppose that k is odd.  By Definitions 2.9 and 2.10,   Mx is a sentence of the form

 Q1  y1. . .  Qp  yp$zP(y,z) where P is   Pk, and the  Qj are bounded quantifiers, and   Mn is

 Q1  y1. . .  Qp  yp$z£wt(n)P(y,z).  If   Mn is true, then   Mx is true.  But then by induction, n is

validated along   Lk±1, i.e., n has infinite outcome along   Lk±1, so by the definition of the
function l, x has finite outcome along   Lk and x is validated along   Lk.  If   Mn is not true,
then as n is the principal derivative of x along   Lk±1, it follows from (2.4) that all derivatives
of x along   Lk±1 are activated along   Lk±1, i.e., have finite outcome along   Lk±1.  Hence by
induction, for every derivative m of x along   Lk±1 which is   Lk±1-free and implication-free,

  Mm is not true.  For each such m ,   Mm is  Q1  y1. . .  Qp  yp$z£wt(m)P(y,z).  As there are

infinitely many such m, wt(m) is unbounded as we range over these m.  Thus   Mx is not

true.  By induction, m has finite outcome along   Lk±1 for each such m, so by the definition of
the function l, x has infinite outcome along   Lk, so x is activated along   Lk.  

Suppose that k is even.  We proceed as in the preceding paragraph, interchanging
universal and existential quantifiers, P and S, and true and not true.  n
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We now show that all requirements are satisfied.

Lemma 7.5 (0-Satisfaction Lemma):  Every requirement of type 0 is satisfied.

Proof:  Fix a requirement R =  Re,b,c
0,r  of type 0, and let D =   Db,c

0,r  be the functional
for the requirement R as described at the beginning of this section.  By Lemma

5.17(i),(ii),(iv) (Assignment), R is assigned to a unique   sr Ì   Lr such that   sr is   Lr-free and
implication-free, and that if   tr is the immediate successor of   sr along   Lr, then out0(   tr) is
pseudotrue.  

First assume that r = 1.  Let x = wt(   s1).  By Lemma 7.2 (Well-Definedness and

Totality), we can fix q such that D(  Ac;x) = q.  Let n (p, resp.) be the initial (principal,

resp.) derivative of   s1 along   L0 and let b (d, resp.) be the immediate successor of n (p,

resp.) along   L0.  By Lemma 5.17(iv) (Assignment), d is pseudotrue, and by Lemma

5.17(iii) (Assignment), p is d-free and implication-free.  By Lemma 5.16(iv) (Implication-

Freeness), b is pseudotrue and n is implication-free, and by Lemma 4.5 (Free Extension),

n is b-free.  By Definition 6.4 and the construction, we declare an axiom   Dwt(b)(   Ac
wt(b);x) =

z for some z Î {0,1} with use wt(l(b)) -1, where z = 0 iff n is activated along b.  As   s1 Ì
  L1, it follows from (2.6) that no a such that b Ì a Ì   L0 can switch any   r1 Ì   s1.  Hence

by Lemma 7.1(ii) (Use) and (2.1), D(  Ac;x) = z unless p É n, i.e., l(b)  Ë   L1.  Suppose
this to be the case.  Then the construction places wt(   s1) into   Ac

wt(d). By (2.1), wt(   s1) £

wt(l(b)) -1, so we define a new axiom   Dwt(d)(   Ac
wt(d);x) = 1 with use wt(l(d)) -1, and n is

activated along d Ì   L1.  As   s1 Ì   L1, it follows from (2.8) and (2.6) that no a such that d

Ì a Ì   L0 can switch any   r1 Í   s1, so l(d) Ì    L1.  Hence by Lemma 7.1(ii) (Use) and

(2.1), D(  Ac;x) = 1.  Hence   s1 is activated along   L1 if z = 0, and   s1 is validated along   L1 if
z = 1.  By Lemma 7.4 (Accuracy),   s1 is validated along   L1 iff   Ms1

 is true.  Hence if   Ms1
 is

true then z = 1, and if   Ms1
 is not true then z = 0.  Thus R is satisfied in this case.

Now assume that r > 1.  Fix a space S = Nr  ´{x} in the domain of the functional D.
First suppose that S is not controlled along   Lr.  If infinitely many sections of S are
controlled along   Lr±1, then by Lemma 6.4 (Indirect Control), cofinitely many sections of S
are controlled along   Lr±1 by the same node   nr±1, so by Lemma 7.3(i),(ii) (Convergence and

Correctness) applied separately to each section of S,  limu1
. . .  limur±1

D(  Ac;  u1, . . . ,  ur±1,x) = L

exists, L = 0 if   nr±1 is activated along   Lr±1, and L = 1 if   nr±1 is validated along   Lr±1.
Otherwise, by Lemma 6.5(iii), (Non-Control) and Lemma 7.3(iii) (Convergence and

Correctness) applied separately to each section of S,  limu1
. . .  limur±1

D(  Ac;  u1, . . . ,  ur±1,x) = 0.

Now suppose that S =   Sg r for some   gr Ì   Lr associated with D such that   gr controls
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S along   Lr.  Then by Lemma 6.3 (Thick Control) either cofinitely many sections of S are
controlled, along   Lr±1, by derivatives of   gr which are activated along   Lr±1, or cofinitely
many sections of S are controlled, along   Lr±1, by derivatives of   gr which are validated
along   Lr±1.  It now follows from Lemma 7.3(i),(ii) (Convergence and Correctness) applied

separately to each section X of   Sg r that  limu1
. . .  limur±1

D(  Ac;  u1, . . . ,  ur±1,wt(   gr)) = L(wt(   gr))

exists, and that    gr is validated along   Lr iff L(wt(   gr)) = 1.

Recall that R is assigned to a   sr Ì    Lr such that   sr is   Lr-free and implication-free,
and that if   tr is the immediate successor of   sr along   Lr, then out0(   tr) is pseudotrue. Hence
by Definition 6.4,   sr controls S along   Lr.  By the preceding paragraph,

 limu1
. . .  limur±1

D(  Ac;  u1, . . . ,  ur±1,wt(   sr)) = L(wt(   sr)) exists, and   sr is validated along   Lr iff

L(wt(   sr)) = 1.  By Lemma 7.4 (Accuracy),   sr is validated along   Lr iff   Ms r is true.  Hence
if   Ms r is true then L(wt(   sr)) = 1, and if   Ms r is not true then L(wt(   sr)) = 0.  Thus R is
satisfied.  n

Lemma 7.6 (1-Satisfaction Lemma):  Every requirement of type 1 is satisfied.

Proof:  Fix a requirement R =  Re,b,c
1,r  of type 1, and let D =   Db,c

1,r  be the functional
for the requirement R as described at the beginning of this section.  By Lemma 7.3(i)

(Convergence and Correctness) for r > 1, L(i,e) =  limu2
. . .  limur

D(  Ac;i,  u2, . . . ,  ur,e) exists

and takes a value in {0,1} for all e,i Î N.  

By Lemma 5.17(i),(ii) (Assignment), R is assigned to a unique   kr Ì   Lr such that   kr

is   Lr-free and implication free. Let   nr±1 be the principal derivative of   kr along   Lr±1, and fix
  dr±1 Ì    Lr±1 such that (   dr±1)- =   nr±1.  By Lemma 6.15(i) (Initial Control),   nr±1 controls

{wt(   dr±1)}´   N r´{e} with initiator   dr±1 along   Lr±1.  By Case 1.1 of Definition 6.3,   dr±1 is

also the initiator for {i}´   N r´{e} at   dr±1 for all i ³ wt(   dr±1).  Now if i ³ wt(   dr±1), then

{i}´   N r´{e} is controlled along   Lr±1 iff there is an initiator   gr±1 Ì    Lr±1 for {i}´   N r´{e}

such that there is no   nr±1-correcting primary   Lr±1-link [   mr±1,   pr±1] with   mr±1 Ì   gr±1 Í   pr±1;

and by (6.7), if {i}´   N r´{e} is controlled along   Lr±1, then the initiator for {i}´   N r´{e}
along   Lr±1 is the longest such   gr±1.  As   nr±1 is   Lr±1-free,   dr±1 is such a   gr±1.  Hence for all i

³ wt(   dr±1), {i}´   N r´{e} is controlled along   Lr±1, and if {i}´   N r´{e} is controlled at any
  gr±1 Ì   Lr±1 with initiator   di

r±1, then   di
r±1 Ê   dr±1.  

Fix i and   di
r±1 as in the preceding paragraph such that   di

r±1 has no terminator along
  Lr±1.  Let   ni

r±1 be the controller corresponding to   di
r±1.  As   nr±1 is   Lr±1-free and implication-

free, it follows from (4.1) and Case 3 of Definition 6.3 that   ni
r±1 Ê   nr±1. 

First suppose that   nr±1 has infinite outcome along   Lr±1.  We note that as   nr±1 is
  Lr±1-free, there is no primary   Lr±1-link restraining   nr±1.  Furthermore, by Lemma 5.17(v)
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(Assignment), there are infinitely many   tr±1 Ì    Lr±1, such that out0(   tr±1) is pseudotrue, so
by (5.28), every node along   Lr±1 which requires extension has a primary completion along

  Lr±1 which has infinite outcome along   Lr±1; hence every component of  PL(   nr±1,   xr±1) for

some   xr±1 Ì    Lr±1 gives rise to a primary   Lr±1-link which restrains   nr±1, so no such
component can exist.  If up(   nr±1) = up(   ni

r±1), then by (2.8),   nr±1 =   ni
r±1; so   ni

r±1 has infinite
outcome along   Lr±1.  And if up(   nr±1) ¹ up(   ni

r±1), then as   nr±1 is   Lr±1-free, it follows from
Lemma 6.11 (1-Similarity, with   sr±1 =   nr±1 and   sr±1 =   ni

r±1) that   ni
r±1 has infinite outcome

along   Lr±1.
Suppose that   nr±1 has finite outcome along   Lr±1.  If up(   nr±1) = up(   ni

r±1), then as   nr±1

is the principal derivative of   kr along   Lr±1, it follows from (2.4) that   ni
r±1 has finite outcome

along   Lr±1.  Suppose that up(   nr±1) ¹ up(   ni
r±1), and let   hi

r±1 be the immediate successor of
  ni

r±1 along   Lr±1.  By Subcase 1.2 of Definition 6.3, out0(   hi
r±1) must be pseudotrue, else   ni

r±1

would not be a controller at   hi
r±1, so could not be a controller at any node extending   hi

r±1.
We note that as   nr±1 is   Lr±1-free, there is no primary   Lr±1-link restraining   nr±1.

Furthermore, by Lemma 5.17(v) (Assignment), there is a   Lr±1-free node   xr±1 Ì    Lr±1 such

that out0(   xr±1) is pseudotrue and   hi
r±1 Í    xr±1.  Fix the shortest such   xr±1.  We show that

there is no   rr Î PL(up(   nr±1),l(   hi
r±1)) such that OS(   nr±1) Í TS(   rr).  For suppose that such

a   rr exists, in order to obtain a contradiction.  By hypothesis,   nr±1 is   Lr±1-free, so up(   nr±1)

is   Lr-free. By (4.1) and Lemma 4.3(iii) (Link Analysis), there are no primary l(   xr±1)-links
restraining up(   nr±1).  Hence we may apply Lemma 5.18(ii) (Nonamenable Backtracking)

(with   xk =   xr±1, (   hk)- =   ni
r±1,   hk+1 = l(   hi

r±1),   dk+1 = up(   nr±1), and   hk =   hi
r±1) to conclude

that PL(up(   nr±1),l(   hi
r±1)) Í {up(   gr±1):   gr±1 Î  PL(   ni

r±1,   xr±1)}.  Hence we may fix   rr±1 Î
PL(   ni

r±1,   xr±1) such that up(   rr±1) =   rr.

As out0(   xr±1) is pseudotrue and by Definition 5.3, there are   mi
r±1 Ì    rr±1 Í    pi

r±1 Ì
  bi

r±1 Í   xr±1 such that (   bi
r±1)- =    pi

r±1, [   mi
r±1,   pi

r±1] is a primary   xr±1-link, and   rr±1 Î   PL(bi
r±1) Í

PL(   ni
r±1,   xr±1).  Furthermore, either   PL(bi

r±1) = {   pi
r±1} and [   mi

r±1,   pi
r±1] restrains   ni

r±1, or by

Definitions 5.3 and 6.2,   pi
r±1 is the primary completion of some node for   mi

r±1 and   mi
r±1 Ì

  ni
r±1 Ì   pi

r±1.  As   ni
r±1 is a principal derivative along   xr±1, it follows that   mi

r±1 Ì   ni
r±1 in both

cases.  Hence as OS(   nr±1) = OS(   ni
r±1) Í TS(   rr) = TS(   rr±1), [   mi

r±1,   pi
r±1] is a   ni

r±1-injurious
link.  By the comments following Definition 6.2, [   mi

r±1,   pi
r±1] is a   ni

r±1-correcting link.
Recall that   hi

r±1 is the immediate successor of   ni
r±1 along   xr±1.  Now   pi

r±1 is a
terminator for   hi

r±1 along   xr±1.  By Case 3 of Definition 6.3, when a terminator for   hi
r±1 is

found at   ar±1 Ì    Lr±1, it is a terminator for all initiators for   ni
r±1 which are Ì   ar±1, and so

  ni
r±1 cannot be a controller at any   ar±1 such that   ar±1 Í    ar±1 Ì    Lr±1.  Thus by Case 3 of

Definition 6.3,   ni
r±1 cannot control a space along   Lr±1, contrary to assumption. This

139



contradiction shows that there is no   rr Î  PL(up(   nr±1),l(   hi
r±1)) such that OS(   nr±1) Í

TS(   rr). 
 It now follows from Lemma 6.11 (1-Similarity, with   sr±1 =   nr±1 and   sr±1 =   ni

r±1)
that   ni

r±1 has finite outcome along   Lr±1.  We thus conclude that for all i ³ wt(   hi
r±1),   ni

r±1 is
validated along   Lr±1 iff   nr±1 is validated along   Lr±1.  There are two cases:

Case 1:  r > 1.  By Lemma 7.3(ii) (Convergence and Correctness),   ni
r±1 is

validated along   Lr±1 iff L(i,e) = 1.  But as   nr±1 is the principal derivative of   kr along   Lr±1, it
follows from (2.4) that   nr±1 is validated along   Lr±1 iff   kr is validated along   Lr.  By Lemma
7.4 (Accuracy),   kr is validated along   Lr iff   Mkr is true.  Hence if   Mkr is true then L(i,e) = 1
for cofinitely many i, and if   Mkr is not true then L(i,e) = 0 for cofinitely many i.  Thus R is
satisfied.

Case 2:  r = 1.  First suppose that   Mk1 is true.  For all   s1,   t1 Î  T1, if   s1 º    t1 º    k1

then   Ms1 =   Mt1.  Hence for all sufficiently long x Ì   L0, if x º    k1 then   Mx is potentially

true, so D(  Ac;i,e) = 1 for cofinitely many i.  

Suppose that   Mk1 is not true.  By Lemma 7.4 (Accuracy), n =   n0 is the initial

derivative of   k1 along   L0 and n has finite outcome along   L0.  By the last sentence of the
paragraph preceding Case 1,   ni =   ni

0 has finite outcome along   L0.  But then by the

construction, D(  Ac;i,e) = 0 for cofinitely many i, and R is satisfied. n

Lemma 7.7 (2-Satisfaction Lemma):  Every requirement of type 2 is satisfied.

Proof:  Fix a requirement R =  Re,1, c
2,r  of type 2, and let D =   D1,c

2,r  be the functional
for the requirement R as described at the beginning of this section.  By Lemma 7.3(i)

(Convergence and Correctness), L(i,e) =  limu2
. . .  limur±1

D(   Ac;i,  u2, . . . ,  ur±1,e) exists and

takes a value in {0,1} for all i Î N.  

By Lemma 5.17(i),(ii) (Assignment), R is assigned to a unique   kr Ì   Lr such that   kr

is   Lr-free and implication-free.  Let   nr±1 be the principal derivative of   kr along   Lr±1, and fix
  dr±1 Ì   Lr±1 such that (   dr±1)- =   nr±1.  By Lemma 6.15(i) (Initial Control) and Definition 6.3,
  nr±1 controls {wt(   dr±1)}´   N r±1´{e} with initiator   dr±1 along   Lr±1, and   dr±1 is also the

initiator for {i}´   N r±1´{e} at   dr±1 for all i ³ wt(d).  Now if i ³ wt(   dr±1), then {i}´   N r±1´{e}

is controlled along   Lr±1 iff there is an initiator   gr±1 Ì   Lr±1 for {i}´   N r±1´{e} such that there

is no primary   Lr±1-link [   mr±1,   pr±1] with   mr±1 Ì   gr±1 Í   pr±1; and if   ar±1 Ì    Lr±1 and (   ar±1)- =
  pr±1, then wt(   ar±1) £ i.  (By Lemma 2.2(iv) (Interaction), every primary   Lr±1-link is   nr±1-

correcting.)  Also, if {i}´   N r±1´{e} is controlled along   Lr±1, then the initiator for
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{i}´   N r±1´{e} along   Lr±1 is the longest such   gr±1.  As   nr±1 is   Lr±1-free,   dr±1 is such a   gr±1.

Hence for all i ³ wt(   dr±1), {i}´   N r±1´{e} is controlled along   Lr±1, and if {i}´   N r±1´{e} is

controlled at any   gr±1 Ì   Lr±1 with initiator   di
r±1, then   di

r±1 Ê   dr±1.  Fix such an i and let   ni
r±1

be the controller corresponding to the initiator   di
r±1 for {i}´   N r±1´{e} at   gr±1.  As   nr±1 i s

  Lr±1-free, it follows from Case 3 of Definition 6.3 that   ni
r±1 Ê   nr±1.

If up(   nr±1) = up(   ni
r±1), then as   nr±1 is the principal derivative of   kr along   Lr±1 and

  ni
r±1 Ê   nr±1, it follows from (2.8) and (2.4) that   ni

r±1 has finite outcome along   Lr±1 iff   nr±1

has finite outcome along   Lr±1.  And if up(   nr±1) ¹ up(   ni
r±1), then we note that as   nr±1 is   Lr±1-

free, there is no primary   Lr±1-link restraining   nr±1; hence by Lemma 6.13 (2-Similarity,

with   sr±1 =   nr±1 and   sr±1 =   ni
r±1),   ni

r±1  has finite outcome along   Lr±1 iff   nr±1 has finite
outcome along   Lr±1.  Thus for all i ³ wt(   dr±1),   ni

r±1 is validated along   Lr±1 iff   nr±1 is
validated along   Lr±1.  By Lemma 7.3(ii) (Convergence and Correctness),   ni

r±1 is validated
along   Lr±1 iff L(i,e) = 1.  But as   nr±1 is the principal derivative of   kr along   Lr±1, it follows
from (2.4) that   nr±1 is validated along   Lr±1 iff   kr is validated along   Lr.  By Lemma 7.4
(Accuracy),   kr is validated along   Lr iff   Mkr is true.  Hence if   Mkr is true then L(i,e) = 1 for
cofinitely many i, and if   Mkr is not true then L(i,e) = 0 for cofinitely many i.  Thus R is
satisfied.  n

Our main theorem is now immediate from the definition of the functionals   Db,c
j,k ,

Lemmas 1.1, 2.1, Lemma 7.2 (Well-Definedness and Totality), and Lemmas 7.5-7.7 (j-
Satisfaction for j £ 2).

Theorem 7.8:  Fix m Î N, and let P = á  P0,   £0,  P1,   £1,  f1, . . . ,  Pm,   £m,  fmñ be a finite m-jump
poset such that  P0 has least element 0 and greatest element 1.  Then there is a finite set   G0

of r.e. degrees, and there are finite sets   Gk = {d: $a Î   G0 (   a(k)Ê=Êd)} for each k Î [1,m]
such that the following diagram commutes. 
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    f1  f2  fm

á  P0,   £0ñ ¾¾¾®á  P1,   £1ñ ¾¾¾® ....... ¾¾¾®á  Pm,   £mñ

 ½ ½ ½

@ ½            @ ½ ÊÊÊ                @ ½

   ¯ ' ¯   '                   ' ¯Ê   

á   G0,£ñ¾¾¾®  á   G1,£ñ ¾¾¾® ........ ¾¾¾®á   Gm,£ñ

½ ½ÊÊ                   ½

  Í ½           Í ½ ÊÊÊ               Í ½

¯ ' ¯ '      ' ¯Ê   

    R¾¾¾¾¾¾®R(0') ¾¾¾®........ ¾¾¾®R(0(m))       
Figure 7.1      

Furthermore, the embedding maps 0 Î  P0 to 0 and 1 Î  P0 to 0'.  n

We have the following corollary, as proved in the introduction.

Corollary 7.9: The existential theory of R(<w) = áR,0,0',£,   ££1. . . ,   ££n,...ñ is decidable.
n

If J is any recursively presented <w-jump-poset, then we can modify our

construction to embed J into R(<w).  Requirements are listed as before, and form a
recursive list.  Each requirement has a well-defined dimension.  We assign a given
requirement to a tree of the correct dimension.  As only finitely many trees will have been
defined at any stage of the construction, and when a new tree  Tk+1 is needed, we assign the
finitely many requirements already assigned to  Tk and which need to be assigned to  Tk+1 in
the same order that the requirements were assigned to  Tk.  All lemmas now can be proved
as before.  It is also not difficult to show that there is a countable universal recursively-

presented <w-jump poset.  Hence:

Theorem 7.10:  Let P = á  P0,   £0,  P1,   £1,  f1, . . . ,  Pm,   £m,  fm,...ñ be a countable <w-jump poset

such that  P0 has least element 0 and greatest element 1.  Then for all m, á  Pm,   £mñ can be

embedded isomorphically into R[   0 (m),   0 (m+1)] so that Figure 7.1 commutes for all m Î N.

Furthermore, the embedding maps 0 Î  P0 to 0 and 1 Î  P0 to 0'.  n

Slaman and Sui have noted that the methods of proof of Theorem 7.8 should work

for <w-jump usls in place of posets, and that we can add joins at all levels to our language
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and decide the corresponding $-theory if 1 is removed from the language.  The
construction need not be modified.  The fact that the target sets are complements of prime
ideals suffices to show that joins are preserved.

The methods presented in this paper will carry over to other priority arguments, if
certain basic properties are satisfied.  One can weaken the requirement assignment process
to simultaneously assign requirements, and their derivatives, to the trees at all levels.  Each
requirement will have a basic module on each tree, which will be a segment of the tree of
finite height.  This assignment should provide the sentences generating action at each node
of each tree.  To study the interaction between requirements, an injury analysis similar to
that provided by Lemma 2.2 (Interaction) is needed.  A notion of control, different for each
requirement, will be needed to determine how axioms are to be declared and elements
placed into sets, and implication chains will be needed whenever a requirement needs to act
off the true path.  One can isolate a guiding principle for the definition of implication
chains.  Thus implication chains are to be built (and control relinquished) when there is a
primary link which, if later switched, corrects any action for the requirement.
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