
5.  Implication Chains. In order to coordinate the action of nodes working for the
same (densely distributed) requirement of type 1 or 2 so that iterated limits will exist, we
will have to force extensions of certain nodes to follow specified paths, so that we can form
implication chains.  This will allow us to show that the nodes work together to specify the

same outcome for their axioms.  Suppose that s and s are two such nodes.  If s and s are
incomparable, then the notion of control defined in Section 6 allows us to prevent the node
which is off the true path from declaring too many axioms.  So we restrict our attention in

this section to the case where s and s are comparable.  We try to arrange that, whenever

possible, either both s and s are activated or both s and s are validated.  (Such attempts

begin on Tdim(s)-1, as the notion of control is used to coordinate action taken by the

construction for this requirement at nodes on trees  Tk for k < dim(s)-1, allowing us to
verify the existence of iterated limits, except for the outermost iteration.)  Whenever faced
with a path along which this is not the case, we try to force an extension of paths which
causes one of these two nodes to switch before declaring any new axioms.  As we also
want these nodes to act in accordance with the validity of the sentences which generate their
action, we try to construct implication chains between nodes which yield implications either
from Ms to Ms or from Ms to Ms (see Definitions 2.9 and 2.10).  These implication chains

are carried down to T0, where decisions on action can be made effectively, based on the
truth of the sentences.

We now describe the construction of implication chains in more detail.  Fix L
0
 Î

[T0] and assume that L
0
 is the true path for the construction.  For all i £ n, let L

i
 = l

i
(L

0
).

Suppose that we have sr Ì s
r
 Ì L

r
 such that r = dim(sr)-1, up(sr) ¹ up(s

r
), and sr and s

r

are working for the same densely distributed requirement R.  Then at most one of sr and s
r

will have all of its antiderivatives on Ti lying along L
i
 for all i Î [r,n], but we will not be

able to recursively identify if either of these nodes has this property, and if so, which one
has the property.  We may then be forced to define infinitely many axioms for R for

derivatives of both sr and s
r
.  Such axioms have value determined by the prediction of the

truth of certain sentences derived from the sentence assigned to R.  However, we can only
show that these predictions are correct, and hence that the proper value is specified, when
all antiderivatives of the node lie on the true path.  Thus the values produced by derivatives

of s
r
 and derivatives of sr may be different, preventing us from computing limits needed to

satisfy R.  We must therefore try to coordinate the actions taken for sr and s
r
.  

The same sentence, Mup(sr), will be assigned to both up(sr) and up(s
r
).  The

sentences Msr and Ms
r assigned to sr and s

r
, respectively, will be obtained by bounding all

quantifiers in the first quantifier block of Mup(sr) by numbers wt(sr) and wt(s
r
),

respectively, where wt(sr) < wt(s
r
).  If the quantifier block is a block of universal
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quantifiers, then Ms
r will formally imply Msr, and if it is a block of existential quantifiers,

then Msr will formally imply Ms
r.  Assume the latter, and so, that r is even, for

concreteness.    

The coordination problem arises when we reach tr such that (tr)- = s
r
, and sr has

finite outcome along tr iff s
r
 has infinite outcome along tr.  We briefly describe the attempt

to coordinate action.  There are two cases to consider, depending on whether sr has finite
or infinite outcome along tr.

Case 1:  First suppose that sr has finite outcome along tr, and so, that s
r
 has

infinite outcome along tr.  Recall that sr Ì s
r
 Ì tr.  We will only need to follow this case if

up(sr) Ì up(s
r
), so we assume that this latter condition holds.  (If this is not the case, then

we will be able to show that there are too few conflicting axioms to prevent the existence of

iterated limits.)  The sentences Msr and Ms
r assigned to sr and s

r
 are obtained by bounding

the leading unbounded quantifier block (a block of existential quantifiers) in Mup(sr) =

Mup(s
r
) by numbers wt(sr) < wt(s

r
), respectively. As sr has finite outcome along tr, we are

predicting that Msr is false, so do not have a formal implication from the truth of Msr to the

truth of Ms
r.  But if it were the case that wt(sr) ³ wt(s

r
) and as we are predicting that Ms

r is
true, Ms

r would formally imply Msr. We thus try to create an implication between sentences

by replacing sr with a derivative sr of up(sr) which extends tr.  (The process of obtaining

sr will require us to switch certain nodes which are the ends of primary links, or which
caused other implication chains to be created.  We may need to iterate this process down to

T0, and nodes of T1 which are switched will place elements into sets, so could injure the

truth of the instance of Ms
r on T1.  We will be able to check to see if this is the case, and

will show that it will be unnecessary to pass from tr to sr in this situation, as the
construction will resolve conflicts between axioms declared by derivatives of sr and axioms

declared by derivatives of s
r
 automatically.  We will try to provide more intuition as to how

this occurs later.)  Suppose that we decide to extend tr to sr.  (In this case, we say that tr

requires extension for sr.)  We now look at tr such that (tr)- = sr.  If sr has finite outcome

along tr, we proceed as in Case 2 below (with sr in place of s
r
 and s

r
 in place of sr),

where it is assumed that sr has infinite outcome along tr.  If sr has infinite outcome along

tr, then we will have switched the outcome of up(sr), thus forcing up(s
r
) off the true path,

and will have prevented derivatives of s
r
 from defining any axioms which might prevent

the computation of an iterated limit, as we have delayed the declaration of axioms by

derivatives of s
r
.

Case 2:  Suppose that sr has infinite outcome along tr.  We now have a formal
implication from Msr which seems to be true, to Ms

r which seems to be false.  (We will not

38



allow this to happen for r = 0.)  If the immediate successor of sr along tr does not require

extension, then we call s
r
 a pseudocompletion of sr.  We form an r-implication chain

áásr,s
r
,trññ, to try to resolve this discrepancy on Tr-1.  This discrepancy is first observed at

tr-1 = out(tr) along L
r-1

.  We will then have sr-1 Ì  s
r-1

 Ì  tr-1 such that sr-1 and s
r-1

 are,

respectively, the principal derivatives of sr and s
r
 along tr-1, and (tr-1) -  = s

r-1
.

Furthermore, �s
r-1

 has finite outcome along tr-1 and s
r-1

 has infinite outcome t
r-1

.  We now

have the situation for r-1 which we discussed in Case 1 for r.  If  tr-1 requires extension for

sr-1, then the r-implication chain áásr,s
r
,trññ will be called amenable, and we will either be

able to extend our implications between sentences to level r-1 and build an amenable (r-1)-
implication chain, or will switch paths as described above.
  

Once we have an (r-1)-implication chain, we repeat this process.  There are three

possibilities.  Either we eventually switch sr, thus removing s
r
 from the current path.  Or

we switch s
r
 (this can occur when we try to build a j-implication chain for j even), thus

resolving the conflict by forcing derivatives of sr and s
r
 to define axioms with identical

outputs (no axioms are defined by s
r
 while we are resolving the conflict), or we reach  T0

and do not allow the construction of a 0-implication chain.  We show that the action of the

construction on T0 is still in accordance with the potential truth of the sentences described.
The process of defining implication chains requires us to define several notions by

simultaneous induction on lh(h) for h Î T0.  We begin by defining hk requires extension

for nk, where hk = l
k
(h).  (In Case 1 of our intuitive remarks, hk corresponds to tr and

nk to sr.)  When hk requires extension for nk, then either k = dim(nk)-1 and we will be

beginning an attempt to construct a k-implication chain, or k < dim(nk)-1 and we will be
attempting to extend a (k+1)-implication chain which has been defined by the time hk is

reached, to a k-implication chain.  If hk requires extension for nk, then we will begin a

process of defining the k-completion of hk for nk.  (The k-completion will correspond to

the node sr when k = r in Case 1).  We may need to switch nodes while constructing a k-
completion, and may thereby discover a new node which requires extension, and so wants
to find a j-completion.  In order to resolve potential conflicts about which completion to
pursue, we stipulate that we obtain the j-completion of the new node before continuing with
the process of finding the k-completion of the original node.  (We will show that this
process is finitary.)  Nodes which are first encountered during the process of finding a k-
completion will not be implication-free, and so will not be allowed to control the

declaration of axioms.  The decision as to whether hk requires extension for nk will depend

on the elements in PL(up(nk),l(hk)), a set of ends of primary links along l(hk) which

restrain up(nk), and nodes extending up(nk) which caused implication chains to be created.
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These are nodes which will have to be switched in order to obtain the k-completion of hk,
and in the iterative process of finding a 0-implication chain, could place elements into sets
which might destroy the truth of the instance Ms

1 of the sentence whose truth at a given
stage caused us to try to construct the implication chain.  (We note that this can only occur
for requirements of type 1.)  Should such a destruction occur, then hk will not require

extension for nk; we will show that if nk really is on the true path for the construction, then

any way of returning nk to the true path will cause such a destruction, and that this
destruction will also allow us to correct axioms.  The amenable implication chains are

those which give rise to sets PL(up(nk),l(hk)) for which no such destruction will occur.
There are five conditions which must be satisfied in order for a node to require

extension.  Fix nodes nk Ì  d
k
 Ì    hk (the nodes corresponding to sr, s

r
 and   tr,

respectively, in Case 1 of our intuitive remarks), and let   xk be the immediate successor of

nk along   hk.  Condition (5.1) requires that, if k = r, then for all i £ k, the principal

derivatives of nk along  outi(   xk) and d
k
 along  outi(   hk) are implication-free (see Definition

5.7).  This will correspond to assuming that all action to find j-completions for j ³ k which
was started before  out0(   hk) has been completed, so we are free to try to resolve the current
conflict between sentences.  (If k < r, then we must try to build completions even when a
node is not implication-free as part of the process for finding completions for other nodes.)
We also require that  out0(   xk) is pseudotrue; should this condition fail, then   xk will not be
allowed to define axioms.  Condition (5.2) implies that two nodes disagree about the value
to be assigned to a newly declared axiom, but there is no implication between the
sentences.  This corresponds to Case 1 of our intuitive remarks, and   nk in (5.2)
corresponds to   sr in Case 1.  By (5.2) and Lemma 4.3(i)(a) (Link Analysis), condition

(5.3) will imply that up(   nk) Ì up(   dk); and the failure of (5.3) will imply that up(   nk) and
up(   dk) are incomparable, so by (2.6), no derivatives of up(   nk) can extend   dk.  In the latter
case, it is impossible to carry out the extension process needed to find a completion.  (5.4)
is the condition which determines if any node which must be switched during the iteration
process for finding completions will place elements into the restraint set for the sentence
whose apparent truth caused us to want to act; the condition requires that such nodes do not
exist.  This will always be the case for requirements of type 2, so (5.4) only applies to
requirements of type 1.  (5.5)(i) is the   condition required to start building an r-implication
chain, and condition (5.5)(ii) describes the situation which arises in extending a (k+1)-
implication chain to a k-implication chain. 

Definition 5.1:  Suppose that k £ r < n and   nk Ì   xk Í   dk Ì   hk Î  Tk are given such that
(   hk)- =   dk, (   xk)- =   nk, and r = dim(   nk)-1.  We say that   hk requires extension for   nk if   nk is
the shortest node for which the following conditions hold:
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(5.1) If k = r, then for all i £ r, the principal derivatives of   nr along  outi(   xr) and   dr along 
 outi(   hr) are implication-free (see Definition 5.7), and  out0(   xr) is pseudotrue (see 

Definition 5.9).

(5.2) tp(   nk) Î{1,2},   nk º   dk, up(   dk) ¹ up(   nk),   dk has infinite outcome along   hk,   nk is 
the principal derivative of up(   nk) along   hk, and   nk has finite outcome along   hk (so 

  nk is the initial derivative of up(   nk) along   hk).

(5.3) There is no primary   hk-link which restrains   nk.

(5.4) If k = r and tp(   dk) = 1, then for every   pk+1 Î PL(up(   nk),l(   hk)), TS(   pk+1)ÇRS(   dk)
= ¯ (see Definition 5.3 for the definition of PL sets).

(5.5) One of the following conditions holds:
(i) r = k.

(ii) There is an amenable (k+1)-implication chain áá   sj,   sj,   tjñ: r ³ jÊ³ k+1ñ along 

l(   hk) such that   hk  = out(   tk+1), and   dk (   nk, resp.) is the principal derivative 
of   sk+1 (   sk+1, resp.) along   hk.  (See Definitions 5.4 and 5.2 for the 
definitions of amenable and implication chain.)

We say that   hk requires extension if   hk requires extension for some   nk.    n

Implication chains keep track of the implications between sentences for a
requirement.  The first and second coordinates of the triple at a given level of the
implication chain determine the nodes which are potentially responsible for defining axioms
for the requirement.  The third coordinate keeps track of the conflicting outcomes of the
first and second coordinates.  The k-implication chain follows the implications of sentences
from the starting level,  Tr, down to  Tk.  The conditions mentioned in Definition 5.2 are
described in the motivation at the beginning of the section.  In addition, we require the

principal derivatives of   sr along outi(   tr) and s
r
 along outi(   tr) to be implication-free for all i

£ r (condition (5.10)).  This will correspond to assuming that all action to find j-

completions for j ³ k which was started before outi(   tr) or outi(   tr) was completed before
that node is reached, so we are free to try to resolve the current conflict between sentences.
If k < r, then we have already begun building the implication chain, and must continue to
extend it within other implication chains; thus the principal derivatives of   sk and   sk along

outi(   tk) need not be implication-free.  (We note that condition (5.6) below allows

up(   sr)|up(s
r
).)

We will also need to describe the situation when the first triple of an implication
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chain can be formed by taking an immediate extension of a node s
r
 in the absence of a

requires extension configuration; such a s
r
 will be called a pseudocompletion.  

Definition 5.2:  Fix k £ r £ n. A k-implication chain is a sequence áá   sj,   sj,   tjñ: r ³ j ³ kñ
such that:

(5.6)   sr º s
r
 and up(   sr) ¹ up(s

r
).  

(5.7) tp(   sr) Î {1,2}, dim(   sr) = r+1.

(5.8) (i)   sk Ì   sk.

(ii)   sk = (   tk)- Ì   tk. 

(5.9) If k < r, then up(   sk) =   sk+1 and up(   sk) =   sk+1.

(5.10) (i) Fix    tr Í s
r
 such that (   tr)- =   sr.  Then for all i £ r, the principal derivative of 

  sr along outi(   tr) is implication-free (see Definition 5.7), and s
r
 is implication-

free.

(ii) For all i £ r, the principal derivative of s
r
 along outi(   tr) is implication-free.

(5.11) (i)   sk has infinite outcome along   sk.
(ii)   sk has finite outcome along   tk.

(5.12) If k < r, then áá   sj,   sj,   tjñ: r ³ j ³ k+1ñ is a (k+1)-implication chain along   tk+1 and 

out(   tk+1) Ì   tk.

We say that this implication chain is along   rk Î  Tk (   Lk Î [  Tk], resp.) if   tk Í    rk (   tk Ì    Lk,
resp.).

Suppose that k = r, conditions (5.6), (5.7), (5.8)(i), (5.9), (5.10)(i), and (5.11)(i)

hold, and s
r
 is an initial derivative.  In this case, we call s

r
 a pseudocompletion of   sr.  s

r

is a pseudocompletion if it is a pseudocompletion of some node.  n

The process of building a new r-implication chain, or of extending a (k+1)-
implication chain to a k-implication chain, will require us to build completions.  We will
define PL sets, which keep track of the antiderivatives of those nodes of  T1 which will
eventually have to be switched (and might thereby injure restraint sets), should we need to
pull the implication chains down to  T0 during the process of building completions.
Consider the situation wherein a node of   Tk requires extension.  Thus assume that we have
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  nk Ì    dk Ì    hk Î  Tk such that (   hk)- =   dk and   hk requires extension for   nk.  We wish to

construct a   kk É    hk such that up(   kk) = up(   nk) =   nk+1.  By (2.10), this requires taking

extensions of   hk with the goal of making   nk+1 a l(   kk)-free node.  Thus we must eliminate
the links which restrain   nk+1.  

Let   hu =   lu(   hk) for all u Î [k,n].  We will show later that, in this situation, there is

an   hk+1-link which restrains   nk+1 and   nk+1 Ì    dk+1 = up(   dk).  By Lemma 4.1 (Nesting),
there will be an   hk+1-link [   mk+1,   pk+1] which restrains   nk+1 and contains all   hk+1-links
which restrain   nk+1, and   pk+1 will be   hk+1-free.  By (2.10), we must eliminate this link in
order to make   nk+1 free; this is done as follows.  Let [   mk+1,   pk+1] be derived from the
primary   hj-link [   mj,   pj] (we allow j = k+1).  By Lemma 3.5 (Nonswitching Extension) and
since all blocks defined in Section 2 are finite, we will be able to find a nonswitching

extension   hk of   hk such that  upj(   hk) =   pj and   hk is an initial derivative of  upj±1(   hk) É   hj±1.

By Lemma 3.6 (Switching), we can find   hk such that (   hk)- =   hk,   li(   hk) É   li(   hk) for all i <
j, and   hk switches   pj.  [   mk+1,   pk+1] will not be a   lk+1(   hk)-link, and every   lk+1(   hk)-link
which restrains   nk+1 will be properly contained in the interval [   mk+1,   pk+1].  Hence barring
other considerations, we can repeat this process for the longest   lk+1(   hk)-link which
restrains   nk+1, and eventually find a new derivative   kk of   nk+1 on  Tk.  (There may be
additional considerations, but for this paragraph, assume that there are none.)  This
procedure will be induced by taking extensions of nodes on  T0 which will be nonswitching
except when needed to switch one of the above nodes ending a link.   out0(   kk) will act
according to the validity of its sentence unless k = 0, in which case we force   k0 to have
infinite outcome, and show that this action is in accordance with the validity of the sentence
assigned to   k0.  If k > 0 and the action of  out0(   kk) produces an immediate successor   h of

 out0(   kk) such that   kk has infinite outcome along l
k
(   h ), then the process halts since we will

then have switched   nk+1, so will have forced   dk+1 not to lie along   Lk+1.  Otherwise, we will
have constructed a k-implication chain, and   lk±1(   h ) will require extension, so we can
repeat this process.    pj is placed in PL(   nk+1,   hk+1) via (5.13) whenever j = k+1, i.e.,
whenever [   mk+1,   pk+1] is a primary   hk+1-link.  Each such   pj will be the last node of a
primary   hk+1-link which restrains   nk+1.  The nodes in PL(   nk+1,   hk+1) are those which cause
a small element to be placed in a set when we carry out the backtracking process for k = 0,
and may thereby injure the oracle of the computation which has generated the implication
chain.  We will check to see, for all nodes in PL(   nk+1,   hk+1), whether this action causes an
element to be placed into this oracle.  If not, then the implication chains constructed during
this process are called amenable (see Definition 5.4).  The derivative operation will
provide a one-one correspondence between PL(   nk+1,   hk+1) and PL(   dk,   lk(   h )), so it will
suffice to consider only the nodes in PL sets. 

There are additional considerations which we need to take into account.  Our proof
requires that we follow the backtracking process for a node whenever that node requires
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extension.  In the preceding paragraph,   lj±1(   hk) will have infinite outcome along   lj±1(   hk).
It is thus possible that   lj±1(   hk) will require extension for some   gj±1.  Furthermore, it is
possible that for such a   gj±1, if   gj = up(   gj±1), then there is a   lj(   hk)-link which restrains   gj,
but no   lk+1(   hk)-link derived from this   lj(   hk)-link restrains   nk+1, so this situation is not
covered by (5.13).  

Suppose that   lj±1(   hk) requires extension for   gj±1.  By (5.1) and since   lj±1(   hk) is
implication-restrained, dim(   gj) > j.  In order to make our construction cohere, we must
perform the backtracking process for   lj±1(   hk) (which entails removing all links around   gj)
before proceeding as in the preceding paragraph for the next link which restrains   nk+1.
This may require us to switch additional primary links, say [   rt,   tt] on  Tt for t ³ j, with   nk+1

Ì  outk+1(   rt) Ì   dk+1.  Also, once we have found a new derivative   tj±1 of   gj, we must force
it to have infinite outcome along its immediate extension in order to preclude the existence
of a (j-1)-implication chain along the true path.  In either case, we have to switch nodes on

 Tk+1 if t = k+1 or j = k+1, respectively, until we complete the backtracking process for
  lj±1(   hk),i.e., until we reach the primary completion of   lj±1(   hk).  For the first case, we put

all nodes   tk+1 Î PL(   gk+1,   hk+1) into PL(   nk+1,   hk+1) via (5.14)(ii), as these nodes have to be

switched in order to backtrack l(   hk), and call PL(   gk+1,   hk+1) a componen t  of
PL(   nk+1,   hk+1).  For the second case, we put   gk+1 into PL(   nk+1,   hk+1) via (5.14)(i).  

In the preceding paragraphs, we have tried to motivate the definition of

PL(   nk+1,   hk+1) by looking ahead to some   hk É out(   hk+1), and seeing which nodes Í   hk+1

need to be switched in order to carry out the backtracking process beginning at   hk.
However, in the definition of PL sets below, we will want to inductively describe this set
in advance, as we pass from   nk+1 to   hk+1, in anticipation of later finding   hk and having to
carry out the corresponding backtracking process.  When we wanted to place an element

  tk+1 into PL(   nk+1,   hk+1) through (5.13), it was the case that   tk+1 was the end of a primary
  hk+1-link restraining   nk+1, so these nodes are readily identified in advance.  We will show

that the other case, described in the preceding paragraph and specified in (5.14),
corresponds precisely to a reversal of a backtracking process beginning at a node   dk+1

which requires extension for some   mk+1 Ì    nk+1 with   nk+1 Ì  (   dk+1)-, and so we can again
identify these nodes in advance.  ((   dk+1)- will be the   gk+1 of the preceding paragraph.)
Once we complete the backtracking process for   dk+1, i.e., once we find a primary
completion   kk+1 of   dk+1, the component corresponding to action for   dk+1 does not place

elements É   kk+1 into PL(   nk+1,   hk+1).  Thus the node   xk+1 in (5.14) (for j = k+1) must

satisfy   xk+1 Í   kk+1.
The backtracking process is induced by the process described above, starting at

 out0(   hk) and ending at  out0(   kk).  Thus we begin at  out0(   hk), and proceed as described
above by taking extensions on  T0 which are never j-switching for any j £ k, until we reach

a node   k0 É   out0(   hk) which has the properties of  out0(   kk).  As activated and validated
outcomes are unique on  T0, there will be a unique way to carry out the backtracking
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process, as long as we decide to follow activated outcomes of nodes when not otherwise
specified.  Assume that   kk has been defined in this way.  For all i £ k,  outi(   kk) will be
called the i-completion of hk for   nk, and will be defined in Definition 5.6.  In the definition
of the PL sets, which we now present, it would be helpful for the reader to think of j as the
k+1 of the preceding remarks.  The definition is an inductive definition, proceeding by
induction on n-j and then by induction on lh(   hj)-lh(   nj).

Definition 5.3:  Fix j < n and   nj Ì   hj Î  Tj.  We place   tj Ì   hj into PL(   nj,   hj) if one of the
following conditions holds:

(5.13) There is a   mj such that   mj Í   nj Ì   tj and [   mj,   tj] is a primary   hj-link.

(5.14) There are   mj,   dj, and   xj such that   mj Ì    nj Ì  (   dj)- Ì    dj Í    xj Í   hj,   dj requires 
extension for   mj and has no j-completion with infinite outcome along   xj, and either:
(i)   tj = (   dj)-; or

(ii)   tj Î PL((   dj)-,   xj).

If nodes satisfying the hypotheses of (5.14) exist, then we call PL((   dj)-,   xj) a component
of PL(   nj,   hj).   n

Lemma 5.1 (PL Analysis Lemma):  Fix j £ n and   nj Í    rj Ì    sj Í    hj Î   Tj such that
(   sj)- =   rj.  Then:

(i) PL(   nj,   rj) Í PL(   nj,   sj).

(ii) PL(   nj,   sj)\PL(   nj,   rj) Í {   rj}.
(iii) If PL(   nj,   sj)\PL(   nj,   rj) ¹ ¯, then either PL(   nj,   sj)\PL(   nj,   rj) = {   rj} and   rj is 

the last node of a primary   sj-link, or   sj requires extension.
(iv) If   rj has finite outcome along   sj then PL(   nj,   sj) = PL(   nj,   rj).
(v) If   rj is   hj-free and for every   dj and   mj such that   dj requires extension for   mj 

and   mj Ì   nj Ì (   dj)- Ì   dj Í    hj, it is the case that there is a   kj Ì    hj such that 
  kj is the j-completion of   dj and   kj has infinite outcome along   hj, then 

PL(   nj,   sj) = PL(   nj,   hj).

(vi) If   xj Í    hj and PL(   rj,   xj) is a component of PL(   nj,   hj), then PL(   rj,   xj)È{   rj} 

Í PL(   nj,   hj).

(vii) If PL(   rj,   hj) is a component of PL(   nj,   hj) and (   hj)- Î PL(   nj,   hj), then 

(   hj)- Î PL(   rj,   hj) or (   hj)- =   rj.

(viii) If every   dj Í   rj which requires extension has a j-completion Í   rj with infinite

outcome along   sj, then PL(   nj,   hj) Í PL(   nj,   rj)ÈPL(   rj,   hj)È{   rj}.
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(ix) Given   rj such that PL(   rj,   hj) is a component of PL(   rj,   hj) and PL(   rj,   hj) is a 

component of PL(   nj,   hj), then PL(   rj,   hj)È{   rj} Í PL(   nj,   hj).

Proof:  (i):  By definition.
(ii),(iii):  Any primary   sj-link which is not a primary   rj-link has   rj as its last

element.  And new components can first appear at   sj only if   sj requires extension.  Hence
(iii) holds.  (ii) now follows from (5.13), (5.14)(i), and induction on lh(   hj)-lh(   nj) for
(5.14)(ii).

(iv):  If   rj has finite outcome along   sj, then   rj is not the last element of a primary
  sj-link.  By (5.2), if   sj requires extension, then   rj has infinite outcome along   sj.  (iv) now

follows from (i) and (iii).  
(v):  As   rj is   hj-free, it follows from (4.1) that the primary   hj-links which restrain

  nj coincide with the primary   sj-links restraining   nj.  Hence all nodes placed in PL(   nj,   hj) via

(5.13) are already in PL(   nj,   sj).  Suppose that   nj Ì (   dj)- Ì   dj Í   hj and   dj requires extension

for   mj Ì   nj.  By the hypothesis of (v), there is a   kj such that [   mj,   kj] is a primary   hj-link

which restrains   nj.  As   rj is   hj-free and   nj Í   rj,   kj Í    rj = (   sj)-.  Hence by (5.14), all
elements placed in PL(   nj,   hj) via (5.14) are already in PL(   nj,   sj), so (v) follows.

(vi):  Immediate from (5.14). 
(vii):  We proceed by induction on lh(   rj)-lh(   nj).  By definition, if PL(   rj,   hj) is a

component of PL(   nj,   hj), then   nj Ì   rj and there is a   mj Ì    nj such that   sj requires extension
for   mj.  Hence if (   hj)- enters PL(   nj,   hj) via (5.13), then the corresponding primary link

[   mj,(   hj)-] also restrains   rj. Thus (   hj)- Î PL(   rj,   hj) as desired.  

Suppose that (   hj)- enters PL(   nj,   hj) via (5.14).  Then there are   dj Ì   tj Í   hj such that
  nj Ì    dj = (   tj) -,   tj requires extension for some   mj Ì    nj, PL(   dj,   hj) is a component of

PL(   nj,   hj), and either (   hj)- =   dj or (   hj)- Î PL(   dj,   hj).  If   rj Ì    dj, then as   mj Ì    nj Ì   rj,
PL(   dj,   hj) is a component of PL(   rj,   hj), so (vii) follows from (5.14).  If   rj =   dj, then (vii) is

immediate.  Otherwise, as   dj,   rj Ì   hj, it follows that   dj Ì    rj Ì    hj; hence as   mj Ì    nj Ì    dj,
PL(   rj,   hj) is a component of PL(   dj,   hj).  Now lh(   rj)-lh(   dj) < lh(   rj)-lh(   nj) and (   hj)- ¹   dj, so

by induction, (   hj)- Î  PL(   dj,   hj).  But PL(   dj,   hj) is a component of PL(   nj,   hj) and

lh(   dj)-lh(   nj) < lh(   rj)-lh(   nj), so by induction, either (   hj)- =   rj or (   hj)- Î PL(   rj,   hj).

(viii): Suppose that   tj Î PL(   nj,   hj). First assume that (5.13) holds for   tj. Then there

is a   mj Ì   tj such that [   mj,   tj] is a primary   hj-link restraining   nj.  If   tj Ì    rj, then   tj is placed

into PL(   nj,   rj) by (5.13).  And if   tj É   rj, then   tj is placed into PL(   rj,   hj) by (5.13).
Next assume that   tj is placed into PL(   nj,   hj) by (5.14), because of the component

PL(   dj,   xj) associated with some   dj É   nj which requires extension for some   mj Ì   nj.  If   dj Í
  rj, then by hypothesis,   dj has a j-completion   kj Í    rj which has infinite outcome along   rj,

so by the properties of   xj in (5.14),   tj Ì   xj Í   rj.  Hence either   tj =   rj, or   tj is placed into

PL(   nj,   rj) by (5.14).  Otherwise,   rj Ì    dj.  As   mj Ì    nj Í    rj, PL(   dj,   xj) is a component of
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PL(   rj,   hj), so   tj is placed into PL(   rj,   hj) by (5.14).
(ix):  Immediate from (vi).  n

As mentioned earlier, the process of extending a k-implication chain to a 0-
implication chain may injure the validity of a sentence whose truth we are trying to
preserve.  When this happens, we will not act to extend the k-implication chain.  Our next
definition allows us to differentiate between the k-implication chains which we want to
extend (the amenable implication chains), and those which we do not want to extend (the

nonamenable implication chains).  Condition (5.15) applies when up(s
r
) has an initial

derivative Ì   sr, specifying that in this case, when we first observe the (k+1)-implication
chain along a path of  Tk+1 generated by a node on  Tk, then we have a configuration of
nodes on  Tk which gives rise to a requires extension situation, so condition (5.4) will be
applicable.  Condition (5.16) imposes a restriction similar to that imposed by (5.4) when

up(s
r
) does not have an initial derivative Ì   sr.  This restriction requires the ability to

preserve certain computations while the backtracking process is carried out.  (Note that at
the beginning level r for an implication chain, it is possible to have an implication chain

which arises without a requires extension situation, if, for example, s
r
 is an initial

derivative.)  We will show later that similar restrictions are automatically carried down to
lower levels.  A similar restriction needs to apply to separate the pseudocompletions which
potentially give rise to amenable implication chains from those which do not.  Thus we also
define amenable pseudocompletions.

Definition 5.4:  Suppose that k = r and that   sr is a pseudocompletion of   sr.  We say that
  sr is an amenable pseudocompletion of   sr if either tp(   sr) ¹ 1, or for every   pr Î

PL(   sr,   sr), TS(   pr)ÇRS(   sr) = ¯.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Now suppose that áá   sj,   sj,   tjñ: r ³ j ³ kñ is a k-implication chain along   rk, and for

each j Î [k,r], fix   tj Ì   tj such that (   tj)- =   sj.  Let   nk be the principal derivative of up(   sk)

along   tk.  We say that áá   sj,   sj,   tjñ: r ³ j ³ kñ is amenable if one of conditions (5.15) and
(5.16) below holds, and if k = r, then   sk is the shortest string satisfying (5.6)-(5.11), and
(5.15) or (5.16) for   sk and   tk.

(5.15)   tk requires extension for   nk and   sk is the primary k-completion of   tk.  (See
 Definition 5.6 for the definition of k-completion.)

(5.16) k = r and   sr is an amenable pseudocompletion of   sr.

A nonamenable implication chain is an implication chain which is not amenable.  n
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The backtracking process requires us to keep track, along each path, of the nodes
which require extension but have no 0-completion along the path, and to find 0-
completions for these nodes in reverse order of the order in which we discover that they
require extension.  This ordering is defined in Definition 5.8, and depends on the definition
of completions (Definition 5.6).  In order to show that backtracking can be carried out, we
require that the final paths through  T0 be admissible (see Definition 5.9). There is a
potential circularity here, which we avoid by requiring these nodes to be preadmissible.
Preadmissibility ensures that nodes will only be switched when they do not interfere with
the backtracking process; and in the course of finding completions, nodes will be switched
only as required by the backtracking process.  Completions are then defined as the nodes
reached when the backtracking process has been completed.  

Because of the interdependence of the next five definitions, we will explain some of

the terminology used in the next definition.  A node r will be completion-respecting if for

all j £ n, any node along   lj(r) which requires extension has a completion along   lj(r).  r is

completion-consistent via the sequence S if the paths determined by r are compatible with
primary completions of all nodes of S, where the nodes in S are those which require
extension but have not yet found primary completions, and the order in which the

completions are to be found is the reverse of the ordering of S.  r is implication-free if r is
not a derivative of any node which is captured in the backtracking process, and is
implication-restrained otherwise.  Implication-restrained nodes will not define too many
axioms during the construction, so there is no harm in forcing their outcomes.

The clauses of Definition 5.5 spell out the extensions which allow us to maintain
compatibility with the backtracking process.  Condition (5.17)(i) requires that we take
switching extensions of primary 0-completions and pseudocompletions on  T0, and
condition (5.17)(ii) requires that nonswitching extensions be taken for all nodes which are
not captured during a backtracking process but are derivatives of captured nodes. Condition
(5.18) covers extensions taken during the backtracking process.  Clause (i) requires that we
take (k+1)-switching extensions of nodes of  Tk which are primary completions.  This
condition is needed to maintain compatibility with all completions which are forced to be
taken during the construction.  Clause (ii) requires us to switch outcomes of primary links
in a minimal way, in order to return a designated node to the true path.  Clause (iii)
specifies that no other nodes captured by the backtracking process have switching
extensions.  (The reader may want to refer back to the remarks following Definition 5.2 for
intuition.)

Definition 5.5:  Fix s Î  T0.  If lh(s) > 0, let r = s-, and assume that r is completion-

consistent via some sequence S = á   hi: i < mñ for some m ³ 0 (see Definition 5.8), and for

each i < m, fix k(i) such that   hi Î  Tk(i) and   ni such that   hi requires extension for   ni.  We

say that s is preadmissible if either s = á ñ, or s ¹ á ñ, r is admissible (see Definition 5.9),
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and the following conditions hold:

(5.17) (i) If either r is a primary 0-completion or an amenable pseudocompletion, then r 

has infinite outcome along s.  

(ii) If the hypotheses of (i) fail, S = á ñ, and r is implication-restrained (see 

Definition 5.7), then s is a nonswitching extension of r.

(5.18) If S ¹ á ñ, then one of the following conditions holds:

(i) (a) There are k(m) and   hm Î  Tk(m) such that r - is completion-consistent via 

á   hi: i £ mñ, r is a 0-completion of   hm; and

(b) s is a (k(m)+1)-switching extension of r.

(ii) (a) (i)(a) fails, and there is a j > k(m-1) and a   lk(m±1)+1(r)-link 
[   mk(m±1)+1,   pk(m±1)+1] restraining up(   nm±1) of shortest length which is 

derived from a primary   lj(r)-link [   mj,   pj] such that r  is the initial 

derivative of  upj±1(r) along r and  upj±1(r) is a derivative of pj; and

(b) s is a j-switching extension of r.

(iii) (i)(a) and (ii)(a) fail, s is a nonswitching extension of r, and if there are two 

nonswitching immediate extensions of r, then r is activated along s.

(We note that the extensions specified by (5.18) are unique.)  n

We described the role of completions earlier.  We will need to show later that
completions never require extension.  This will follow from our requirement that
completions be nonswitching extensions.  

Definition 5.6:  Fix k £ n and   kk Î  Tk.  We say that   kk is the k-completion if  out0(   kk)
is nonswitching and either:

(5.19) There are m ³ 0,   gk Ì   rk Ì   kk and a sequence S = á   hi: i £ mñ such that   hm =   rk 
requires extension for   gk, up(   gk) = up(   kk), both  out0(   rk) and  out0((   kk)-) are 
completion-consistent via S (see Definition 5.8), and there is no k-completion   kk of

  rk such that   kk Ì   kk (in this case, we say that   kk is the primary k-completion of   rk

(for   gk)); or:

(5.20) There is a j > k and a   kj Î  Tj such that   kj is a primary j-completion of some   rj and 
  kk is an initial derivative of   kj.  (In this case, we say that   kk is the k-completion of
  rj.)
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We say that   kk is a completion if   kk is a k-completion of some   rj.  (We note that if k is a
0-completion, then it must be a 0-completion of the last element,   rk, of the sequence via

which k- is completion-consistent, and cannot be the 0-completion of any other node.  It
also follows from (5.18) that for all j £ k, there is at most one j-completion of   rk.)   n

The process of finding a 0-completion of   hk may force paths to follow nodes on  Tj

for all j £ n which were not previously followed.  For j £ k, the new nodes will be those in
the interval [  outj(   hk),   kj], where   kj is the j-completion of   hk.  We will not want to switch
any of these nodes except for   kj, unless we are forced to do so during the backtracking
process (it is here that we need to add condition (5.14) to the definition of PL).  Thus we
call nodes in this interval primarily implication-restrained (condition (5.21)) if j = k and
hereditarily implication-restrained (condition (5.22)) if j < k.  In addition, we do not want
derivatives of implication-restrained nodes to be switched, unless we are forced to switch
these derivatives during the backtracking process; so we specify that all derivatives of
implication-restrained nodes are also implication-restrained (condition (5.23)).

Definition 5.7:  A node   xk Î  Tk is  primarily implication-restrained if:

(5.21) There is an   hk Í   xk which requires extension, but there is no k-completion   kk Í   xk 
of   hk.

  xk is hereditarily implication-restrained if:

(5.22) There are j > k and   hj such that  outk(   hj) Í    xk,   hj requires extension, and there is 

no k-completion   kk Í   xk of   hj.

  xk is inductively implication-restrained if the following condition holds:

(5.23) upj(   xk) is implication-restrained for some j Î (k,n].

  xk is implication-restrained if   xk is either primarily, hereditarily, or inductively
implication-restrained.    xk is implication-free if   xk is not implication-restrained.  (By
Definition 2.1, the implication-restrained nodes can be recursively recognized.)  n

Suppose that   xk Î  Tk.     xk is completion-respecting if for all j Î [k,n] and all   rj Í
  lj(   xk), if   rj requires extension, then   rj has a j-completion along   lj(   xk).  It is possible for

such a node   rj Í    lj(   xk) to have a k-completion along   xk but not to have a j-completion
along   lj(   xk).  This will happen only during an iteration of the backtracking process, and in

this case,   rj will have an i-completion along   li(   dk) for all i Î [k,j).  Such a   rj has already
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found a j-completion, and does not need to find another one; in fact, an attempt to maintain
compatibility with its j-completion may conflict with being able to carry out a finitary

backtracking process. Thus we will need to determine the nodes   rj Í    lj(   xk) which require
extension but do not have k-completions along   xk.  These are the nodes for which we need
to find k-completions, and are placed in the completion-deficient set at   xk.  These nodes
are ordered into a sequence by the order of the appearance of their images under  outk on the
path of  Tk under construction.  This ordering is completion-consistent if it respects the
dimension ordering of the trees on which the nodes appear, refined by the length of nodes
on trees of the same dimension.  We will show that the backtracking process produces
completions in the reverse order to the completion-consistent ordering, if paths through
trees are admissible, as defined in Definition 5.9.

Definition 5.8:  Fix k £ n,   xk Î  Tk and a set S of nodes of È{   rj Í    lj(   xk): k £ j £ n}.
We say that   xk is completion-deficient for S if the following condition holds:

(5.24) For all j Î [k,n] and   rj Í    lj(   xk),   rj Î  S iff   rj requires extension and has no k-

completion Í   xk.

  xk is completion-respecting if for all j Î [k,n] and   rj Í    lj(   xk), if   rj requires extension,

then there is a j-completion   kj Í   lj(   xk) of   rj.

Given S such that   xk is completion-deficient for S, let S = á   hi: i < mñ be the linear

ordering of S induced by the inclusion ordering on outk(n) for n Î S. By (2.5) and Lemma
5.6 (Uniqueness of Requiring Extension), this ordering will be well-defined.  For all i <

m, fix k(i) such that   hi Î Tk(i).  (Note that, by Lemma 3.2(ii) (Out) and Lemma 3.1(ii)
(Limit Path), this ordering will be independent of k as long as k £ k(i) for all i < m.)  We
say that   xk is completion-consistent via S if the following conditions hold:

(5.25) If i < j < m, then k(i) £ k(j).

(5.26) If i < j < m and k(i) = k(j), then   hi Ì   hj.

  xk is hereditarily completion-consistent if every rk Í   xk is completion-consistent. n

Admissible nodes, as defined below, are nodes which are preadmissible,
hereditarily completion-consistent in a uniform manner as specified by condition (5.27), act
in a way to preclude the existence of amenable implication chains along the final paths
through the trees as specified in (5.28), and preserve a correspondence between PL sets on
consecutive trees, as specified in (5.29)(i)-(iii).  (5.29)(i) specifies that when the extension
of a path on  Tk causes the path on  Tk+1 to switch and a node to leave a viable PL set on

 Tk+1, then a derivative of that node enters a corresponding PL set on  Tk.  If the above
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happens during the backtracking process for a node, then (5.29)(ii) specifies that
immediately at the end of that process, the PL set on  Tk for the predecessor of the node
requiring extension consists exactly of derivatives of all nodes in a corresponding PL set on

 Tk+1 at the beginning of the backtracking process.  Furthermore, if no additional nodes
need to go through the backtracking process at this point, then (5.29)(iii) specifies that the
node completing the backtracking process is implication-free.  Pseudotrue nodes are nodes
which are not involved in the backtracking process, so action of the construction at these
nodes is according to the truth of the sentences generating action.

Definition 5.9:  Fix k £ n  and   sk Î   Tk, and let s  =  out0(   sk).  We say that   sk is

k-completion-free if for every j Î [k,n],   lj(s) is not a primary completion, and if k = 0,

we say that s  =   sk is completion-free if s is 0-completion-free.  We say that s is

pseudotrue if s is preadmissible, completion-consistent via á ñ, and completion-free.  We

say that s is admissible if s is preadmissible, hereditarily completion-consistent,
completion-consistent via a sequence S, and the following conditions hold:

(5.27) If x Ì s is completion-consistent via S and h Î S, then either h has a 0-completion

k Í s, or h Î S.

(5.28) If h Í s is pseudotrue, then there is no amenable j-implication chain along   lj(h) for
any j £ n.

(5.29) (i) For all k < n and   mk Ì   nk Ì   hk Í   lk(s) Î  Tk, if up(   mk) Ì up(   nk),l(   hk) and 
  nk is implication-free, then 

PL(up(   mk),up(   nk)) Í {up(   xk):   xk Î PL(   nk,   hk)}ÈPL(up(   mk),l(   hk)).

(ii) For all k < n and   mk Ì   nk = (   hk)- Ì    hk Ì    kk Í    lk(s) Î  Tk, if   hk requires 
extension for   mk and   kk is the primary completion of   hk, then

PL(up(   mk),l(   hk)) = {up(   xk):   xk Î PL(   nk,   kk)}.

(iii) If h Í s is completion-consistent via á ñ and h is a 0-completion, then h is 
implication-free.

  L0 Î  [  T0] is admissible if every s Ì   L0 is admissible.   Lk  Î  [  Tk] is admissible if   Lk =
  lk(   L0) for some admissible   L0 Î [  T0].  n

We now show that an amenable k-implication chain gives rise to a node on  Tk±1

which requires extension. 

52



Lemma 5.2 (Requires Extension Lemma):  Fix k such that 0 < k < n and fix   sk Î
 Tk. Let r = dim(   sk)-1, and assume that k £ r.  Suppose that áá   sj,   sj,   tjñ: r ³ j ³ kñ is an

amenable k-implication chain.  Let    hk±1 = out(   tk), let   nk±1 be the principal derivative of   sk

along   hk±1.  Assume that h =  out0(   hk±1) is preadmissible.  Then   hk±1 requires extension
for   nk±1.

Proof:  Let   dk±1 = (   hk±1)-.  As   hk±1 = out(tk) and as, by (5.8)(ii),   sk = (   tk)-,   dk±1

is the principal derivative of   sk along   hk±1.  We verify (5.1)-(5.5). 

(5.1) is vacuous.  By (5.6) and (5.9),   sk º   sk º   sr, so by (5.7), tp(   nk±1) Î {1,2}.
Furthermore,   nk±1 and   dk±1 are, respectively, the principal derivatives of   sk and   sk along

hk-1, so   nk±1 º   dk±1.  By (5.6) and (5.9),  upr+1(   nk±1) ¹ upr+1(   dk±1), so up(   nk±1) ¹ up(   dk±1).
By (5.11),   sk has finite outcome along tk and   sk has infinite outcome along   tk, so by (2.4)
and as   nk±1 and   dk±1 are, respectively, the principal derivatives of   sk and   sk along   hk±1,

  nk±1 has finite outcome along   hk±1 and   dk±1 has infinite outcome along   hk±1.  Hence (5.2)
holds.

By Lemma 3.2(i) (Out) and hypothesis, l(   hk±1) =   tk É    sk = up(   nk±1).  By (5.2),
  nk±1 must be both the initial and principal derivative of up(   nk±1) along l(   hk±1), so cannot

be the first node in a primary l(   hk±1)-link.  (5.3) now follows from Lemma 4.3(i)(d) (Link
Analysis).  (5.4) is vacuous as k-1 < r.  (5.5) follows from the hypothesis.  The minimality

of lh(   nk±1) follows from the uniqueness of sr for s
r
 given by Definition 5.4, if k = r.  And

if k < r, then the minimality of lh(   nk±1) follows from (5.15) and the fact that, by Definition
5.6, a primary completion along a preadmissible path is the primary completion of exactly
one node.  n

Suppose that hk requires extension for nk, kk is the k-completion of hk, and (x
k
)- =

kk.  If kk has finite outcome along x
k
, then a k-implication chain will have been formed

along x
k
.  Otherwise, we show that [nk,kk] is a primary x

k
-link.

Lemma 5.3 (Implication Chain Lemma):  Fix k £ r < n and nk Ì  d
k
 Ì  hk Ì  kk Ì

x
k
 Î Tk such that k < dim(nk) = r+1, (hk)- = d

k
, (x

k
)- = kk, and  out0(x

k
) is preadmissible.

Assume that hk requires extension for nk, and that kk is the k-completion of hk for nk.
Then:

(i) If kk has infinite outcome along x
k
, then [nk,kk] is a primary x

k
-link.

(ii) If kk has finite outcome along x
k
, then there is an amenable k-implication 

chain áásj,s
j
,tjñ: r ³ j ³ kñ such that tk = x

k
, s

k
 = kk, and sk = d

k
. 

Now fix   dk Ì   kk Ì   xk Î Tk such that (   xk)- =   kk,   kk has finite outcome along   xk,   kk is an
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amenable pseudocompletion of   dk, and for all i £ k, the principal derivative of   kk along
 outi(   xk) is implication-free.  Then:

(iii) áá   dk,   kk,   xkññ is an amenable k-implication chain.

Proof:  We proceed by induction on n-k, and then by induction on lh(kk).  

(i): By (5.19), up(nk) = up(kk), and by (5.2), nk is the initial derivative of up(nk)

along x
k
.  Since kk has infinite outcome along x

k
, [nk,kk] is a primary x

k
 -link.

(ii):  We first show that (5.6)-(5.12) hold.  By (5.19), up(nk) = up(kk).  Hence
(5.6) follows from (5.2) if k = r, and from (5.5)(ii) and (5.6) inductively if k < r.  (5.7)
follows from (5.2), the definition of r, and (5.5)(i) if k = r, and (5.5)(ii) and (5.7)

inductively if k < r.  (5.8) follows from the definitions of sk, s
k
, and tk in (ii).  (5.9) and

(5.12) follow from (5.5)(ii) and (5.19).  (5.10) follows from the definitions of sk, s
k
, and

tk in (ii), (5.1), and hypothesis if k = r, and by (5.5)(ii) and (5.10) inductively if k < r.

(5.11) follows from the definitions of sk, s
k
, and tk in (ii), (5.2), and hypothesis.  Hence

áásj,s
j
,tjñ: r ³ j ³ kñ is a k-implication chain.
(5.15) follows from hypothesis, so this k-implication chain is amenable.  We

complete the proof of (ii) by verifying the minimality condition for the case k = r.  By the
minimality of the choice of nr in Definition 5.1 and by (5.15), the minimality condition can

only fail if there is a   mr Ì   nr such that áá   mr,   kr,   xrññ is an amenable r-implication chain, which
we assume in order to obtain a contradiction.  Now by (5.2),   nr is an initial derivative, and
by Definition 5.6, up(   nr) = up(   kr) and   kr is not an initial derivative.  Hence by Definition

5.2,   kr cannot be a pseudocompletion.  Thus (5.16) must fail for áá   mr,   kr,   xrññ .  By
Definition 5.6,   kr is the primary completion of only one node, and by hypothesis, that node

must be   hr.  Hence by (5.15) for á á   mr,   kr,   xrññ ,   hr must require extension for   mr. By
Definition 5.1,   hr requires extension for at most one node.  But   hr requires extension for

  nr, so   nr =   mr, yielding a contradiction. 
(iii):  Immediate from hypothesis and the definition of amenable pseudocompletions

(Definitions 5.2 and 5.4).   n

We will need to know that admissible paths are always compatible with
completions, except when we are iterating the backtracking process to try to eliminate an
amenable implication chain.  In the latter case, by (5.18) and (5.24), the only completions
which may be incompatible with the path under construction are the primary completions.

Lemma 5.4 (Compatibility Lemma):  Fix r Î T0 such that r is preadmissible.  Fix i

£ n, b Í r, and hi Í l
i
(b) such that hi requires extension, and suppose that k Í r is the

0-completion of hi.  Fix v < i, let   hv =  outv(hi), and suppose that   hv Í    lv(r) =   rv.  Then

for all j £ v, rj = l
j
(r) Ê l

j
(k) = kj.
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Proof:  We proceed by induction on j £ v, noting that, by hypothesis, the lemma

holds for j = 0.  Assume that j > 0.  As   hv Í   rv, it follows from (2.5) that hq = outq(hi) Í

rq for all q £ j.  By (5.22), every x
j
 such that hj Í  x

j
 Ì  kj is implication-restrained.  We

note, by (5.18) and (5.25), that if u < n,   su Î  Tu requires extension and has u-completion

  tu, s =  out0(   su), t is the 0-completion of   su and is preadmissible, and s Ì d Í t, then d
cannot be t-switching for any t £ u.  

As r is preadmissible, r - is admissible and thus hereditarily completion-consistent.

Fix   xj such that hj Í   xj Ì   kj.  As j < i, it follows from the above paragraph that   xj is not
(j+1)-switching, so if   xj is the principal derivative of up(   xj) along   kj, then   xj must be the
initial derivative of up(   xj) along   kj; thus there is no   mj such [   mj,   xj] is a primary   kj-link. By
(5.19) and (5.25) and as j < i,   xj is not a primary completion or an amenable

pseudocompletion. Fix d such that k Ì d Í r and upj(d
 -
) =   xj.  If d

 -
 is primarily or

hereditarily implication-restrained, then by (5.18), d will not switch   xj.  Otherwise, d
 -
 will

be inductively implication-restrained.  We will show that d
 -
 is neither a primary 0-

completion nor an amenable pseudocompletion.  It will then follow from (5.17)(ii) that d

does not switch   xj.  Thus as   kj±1 Í   rj±1 by induction, it follows from (2.4) that   rj Ê   kj.

We complete the proof of the lemma by assuming that d
 -
 is either a primary 0-

completion or an amenable pseudocompletion, and obtaining a contradiction.  First assume
that dim(   xj) > j.  If j is even, then by repeated applications of (5.5)(ii), (5.9) and (5.15)
((5.16) cannot apply at any t < j), it follows that   xj is a primary completion or an amenable
pseudocompletion, contrary to the preceding paragraph.  Suppose that j is odd.  By
repeated applications of (5.5)(ii), (5.9) and (5.15) ((5.16) cannot apply at any t < j), it

follows that upj-1(d
 -
) is a primary completion, and that the immediate successor of   xj along

  kj requires extension, contrary to (5.25) which would require j ³ i.  Thus in either case, we
have a contradiction.

Now suppose that dim(   xj) £ j.  By Lemma 3.1(i) (Limit Path),   xj has an initial

derivative x
j-1

 Ì   kj±1, and as hj-1 = out(hj) and hj Í    xj, it follows from (2.5) and Lemma

3.1(i) (Limit Path) that hj-1 Í x
j-1

.  If dim(   xj) < j, then by (2.9), x
j-1

 is the only derivative

of   xj along   kj±1, so it follows by induction that d
 -
 is neither a primary 0-completion nor an

amenable pseudocompletion.  Suppose that dim(   xj) = j.  By (5.9), (5.1), and (5.10), x
j-1

would have to be implication-free.  But by Lemma 3.1(i) (Limit Path), x
j-1

 Î  [hj-1,   kj±1],
so is hereditarily implication-restrained, yielding the desired contradiction.   n

One consequence of the next lemma, is that if h is admissible and pseudotrue, then

for all j £ n, if   rj Í   lj(h) requires extension, then   rj has a primary completion along   lj(h).

Hence for pseudotrue nodes, completion-respecting and completion-consistent via á ñ
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coincide.  We will need a somewhat more general statement.

Lemma 5.5 (Completion-Respecting Lemma):  

(i)  Fix k < n and   dk Ì   xk Í   kk Î  Tk such that k =  out0(   kk) is admissible,   dk and
  xk both require extension, and   kk is the primary completion of   dk.  Then   xk 

has a primary completion   tk Ì   kk, and   tk has infinite outcome along   kk.

(ii) Fix h Î  T0 such that h is preadmissible and completion-consistent via á ñ.  

Suppose that   rj Í   lj(h) requires extension for   nj and   gj = (   rj)-.  If h is the 0-
completion corresponding to a primary k-completion   sk and   sk is the primary
completion of the immediate successor of   sk along   sk, then assume further 
that it is neither the case that j ³ k, j-k is odd and  upj(   sk) =   gj, nor the case 

that j ³ k, j-k is even and  upj(   sk) =   gj.  Then   rj has a primary completion   kj Ì
  lj(h) which has infinite outcome along   lj(h).  

(iii) Fix x,h Î  T0 such that h and x are preadmissible and completion-consistent 

via S = á ñ, and x- = h.  Suppose that   rj Í   lj(h) requires extension.  Then   rj 

has a primary completion   kj Ì   lj(x) which has infinite outcome along   lj(x).

Proof:  (i):  By (5.26) and Definition 5.6,   xk has a primary completion   tk Ì    kk.

By (5.18)(i) and as, by (5.18), (5.24), and (5.25), if k is the 0-completion corresponding

to   kk, then no node in (  out0(   dk),k] can be v-switching for any v £ k,   tk has infinite
outcome along   kk.

(ii),(iii):  We prove (ii), and indicate the modifications needed for (iii) in
parentheses.  We assume that   rj satisfies the hypotheses of (ii) or (iii), and either   rj has no

primary completion   kj Ì   lj(h) (   lj(x), resp.), or that   kj exists and has finite outcome along
  lj(h) (   lj(x), resp.), and derive a contradiction under the assumption, in the proof of (ii),

that the exclusionary conditions in (ii) fail.  (For (iii), fix   nj and   gj such that   rj requires
extension for   nj and   gj = (   rj)-.)  Without loss of generality, we may assume that j is the

smallest number for which the conclusion fails for some   rj Í   lj(h) (   lj(x), resp.) satisfying

the hypothesis of (ii) ((iii), resp.).  As h is completion-consistent via á ñ,   rj has a 0-

completion k Í h.  Now for (ii), k ¹ h, else h would be the 0-completion corresponding

to the primary j-completion of   rj and so k = j,   sk =   kj =  upj(h), and   sk =   gj, contrary to

hypothesis.  Hence k Ì h (k Ì x, resp.).  If j = 0, then by (5.17)(i) or (5.18)(i), the

immediate successor of k along h (x, resp.) switches  upj+1(k); so k has infinite outcome

along h.  Hence j > 0.

By Lemma 5.4 (Compatibility),   rj has a (j-1)-completion   kj±1 Í   hj±1 =   lj±1(h), and

by Definition 5.6,   kj±1 is an initial derivative of the primary completion   kj of   rj, and k is an

initial derivative of   kj±1.  As h É k (x É k, resp.), it follows from (2.4) that   kj±1 Ì    hj±1
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(   kj±1 Ì    xj±1 =   lj±1(x), resp.).  Fix   tj±1 Í    hj±1 (   xj±1, resp.) such that (   tj±1)- =   kj±1.   By

Lemma 3.1(ii) (Limit Path), (l(   tj±1))- =   kj.
We assume that all derivatives of   kj along   hj±1 (   xj±1, resp.) have finite outcome

along   hj±1 (   xj±1, resp.), and derive a contradiction.  Under this assumption and by (5.19),

there is a primary l(   tj±1)-link [   mj,   kj] which restrains   rj with   mj Ì    rj Ì    kj.  As   rj Í    lj(h)

(   lj(x), resp.), it follows from (2.6) and since   tj±1 Í    hj±1 (   xj±1, resp.) that [   mj,   kj] is a

l(   bj±1)-link for all   bj±1 such that   tj±1 Í    bj±1 Í    hj±1 (   xj±1, resp.), so [   mj,   kj] is a   lj(h)-link
(   lj(x)-link, resp.).  But then   kj Ì    lj(h )  (   lj(x), resp.), and by (2.4),   kj has infinite

outcome along   lj(h)  (   lj(x), resp.), contrary to the choice of j.  

We conclude that there is a derivative   kj±1 Ì    hj±1 (   xj±1, resp.) of   kj which has

infinite outcome along   hj±1 (   xj±1, resp.).  Fix   tj±1 Í    hj±1 (   xj±1, resp.) such that (   tj±1)- =
  kj±1.  By Lemma 3.1(ii) (Limit Path), (l(   tj±1))- =   kj and   kj has finite outcome along

l(   tj±1).  Hence by Lemma 5.3(ii) (Implication Chain) and Lemma 5.2 (Requires
Extension),   tj±1 requires extension for some derivative   gj±1 of   gj.  We assume that one of
the exclusionary conditions of (ii) holds for   tj±1, and derive a contradiction.  By (5.9),

dim(h) > j, so (5.5)(ii) must hold for the immediate successor of   sk along   sk; fix the

corresponding (k+1)-implication chain áá   si,   si,   aiñ: r ³ i ³ k+1ñ.  First suppose that k £ j-1,
(j-1)-k is odd, and  upj±1(   sk) =   kj±1.  By (5.9),  upj±1(   sk) =   sj±1 and so  upj(   sk) =   sj =   kj.
Thus by (5.5), the failure of (5.16), and our assumptions,   sj =   kj is the primary
completion both of the immediate successor of   gj along   sj, and of the immediate successor
of   sj along   sj, so   gj =   sj =  upj(   sk), k £ j, and k-j is even, and the exclusionary conditions
of (ii) hold for   rj, contrary to our assumption.  Finally, suppose that k £ j-1, k-(j-1) is
even, and  upj±1(   sk) =   kj±1.  By (5.9),  upj±1(   sk) =   sj±1 and so  upj(   sk) =   sj =   kj.  Thus by
(5.5), the failure of (5.16), and our assumptions,   sj =   kj is the primary completion both of
the immediate successor of   gj along   sj, and of the immediate successor of   sj along   sj, so   gj

=   sj =  upj(   sk), k £ j, and k-j is odd, and the exclusionary conditions of (ii) hold for   rj,
contrary to our assumption.

By the minimality of the choice of j and as   tj±1 requires extension for some
derivative   gj±1 of   gj, it follows that   tj±1 has a primary completion   gj±1 which has infinite

outcome along   hj±1 (   xj±1, resp.).  By (5.19), up(   gj±1) =   gj, so by (2.4) and as   gj Í   lj(h),   gj

has finite outcome along   lj(h)  (   lj(x), resp.).  But by (5.2),   gj has infinite outcome along
  rj Í   lj(h)  (   lj(x), resp.), a contradiction.  n

We now show that at most one new string requires extension at any admissible h.

Lemma 5.6 (Uniqueness of Requiring Extension Lemma):  Fix h Î T0 such that

h is preadmissible and lh(h) > 0.  Let h and h- be completion-consistent via S and S,

respectively.  Suppose that i £ j and l
i
(h),l

j
(h) Î S\S.  Then i = j.  
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Proof:  For all u £ n, let   hu =   lu(h).  Fix p and s as in Lemma 3.3 (l-Behavior)

for h.  First assume that j > s, in order to obtain a contradiction.  Then by Lemma 3.3 (l-

Behavior), there will be a x Ì h such that l
j
(x) =   hj.  By (5.27) for the admissible node h-

and as   hj Î/  S, there will be a 0-completion k of   hj such that x Ì k Í h-.  Hence by

Definition 5.8,   hj Î/  S, contrary to hypothesis.

We conclude that j £ s, and hence, by Lemma 3.3 (l-Behavior), that (   hj)- =
upj((   hi)-).  We assume that j > i and derive a contradiction.  Let   ti =   hi.  By (5.5)(ii), there

is an r > i and an amenable (i+1)-implication chain áást,s
t
,ttñ: r ³ t ³ i+1ñ such that   ti =

out(   ti+1).  By Lemma 3.2(i) (Out),   ti+1 =  l(out(   ti+1)) = l(   ti) =   hi+1.
We now claim that if i < t £ j and t-i is odd then:

(5.30) tt Í   ht.  

By the preceding paragraph, (5.30) is true for t = i+1.  We proceed by induction, assuming
that (5.30) holds, and verifying (5.30) with t+2 in place of t, under the assumption that t+2

£ j.  Let rt = (tt)-, rt+1 = up(rt) and ri = (   ti)-.  By (5.8)(ii), rt = s
t
, and by (5.9), rt =

upt(ri) and rt+1 = upt+1(ri) = st+1.  By Lemma 4.5 (Free Extension), ri is   ti-free.  Hence

rt+1 is   ht+1-free.  By (5.30) and (2.4), rt+1 Ì l
t+1

(h).  Hence we can fix tt+1 Í   ht+1 such

that (tt+1)- = rt+1.
By (5.2), ri has infinite outcome along   ti, so as   ti =   hi and ri is   ti-free, it follows

from (2.4) that ri+1 = up(ri) has finite outcome along   hi+1; thus by (5.11) and (5.30), rt

has finite outcome along   ht.  As ri is   ti-free, rt = upt(ri) must be   ht-free.  So as tt Í   ht, it
follows from the definition of links that all derivatives of rt+1 along   ht have finite outcome

along   ht.  Hence by (2.4), tt+1 = rt+1^ágtñ Í   ht+1, where gt Í    ht and (gt)- is the initial

derivative of rt+1 along   ht.  Thus (gt)- Í rt, and so by (5.30), gt Í  tt.  By (5.12) and

(5.30), out(tt+1) Í tt Í    ht and rt+1 Ì  tt+1.  Now all derivatives of rt+1 have finite

outcome along out(tt+1) Í   ht.  Hence by (2.4), tt+1 Í  tt+1.  Now by (5.12), out(tt+2) Í

tt+1, and by (5.5)(ii), (out(tt+2))- = rt+1.  So as (tt+1)- = rt+1 and tt+1,out(tt+2) Í tt+1, we

have tt+1 = out(tt+2).  As rt+2 = up(rt+1) is   ht+2-free and rt+1 has infinite outcome along

tt+1 Í tt+1Ù   ht+1, it follows from (2.4) that tt+2 = rt+2^átt+1ñ Í   ht+2, verifying (5.30) with

t+2 in place of t.  Furthermore, we note that rt+2 has finite outcome along tt+2, and by
(5.8) and (5.9), rt+2 = up(rt+1) = upt+2(ri).  Hence since upj((hi)-) = (hj)- and by (5.2)
and (5.30), j > t+2.

We conclude that j-i is even, and that (5.30) holds for t = j-1. By (5.12) and (5.30),

out(tj) Ì   tj±1 Í   hj±1.   Iterating (5.5)(ii) and recalling that (   hj)- = upj((   hi)-) and that j-i is

even, we see that (   hj)- =   sj Ì   sj Ì tj; hence   hj   Ê/  tj and so by (2.4) and as out(tj) Ì    hj±1
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Í out(   hj), it must be the case that   hj Ì/  tj and so that   hjÙtj =   sj.  By (5.2),   sj has infinite
outcome   bj±1 along   hj, so by (2.4), all derivatives of   sj which are Ì   hj±1 must have finite

outcome along   hj±1, and (   bj±1)- is the initial derivative of   sj along   hj±1.  As   tj±1 Í    hj±1, all

derivatives of s which are Ì   tj±1 must have finite outcome along   tj±1.  By Lemma 3.1(ii)

(Limit Path),   bj±1 Í    tj±1 and by (2.4), (   bj±1)- is the principal derivative of   sj along   tj±1.

Hence since out(tj) Ì   tj±1 and by (2.4),   sj^á   bj±1ñ Í tj, so   sj^á   bj±1ñ Í tjÙ   hj, contradicting

the fact that   hjÙtj =   sj.  n

In order to show that the backtracking process is finitary, we will need to know that
if a node requires extension, then its immediate predecessor is not a primary j-completion.  

Lemma 5.7 (Primary Completion Lemma):  Fix j £ n and   hj Î   Tj such that   hj is

preadmissible and requires extension, and let h =  out0(   hj) and   dj = (   hj)-. Then: 
(i)   dj is not a primary j-completion or an amenable pseudocompletion.  

(ii) If   hj ¹   lj(   h±), then either h is switching or   h± is not primarily or hereditarily 

implication-restrained; hence h is not a 0-completion.

Proof:  We prove (i) and (ii) simultaneously by induction on r-j.  For all i £ n, let
  hi =   li(h).

(i):  Let r = dim(   dj)-1.  Let   hj require extension for   mj.  To see that   dj is not a
primary j-completion or a pseudocompletion, we proceed by induction on r-j and then by
induction on lh(   hj), assuming to the contrary and deriving a contradiction.  Let   hj require
extension for   mj.  There are several cases.

Case 1:  j = r.  There are two subcases, depending on whether we assume that d
r

is a primary completion or a pseudocompletion.

Subcase 1.1:  dr
 is a primary completion of some   rr which requires extension for

some nr.  By Definition 5.6, up(nr) = up(d
r
); and by (5.2) and the hypothesis of the lemma,

d
r
 has infinite outcome along hr.  Hence [nr,d

r
] is a primary hr-link.  By (5.2), up(mr) ¹

up(d
r
), so mr ¹ nr.  By (5.3), it now follows that mr Ì  nr.  We show that (5.1)-(5.5) hold

for mr Ì   gr = (   rr)- Ì   rr, and thus contradict the minimality of lh(nr) for   rr in Definition 5.1.

By Definition 5.1 and the preceding paragraph, mr Ì nr Ì   rr Ì  d
r
, and by (5.2),   gr

= (   rr)- has infinite outcome along hr.  Hence up(   gr) ¹ up(mr), else by (5.2) and the

preceding paragraph, [nr,d
r
] and [mr,   gr] would be primary hr-links, contradicting Lemma

4.1 (Nesting).  (5.1)-(5.3) and (5.5) can now be routinely verified, using those same

conditions and the assumptions that up(nr) = up(d
r
), hr requires extension for mr, and   rr
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requires extension for nr.  By (2.7), (5.3), and Lemma 4.3(i)(a) (Link Analysis), up(mr) Í

l(mr),l(hr), so by (2.6), up(mr) Í  l (   rr); and by (5.3) and Lemma 4.3(i)(a) (Link

Analysis), up(nr) Ì l(   rr).  Thus up(mr) and up(nr) are comparable.  By (5.2), mr and nr are

both initial derivatives, so by Lemma 5.1(i) (Limit Path) and as mr Ì  nr, it follows that

up(mr) Ì up(nr).  As (hr)- = d
r
 and up(nr) = up(d

r
), it follows from Lemma 4.5 (Free

Extension) that up(nr) Í  l(hr).  By (5.2), nr has finite outcome along   rr and is the

principal derivative of up(nr) along   rr; so by (2.4), up(nr) has infinite outcome along l(   rr).

Let b
r
 be the immediate successor of nr along   rr.  By (2.4), l (b

r
) is the immediate

successor of up(nr) along l(   rr), and by (5.1), out0(b
r
) = out0(l(b

r
)) is pseudotrue. By

(5.1), nr is implication-free, so by (5.23), up(nr) is implication-free.  Hence by Lemma
5.5(iii) (Completion-Respecting) and Lemma 5.1(viii),(i) (PL Analysis),

PL(up(mr),l(   rr)) Í PL(up(mr),up(nr))È{up(nr)}ÈPL(up(nr),l(   rr)) Í

PL(up(mr),l(hr))È{up(nr)}ÈPL(up(nr),l(   rr)).  

Thus (5.4) for mr Ì   gr Ì   rr follows from Lemma 2.2(i) (Interaction) and (5.4) for mr Ì    dr

Ì hr and for nr Ì   gr Ì   rr, contradicting the minimality of  lh(nr) for   rr in Definition 5.1.

Subcase  1 .2:     dr is an amenable pseudocompletion.  Let   dr be a
pseudocompletion of nr.  By (5.2) and (5.11)(i), mr has finite outcome along hr and nr has
infinite outcome along hr, so nr ¹ mr.  We compare the locations of mr and nr.

Subcase 1.2.1:  nr Ì mr.  Let tr be the immediate successor of mr along hr.  By
(5.2), mr is an initial derivative, so up(mr) ¹ up(nr).  (5.6)-(5.12) are routinely verified for

áánr,mr,trññ, using the conditions obtained from the assumptions that hr requires extension

for mr and that   dr is a pseudocompletion of nr.  As mr Ì   dr, it follows from Lemma 5.1(i)

(PL Analysis) that PL(nr,mr) Í PL(nr,   dr), so (5.16) follows from the amenability condition

for pseudocompletions.  Thus áánr,mr,trññ is an amenable implication chain along tr.  But
by (5.1),  out0(tr) is pseudotrue, so we have contradicted (5.28).

Subcase 1.2.2:  mr Ì nr.  Let   xr be the immediate successor of nr along hr. Recall
that nr has infinite outcome along hr, and by (5.2), mr is the principal derivative of up(mr)
along hr, so up(mr) ¹ up(nr).  Conditions (5.1)-(5.3) and (5.5) are now routinely verified

for mr Ì  nr Ì    xr, using the conditions obtained from the assumptions that hr requires
extension for mr and that   dr is a pseudocompletion of nr.  Recall that nr has infinite outcome

along hr, hence along   xr, so by Lemma 3.3 (l-Behavior), up(nr) = (l(   xr))- and up(nr) has

finite outcome along l(   xr).  By (5.2), mr is an initial derivative, so by Lemma 3.1(i) (Limit
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Path), up(mr) Ì up(nr).  Hence by Lemma 5.1(iv) (PL Analysis), 

PL(up(mr),l(   xr)) = PL(up(mr),up(nr)).

Hence by (5.29)(i),

PL(up(mr),up(nr)) Í {up(   gr):   gr Î PL(nr,hr)}ÈPL(up(mr),l(hr)).

Now by Lemma 5.1(ii) (PL Analysis), 

PL(nr,hr) Í PL(nr,   dr)È{   dr}.

Now   dr º mr by (5.2), so by (5.4) for mr and hr, Definition 5.4 for nr and   dr, and Lemma

2.2(i) (Interaction), for all p Î PL(up(mr),l(hr))ÈPL(nr,   dr)È{   dr}, TS(p)ÇRS(mr) = ¯.

Thus for all p Î PL(up(mr),l(   xr)), TS(p)ÇRS(mr) = ¯, so (5.4) holds for mr Ì  nr Ì    xr.

Thus   xr requires extension for some   ar Í mr.  As nr Ì   dr, it follows that   xr Í   dr.  Now d =
  h± is the principal derivative of   dr along h, and by (5.1), d is implication-free.  So as d is

admissible, it follows from (5.27) that d is completion-consistent via á ñ.  Furthermore,

upr(d) =   dr É  nr.  Hence by Lemma 5.5(ii) (Completion-Respecting),   xr has a primary

completion   kr Ì   dr which has infinite outcome along   dr Ì hr.  Thus [   ar,   kr] is a primary hr-

link restraining mr, contradicting (5.3) for mr Ì   dr Ì hr.

Case 2:  j = r-1.  By case assumption,   dr±1 must be a primary completion; fix   rr±1

such that   dr±1 is a primary completion of   rr±1.  By (5.5)(ii), there is an amenable r-

implication-chain áásr,s
r
,trññ such that rr-1 = out(tr).  As hr-1 requires extension, it follows

from (5.5)(ii) that there is an amenable r-implication-chain áásr,sr,trññ such that hr-1 =

out(tr).  By Definition 5.6 and (5.5)(ii), sr = up(d
r-1

) = sr, so by (5.8)(i), sr Ì  sr = sr Ì

s
r
.  We show that áásr,s

r
,trññ satisfies (5.6)-(5.12) and (5.15) or (5.16), contradicting the

minimality of lh(sr) for áásr,s
r
,trññ in Definition 5.4.

(5.6)-(5.12) for áásr,s
r
,trññ follow routinely from (5.6)-(5.12) for áásr,sr,trññ and

áásr,s
r
,trññ, once we recall that sr Ì sr Ì s

r
, and note that sr has infinite outcome along s

r

by (5.11)(i), so up(sr) ¹ up(s
r
) by (2.8). Let   mr be the initial derivative of up(s

r
) along s

r
,

and let   mr be the initial derivative of up(sr) along sr.  By (5.6),   mr ¹ sr and   mr ¹ sr.  

Subcase 2.1:    mr Ì sr.  Then (5.15) must hold for áásr,s
r
,trññ and so if we fix   tr

Í s
r
 such that (   tr)- = sr, then   tr requires extension for   mr.  But sr = sr, so by (5.15) or

(5.16) for áásr,sr,trññ, sr is either a primary completion or an amenable pseudocompletion.
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As r > j, we have contradicted (i) by induction.

Subcase 2.2:  sr Ì    mr.  We show that áásr,   sr,trññ is an amenable implication

chain, contradicting the minimality condition in Definition 5.4 as sr Ì sr.  

It suffices to show that   sr is an amenable pseudocompletion of sr.  The relevant

conditions from (5.6)-(5.11) follow easily from our assumptions that áásr,sr,trññ and

áásr,   sr,trññ are amenable implication chains.  Fix   tr Í s
r
 such that (   tr)- = sr.  Then   sr is a

pseudocompletion of sr, and by (5.10)(i), sr and (  out0(   tr))- are implication-free.  As any

implication-free node on  T0 must be completion-consistent via á ñ (else (5.21) or (5.22)

would cause it to be implication-restrained), (  out0(   tr))- is completion-consistent via á ñ.

Suppose that   x
r Í sr requires extension.  If   x

r Ì sr, then as (  out0(   tr))- is a derivative of sr,
the exclusionary conditions of Lemma 5.5(ii) (Completion-Respecting) cannot hold unless

sr is the primary completion of   x
r, so   x

r has a primary completion with infinite outcome

along sr.  And if sr is the primary completion of   x
r, then sr has infinite outcome along   tr.

Hence Lemma 5.1(viii) (PL Analysis) can be applied (for   tr as the   sj of the lemma) .

Subcase 2.2.1:     mr Ì sr.  Then (5.15) must hold for áásr,sr,trññ and so if we fix
  tr Í  sr such that (   tr)- = sr, then   tr requires extension for   mr.  But then by (5.15) for

áásr,sr,trññ, sr = sr is the primary completion of   tr.  By Lemma 5.1(viii) (PL Analysis),

PL(sr,   sr) Í PL(sr,sr)È{sr}ÈPL(sr,   sr).

By (5.29)(ii), 

{up(   xr):   xr Î PL(sr,sr)} = PL(up(   mr),l(   tr)).

Hence by (5.4) for   mr Ì sr Ì   tr, Lemma 2.2(i) (Interaction) and Definition 5.4 for sr Ì   sr,

for all p Î PL(sr,sr)È{sr}ÈPL(sr,   sr), TS(p)ÇRS(sr) = ¯, so   sr is an amenable

pseudocompletion of sr.  As r > j, we have contradicted (i) by induction.

Subcase 2.2.2:    mr É  sr.  Then (5.16) must hold for both áásr,sr,trññ and

áásr,s
r
,trññ.  By Lemma 5.1(viii) (PL Analysis), PL(sr,tr) Í PL(sr,sr)ÈPL(sr,tr)È{sr}.

(5.16) for áásr,s
r
,trññ now follows from (5.16) for áásr,sr,trññ and áásr,s

r
,trññ and Lemma

2.2(i) (Interaction).  Thus áásr,s
r
,trññ satisfies (5.6)-(5.12) and (5.16), contradicting the

minimality of lh(sr) for áásr,s
r
,trññ in Definition 5.4.  
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Case 3:  j < r-1.  Let   dj be the j-completion of   nj and let   nj require extension for

rj.  By (5.5)(ii), there is an amenable r-implication-chain áási,s
i
,tiñ: r ³ i ³ j+1ñ such that

  nj = out(tj+1).  As hj requires extension, it follows from (5.5)(ii) that there is an amenable

r-implication-chain áási,si,tiñ: r ³ i ³ j+1ñ such that hj = out(   tj+1).  By (5.5)(ii) and (5.9),

sj+1 = up(d
j
) = sj+1.  As j+1 < r, the conditions of (5.16) at j+1 are not satisfied by either

amenable implication chain, so (5.15) must hold at j+1 for both implication chains.  By

(5.5)(ii) for áási,si,tiñ: r ³ i ³ j+1ñ , sj+1 is a primary completion.  By (5.5)(ii) for

áási,s
i
,tiñ: r ³ i ³ j+1ñ, if   tj+1 is the immediate successor of sj+1 along   s

j+1
, then   tj+1

requires extension.  But sj+1 = sj+1, so we have contradicted (i) inductively.

(ii):  Let r = dim(   h±)-1.  We assume that h is nonswitching and   h± is primarily or
hereditarily implication-restrained, and derive a contradiction.  By hypothesis,   hj requires

extension.  As   hj ¹   lj(   h±) and h is nonswitching, it follows from Lemma 3.3 (l-Behavior)

that (   hj)- =  upj(   h±) =   lj(   h±), so   h± is the principal derivative of (   hj)- along h =  out0(   hj);
and by (5.2),   lj(   h±) has infinite outcome along   hj.  Now by Definition 5.1, j £ r.  By

(2.4),   lj(   h±) is the principal derivative of up(   lj(   h±)) along   hj, so as h is nonswitching,
(   hj+1)- =  upj+1(   h±) =   lj+1(   h±).  By (5.1), (5.10)(ii) and as   h± is implication-restrained, j+1
< r, so by (5.5)(ii),  upj+1(   h±) is a primary completion.  But then as   h± is implication-

restrained, it follows from (5.18)(i) that h is switching, contrary to hypothesis.

If h is a 0-completion, then by Definition 5.6, h is nonswitching and   h± is
implication-restrained.  (ii) now follows.  n 

In order to show that k-completions exist, it will be necessary for the paths
constructed to be admissible.  We thus need to analyze the process of constructing paths,
and to show that we can construct admissible paths.  The proof will proceed by induction

on n-k, and then by induction on lh(hk) for hk Î Tk.  There are some induction hypotheses
that will also need to be verified.  We will need to know that admissible nodes are
completion-consistent for some set.  And we will need to show a relationship between

certain PL sets on Tk at hk and corresponding PL sets on  Tk+1 at l(hk) whenever hk is not
completion-respecting.  We prove several lemmas which will give us the desired
information.  The first lemma treats the case where the node to be extended is completion-

consistent via á ñ.  We treat the case where extensions are taken during the backtracking
process in Lemmas 5.9-5.14.

Lemma 5.8 (Completion-Respecting Admissible Extension Lemma):  Fix h,x

Î T0 such that x
-
 = h, x is preadmissible, and h is completion-consistent via á ñ. Then x is

admissible and either x is completion-consistent via S = á ñ, or x is completion-consistent

via S = ál
j
(x)ñ for some j £ n. 
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Proof:  As h is admissible and completion-consistent via S = á ñ, (5.27) is

vacuous. We now verify (5.28).  As h is admissible, (5.28) follows by induction if x is

not pseudotrue. Hence we may suppose that x is pseudotrue for the sake of proving (5.28).

It then follows that   lj(x) is not a primary completion for any j £ n.

Suppose that áá   sj,   sj,   tjñ: r ³ j ³ kñ is an amenable k-implication chain with   tk Í
  lk(x) in order to obtain a contradiction. Then by (5.15) or (5.16),   sk is a primary

completion or an amenable pseudocompletion, and by (5.11)(ii),   sk has finite outcome
along   tk. Thus k > 0, else by (5.17)(i) or (5.18)(i),   sk would have infinite outcome along

  tk. By Lemma 5.2 (Requires Extension), out(   tk) requires extension; so as h and x are

completion-consistent via á ñ, it follows from Lemma 5.5(iii) (Completion-Respecting) that
out(   tk) has a primary completion   kk±1 which has infinite outcome along its immediate

successor   bk±1 Í    lk±1(x). But now by (5.19) and (5.5)(ii),   bk±1 switches   sk, so   tk  Í/
  lk(x), a contradiction.  Hence (5.28) holds.

We now verify (5.29)(i)-(iii).  For all i £ n, let x
i
 = l

i
(x), hi = l

i
(h), and hi =

upi(h).  By (2.5) and Lemma 3.1 (Limit Path), for any   gk Î   Tk, if g Î  T0 is an initial
derivative of   gk, then for all b such that  out0(   gk) Í  b Í g,   lk(b) =   gk; and by (2.4) and

Lemma 5.4 (Compatibility), if a É g,   gk Í    lk(a), and   gk is a k-completion, then   gk Ì

  lk(a).  Hence if x
k
 were a k-completion, then  out0(x

k
) Í x and either x would be a 0-

completion or there would be no 0-completion corresponding to x
k
 along x; in either case,

it follows from Definition 5.6, that h = x- must be primarily or hereditarily implication-

restrained so cannot be completion-consistent via á ñ, contrary to our hypothesis.  (5.29)(ii)
and (5.29)(iii) now follow from (5.27) by induction.   

We now note that if h is implication-restrained, then x does not switch h.  For by

(5.17), if x were to switch h and h were implication-restrained, then h would have to be

either a primary completion or an amenable pseudocompletion.  If h is an amenable

pseudocompletion, then dim(h) = 1and this is impossible by (5.10); and if h is a primary

completion, then dim(h) > 1 and h must be a 0-completion contrary to (5.29)(iii).  Hence

by (5.23), if x is switching, then hi is implication-free for all i £ n.

We now verify (5.29)(i).  Fix k < n and   mk Ì    nk Ì    xk such that   nk is implication-

free and up(   mk) Ì up(   nk),x
k+1

, and fix p and s for x as in Lemma 3.3 (l-Behavior).  Note

that h is admissible, so (5.29)(i) holds for all g Í h. 

Case 1:  k+1 £ p.  Then by Lemma 3.3 (l-Behavior),   nk Í   hk = (   xk)- and up(   nk)

Í hk+1, so as up(   mk) Ì up(   nk), it follows that up(   mk) Ì hk+1.  Hence by (5.29)(i) for h if
  nk Ì   hk, and by (2.7) and Lemma 5.1(i) (PL Analysis) if   nk =   hk,
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PL(up(   mk),up(   nk)) Í {up(   ak):   ak Î PL(   nk,   hk)}ÈPL(up(   mk),hk+1).

Again by Lemma 3.3 (l-Behavior), hk+1 Ì  x
k+1

, so by Lemma 5.1(i) (PL Analysis),

PL(   nk,   hk) Í PL(   nk,   xk) and PL(up(   mk),hk+1) Í PL(up(   mk),x
k+1

), so (5.29)(i) holds for k.

Case 2:  k+1 > s.  By Lemma 3.3 (l-Behavior), there are i < k+1 and   si = (   xi)-

such that for all q Î [i+1,n],   xq =   lq(   si) =   sq.  As   nk Ì   xk, it follows that   nk Í    sk.  Let s

=  out0(   si), and note that by (2.5), s Ì x.  Thus by (2.5) and (5.29)(i) for s if   nk Ì    sk,
and by (2.7) and Lemma 5.1(i) (PL Analysis) if   nk =   sk,

PL(up(   mk),up(   nk)) Í {up(   ak):   ak Î PL(   nk,   sk)}ÈPL(up(   mk),   sk+1).

We have noted that   sk+1 = x
k+1

, and that   sk Í    xk; hence by Lemma 5.1(i) (PL Analysis),

PL(   nk,   sk) Í PL(   nk,   xk), so (5.29)(i) holds for k.

Case 3:  p < k+1 £ s.  By Lemma 3.3 (l-Behavior), hk = (   xk)- and x switches

hk+1.  As   nk Ì   xk, it follows that   nk Í hk.  Let b be the initial derivative of hk along x.  By

(2.7), up(   nk) Í l(   nk).  Hence by (2.4), (2.6), and as up(   mk) Ì up(   nk),x
k+1

, it follows that

up(   mk) Ì l(hk).  Hence by (5.29)(i) for b if   nk Ì hk, and by Lemma 5.1(i) (PL Analysis)

if   nk = hk,
 

PL(up(   mk),up(   nk)) Í {up(   ak):   ak Î PL(   nk,hk)}ÈPL(up(   mk),l(hk)).

Suppose that   rk+1 Î (PL(up(   mk),up(   nk))ÇPL(up(   mk),l(hk)))\PL(up(   mk),x
k+1

).  As x is q-

switching for some q £ k+1, it follows from an earlier observation that hk is implication-

free.  Furthermore, by Lemma 3.3 (l-Behavior), (   xk)- = hk and (x
k+1

)- = hk+1 = up(hk).
First suppose that (5.13) places   rk+1 into PL(up(   mk),up(   nk)).  Then there is a   gk+1

such that [   gk+1,   rk+1] is a primary up(   nk)-link restraining up(   mk), so   rk+1 Ì  up(   nk).  By

Lemma 3.1(i) (Limit Path),   rk+1 has an initial derivative   rk Ì   nk.  By (2.10) and as   rk+1 Î

PL(up(   mk),l(hk))\PL(up(   mk),x
k+1

) and x switches hk+1, hk+1 =   rk+1, and   rk+1 has infinite

outcome along l(hk) but finite outcome along x
k+1

; hence by Lemma 3.3 (l-Behavior), hk

has infinite outcome along   xk and [   rk,hk] is a primary   xk-link.  Now   nk ¹ hk, else up(   nk)

= hk+1 =   rk+1, so   rk+1  Ï PL(up(   mk),up(   nk)), contrary to our assumption.  Hence [   rk,hk]

is a primary   xk-link restraining   nk.  But then (5.13) places hk into PL(   nk,   xk), as required
by (5.29)(i).
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Suppose that (5.14) places   rk+1 into PL(up(   mk),up(   nk)), but (5.13) does not.  Now

hk+1 =  upk+1(h), and we have noted that hk+1 is implication-free.  Let PL(   gk+1,   pk+1) be a
component of PL(up(   mk),up(   nk)) which causes   rk+1 to be placed into PL(up(   mk),up(   nk)),

with   pk+1 as long as possible.  It follows from Definition 5.3 that if   pk+1 Ì up(   nk), then
  pk+1 has infinite outcome along up(   nk).  As   nk is implication-free, it follows from (5.23)

that up(   nk) is implication-free; so by (5.21) and Definition 5.3,   pk+1 must be the primary

completion of the immediate successor d
k+1

 of   gk+1 along   pk+1 for some mk+1 Ì  up(   mk).

By Definition 5.6,   dk+1 Ì   rk+1, so as   rk+1 Î PL(up(   mk),l(hk)),   dk+1 Ì   rk+1 Í l(hk).  By

Lemma 5.5(ii) (Completion-Respecting), either [mk+1,   pk+1] is a primary l (hk)-link

restraining up(   mk), or hk+1 =   pk+1 or hk+1 =   gk+1.  

Subcase 3.1: [mk+1,   pk+1] is a primary l(hk)-link restraining up(   mk). Now   pk+1

Ì l(hk), and by (2.7), hk+1 Í  l(hk); hence   pk+1 and hk+1 are comparable.  By (2.10),

hk+1  Ï [mk+1,   pk+1).  Also, hk+1  Ë mk+1, else as   mk+1 É  mk+1 and x switches hk+1, we

would not have   mk+1 Ì  x
k+1

.  Hence   pk+1 Í  hk+1 Ì  x
k+1

, and so PL(   gk+1,   pk+1) is a

component of PL(up(   mk),x
k+1

).  But then   rk+1 Î PL(up(   mk),x
k+1

), a contradiction.

Subcase 3.2:  hk+1 =   pk+1.  Proceed as in the last two sentences of Subcase 3.1.

Subcase 3.3:  hk+1 =   gk+1.  Recall that d
k+1

 Í up(   nk) Í  hk+1 requires extension.

As h is completion-consistent via á ñ, d
k+1

 has a 0-completion   p0 Í h.  And as d
k+1

 Í

hk+1, it follows from Lemma 5.4 (Compatibility) that for all i £ k, d
k+1

 has an i-completion
  pi Í   hi; and by Definition 5.6, up(   pi) =   pi+1 for all i £ k.  Now  upk+1(   p0) =   pk+1 ¹   gk+1 =
 upk+1(h), so   p0 ¹ h.  Hence   p0 Ì h.  Thus by induction using (2.4),   pi Ì    hi for all i £ k,

so pk Ì hk. 
First suppose that all derivatives of   pk+1 along hk have finite outcome along hk.

Then by (2.4), [mk+1,   pk+1] is a primary hk+1-link restraining   gk+1 É up(   mk). But then by

(2.10), x could not switch hk+1 =   gk+1, a contradiction.

We conclude that there is a derivative pk of   pk+1 which has infinite outcome along

hk.  Let sk be the immediate successor of pk along hk.  By (2.4),   pk+1 has finite outcome

along l(sk), so by Lemma 5.3(ii) (Implication Chain) and Lemma 5.2 (Requires

Extension), sk requires extension for the initial derivative gk of   gk+1 along hk.  As h  is

completion-consistent via á ñ, sk must have a 0-completion k Í h.  First suppose that h is a

0-completion corresponding to a primary i-completion.  As upk+1(h) = hk+1 =   gk+1 and, by
Lemma 5.7(i) (Primary Completion),   gk+1 is not a primary completion, it follows from
(5.5)(ii), (5.9) and (5.12) that k+1-i is odd.  Hence k-i is even and by (5.5)(ii), (5.9) and
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(5.12),   hk is the primary completion of sk.  Otherwise, by Lemma 5.5(ii) (Completion-

Respecting), sk must have a primary completion   kk Í  hk.  Now    gk+1 Ì  up(   nk), so by

Lemma 3.1(i) (Limit Path) gk Ì    nk.  Thus PL(pk,   kk) is a component of PL(   nk,x
k
) which

places pk into PL(   nk,x
k
) via (5.14)(i), completing the proof for the case in which   rk+1 =

  gk+1.  Furthermore, by (5.29)(ii) and (5.14)(ii), PL(   gk+1,   pk+1) Í  {up(ak): ak Î

PL(pk,   kk)} Í {up(ak): ak Î PL(   nk,x
k
)}, so (5.29)(i) holds in this case.

As h is completion-consistent via S = á ñ, it follows from Lemma 3.1(i) (Limit

Path) that any   rj Ì    lj(x) which requires extension satisfies   rj =   lj(g) for some g Í h, so

has a 0-completion Í h by (5.27). Hence if x is completion-deficient via some Z ¹ á ñ, then

all elements of Z are of the form   lj(x) for some j.  The last conclusion of the lemma now

follows from Lemma 5.6 (Uniqueness of Requiring Extension), so x is admissible.  n

When an admissible h Î T0 requires extension, we will need to find an admissible

0-completion k of h. The process of constructing k is called backtracking. The next
lemma indicates the manner in which backtracking preserves completion-consistency.

Lemma 5.9 (Completion-Consistency Lemma):  Fix m ³ 0 and r,s Î T0 such that

s is preadmissible, and s- = r.  Assume that r is completion-consistent via S = á   hi: i £ mñ

and that s is completion-deficient for V.  Let U be the sequence obtained by ordering V
according to the inclusion relation induced by  out0 on the elements of V.  (Note that by
Lemma 5.6 (Uniqueness of Requiring Extension), a linear ordering is obtained in this

way.)  For all j £ n, let sj =   lj(s), rj =   lj(r), and   rj = upj(r).  Then s is completion-
consistent via U and:

(i) If s is a 0-completion, then U = á   hi: i < mñ.

(ii) If (5.18)(ii)(a) holds for r, j is defined as in (5.18)(ii)(a), s is defined as in 

Lemma 3.3 (l-Behavior),   rt+1 is a primary  completion for some t such that 

 j-1 £ t £ s, and   rt has infinite outcome along   st, then t = j-1, U = S^á   stñ and 
  st requires extension.

(iii) If the hypotheses of (i) or (ii) are not satisfied, then U = S.

(iv) s satisfies (5.27) and (5.28).

Proof:  For each i £ m, fix k(i) such that hi Î  Tk(i).  If sj requires extension for

some j such that sj ¹ rj, then by Lemma 5.6 (Uniqueness of Requiring Extension), we let
k(m+1) be the unique such j and let   hm+1 =   sk(m+1).

Fix  u £ n, and   hu Ì   su such that   hu requires extension and   hu  Ï S.  By (2.5), h =
 out0(   hu) Ì s, so h Í r.  Furthermore, if S is the set via which h is completion-consistent,
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then   hu Î  S.  As   hu  Ï S, it follows from (5.27) and the admissibility of r that   hu must

have a 0-completion along r Ì s.  Hence   hu  Ï U.  We conclude that U\S Í {   su:u £ n &
 out0(   su)   Í/  r}.  By the preceding paragraph, U\S has at most one element.

Suppose that s is a 0-completion.  By Definition 5.6, s is nonswitching, so rj Í sj

for all j £ n.  By Lemma 5.7(ii) (Primary Completion), sj cannot require extension for any

j £ n.  Thus U Í S (as sets) by the preceding paragraph.  By Definition 5.6, s must be a 0-
completion of   hm and, as noted in Definition 5.6, cannot be a 0-completion of   hi for any i

< m.  Thus (i) follows.

Assume that s is not a 0-completion. (We note that this will be the case if r satisfies

(5.18)(ii)(a), as then by (5.18)(ii)(b), s would be switching, and 0-completions are

nonswitching.) We first show that S Í U as sets. Suppose that   hi Î S. By Definition 5.8,

  hi has no 0-completion along r. As s is switching, it follows from Definition 5.6 that s is

not a 0-completion of   hi. Hence   hi has no 0-completion along s. By (5.18) and (5.25), s

is not u-switching for any u £ k(i), so   hi  Í rk(i) Í sk(i).  Hence   hi Î U.

Suppose that the hypotheses of (ii) hold.  Then by (5.18)(ii)(b), Lemma 5.2

(Requires Extension), and Lemma 5.3(ii) (Implication Chain),   st Î  U.  Now by (2.5),
 out0(   st) = s, so   st is the last element of U.  By (5.18)(ii)(b), t ³ k(m); so it follows by

induction, our characterization of U\S, and as   st =   lt(s) that (5.25) and (5.26) hold.  
In order to complete the proof of (ii), we must show that if j is defined as in

(5.18)(ii)(a), then t = j-1.  By Lemma 3.3 (l-Behavior), it must be the case that (   st)- =   rt.

As S ¹ á ñ, it follows from (5.21) or (5.22) that r is not implication-free; hence by (5.1), u
< dim((   st)-)-1.  Now   rt+1 ¹   rt+1, else by (5.5)(ii) and (5.15),   rt+1 =   rt+1 would be a
primary completion, hence (5.18)(i)(a) would hold, excluding the possibility that

(5.18)(ii)(a) holds.  Thus as s is j-switching, j £ t+1.  Fix p and s as in Lemma 3.3 (l-

Behavior) for s.  As s is j-switching, j = p+1, and as   st requires extension and s =
 out0(   st) (else s Î S), t £ s.  By choice of j in (5.18)(ii)(a),   rj is the end of a primary   rj-

link, so   rj has infinite outcome along   rj and is not an initial derivative; hence by (2.4) and

Lemma 3.3 (l-Behavior), s = j and   rj has finite outcome along   sj.  Hence j £ t+1 £ s+1 £
j+1, so t £ j £ t+1.  By hypothesis,   rt has infinite outcome along   st, so t ¹ j.  Thus t = j-1,
completing the proof of (ii).

We now complete the proof of (iii).  Suppose that u £ n and su Î U\S Í {gu:u £ n

&  out0(gu)   Í/  r}, in order to obtain a contradiction.  By Lemma 3.3 (l-Behavior), it must

be the case that (su)- =   ru.  Furthermore, as (5.18)(i)(a) and (5.18)(ii)(a) fail to hold for s,

it follows from (5.18) that s is nonswitching, so by Lemma 3.3 (l-Behavior),   ru =   ru.  As

S ¹ á ñ, it follows from (5.21) or (5.22) that r is not implication-free; hence by (5.1), u <

dim((su)-)-1.  As su Î  U\S and su requires extension, it now follows from (5.5) and
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Lemma 3.3 (l-Behavior) that   ru+1 = ru+1 is a primary completion, and that r is the 0-
completion corresponding to   ru+1.  But then (5.18)(i)(a) holds, contradicting the
hypotheses of (iii).  

(5.27) follows from (i)-(iii); and (5.28) follows by induction as s  is not
pseudotrue.  Hence (iv) holds.  n

The next lemma keeps track of the relationship between various nodes, as we
follow the step-by-step process of going from a node which requires extension to its

primary completion.  At a given step in the process, we will begin with a node r Î  T0

which is completion-consistent via a sequence S = á   hi: i £ mñ and extend r to s such that

s- = r and s is completion-consistent via a sequence U.  (We will allow m = -1, but only if

U ¹ á ñ.)  U has been characterized by Lemma 5.9 (Completion-Consistency); let w =

|U|-1.  For each i £ m, fix k(i) such that   hi Î  Tk(i), and if   lj(s) requires extension for some

j such that   lj(s) ¹   lj(r), let k(m+1) be that j and let   hm+1 =   lk(m+1)(s).  For each i £ w, let
  di = (   hi)-, and let   hi require extension for   ni.

Clauses (i) and (ii) of Lemma 5.10 specify that each element of {up(   ni): i £ w} lies

along the branch of  Tk(i)+1 computed by s, and that the inclusion ordering of elements of
this set which lie on the same tree agrees with the ordering on the indices of these nodes,
and so by (5.26), is the same as the ordering induced on the subset of U corresponding to
the same indices.  And clause (v) will be shown to imply that the immediate successors of
the elements in {up(   ni): i £ w} which lie along this branch of  Tk(i)+1 require extension in
the order specified by the indices which agrees with the order induced by inclusion, and
none has a primary completion along the next node which requires extension.  We cannot
specify the ordering of {   ni: i £ w} lying on the same tree, but clauses (iii) and (vii) specify
that each   ni is shorter than   di±1, causing a component for a PL set for   di±1 to be formed.

Clause (iv) is used to show that on this branch of  Tk(i)+1, no elements of  Tk(i)+1 except
those in {up(   ni): i £ w} can require extension without having a primary completion along
the path.  And clause (vi) relates nodes on trees of successive dimension, and implies the
property induced by (5.25), namely, that higher dimension nodes find completions before
we encounter any new node on a lower dimensional tree which requires extension.

Lemma 5.10 (Component Lemma):  Fix m ³ -1 and r ,s  Î   T0 such that s  is

preadmissible and s- = r.  Assume that r is completion-consistent via S = á   hi: i £ mñ, that

s is completion-consistent via U, and that if m = -1, then |U| ¹ 0.  For each i £ m, fix k(i)
such that   hi Î  Tk(i), and if   lj(s) requires extension for some j such that   lj(s) ¹   lj(r), let
k(m+1) be that j (which is unique by Lemma 5.6 (Uniqueness of Requiring Extension))

and let   hm+1 =   lk(m+1)(s).  Let w = m-1 if U Ì S, let w = m if U = S, and let w = m+1
otherwise.  For each i £ w, let   di = (   hi)-, and let   hi require extension for   ni. For all j £ n,

let   sj =   lj(s),   rj =   lj(r), and   rj =  upj(r).  Then for all i £ w:
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(i) up(   ni) Ì   rk(i)+1Ù   sk(i)+1 =   rk(i)+1.

(ii) If 0 < i and k(i) = k(i-1), then up(   ni±1) Ì up(   ni).

(iii) If 0 < i and k(i) = k(i-1), then   ni Ì   di±1.

(iv) Let   mk(i)+1 Í up(   ni) Ì  (   xk(i)+1)- Ì   xk(i)+1 Í    sk(i)+1 be given such that   xk(i)+1 
requires extension for   mk(i)+1. Then one of the following holds:

(a) There is a primary completion   kk(i)+1 Ì    sk(i)+1 of   xk(i)+1 such that   kk(i)+1 
has infinite outcome along   sk(i)+1.

(b) Either i < w, k(i+1) = k(i), and up(   ni+1) Í (   xk(i)+1)-, or w = 0 and up(   n0) 
= (   xk(0)+1)-.

(c)   sk(m) is the primary completion of   hm and (   xk(i)+1)- = up(   nm).
(v) If dim(   ni) > k(i)+1, then the immediate successor   ti of up(   ni) along   sk(i)+1 

requires extension for some   mk(i)+1; and if 0 < i and k(i) = k(i-1), then   mk(i)+1 

Ì up(   ni±1).

(vi) If j < i and k(j) = k(i)-1, then up(   nj) Ì   ni.
(vii) If 0 < i and k(i) = k(i-1), then PL(   di,   sk(i)) is a component of PL(   di±1,   sk(i)).

Proof:  We proceed by induction on lh(s). 

Case 1:  m = -1, so w ¹ -1 by hypothesis.  By Lemma 5.9 (Completion-

Consistency), w = 0, s =  out0(   h0), and r is completion-consistent via á ñ.   (ii), (iii), (vi),
and (vii) are vacuous in this case since w = 0.  We verify (i), (iv), and (v).  

(i):  By (5.3) and Lemma 4.3(i)(a) (Link Analysis), up(   n0) Í    sk(0)+1.  As   h0 =
  sk(0), s =  out0(   sk(0)), so as m = -1 ¹ w,   sk(0) ¹   rk(0).  Furthermore, by (5.2),   d0 = (   sk(0))-

has infinite outcome along   h0 =   sk(0).  By (2.4) and as m = -1,   sk(0)+1 = l (   sk(0)) =

up(   d0)^á   sk(0)ñ, so   sk(0) = out(   sk(0)+1), and (   sk(0)+1)- Í    rk(0)+1.  Hence by Lemma 3.3 (l-

Behavior), up(   d0) =   rk(0)+1Ù   sk(0)+1 = (   sk(0)+1)-.  By (5.2), up(   n0) ¹  (   sk(0)+1) -.  By

Definition 5.1,   n0 Ì   h0 =   sk(0) = out(   sk(0)+1), so by Lemma 3.1(i) (Limit Path), up(   n0) ¹
  sk(0)+1.  Thus up(   n0) Ì (   sk(0)+1)- =   rk(0)+1Ù   sk(0)+1, and (i) follows. 

(iv):  As   h0 =   lk(0)(s) Î  Tk(0), and   h0 requires extension, it follows from Lemma

5.6 (Uniqueness of Requiring Extension) that   sk(0)+1 =   lk(0)+1(s) cannot require

extension.  Fix   xk(0)+1 Í    sk(0)+1 satisfying the hypotheses of (iv), and note that   xk(0)+1 Ì
  sk(0)+1. If r = á ñ, then (iv) is vacuous.  Thus we may assume that   r± exists.  

First suppose that   r± is completion-consistent via á ñ.  As noted in the proof of (i),

(   sk(0)+1) -  Í    rk(0)+1, so   xk(0)+1 Í    rk(0)+1.  Hence by Lemma 5.5(iii) (Completion-

Respecting),   xk(0)+1 has a primary completion   kk(0)+1 Ì    rk(0)+1 which has infinite outcome

along   rk(0)+1.  By (2.10),   kk(0)+1 Í    sk(0)+1, and   kk(0)+1 will have infinite outcome along
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  sk(0)+1 unless h switches   kk(0)+1.  Thus if h does not switch   kk(0)+1, then (iv)(a) holds.

And if h switches   kk(0)+1, then   rk(0)+1 =   kk(0)+1, and by (5.5)(ii), up(   n0) = (   xk(0)+1)-, so
(iv)(b) holds. 

Now suppose that   r± is not completion-consistent via á ñ. By the admissibility of r,

r must be a 0-completion corresponding to a primary completion   rk for some k.  Again by
Definition 5.6,   ri is an initial derivative of   rk for all i < k, so by (2.4),   rk =   rk Ì   sk.

First suppose that   rk has finite outcome along   sk.  Then by Lemma 5.3(ii)
(Implication Chain),   sk±1 requires extension, so k = k(0)+1.  Furthermore,   rk(0)+1 =

  rk(0)+1 = (   sk(0)+1)-.  Thus   xk(0)+1 Í    rk(0)+1, so (iv)(a) will follow from Lemma 5.5(ii)
(Completion-Respecting) unless up(   n0) = (   xk(0)+1)-; but this is ruled out by the hypotheses
of (iv).

Now suppose that   rk has infinite outcome along   sk.  We compare k and k(0).  First
suppose that k(0) < k-1.  Then by Definition 5.6,   rk(0)+1 =   rk(0)+1 is an initial derivative, so

  rk(0)+1 cannot be a primary completion.  As   rk is a primary k-completion and upk(   rk(0)) =
  rk, dim(   rk(0)) > k(0)+1.  Hence (5.5)(ii) must hold for   sk(0), contradicting the fact that
  rk(0)+1 is not a primary completion. 

Next suppose that k(0) = k-1+2q for some q ³ 0.  As   rk has infinite outcome along
  sk, it follows from Lemma 3.3 (l-Behavior) that   rk(0) has finite outcome along   sk(0).  But

by (5.2), as   sk(0) requires extension,   rk(0) must have infinite outcome along   sk(0), a
contradiction.

Finally, suppose that k(0) = k+2q for some q ³ 0.  Then by (5.5)(ii), (5.9), and
(5.12),   rk(0) = upk(0)(   rk) is the middle element of a triple in an implication chain, and by
(5.15) or (5.16),   rk(0) must be a primary completion or an amenable pseudocompletion,
contrary to Lemma 5.7(i).

(v):  As dim(   ni) > k(i)+1, (5.5)(ii) holds and, as i = 0, implies (v).
  

  Case 2:  m ³ 0.  Then  out0(   h0) Í r Ì s.  There are two subcases.

Subcase 2.1:  i £ m.  (ii), (iii), and (vi) follow by induction.

(i):  First suppose that s is not v-switching for any v £ k(i)+1.  By Lemma 3.3 (l-

Behavior),   rk(i)+1 Í   sk(i)+1. By (i) inductively and Lemma 3.3 (l-Behavior),

up(ni) Ì   rk(i)+1 =   rk(i)+1Ù   sk(i)+1 Í   sk(i)+1.

Otherwise, by (5.18) and (5.25), s is (k(m)+1)-switching and k(i) = k(m).  Thus by the

preadmissibility of s, (5.18)(i)(a) or (5.18)(ii)(a) must hold.  Suppose that (5.18)(i)(a)

holds.  Then there is an   hk(m) Î  Tk(m) such that   r ± is completion-consistent via S^á   hk(m)ñ.
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Let   hk(m) require extension for   nk(m).  Then by (5.18)(i)(a),   rk(m) is the primary completion

of   hk(m), so by (5.19),   rk(m)+1 = up(   nk(m)).  By (ii) inductively and Lemma 3.3 (l-
Behavior), 

up(ni) Ì up(   nk(m)) =   rk(m)+1 =   rk(i)+1Ù   sk(i)+1 Ì   sk(i)+1.

Now suppose that (5.18)(ii)(a) holds.  Then   rk(m)+1 is the end of a primary   rk(m)+1-link
which restrains up(   nm).  By the case assumption, i £ m.  Hence by (ii) inductively and

Lemma 3.3 (l-Behavior), 

up(ni) Í up(   nm) Ì   rk(m)+1 =   rk(i)+1Ù   sk(i)+1 Ì   sk(i)+1.

(i) now follows. 
(iv):  Assume the hypothesis of (iv).  By (ii), it suffices to verify (iv) under the

assumption that i is the largest integer for which the hypotheses of (iv) hold for   xk(i)+1 and
  mk(i)+1.  

By (5.18) and (5.25), if s is v-switching, then v ³ k(m)+1 ³ k(i)+1.  And by the
choice of the largest i in the preceding paragraph,   xk(i)+1 ¹   sk(i)+1 (else by Lemma 5.9
(Completion-Consistency), w = m+1 and we would choose i = w for   sk(i)+1).  Now by

Lemma 3.3 (l-Behavior), (   sk(i)+1)- Í   rk(i)+1.  We conclude that   xk(i)+1 Í    rk(i)+1.  Thus by
induction, one of (iv)(a)-(c) must hold at   rk(i)+1.  We consider each possibility.

Assume that (iv)(a) holds at   rk(i)+1.  If   rk(i)+1 Í    sk(i)+1, then (iv)(a) will hold at
  sk(i)+1.  If   rk(i)+1   Í/    sk(i)+1 and (iv)(a) holds at   rk(i)+1 but not at   sk(i)+1, then by (5.18) and

(5.25),   sk(i)+1 is (k(i)+1)-switching and, by (2.10), must switch the primary completion
  rk(i)+1 =   kk(i)+1 of   xk(i)+1.  Thus   kk(i)+1 will have finite outcome along   sk(i)+1, so by Lemma

5.3(ii) (Implication Chain) and Lemma 5.2 (Requires Extension),   sk(i) requires extension.

As s  =  out0(   sk(i)), w = m+1 and   hw =   sk(i).  But then by Lemma 5.2 (Requires
Extension), (   xk(i)+1)- = up(   nw), so (iv)(b) follows from (5.25) and (ii) inductively.

If (iv)(b) holds at   rk(i)+1, then by the maximality of i and as k(m) = k(w), (iv)(b)
will hold at   sk(i)+1 unless w = m-1 = i; so assume that (iv)(b) fails and w = m-1.  By
Lemma 5.9 (Completion-Consistency),   sk(m) is the primary completion of   hm, and by

Definition 5.6, s is nonswitching; hence   rk(i)+1 Í   sk(i)+1.  Now either (iv)(a) will hold for
  xk(i)+1 É up(   nm) at   rk(i)+1, and so at   sk(i)+1, or (   xk(i)+1)- = up(   nm).  In the latter case, (iv)(c)

holds at   sk(i)+1.
Suppose that (iv)(c) holds at   rk(i)+1.  By (5.19), if   ak is a primary completion with

corresponding 0-completion a, then a is an initial derivative of   ak and all nodes b Î

(out0(   ak),a] are nonswitching; so by Lemma 3.1(i) (Limit Path),   lk(b) =   lk(out0(   ak)) for

all such b.  Thus (iv)(c) will hold at s unless r is a 0-completion.  In the latter case, by
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(5.18)(i), s switches   rk(m)+1.  By (5.5)(ii) and the maximality of i, k(i) = k(m) and   rk(m)+1

= up(   nm) Ì     xk(i)+1.  But   xk(i)+1 Í    rk(m)+1 and by Lemma 3.3 (l -Behavior),
  rk(m)+1Ù   sk(m)+1 =   rk(m)+1; so   xk(i)+1   Í/    sk(m)+1, contrary to hypothesis.

(v):  Assume the hypotheses of (v).  By (i), up(   ni) Ì    rk(i)+1Ù   sk(i)+1.  Fix   ti Í
  rk(i)+1Ù   sk(i)+1 such that (   ti)- = up(   ni).  As   ti Í   rk(i)+1, (v) follows by induction.

(vii):  By (5.18) and (5.25), s is not v-switching for any v £ k(i).  Hence by

Lemma 3.3(i) (l-Behavior),   rk(i) Í    sk(i).  By induction, PL(   di,   rk(i)) is a component of
PL(   di±1,   rk(i)), and by hypothesis,   di has no primary completion along   rk(i).  It now follows
from Definition 5.3 that PL(   di,   sk(i)) is a component of PL(   di±1,   sk(i)).

Subcase 2.2:  i = w = m+1. By Lemma 5.9 (Completion-Consistency),

(5.18)(ii)(a) holds, and hence by (5.18)(ii) and (5.25), s is (k(w)+1)-switching, k(w)+1 ³
k(m)+1, and   rk(w)+1 is a primary completion.  By Lemma 5.3(ii) (Implication Chain) and

Lemma 5.9(ii) (Completion-Consistency), áup(   nw),   rk(w)+1,   sk(w)+1ñ is the last triple of an r-
implication chain for some r, and by the assumptions of Case 2, m ³ 0 so dim(   nw) >
k(w)+1.  Hence by (5.5)(ii), if   tk(w)+1 is the immediate successor of up(   nw) along   rk(w)+1,
then   tk(w)+1 requires extension for some   mk(w)+1 which we fix, and   tk(w)+1 has primary
completion   rk(w)+1.  By (5.18)(ii)(a), [   mk(w)+1,   rk(w)+1] is a primary   rk(w)+1-link, and a

  rk(m)+1-link derived from this link restrains up(   nm).  By Lemma 5.9(ii) (Completion-

Consistency),   sk(w) =   hw requires extension and by (5.1) and as S ¹ á ñ, (5.5)(ii) must

hold; hence   dw =   rk(w).  Furthermore, as s is (k(w)+1)-switching,   rk(w) =   rk(w).  We verify
(i)-(vii).

(i):  As áup(   nw),   rk(w)+1,   sk(w)+1ñ is the last triple of a (k(w)+1)-implication chain, it

follows from (5.8)(i) that up(   nw) Ì    rk(w)+1.  By Lemma 3.3 (l-Behavior),   rk(w)+1 =
  rk(w)+1Ù   sk(w)+1.  (i) now follows.

(ii):  We assume that k(w) = k(m), else there is nothing to verify.  We assume that
(ii) fails, and derive a contradiction.  By (i), up(   nw) and up(   nm) are comparable.  First

assume that up(   nw) = up(   nm) in order to obtain a contradiction.  By (i),   tk(w)+1 Í
  rk(w)+1Ù   sk(w)+1, and we have noted that   rk(w)+1 is the primary completion of   tk(w)+1.

Furthermore, as (   tk(w)+1)- = up(   nw) = up(   nm),   tk(w)+1 requires extension and S ¹ á ñ, it
follows from (5.5) that dim(up(   nm)) > k(w)+1.  Hence by (5.5)(ii) for both   hm and   hw =

  sk(w), it must be the case that both   dm and   dw =   rk(w) have infinite outcome along   sk(w), and

up(   dm) = up(   dw) =   rk(w)+1.  Hence by (2.8),   hm =   hw =   sk(w).  But as k(m) = k(w),   hm Í
  rk(w) =   rk(w) Ì   sk(w), yielding a contradiction.

Next suppose that up(   nm) É up(   nw) in order to obtain a contradiction.  As   tk(w)+1

requires extension and   rk(w)+1 is the primary completion of   tk(w)+1, all nodes in
[   tk(w)+1,   rk(w)+1] are implication-restrained.  Hence by (5.1) and (i) for   nm, dim(   nm) >

k(m)+2.  By (i), if   tm is the immediate successor of up(   nm) along   sk(w)+1, then   tm Í
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  rk(w)+1, so by (v) inductively,   tm requires extension.  Hence by Lemma 5.5(i) (Completion

Respecting),   tm has a primary completion   km Ì   rk(w)+1, and   km has infinite outcome along
  rk(w)+1 Ì    sk(w)+1.  Thus by (2.4), all derivatives of   km along   sk(w) have finite outcome

along   sk(w).  But by (5.5)(ii) and (5.2) for   hm, up(   dm) =   km and   dm has infinite outcome

along   hm Í   sk(w), yielding a contradiction.  (ii) now follows.
(iii):  We assume that k(m) = k(w), else there is nothing to show.  (5.5)(ii) specifies

the relationship between requires extension situations on  Tk(w) and (k(w)+1)-implication
chains, and specifies that   nw is the initial derivative of up(   nw) along   sk(w).  We have noted

that   tk(w)+1 requires extension; let   tk(w) = out(   tk(w)+1), and note that   tk(w) Ì   sk(w) by (2.5).

We compare the locations of   tk(w) and   hm, noting that they are comparable as both are  Ì
  sk(w).  First assume that   tk(w) Ì    hm.  (We will show that this is the only case which can

actually occur.)  Now   rk(w)+1 is the primary completion of   tk(w)+1 and   rk(w)+1 Ì    sk(w)+1;

hence by Lemma 3.1(i) (Limit Path),   rk(w)+1 has an initial derivative   mk(w) Ì   sk(w) which is
the k(w)-completion of   rk(w)+1.  By (5.25) and (5.27), new nodes on lower dimension
trees cannot require extension until all nodes on higher dimension trees which previously
required extension have found their 0-completions; hence as k(w) < k(w)+1, no node in

[   tk(w),   mk(w)] can require extension.  Hence   mk(w) Ì    hm.  By Lemma 3.1(i) (Limit Path),

and as up(   nw) Ì   rk(w)+1 by (i), it must be the case that   nw Ì   tk(w) Ì    mk(w) Ì    hm, so (iii)
holds in this case.

  tk(w) ¹   hm, else we would contradict Lemma 5.6 (Uniqueness of Requiring
Extension).

Finally, assume that   tk(w) É   hm.  By (vi) inductively for   tk(w)+1, up(   nm) Ì    mk(w)+1,
contrary to (5.18)(ii)(a).  Hence (iii) holds. 

(iv):  Assume that the hypotheses of (iv) hold for   xk(w)+1 Í   sk(w)+1 which requires

extension.  By the hypotheses of (iv), up(   nw) Ì (   xk(w)+1)-, so   tk(w)+1 ¹   xk(w)+1.  As   tk(w)+1

Ì   rk(w)+1 Ì   sk(w)+1, it must be the case that   tk(w)+1 Ì    xk(w)+1.  As s  is (k(w)+1)-

switching, it follows from Lemma 3.3(ii) (l-Behavior) and (2.4) that (   sk(w)+1)- =   rk(w)+1

and   rk(w)+1 has finite outcome along   sk(w)+1.  Thus by (5.2),   xk(w)+1 Í   rk(w)+1 Ì   rk(w)+1.
As   rk(w)+1 is the primary completion of   tk(w)+1, (iv)(a) follows from Lemma 5.5(i)
(Completion Respecting).

(v):  We have already noted that the immediate successor,   tk(w)+1, of up(   nw) along
  rk(w)+1 Ì   sk(w)+1 requires extension for   mk(w)+1.  For the second clause of (v), we assume

that k(w) = k(m), else there is nothing to verify.  As r is completion-consistent via á   hi: i £

mñ and (5.18)(ii)(a) holds at r with   rk(w)+1 a primary completion, [   mk(w)+1,   rk(w)+1] is a

primary   rk(w)+1-link which restrains up(   nm), so   mk(w)+1 Í up(   nm).  

We assume that   mk(w)+1 = up(   nm) and derive a contradiction.  As [   mk(w)+1,   rk(w)+1] is
a primary   rk(w)+1-link and by (i),   mk(w)+1 ¹   rk(w)+1,   mk(w)+1 has finite outcome along   rk(w)+1
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Ì   sk(w)+1, and up(   mk(w)+1) = up(   rk(w)+1), so dim(   mk(w)+1) = dim(   nm) > k(m)+1.  Thus by
(v) for   nm, the immediate successor   tm of up(   nm) along   sk(w)+1 requires extension, so by

(5.2), up(   nm) =   mk(w)+1 has infinite outcome along   tm Í   sk(w)+1, a contradiction.  (v) now
follows.

(vi):  We assume that k(w) = k(m)+1, else there is nothing to verify.  By

(5.18)(ii)(a) and as s  is (k(w)+1)-switching, there is a primary   rk(w)+1-link
[   mk(w)+1,   rk(w)+1] such that the   rk(w)-link [   mk(w),   pk(w)] derived from [   mk(w)+1,   rk(w)+1]
restrains up(   nm).  Also,   rk(w)+1 is the primary completion of the immediate successor

  tk(w)+1 of up(   nw) along   rk(w)+1, so   pk(w) is the corresponding k(w)-completion.  By (5.2),
up(   nw) has infinite outcome along   tk(w)+1, so by (2.4), the initial derivative  of up(   nw)
along   pk(w) is the principal derivative of up(   nw) along   pk(w) and  has finite outcome along

  pk(w); hence again by (5.2), this initial derivative must be   nw.  So by (2.4), if   tk(w) =
out(   tk(w)+1), then (   tk(w))- =   nw.  By (5.25) and (5.27), no node in [   tk(w),   pk(w)] can require
extension (else we would contradict the dimension ordering of (5.25)); so as, by (v), the

immediate successor   tm of up(   nm) along   pk(w) Ì    sk(w) requires extension, it must be the

case that   tm Ì   tk(w).  Thus up(   nm) = (   tm)- Ì (   tk(w))- =   nw, and (vi) holds.

(vii):  By (iii) and hypothesis, if k(m) = k(w), then   hm requires extension and   nw Ì

  dm Ì   hm Í   dw Ì   hw =   sk(w).  (vii) now follows from Definition 5.3, as (5.14) holds.  n

The next lemma provides a step-by-step analysis of the effect of extending r to s,
as specified by (5.18), on the PL sets corresponding to each element in the sequence via

which r is completion-consistent.

Lemma 5.11 (Amenable Backtracking Lemma):  Fix hypotheses as in Lemma 5.10
(Component).  Then for all i £ m:

(i) If either (5.18)(i)(a) holds for r with k(m+1) = k(i), or (5.18)(ii)(a) holds 

for r with j = k(i)+1, then 

PL(di,sk(i)) = PL(di,rk(i))È{rk(i)} and the union is disjoint, 

rk(i)+1 Î PL(up(ni),rk(i)+1), and 

PL(up(ni),sk(i)+1) = PL(up(ni),rk(i)+1)\{rk(i)+1}.

(ii) If the hypotheses of (i) fail, then PL(di,sk(i)) = PL(di,rk(i)) and

 PL(up(ni),sk(i)+1) = PL(up(ni),rk(i)+1).

(iii) {up(   x
k(i)):   x

k(i) Î PL(di,sk(i))}ÈPL(up(ni),sk(i)+1) = 

{up(   x
k(i)):   x

k(i) Î PL(di,rk(i))}ÈPL(up(ni),rk(i)+1), 
and the unions are disjoint.

(iv) If w = m+1, then PL(dw,sk(w))} = ¯.

(v) If s  is a 0-completion of hm, then PL(up(   nm),   s
k(m)+1) = ¯.
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 (vi) If   s ± is not completion-consistent via á ñ, then s satisfies (5.29)(i).

Proof:  As up(   rk(i)) =   rk(i)+1 by (5.18), (5.25), and Lemma 3.3 (l-Behavior), (iii)
follows from (i) and (ii) by induction on lh(rk(i)).  We first prove (iv) and (v).  

If w = m+1, then (sk(w))- = dw by Lemma 5.9 (Completion-Consistency), so there

can be no primary sk(w)-link restraining dw or sk(w).  Furthermore, PL(dw,sk(w)) can have a

component only if lh(sk(w)) - lh(dw) ³ 2.  (iv) now follows from Definition 5.3.  Suppose

that s is a 0-completion of   hm.  By Lemma 5.9 (Component), w = m-1.  By (5.19),

up(nm) = up(sk(m)), so by (2.10), up(nm) is sk(m)+1-free.  Suppose that elements are

placed in PL(up(nm),sk(m)+1) through (5.14) in order to obtain a contradiction.  Then there

are   m
k(m)+1 Ì up(nm) Ì (   x

k(m)+1)- Ì   x
k(m)+1 Í sk(m)+1 such that   x

k(m)+1 requires extension

for   m
k(m)+1.  As w = m-1, the hypothesis of Lemma 5.10(iv) (Component) holds for r in

place of s, so one of conditions (iv)(a)-(iv)(c) must hold for i = m.  (iv)(b) cannot hold, as

the w corresponding to r is m, so   nm+1 is undefined.  (iv)(c) cannot hold, else   rk(m) would

be a primary completion, so by (5.18), s would be a switching extension of r; but s is a
0-completion, and by Definition 5.6, 0-completions are nonswitching, yielding a

contradiction.  Suppose that (iv)(a) holds.  Then   x
k(m)+1 has a primary completion   k

k(m)+1

which has infinite outcome along   rk(m)+1.  Thus by Definition 5.6, [   m
k(m)+1,   k

k(m)+1] is a
primary   rk(m)+1-link restraining up(nm), so up(nm) is not   rk(m)+1-free, a contradiction.  It

now follows from Definition 5.3 that PL(up(nm),sk(m)+1) = ¯, so (v) holds.

We now verify (i) and (ii).  We proceed by induction on lh(s).  There are several

cases to consider, depending on the manner in which s extends r.  By (5.18) and (5.25),

we see that if s is v-switching, then v > k(m) if m ³ 0.  In the first two cases, v > k(i)+2 or

s is nonswitching, and v = k(i)+2, we show that the hypothesis and conclusion of (ii)
hold.  The final case is when v = k(i)+1, in which case (i) will be followed.

We first note the following:

Claim:  If   a
k Ì    b

k Ì    g
k Î   Tk, (   g

k) -  =   b
k,  out0(   b

k) is completion-consistent via a

nonempty set, and   g
k is not u-switching for any u £ k+1, then PL(   a

k,   b
k) = PL(   a

k,   g
k).

 Proof:   By Lemma 5.1(i) (PL Analysis), PL(   a
k,   b

k) Í  PL(   a
k,   g

k).  If

PL(   a
k,   g

k)\PL(   a
k,   b

k) ¹ ¯, then by Lemma 5.1(iii) (PL Analysis), either   b
k is the end of a

primary   g
k-link and so   g

k is u-switching for some u £ k+1, or   g
k requires extension; and in

the latter case, it follows from Lemma 5.9 (Completion-Consistency) that (5.18)(ii) holds

for s with j = k+1, so   g
k is (k+1)-switching.  But this is contrary to our case assumption.

The claim now follows.  n
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 Case 1:  s is v-switching for some v > k(i)+2 or is nonswitching.  (i) is vacuous,
and (ii) is immediate from the claim. 

Case 2:  s is (k(i)+2)-switching.  By the claim, PL(   di,   sk(i)) = PL(   di,   rk(i)).  It
follows from (5.18)(iii) that either (5.18)(i)(a) or (5.18)(ii)(a) holds.  By (5.25), k(i) £

k(m), and by (5.18), if s is v-switching, then v > k(m).  Hence there are two subcases to
consider; k(i) = k(m), and k(i) = k(m)-1.  We note that in both cases, (i) is vacuous as
k(m+1) > k(i) if (5.18)(i) is followed, so it suffices to verify (ii).

Subcase 2.1:  k(i) = k(m).  By Lemma 3.3 (l-Behavior),   rk(m)+1 Ì   sk(m)+1.

Subcase 2.1.1:  (5.18)(i)(a) holds and i = m, and so as s is (k(m)+2)-switching,

k(m+1) = k(m)+1.  Then there are   nm+1,   hm+1 Î   Tk(m)+1 such that   rk(m)+1 is a primary
completion of   hm+1 for   nm+1 and by Lemma 5.9 (Completion-Consistency), (   rk(m)+1)- is

completion-consistent via S^á   hm+1ñ.  By Proposition 5.1(i)(iii), PL(up(   nm),   rk(m)+1) Í

PL(up(   nm),   sk(m)+1) and PL(up(   nm),   sk(m)+1)\PL(up(   nm),   rk(m)+1) Í {   rk(m)+1}.  By Lemma

5.10(vi) (Component), up(   nm) Ì    nm+1.  Now [   nm+1,   rk(m)+1] is the only primary   sk(m)+1-
link which is not a   rk(m)+1-link, and by Lemma 5.7(i) (Primary Completion),   sk(m)+1 does
not require extension.  Hence neither (5.13) nor (5.14) can place   rk(m)+1 into
PL(up(   nm),   sk(m)+1), so PL(up(   nm),   sk(m)+1) = PL(up(   nm),   rk(m)+1).

Subcase 2.1.2:  (5.18)(ii)(a) holds and i = m.  Then there is a   rk(m)+1-link
[   mk(m)+1,   pk(m)+1] which restrains up(   nm) and is derived from a primary   rk(m)+2-link

[   mk(m)+2,   pk(m)+2], and s switches   pk(m)+2.  Note that [   pk(m)+1,   rk(m)+1] is the only primary
  sk(m)+1-link which is not a   rk(m)+1-link, and up(   nm) Ì    pk(m)+1; hence any node placed into

PL(up(   nm),   sk(m)+1) via (5.13) is already in PL(up(   nm),   rk(m)+1).  By Lemma 5.10(vi)

(Component), if   sk(m)+1 requires extension for some   nm+1 which we fix, then up(   nm) Ì
  nm+1; hence any node placed into PL(up(   nm),   sk(m)+1) via (5.14) is already in

PL(up(   nm),   rk(m)+1).  Thus by Definition 5.3 and Lemma 5.1(i) (PL Analysis),
PL(up(   nm),   sk(m)+1) = PL(up(   nm),   rk(m)+1).

Subcase 2.1.3:  i < m.  By Lemma 5.10(i) (Component), PL(up(   ni),   rk(m)+1) Í

PL(up(   ni),   sk(m)+1).  By Proposition 5.1(ii) (PL Analysis) and since   rk(m)+1 Ì    sk(m)+1,

PL(up(   ni),   sk(m)+1)\PL(up(   ni),   rk(m)+1) Í  {   rk(m)+1}.  For each j Î [i+1,m], let tj
k(m)+1 be

the immediate successor of up(   nj) along   sk(m)+1 and note that, by Lemma 5.10(v)

(Component), tj
k(m)+1 requires extension for each such j.  For each j Î [i+1,m], let xj

k(m)+1

be the primary completion of tj
k(m)+1 along   sk(m)+1 if it exists, and let xj

k(m)+1
 =   sk(m)+1
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otherwise.  As i+1 > 0, it follows from (5.1) that dim(up(   ni+1)) > k(m)+1.  Hence by

Lemma 5.10(v) (Component) and (5.14), we see that PL(up(   ni+1),xi
k(m)+1

) is a component
of PL(up(   ni),   sk(m)+1).  Furthermore, by Lemma 5.10(iv) (Component), every component
of PL(up(   ni),   sk(m)+1) which has   rk(m)+1 as an element must be of the form

PL(up(   nj),xj
k(m)+1

) for some j Î [i+1,m].  By Lemma 5.10(i),(ii) (Component), if j Î

[i,m], then up(   nj) Í up(   nm) Ì   rk(m)+1.  It now follows by induction on m-i that if   rk(m)+1

Î PL(up(   ni),   sk(m)+1), then   rk(m)+1 Î PL(up(   nm),   sk(m)+1), and so by Subcase 2.1.2, that
PL(up(   ni),   sk(m)+1) = PL(up(   ni),   rk(m)+1).

Subcase 2.2:  k(i) = k(m)-1.  By Lemma 3.3 (l-Behavior),   rk(m) Ì   sk(m).  

Subcase 2.2.1:   (5.18)(i)(a) holds.  Then there are   nm+1,   hm+1 Î  Tk(m) such that
  rk(m) is a primary completion of   hm+1 for   nm+1 and by Lemma 5.9 (Completion-

Consistency), (   rk(m))- is completion-consistent via S^á   hm+1ñ.  By Lemma 5.10(vi)

(Component), up(   ni) Ì    nm+1.  Now by (5.19) and (5.18)(i), [   nm+1,   rk(m)] is the only
primary   sk(m)-link which is not a   rk(m)-link, and by Lemma 5.7(i) (Primary Completion),

  sk(m) does not require extension.  Hence by Lemma 5.1(i),(iii) (PL Analysis),
PL(up(   ni),   sk(m)) = PL(up(   ni),   rk(m)).

Subcase 2.2.2:  (5.18)(ii)(a) holds.  Then there is a primary   rk(m)+1-link

[   mk(m)+1,   pk(m)+1] which restrains up(   nm), so up(   nm) Ì    pk(m)+1.  Let   pk(m) be the initial
derivative of   pk(m)+1 along   sk(m).  Then [   pk(m),   rk(m)] is the only primary   sk(m)-link which
is not a   rk(m)-link, and by (5.2),   nm is the initial derivative of up(   nm) along   sk(m); hence it

follows from Lemma 3.1(i) (Limit Path) that   nm Ì    pk(m).  If   sk(m) requires extension for

some   nm+1, then by Lemma 5.10(vi) (Component), up(   ni) Ì    nm+1.  It now follows from
Lemma 5.1(i) (PL Analysis) and Definition 5.3 that PL(up(   ni),   sk(m)+1) =
PL(up(   ni),   rk(m)+1).

Case 3:  s is (k(i)+1)-switching.  By (5.25), k(i) £ k(m), so s must be (k(m)+1)-

switching, i.e., k(i) = k(m).  By Lemma 3.3 (l-Behavior), (   sk(m)+1)- =   rk(m)+1.  Now s is

preadmissible and m ³ 0, so r is not completion-consistent via á ñ; hence (5.18)(i)(a) or
(5.18)(ii)(a) must hold.  We note that (ii) is vacuous in this case, and verify (i).  We
consider three subcases.

Subcase 3.1:  (5.18)(i)(a) holds and i = m.  By Lemma 5.9 (Completion-

Consistency),  there is a node   hk(m) Î   Tk(m) such that (  out0(   r
k(m)))- is completion-

consistent via S^á   hk(m)ñ, rk(m) is the k(m)-completion of   hk(m) for some   nk(m), and sk(m)

switches rk(m)+1.  Let    dk(m) = (   hk(m))-.
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By Lemma 5.10(iii) (Component),   nk(m) Ì   dm; and as (  out0(   r
k(m)))- is completion-

consistent via S^á   hk(m)ñ and   hm Î S, (   hm)- =   dm Ì   r
k(m).  Thus [   nk(m),   r

k(m)] is a primary
  s

k(m)-link which restrains   dm.  It now follows from (5.13) that   r
k(m) Î PL(   dm,   s

k(m)), so

by Lemma 5.1(i),(ii) (PL Analysis), PL(   dm,   s
k(m)) = PL(   dm,   r

k(m))È{   r
k(m)}.

As   r
k(m) is a primary completion of   hk(m) and   hk(m) requires extension for   nk(m), it

follows from (5.19) that up(   nk(m)) = up(   r
k(m)) = rk(m)+1.  Let   tk(m)+1 be the immediate

successor of rk(m)+1 along   rk(m)+1.    By Definition 5.6,   hk(m) and (   r
k(m))- are completion-

consistent via the same sequence, so by Definition 5.6 and Lemma 5.9 (Completion-

Consistency),   r
k(m) and   dk(m) are completion-consistent via the same sequence, which is

non-empty as m ³ 0.  Hence as   hk(m) requires extension, it follows from (5.1) that

dim(   dk(m)) > k(m)+1.  By (5.3) and Lemma 4.3(i)(a) (Link Analysis), l(   hk(m)) É  rk(m)+1

= up(   nk(m)); so as   s
k(m) switches rk(m)+1 and   hk(m) Ì    r

k(m), it follows that   tk(m)+1 Í

l(   hk(m)); hence by (5.5)(ii) and (5.15),   tk(m)+1 requires extension for up(   dk(m)).  By

Lemma 5.10(v) (Component) at r-, up(   dk(m)) Ì  up(   nm), and as up(   nk(m)) = rk(m)+1, it

follows from Lemma 5.10(ii) (Component) that up(   nm) Ì  rk(m)+1.  Thus by (5.14)(i),

rk(m)+1 Î PL(up(   nm),   tk(m)+1).  As s switches rk(m)+1 (and so, by Definition 5.6, cannot

be a primary completion), it follows from Lemma 4.5 (Free Extension) that rk(m)+1 is
  sk(m)+1-free; hence by Lemma 5.10(iv) (Component), we may apply Lemma 5.1(v) (PL

Analysis) to conclude that PL(up(   nm),   rk(m)+1) = PL(up(   nm),   tk(m)+1); so by Lemma
5.1(i),(ii) (PL Analysis) and Definition 5.3, 

PL(up(   nm),   rk(m)+1) = PL(up(   nm),   rk(m)+1)È{   rk(m)+1} &   rk(m)+1  Ï PL(up(   nm),   rk(m)+1).

As s switches   rk(m)+1 and is (k(m)+1)-switching, it follows from Lemma 3.3 (l-Behavior)
that (   sk(m)+1)- =   rk(m)+1 and   rk(m)+1 has finite outcome along   sk(m)+1.  Thus by Lemma
5.1(iv) (PL Analysis), PL(up(   nm),   sk(m)+1) = PL(up(   nm),   rk(m)+1).  Thus

PL(up(   nm),   rk(m)+1)\PL(up(   nm),   sk(m)+1) = {rk(m)+1},

and (i) follows in this case.

Subcase 3.2:  (5.18)(ii)(a) holds and i = m.  Then there is a primary   rk(m)+1-link

[   mk(m)+1,   rk(m)+1] which restrains up(   nm) such that s switches   rk(m)+1.  By (5.13),   rk(m)+1

Î PL(up(   nm),   rk(m)+1).  By induction (on  T0) using (i) and (ii), if   hm Ì   xk(m) Í   rk(m) then

PL(up(   nm),l(   xk(m))) Í  PL(up(   nm),l((   xk(m)) -)). Thus PL(up(   nm),   rk(m)+1) Í

PL(up(   nm),l(   hm)), so   rk(m)+1 Î PL(up(   nm),l(   hm)), from which it follows that   rk(m)+1 Ì

l(   hm).  As (   hm)- =   dm and by (5.2),   dm has infinite outcome along   hm, it follows from

(2.4) that (l(   hm))- = up(   dm), and so   rk(m)+1 Í up(   dm).  By Lemma 3.1(i) (Limit Path),
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  rk(m)+1 has an initial derivative   mk(m) Í   dm.  Now (   sk(m))- =   rk(m) and s is (k(m)+1)-
switching, so by (2.4),   rk(m) has infinite outcome along   sk(m); so as up(   rk(m)) =   rk(m)+1,
[   mk(m),   rk(m)] must be a primary   sk(m)-link restraining   dm.  By Definition 5.3,   rk(m)  Ï

PL(   dm,   rk(m)).  It now follows from (5.13) and Lemma 5.1(i),(ii) (PL Analysis) that 

PL(   dm,   sk(m))\PL(   dm,   rk(m)) ={   rk(m)}.  

By (5.18)(ii),   rk(m)+1 is the last node of a primary   rk(m)+1-link which restrains

up(   nm).  Hence by (5.13),   rk(m)+1 Î PL(up(   nm),   rk(m)+1).  As s switches   rk(m)+1 (and so,
by Definition 5.6, cannot be a primary completion), it follows from (2.10) that   rk(m)+1 is

  rk(m)+1-free; hence by Lemma 5.10(iv) (Component), we may apply Lemma 5.1(v) (PL
Analysis) to conclude that if   tk(m)+1 is the immediate successor of   rk(m)+1 along   rk(m)+1,
then PL(up(   nm),   rk(m)+1) = PL(up(   nm),   tk(m)+1).  Thus by Lemma 5.1(i),(ii) (PL Analysis)
and Definition 5.3, 

PL(up(   nm),   rk(m)+1) = PL(up(   nm),   rk(m)+1)È{   rk(m)+1} &   rk(m)+1  Ï PL(up(   nm),   rk(m)+1).

As s switches   rk(m)+1 and is (k(m)+1)-switching, it follows from Lemma 3.3 (l-Behavior)
that (   sk(m)+1)- =   rk(m)+1 and   rk(m)+1 has finite outcome along   sk(m)+1.  Thus by Lemma
5.1(iv) (PL Analysis), PL(up(   nm),   sk(m)+1) = PL(up(   nm),   rk(m)+1).  Thus

PL(up(   nm),   rk(m)+1)\PL(up(   nm),   sk(m)+1) = {rk(m)+1} &   rk(m)+1  Ï PL(up(   nm),   sk(m)+1),

and (i) follows in this case.

Subcase 3.3: i < m.  Recall that k(i) = k(m) and   rk(m) Ì    sk(m). By Lemma
5.10(vii) (Component) and induction using Lemma 5.1(ix) (PL Analysis),

{   rk(m)}ÈPL(   dm,   sk(i)) Í PL(   di,   sk(i)). 

By Definition 5.3,   rk(m)  Ï PL(   di,   rk(i)).  Hence by Lemma 5.1(ii) (PL Analysis),

PL(   di,   sk(i)) = PL(   di,   rk(i))È{   rk(m)}.  

By Subcases 3.1 and 3.2,   rk(m)+1 Î PL(up(   nm),   rk(m)+1).  By Definition 5.3 and
Lemma 5.10(v) (Component), for all q such that i £ q < m, PL(up(   nq+1),   rk(m)+1) is a

component of PL(up(   nq),   rk(m)+1).  Hence by induction on m-i,   rk(m)+1 Î

PL(up(ni),   rk(m)+1).  Let   tk(m)+1 be the immediate successor of   rk(m)+1 along   rk(m)+1.  As s
switches   rk(m)+1 (and so, by Definition 5.6, cannot be a primary completion), it follows
from (2.10) that   rk(m)+1 is   rk(m)+1-free.  Hence by Lemma 5.10(iv) (Component), we may
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apply Lemma 5.1(v) (PL Analysis) to conclude that PL(up(ni),   rk(m)+1) =
PL(up(ni),   tk(m)+1).  By Lemma 5.1(i),(ii) (PL Analysis) and Definition 5.3, and as   rk(m)+1

Î PL(up(ni),   rk(m)+1), 

PL(up(ni),   tk(m)+1) = PL(up(ni),   rk(m)+1)È{   rk(m)+1} &   rk(m)+1  Ï PL(up(ni),   rk(m)+1).

Now (   sk(m)+1)- =   rk(m)+1 and   rk(m)+1 has finite outcome along   sk(m)+1, so by Lemma
5.1(iv) (PL Analysis), PL(up(ni),   sk(m)+1) = PL(up(ni),   rk(m)+1).  Thus 

PL(up(ni),   sk(m)+1) = PL(up(ni),   rk(m)+1)\{   rk(m)+1}.

(i) now follows.

We complete the proof of the lemma by verifying (vi).  Fix k < n and   mk Ì   nk Ì    sk

such that   nk is implication-free and up(   mk) Ì  up(   nk),   sk+1 in order to verify (5.29)(i).

(Note that we may assume, by induction, that   hk =   sk in (5.29)(i).)  Fix p and s for s as in

Lemma 3.3 (l-Behavior).  We proceed by cases.

Case 1:  s is not j-switching for any j £ k+1.  Then (   sk)- =   rk and (   sk+1)- =   rk+1.

If   nk Ì    rk, then PL(   nk,   rk) Í  PL(   nk,   sk) and PL(up(   mk),   rk+1) Í PL(up(   mk),   sk+1), so

(5.29)(i) follows by induction.  Otherwise,   nk =   rk.  But as   nk is implication-free and r is

not completion-consistent via á ñ, this is impossible.

Case 2:  s is j-switching for some j £ k.  By (5.18) and Definition 5.6, s switches

a principal derivative which is not an initial derivative on  Tj, so by Lemma 3.3 (l-

Behavior), p+1 = j = s.  If j < k, then there is a d Ì s such that   lk(d) =   sk, so (5.29)(i)

follows by induction.  Suppose that j = k.  If   nk Ì   rk, then (5.29)(i) holds at  out0(   rk), and

as j = k = s,   sk+1 = l(   rk).  Hence (5.29)(i) follows by induction and Lemma 5.1(i) (PL
Analysis).  Otherwise, it must be the case that   nk =   rk.  By Lemma 4.5 (Free Extension),

up(   nk) Í    sk+1, so by Lemma 5.1(i) (PL Analysis), PL(up(   mk),up(   nk)) Í

PL(up(   mk),   sk+1), and (5.29)(i) holds.

Case 3:  s is (k+1)-switching. Then by Lemma 5.1(i) (PL Analysis), PL(   nk,   rk) Í

PL(   nk,   sk). Suppose that   pk+1 Î (PL(up(   mk),   rk+1)  ÇPL(up(   mk),up(   nk))\PL(up(   mk),   sk+1).
(vi) will follow by induction once we show that a derivative of   pk+1 lies in PL(   nk,   sk).
There are several subcases.
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Subcase 3.1:    pk+1 is the end of a primary   rk+1-link restraining up(   mk).  By

(2.10) and as up(   mk) Ì l(   sk), s  must switch   pk+1.  If   pk+1 Ê  up(   nk), then

PL(up(   mk),up(   nk)) Í PL(up(   mk),   sk+1), so (vi) holds.  If   pk+1 | up(   nk), then   pk+1  Ï

PL(up(   mk),up(   nk)), contrary to hypothesis.  Hence   pk+1 Ì  up(   nk).  By Lemma 3.1(i)

(Limit Path),   pk+1 has an initial derivative   pk Ì   nk.  But up(   rk) =   pk+1, and as s is (k+1)-

switching,   rk has infinite outcome along   sk.  Hence by (5.13),   rk Î PL(   nk,   sk).

Subcase 3.2:  (5.14) places   pk+1 into PL(up(   mk),   rk+1)\PL(up(   mk),   sk+1) through
the component induced by some   bk+1 requiring extension, and the conditions of (5.13) fail.
Then   bk+1 cannot have a primary completion with infinite outcome along   rk+1, else by
(2.10) and Lemma 5.3(i), any component of PL(up(   mk),   rk+1) induced by   bk+1 would be a
component of PL(up(   mk),   sk+1).  Thus by Lemma 5.10(iv) (Component), (   bk+1)- = up(   ni)

for some i £ m, which we fix.  Now by (iii), there is a derivative   pk of   pk+1 such that   pk Î
PL(   di,   sk)\PL(   di,   rk), so by Lemma 5.1(ii) (PL Analysis),   pk =   rk.  By Definition 5.3,   rk

has infinite outcome along   sk.  Now   pk+1 Î PL(up(   mk),up(   nk)), so again by Definition

5.3,   pk+1 Ì up(   nk); thus   pk ¹   nk, and by Lemma 3.1(i) (Limit Path),   pk+1 has an initial

derivative   pk Ì    nk.  We now see that [   pk,   rk] is a primary   sk-link restraining   nk, so by

(5.13),   rk =   pk Î PL(   nk,   sk).  n

Our next lemma specifies the correspondence between a PL set which is
encountered when a node   hk requires extension, and another PL set which is defined at the
k-completion   kk of   hk.   

Lemma 5.12 (PL Lemma):  Fix k £ r £ n, and   nk Ì   dk Ì   hk Í   kk Î  Tk such that (   hk)-

=   dk and k < dim(   nk), and let   nk+1 = up(   nk).  Assume that   hk requires extension for   nk,
and that   kk is the k-completion of   hk for   nk, and is preadmissible.  Then:

(i) {   tk+1 Í l(   hk): $   rk(   hk Ì   rk Í   kk &   rk switches   tk+1)} = PL(   nk+1,l(   hk)).

(ii) {up(   xk):    xk Î PL(   dk,   kk)} = PL(   nk+1,l(   hk)).

(iii) If áá   sj,   sj,   tjñ r ³ j ³ k+1ñ is an amenable (k+1)-implication chain, up(   nk) =  
  sk+1, and up(   dk) =   sk+1, then {  upr(   xk):    xk Î PL(   dk,   kk)} = PL(   sr,   tr).

(iv) (5.29)(ii) holds at   kk.

Proof:  (ii):  By Lemma 5.11(iv),(v) (Amenable Backtracking), {up(   xk):    xk Î

PL(   dk,   hk)} = PL(   nk+1,l(   kk)) = ¯, so (ii) follows by repeated applications of Lemma

5.11(iii) (Amenable Backtracking) to those rk such that   hk Ì   rk Í   kk.  

(i):  By (5.18), {   tk+1 Í l(   hk): $   rk(   hk Ì   rk Í    kk &   rk switches   tk+1)} is identical

with V = {   tk+1 Í l(   hk): $   rk(   hk Ì   rk Í   kk & (  out0(   rk))- satisfies (5.18)(i)(a) with k(m) =
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k or (5.18)(ii)(a) with j = k+1)}.  By Lemma 5.11(i),(ii),(iv) (Amenable Backtracking), V

= {up(   xk):    xk Î PL(   dk,   kk)}.  Hence (i) follows from (ii).
(iii):  Let   sk =   kk and   sk =   dk.  By induction and Lemma 5.1(iv) (PL Analysis), it

suffices to show that for all j Î  [k,r), {up(   xj):    xj Î  PL(   sj,   sj)} = PL(   sj+1,   tj+1) =

PL(   sj+1,   sj+1).  Fix j  Î [k,r), and let   tj = out(   tj+1).  Note that   tk =   hk.  By (5.5)(ii) and
Lemma 5.2 (Requires Extension),   tj requires extension for   sj, and   sj is the j-completion of

  tj.  By (5.5)(ii) and (ii), {up(   xj):    xj Î PL(   sj,   sj)} = PL(   sj+1,   tj+1).  By (5.11),   sj+1 has
finite outcome along   tj+1, so by Lemma 5.1(iv) (PL Analysis), PL(   sj+1,   tj+1) =
PL(   sj+1,   sj+1).

(iv):  Immediate from (ii).  n

Let   L0 Î [  T0] be admissible, and for all k £ n, let   Lk =   lk(   L0).  In order to show
that all requirements are satisfied, we will need to show that if a node is   Lk-free, then it is
also implication-free, and so can act according to the truth of the sentence generating its
action.  We will be able to show this under the assumption that   L0 is admissible.  (5.17)(i)
may prevent a node which is a potential component of a 0-implication chain from acting
according to the truth of the sentence generating its action, as it forces a specified outcome
for certain implication-free nodes.  However, we want to show that the implication-chain
mechanism ensures that the action this node takes is in accordance with the truth of that
sentence.  The proof of this fact relies on the next lemma, which relates the implication-
freeness of one of the first two nodes on Tk of a k-implication chain to the implication-
freeness of the other node.

Lemma 5.13 (Free Amenable Implication Chain Lemma):  Suppose that k < r £

n, áá   sj,   sj,   tjñ: r ³ j ³ k+1ñ is an amenable (k+1)-implication-chain, that   sk is the primary

completion of   tk = out(   tk+1), and that x  Î  T0 is preadmissible and the 0-completion

corresponding to   sk. Let   sk = (   tk)-.  Then   sk is implication-free iff   sk is implication-free.

Furthermore, if x is completion-consistent via á ñ, then x is implication-free.

Proof:  We proceed by induction on r-k.  First suppose that   sk is implication-free.
By Lemma 5.2 (Requires Extension),   tk requires extension, so by (5.5)(ii) and (5.19),
up(   sk) =   sk+1 and up(   sk) =   sk+1.  As (5.23) fails to hold for   sk,   sk+1 is implication-free.
Hence by (5.1) if r = k+1 and by induction otherwise,   sk+1 is implication-free.  As (5.21)

and (5.22) fail for   sk,   sk is completion-consistent via á ñ.  (We note that the completion-

consistency of the admissible h Î  T0 via S implies the completion-consistency of   lk(h) via
the subsequence of S consisting of those nodes which are on  Tj for some j ³ k.)  By
Lemma 5.9(i) (Completion-Consistency) applied to  Tk, (   sk)- must be completion-

consistent via á   tkñ, and by (5.19),   tk is completion-consistent via á   tkñ.  By Lemma 5.9
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(Completion-Consistency) applied on  Tk,   sk is completion-consistent via á ñ, so (5.21) and
(5.22) fail to hold for   sk.  Thus we conclude that   sk is implication-free.

Now suppose that   sk is implication-free.  By Lemma 5.2 (Requires Extension),   tk

requires extension, so by (5.5)(ii) and (5.19), up(   sk) =   sk+1 and up(   sk) =   sk+1.  As
(5.23) fails to hold for   sk,   sk+1 is implication-free.  Hence by (5.1) if r = k+1 and by
induction otherwise,   sk+1 is implication-free.  As (5.21) and (5.22) fail for   sk,   sk is

completion-consistent via á ñ.  (We again note that the completion-consistency of the

admissible h Î  T0 via S implies the completion-consistency of   lk(h) via the subsequence of
S consisting of those nodes which are on  Tj for some j ³ k.)  By Lemma 5.9(ii)

(Completion-Consistency) applied on  Tk,   tk must be completion-consistent via á   tkñ, and by
(5.19), (   sk)- is completion-consistent via   tk.  By Lemma 5.9 (Completion-Consistency)

applied to  Tk,   sk is completion-consistent via á ñ, so (5.21) and (5.22) fail to hold for   sk.
We conclude that   sk is implication-free.

Suppose that x is completion-consistent via á ñ but not implication-free, in order to
obtain a contradiction.   By (5.10), (5.5), and Definition 5.6, for all j such that k £ j £ r =

dim(   sk)-1,  out0(   sj) and  out0(   sj) are completion-consistent via the same sequence; so   sj is
primarily implication-restrained iff   sj is primarily implication-restrained.  Furthermore, by

(5.10), neither sr nor s
r
 is implication-restrained, and by (5.9), upj(   sk) Î  {   sj,   sj} for all j

Î [k,r].  Hence we fix the largest j such that upj(   sk) is implication-restrained, and note that
j < r, and that upj(   sk) is either primarily or hereditarily implication-restrained.

First suppose that upj(   sk) is primarily implication-restrained.  By (5.6) and as j < r,

upj(   sk) Î {   sj,   sj}, so by the preceding paragraph, both   sj and   sj are primarily implication-
restrained and completion-consistent via the same sequence.  Thus by (5.8)(i), there is an

  hj Í   sj which requires extension but has no j-completion Í   sj.  Fix   dj such that (   hj)- =   dj

and   nj such that   hj requires extension for   nj.  Now   dj Ì    sj, so by Lemma 5.5(ii)

(Completion-Respecting) and as x is completion-consistent via á ñ and is not a 0-

completion,   hj has a j-completion   kj Ì   lj(x) which has infinite outcome along   lj(x).  By

Definition 5.6 and (2.7), upj(   sk) Í    lj(x), so as upj(   sk) Î  {   sj,   sj} and   hj has no j-

completion Í   sj, upj(   sk) is   lj(x)-restrained by the primary link [   nj,   kj], contradicting
(2.10).

Now suppose that upj(   sk) is hereditarily implication-restrained but not primarily

implication-restrained.  By (5.6) and as j < r, upj(   sk) Î  {   sj,   sj}, so by the preceding
paragraph, both   sj and   sj are hereditarily but not primarily implication-restrained and are

completion-consistent via the same sequence.  Thus there are i > j and   hi Î  Ti such that   hi

requires extension, has no j-completion Í upj(   sk), and  outj(   hi) Í    sj.  By Lemma 5.4

(Compatibility) and as x is completion-consistent via á ñ,   hi has a j-completion   kj such that
  sj Í    kj Í   lj(b) for some b Í x.  Let   tk Í   sk be defined by (   tk)- =   sk.  By Definition 5.6,
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  tk requires extension; but by Lemma 3.2 (Out),  out0(   hi) Ì  out0(   tk) Ì   out0(   kj),
contradicting (5.26).  n

We are now ready to show that completions exist.  We proceed as described in the
example preceding Definition 5.3.  The definition proceeds by induction on n-k, and then
by induction on the cardinality of PL sets.  The process used, within the proof, to construct
completions is called backtracking. 

Lemma 5.14 (Completion Lemma):  Fix h  Î   T0 such that h is admissible,   hk =
  lk(h) requires extension, and h =  out0(   hk).  Then there is an effectively obtainable

admissible 0-completion k É h of   hk.

Proof:  For all j £ n, let hj =   lj(h).  Let   hk require extension for   nk, set   nk+1 =

up(   nk), and note, by (5.3) and Lemma 4.3(i)(a) (Link Analysis), that   nk+1 Ì    hk+1.  Fix   dk

Ì   hk Î  Tk such that (   hk)- =   dk.  Fix u ³ 0 and S = áai: i £ uñ such that h is completion-
consistent via S.  We proceed by induction on n-k, and then by induction on the cardinality
of PL(   nk+1,   hk+1).  We carry out a backtracking process, constructing increasing

sequences á   xi
k Î  Tk: i £ mñ and áxi Î  T0: i £ mñ of strings for some m ³ u such that each xi

is an admissible extension of h, and xi = out0(   xi
k).  m will be bounded by the length of the

longest   hk+1-link restraining   nk+1 plus 1.  We also define a map   xi
k ®    xi

k+1 Î   Tk+1 for i £
m, yielding a decreasing sequence of strings on  Tk+1.

We begin by setting x0 = h ,   x0
k =   hk and   x0

k+1 = l(   hk).  Suppose that xi,   xi
k, and

  xi
k+1 have been defined for some fixed i < m.  We assume by induction that:

(5.31) (i) xi is admissible and completion-consistent via S.

(ii) If i > 0, then xi is switching.

(5.32) (i) For all j < i,   xj Ì xi,   xj
k Ì   xi

k, and   xi
k+1 Ì   xj

k+1.

(ii)   xi
k+1 Í l(   xi

k).

(5.33) (i)   xi
k+1 is l(   xi

k)-free.

(ii) (5.18)(i)(a), with xi in place of r, is not satisfied.

At the end, we will ensure that (5.32) and (5.33)(i) also hold for i = m, and in addition:

(5.34)   xm
k+1 = nk+1 and xm is admissible and the 0-completion of   hk. 

First suppose that i = 0.  (5.32) is vacuous.  (5.31) follows by hypothesis.
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(5.33)(i) follows from (2.10).  By Definition 5.6, any node which is a 0-completion is
nonswitching, and its immediate predecessor is implication-restrained.  It follows from
(5.1) that dim((   hk)-) > k+1, so (5.5)(ii) must be true when   hk requires extension; and by

(5.5)(ii) and (5.18)(i) for (xi)- and xi, if (xi)- is implication-restrained and   lj(xi) requires

extension, then xi is switching.  Hence h cannot be a 0-completion, and (5.33)(ii) holds. 
We now assume that i ³ 0 and verify (5.31)-(5.34) for i+1.  There are two cases:

Case 1:  There is a l(   xi
k)-link [   mk+1,   pk+1] which restrains   nk+1.  By Lemma 4.1

(Nesting), we can assume that  [   mk+1,   pk+1] is the longest such link.  Now there is a t ³ k+1

and a primary   lt(   xi
k)-link [   mt,   pt] such that [   mk+1,   pk+1] is derived from [   mt,   pt].    pt is   lt(   xi

k)-

free by Lemma 4.3(iii) (Link Analysis), and by (4.1), will be   lt(   xi
k)-free for any

nonswitching extension   xi
k of   xi

k.  And as [   mt,   pt] is a primary   lt(   xi
k)-link,   pt has infinite

outcome along   lt(   xi
k).  Hence by Lemma 4.4 (Free Implies True Path),   pt is   lt±1(   xi

k)-

consistent for all nonswitching extensions   xi
k of   xi

k.  By Lemma 3.1(iii) (Limit Path), all
blocks defined in Step 4 of Definition 2.8 are finite, so by repeated applications of Lemma
3.4 (Nonswitching Extension), we can keep taking nonswitching extensions of   xi, and will

eventually reach the shortest such nonswitching b É   xi such that  upt(   bk) =   pt,  upt±1(   bk) É
  lt±1(   xi

k) and b is an initial derivative of  upt±1(   bk).  (When we apply the Nonswitching
Extension Lemma to extend a string, and it is possible to take both activated and validated
extensions and still be nonswitching, (5.18)(iii) requires that we take the activated
extension, in order to uniquely define the process of taking nonswitching extensions in this
induction.)  As   xi is admissible, it follows from Lemma 5.9 (Completion-Consistency) that

b will be admissible and completion-consistent via S unless there is a r such that   xi Í r Ì

b and either (5.18)(i)(a) or (5.18)(ii)(a) holds for r, and that such a r will be admissible
and completion-consistent via S.  (The clauses of (5.29) not covered by Lemma 5.9 are
covered by Lemmas 5.11-5.13.  In particular, (5.29)(i) is covered by Lemma 5.11(vi),

(5.29)(ii) by Lemma 5.12(iv), and (5.29)(iii) by Lemma 5.13.)  So assume that such a r
exists in order to obtain a contradiction.

By (4.1), for all g Î  T0 such that lh(g) > 0, if g is a nonswitching extension of g 
-,

then for all q £ n, the   lq(g)-links coincide with the   lq(g 
-)-links.  Hence (5.18)(ii)(a) cannot

hold for r, else r = b.  As up(   nk) is not   xi
k-free, up(   nk) is not   lk(r)-free.  So r cannot be

the 0-completion of   hk, else by Definition 2.6,  upk+1(r) = up(   nk), so by (2.10), up(   nk)

would have to be   lk(r)-free, which is impossible.  It now follows that r is not a 0-

completion, else by Definition 5.6, r would have to be the 0-completion of   hk =   au; hence

(5.18)(i)(a) does not hold for r.  The same proof shows that (5.18)(i)(a) does not hold for

r = b.
We conclude that b is admissible and completion-consistent via S, and that

(5.18)(i)(a) does not hold for b.  By Lemma 3.6 (Switching), we can choose an extension
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b of b such that b
-
 = b and b induces an infinite outcome for  upt±1(b) along   lt±1(b), thus

switching the outcome of   pt to finite along   lt(b).  Note that (5.18)(ii)(a) holds for b, so by

(5.18)(ii), b is preadmissible.  Now t-1 is the p in Lemma 3.3 (l-Behavior), so   lj(b) Í

  lj(b) iff jÊ< t.   

Subcase 1.1:   pt is not a primary t-completion.  Then by (5.18),   xi is not a 0-

completion.  Set   xi+1 = b,   xi+1
k  =   lk(b) and   xi+1

k+1 = (   lk+1(b))-.  We note that neither the
hypothesis of Lemma 5.9(i) or of Lemma 5.9(ii) (Completion-Consistency) is satisfied, so
by Lemma 5.9(iii) (Completion-Consistency),   xi+1 is completion-consistent via S.
Furthermore, by Lemma 5.9(iv) (Completion-Consistence) and again by Lemmas 5.11(vi),
5.12(iv), and 5.13,   xi+1 is admissible.  (5.31) now follows for   xi+1, and (5.32) and (5.33)

follow from the properties of b, (2.10), and Lemma 4.5 (Free Extension).

Subcase 1.2:  pt is a primary t-completion.  First suppose that t > k+1.  Then by

(2.4), (   lt(b))- = pt and pt has finite outcome along   lt(b).  Hence by Lemma 5.3(ii)

(Implication Chain) and Lemma 5.2 (Requires Extension),   lt±1(b) requires extension, so

by induction on n-k, we can find a 0-completion k of   lt±1(b), and, by Lemma 5.9(i),(iv),
(Completion-Consistency) and again by Lemmas 5.11(vi), 5.12(iv), and 5.13, find an

admissible k such that k - = k  and k induces an infinite outcome for (   lt±1(k))- along
  lt±1(k).  By Lemma 5.7(i) (Primary Completion),   lt±1(k) does not require extension.  We

now set xi+1 = k,   xi+1
k  =   lk(k) and   xi+1

k+1 = (   lk+1(k))-, and note that (5.31)-(5.33) follow

from the properties of k, (2.4), (2.10), and Lemma 4.5 (Free Extension) and Lemma 5.9

(Completion-Consistency).  ((5.33)(ii) follows since k is switching, and by Definition 5.6,
completions are nonswitching.)  The induction step is now complete for this case.

Suppose that t = k+1. Then by (2.4), (   lk+1(b))- =   pk+1 and   pk+1 has finite outcome

along   lk+1(b).  By Lemma 5.3(ii) (Implication Chain), there is an r < n and an amenable

(k+1)-implication chain áá   sj,   sj,   tjñ: r ³ j ³ k+1ñ such that   sk+1 =   pk+1 and the immediate
successor of   sk+1 along   sk+1 requires extension for   mk+1.  Note that as [   mk+1,   pk+1]

restrains   nk+1,   mk+1 Í    nk+1.  And by (5.2) and Lemma 5.10(v) (Component),   nk+1 has

infinite outcome along   pk+1, so as, by (2.8),   mk+1 has finite outcome along   pk+1,   mk+1 Ì

  nk+1.  By Lemma 5.2 (Requires Extension),   bk =   lk(b) requires extension for some   gk,

and   bk is not implication-free.  Furthermore, by (5.5)(ii) and (5.8), up(   gk) =   sk+1 Ì    sk+1

= up((   bk)-) =   pk+1 Ì   hk+1.  By Lemma 5.9(ii) (Completion-Consistency), b is completion-

consistent via S^á   bkñ, so by Lemma 5.10(ii) (Component),   nk+1 Ì up(   gk).  By Lemma 3.3
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(l-Behavior), (l(   bk))- =   pk+1 and   pk+1 has finite outcome along l(   bk), so by Lemma

5.1(iv) (PL Analysis), PL(up(   gk),l(   bk)) = PL(up(   gk),   pk+1).  Hence by (5.14),

PL(up(   gk),l(   bk)) is a component of PL(   nk+1,l(   bk)), so by (5.14)(i) and Lemma 5.1(vi)

(PL Analysis), up(   gk) Î  PL(   nk+1,l(   bk))\PL(up(   gk),l(   bk)).  Thus PL(   nk+1,l(   bk)) É

PL(up(   gk),l(   bk)) = PL(up(   gk),   pk+1).  We now proceed as in the preceding paragraph to

find an admissible switching extension of a 0-completion of   bk, and justifying the existence

of k by induction on the cardinality of the PL sets.

Case 2:  Otherwise.  By the case assumption, there are no l(   xi
k)-links restraining

  nk+1.  Hence   nk+1 is l (   xi
k)-free, so as in Case 1,  we can keep taking nonswitching

extensions of   xi, taking the activated extension when both the activated and validated
extensions are nonswitching, and will eventually reach the shortest such nonswitching   xi+1

É    xi such that  upk+1(   xi+1) =   nk+1 and   xi+1 is admissible and completion-consistent via S.
By (5.31)(ii) and Definition 5.6,   xi cannot be a 0-completion.  Thus by Lemma 5.9
(Completion-Consistency) and Lemmas 5.10-5.12,   xi+1 is the shortest nonswitching
extension of   xi satisfying (5.18)(i)(a), and is admissible.  We set m = i+1,   xk

m =   lk(   xi+1),

and   xm
k+1 =   nk+1.  (5.32), (5.33)(i), and (5.34) now follow. n

We now show that admissible paths have nice properties; they are completion-
respecting and do not extend amenable implication chains.

Lemma 5.15 (Admissibility Lemma):  Let an admissible path   L0 Î  [  T0] be given,
and for all k £ n, let   Lk =   lk(   L0).  Then for all k £ n:

(i)   Lk does not extend an amenable k-implication chain.

(ii) Every   hk Ì   Lk which requires extension has a primary completion along   Lk.

Proof:  We proceed by induction on k.  First let k = 0.  (i) follows from (5.11)(ii)
and (5.18)(i) for implication-restrained nodes, and from (5.11)(ii) and (5.17)(i) for
implication-free nodes.  And (ii) follows from Lemma 5.14 (Completion), the uniqueness
of primary completions, and (5.18).

Suppose that k > 0.  First suppose that áá   sj,   sj,   tjñ: r ³ j ³ kñ is an amenable k-

implication chain for some r, with   tk Ì    Lk, in order to obtain a contradiction.  By (2.5),
  tk±1 = out(   tk)  Ì    Lk±1, and by Lemma 5.2 (Requires Extension),   tk±1 requires extension.

By (ii) inductively,   tk±1 has a (k-1)-completion   kk±1 Ì    Lk±1, and by Lemma 5.3(ii)

(Implication Chain) and (i) inductively,   kk±1 has infinite outcome along   Lk±1.  Fix   xk±1  Ì
  Lk±1 such that (   xk±1)- =   kk±1.  By (5.5)(ii) and (5.19), up(   kk±1) =   sk and so by (2.4),   sk

has finite outcome along   Lk.  By (5.11)(i),   sk has infinite outcome along   tk, so   tk  Ë   Lk,
yielding the desired contradiction.  Hence (i) holds for k.
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Now suppose that   hk Ì   Lk requires extension for   nk.  By (5.18), the uniqueness of

completions, and Lemma 5.14 (Completion),   hk has a 0-completion Ì   L0, so by Lemma

5.4 (Compatibility),   hk has a (k-1)-completion   kk±1 Ì    Lk±1, so has a principal derivative
  kk±1 Ì   Lk±1.  First assume that   kk±1 has finite outcome along   Lk±1.  Fix   tk±1  Ì    Lk±1 such

that (   tk±1)- =   kk±1, and let   kk = up(   kk±1).   Then [   nk,   kk] is a primary l(   tk±1)-link which

restrains   hk, so by (2.6), (2.10) and as   hk Ì   Lk, no   bk±1 such that   tk±1 Í    bk±1 Ì    Lk±1 can

switch any node Ì   kk, and so   kk Ì   Lk.  (ii) now follows in this case.

Suppose that   kk±1 has infinite outcome along   Lk±1, fix   tk±1  Ì   Lk±1 such that (   tk±1)-

=   kk±1, and let   kk = up(   kk±1).  Then by (2.4),   kk has finite outcome along l(   tk±1), and so

by Lemma 5.3(ii) (Implication Chain), l(   tk±1) is the last node of the last triple of an
amenable k-implication chain.  By Lemma 5.2 (Requires Extension),   tk±1 requires

extension.  By (ii) inductively,   tk±1 has a (k-1)-completion   ak±1 Ì    Lk±1, and by Lemma
5.3(ii) (Implication Chain) and (i) inductively,   ak±1 has infinite outcome along   Lk±1.  Fix

  xk±1  Ì   Lk±1 such that (   xk±1)- =   ak±1.  By (5.5)(ii) and (5.19), up(   ak±1) = (   hk)- and so by
(2.4), (   hk)- has finite outcome along   Lk.  By (5.2), (   hk)- has infinite outcome along   hk, so

  hk  Ë   Lk, yielding the desired contradiction.  Hence (ii) holds for k.  n

  In order to show that all requirements are satisfied, we will need to show that if a
node is   Lk-free, then it is also implication-free, so can act in accordance with the truth of

the sentence trying to generate its action.  In fact, we will need to apply this lemma to   bk Í
  Lk such that  out0(   bk) is pseudotrue.

Lemma 5.16 (Implication-Freeness Lemma):  Fix k £ n.  Suppose that   bk Î
 TkÈ[  Tk] is admissible, and if lh(   bk) < ¥, then b =  out0(   bk) is pseudotrue.  For all i £ n, let
  bi =   li(b).  Let   hk+1 Ì l(   bk) be l(   bk)-free and implication-free.  Then:

(i) For all j £ k, the initial derivative   nj of   hk+1 along   bj is implication-free.

(ii) If   hk  Ì   bk, up(   hk) =   hk+1, and   hk is   bk-free, then   hk is implication-free.
(iii) If   hk+1 is (k+1)-completion-free, then the initial derivative   nk of   hk+1 along   bk

is k-completion-free.
(iv) If dim(   hk+1) = k+1,   nk is the initial derivative of   hk+1 along   bk and has finite 

outcome along   bk, then n  =  out0(   nk) is completion-consistent via á ñ.    

If, in addition,   dk is the immediate successor of   nk along   bk, then d  = 
 out0(   dk) is pseudotrue.

Proof:  Recall that, if b  exists, then b  is pseudotrue, so   bk is completion-

consistent via á ñ and   bj is j-completion-free for all j £ n.  

(i):  Fix j £ k.  By Lemma 3.1 (Limit Path),   nj Ì    bj.  Suppose that   nj is not
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implication-free, in order to obtain a contradiction.  Then one of clauses (5.21)-(5.23) must

cause   nj to be implication-restrained.  If (5.21) holds, then there is a shortest   xj Í    nj such
that   xj requires extension but there is no j-completion of   xj along   nj.  Let   xj require

extension for   mj.  By Lemma 5.5(ii) (Completion-Respecting),   xj has a j-completion   kj Ì
  bj and   kj has infinite outcome along   bj.  Hence   mj Ì   nj Ì    kj Ì    bj, and [   mj,   kj] is a primary
  bj-link.  By Lemma 4.3(i)(c) (Link Analysis),   hk+1 =  upk+1(   nj) cannot be l(   bj)-free,

contrary to hypothesis.  
Suppose that (5.22) holds in order to obtain a contradiction, and fix the largest i for

which (i) fails because (5.22) holds for i.  By Lemma 5.15(ii) (Admissibility) for lh(   bk) =

¥, and Lemma 5.4 (Compatibility) and since b is completion-free if lh(   bk) < ¥, there is a q
> i and a   dq Î  Tq such that   dq requires extension,   dq has an i-completion   ki Ì    bi, and   di =

 outi(   dq) Í   ni Ì   ki.  As q > i, it follows from (5.18) and (5.26) that no node in (   di,   ki] is
(i+1)-switching.  Let   di+1 =  outi+1(   dq), and by Lemma 5.4 (Compatibility) let   ki+1 be the

(i+1)-completion of   dq along l(   bi), and note, by Definition 5.6, that up(   ki) = l(   ki) =   ki+1

and   ki is an initial derivative of   ki+1.  As   ni is an initial derivative of   hi+1, it follows from

Lemma 3.1(i) (Limit Path) that   di+1 Í  up(   ni) =   ni+1 Ì   ki+1, so   hi+1 is implication-
restrained, contrary to the inductive hypothesis.  

(5.23) cannot hold, by our induction.
(ii):  Suppose that   hk is not implication-free, in order to obtain a contradiction.

Then one of clauses (5.21)-(5.23) must cause   hk to be implication-restrained.  (5.23)
cannot hold by hypothesis.  We assume that   hk is primarily or hereditarily implication-

restrained, and obtain a contradiction.  Fix the shortest   dk Í    hk such that for some j ³ k

and some   mj Ì   dj =   lj(   dk) Í   bj,   dj requires extension for   mj, but there is no k-completion
of   dj along   hk.  By Lemma 5.5(ii) (Completion-Respecting),   dj has a primary j-completion

  kj Ì   bj which has infinite outcome along   bj.  If j = k, then by Lemma 5.2(i) (Implication
Chain), [   mj,   kj] is a primary   bj-link.  And if j > k, then as we have assumed that   kk  Í/    hk, it

follows that   dk Í   hk Ì   kk.  Now if [   mk,   kk] is the   bk-link derived from the primary   lj(   bk)-

link [   mj,   kj], then   mk Ì   dk Í   hk Ì   kk, so   hk is not   bk-free, contrary to hypothesis.
(iii):  If   hk+1 is (k+1)-completion-free, then by Lemma 3.1(i) (Limit Path), for all j

³ k+1,   lj(   hk+1) =   lj(   nk) is not a primary completion.  By Definition 5.6, no primary
completion is an initial derivative.  (iii) now follows.

(iv):   For all i £ k, let   di =  outi(   dk), let   ni = (   di)-, and note that   ni is the principal

derivative of   nk along   di and that   di Í    bi by (2.5).  We first show that n is completion-

consistent via á ñ.  Suppose not in order to obtain a contradiction.  Then we may fix the
largest i such that   ni is implication-restrained.  As   nk is implication-free, i < k; note that, by
choice of i,   ni is either primarily or hereditarily implication-restrained.  First suppose that   ni

is hereditarily implication-restrained.  By Lemma 5.4 (Compatibility),   di lies along the i-
completion of the node witnessing that   ni is hereditarily implication-restrained, and by
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(5.18) and (5.25),   di is not (i+1)-switching.  Hence   ni is the initial derivative of   ni+1 along
  bi.  By Lemma 3.1 (Limit Path), an initial derivative can be hereditarily implication-

restrained only if its immediate antiderivative is primarily or hereditarily implication-
restrained; hence   ni+1 is primarily or hereditarily implication-restrained, contrary to the
choice of i.

Now suppose that   ni is primarily implication-restrained.  Then there is an   hi Í   ni

which requires extension but has no primary completion Í   ni.  Fix   mi Ì    hi such that   hi

requires extension for   mi.  By Lemma 5.5(ii) (Completion-Respecting),   hi has a primary

completion   ki Ì   bi which has infinite outcome along   bi.  Thus [   mi,   ki] is a primary   bi-link
restraining   ni.  But then by Lemma 4.3(i)(a) (Link Analysis),   ni+1  Ë   bi+1, contradicting
(2.5).  This completes the proof of the first part of (iv).

We now note that for all i,   di =   li(d) is not a primary completion.  For as n is

completion-consistent via á ñ and   d ± = n, it follows from (5.27) that if   di is a primary
completion, then it is a primary completion of   di, contrary to Definition 5.6.

Finally, we show by contradiction that for all i £ n,   di does not require extension.
Fix the largest i such that   di requires extension in order to obtain a contradiction, and let   di

require extension for   mi.  If i > k, then by (5.2),   nk is the principal derivative of   hk+1 along
  dk, and  upn(   nk) has a unique derivative along   dj for all j > k; hence by (2.4), (   dj)- =

upi(   nk) for all j > k, contrary to the dimension requirements of Definition 5.1.  Hence i £ k.
As   nk has finite outcome along   dk and dim(   hk+1) = k+1, it follows from (5.2) that i < k.

As b is pseudotrue or lh(b) = ¥, it follows either from Lemma 5.15(ii) (Admissibility) or

Lemma 5.5(ii) (Completion-Respecting) that   di has a primary completion   ki Ì   bi which has

infinite outcome along   bi.  By Definition 5.1,   mi Ì   ni Ì   ki, and [   mi,   ki] is a primary   bi-link.
By (5.2),   ni has infinite outcome along   di, so is the principal derivative of up(   ni) along   bi.

By Lemma 4.3(i)(c) (Link Analysis), up(   ni)   /Í   bi+1.  But as i < k, up(   ni) =   ni+1 Ì    di+1 Í
  bi+1, a contradiction.  Thus d is pseudotrue.  n

  
Our next lemma shows that, under the assumption that   L0 is admissible, every

requirement R is assigned to a free and implication-free node along   Ln.  Furthermore, if R
has dimension k, then we will show that R is assigned to a unique free and implication-free
node   zk along   Lk, and that the principal derivative of   zk along   Lk±1 is free and implication-
free. We will show later that, as a result of this lemma, the construction will act to satisfy R
in accordance with the truth or falsity of the sentence which tries to determine the action for
R.  The implication-freeness of the nodes involved will enable us to show that sufficiently
many derivatives of   zk will also be able to act consistently with their assigned sentences.

Again we will need to apply the lemma not only to   L0, but to pseudotrue b Ì   L0.
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Lemma 5.17 (Assignment Lemma):  Suppose that b Î  T0È[  T0] is admissible, and if

lh(b) < ¥, then b is pseudotrue.  Let R be a requirement of dimension k.  For all i £ n, let
  bi =   li(b).  Then:

(i) If lh(b) = ¥, then there is a   zn Ì   bn such that   zn is   bn-free, implication-free, 
and n-completion-free, and R is assigned to   zn.

(ii) If R is assigned to   zn Ì   bn, then there is a unique   zk Ì   bk such that upn(   zk) =
  zn, and   zk is   bk-free, implication-free, and k-completion-free.

(iii) If   zk exists as in (ii), then the principal derivative   zk±1 of   zk along   bk±1 is 
  bk±1-free and implication-free.

(iv) If j £ n,   xj Ì    bj is   bj-free and implication-free,   dj Í    bj, and (   dj)- =   xj, then 

d =  out0(   dj) is pseudotrue.  

(v) If    zn Ì    bn and lh(   zn) > 0, then  out0(   zj) is pseudotrue, and the initial 

derivative of   zn along b is pseudotrue.

Proof:  (i):  Assume that lh(b) = ¥.  By (5.28) or Lemma 5.15(i) (Admissibility),
there are no amenable j-implication chains along   bj for any j £ n.  Fix i such that R =  Ri.
By Lemma 3.1(iii),(iv) all blocks along   bn are completed, so there are infinitely many

blocks along   bn.  Hence there is a   zn Ì   bn which completes the (i+1)st block.  By Lemma
3.1(i) (Limit Path),   zn has an initial derivative along   bn±1, so a requirement must be
assigned to   zn.  Such a requirement can only be assigned when Step 4 of Definition 2.8 is
followed, and the requirement assigned is  Ri.

As there are no   bn -links,   zn is   bn-free.  As all requirements have dimension £ n, it
follows from (5.2) and Definition 5.7 that   zn is implication-free.  As no nodes on  Tn

require extension,   zn is n-completion-free.
(ii),(iii):  By Lemma 3.1(ii) (Limit Path) inductively, for all i £ n,   zn has a  principal

derivative   zi Ì   bi, and by (2.9) for all i such that k £ i £ n,   zi is the unique derivative of   zn

along   bi.  For all i £ n, it follows from Lemma 4.6(i) (Free Derivative), (i), and induction
that   zi is   bi-free.  Now by (i) and iterating Lemma 5.16(ii),(iii) (Implication-Freeness)
inductively, we see that   zk is implication-free and k-completion-free.  Again by Lemma
5.16(ii) (Implication-Freeness),   zk±1 is implication-free.  

(iv):  For all i £ j, let   di =  outi(   dj), and for all i > j, let   di =   li(   dj).  We note that by
definition, for all i £ j,   xi = (   di)- is the principal derivative of   xj along   bj.  Fix i £ n.  By
Lemma 4.6(i) (Free Derivative),   xi is   bi-free, so by Lemma 5.16(ii) (Implication-

Freeness),    xi is implication-free; thus x =   x0 =  out0(   xi) is completion-consistent via á ñ.

Hence by Lemma 5.5(iii) (Completion-Respecting) applied to d, every   hi Ì    di which

requires extension has a primary completion Ì   di.  As no node can be its own primary
completion,   di cannot be a primary completion.

We complete the proof of (iv) by assuming that   di requires extension, and obtaining
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a contradiction.  As   bi is admissible and if lh(   bi) < ¥ then   bi is pseudotrue and so  out0(   bi)

is completion-consistent via á ñ and is not a 0-completion, it follows from Lemma 5.5(ii)

(Completion-Respecting) or Lemma 5.15(ii) (Admissibility) that   di Í    bi has a primary

completion   ki Í    bi.  But   bi is pseudotrue so is not a primary completion; hence   ki Ì    bi.

Fix   gi Í   bi such that (   gi)- =   ki.  If   ki has infinite outcome along   gi, then by Lemma 5.3(i)
(Implication-Chain), there is a primary   gi-link restraining   xi; this link is then a primary   bi-
link, contradicting the fact that   xi is   bi-free.  Thus   ki has finite outcome along   gi, so by
Lemma 5.3(ii) (Implication Chain), there is an amenable implication chain along   bi,
contradicting (5.28) or Lemma 5.15(i) (Admissibility).

(v):  By the proof of (i), every     zn Ì    bn is   bn-free and implication-free.  The first

conclusion of (v) now follows from (iv).  Let z be the initial derivative of   zn along b.

Then z is admissible, and by Lemma 3.1(i) (Limit Path) and as initial derivatives are not

primary completions, for all i £ n,  upi(z) =   li(z) is not a primary completion.  By Lemma

5.16(i) (Implication-Freeness), z is implication-free, hence completion-consistent via á ñ.
The second conclusion of (v) now follows.  n  

In Lemma 5.12 (PL), we showed that the backtracking process yielded a one-to-
one correspondence between the PL sets defined for any two triples of an amenable
implication chain, and that this correspondence was provided by the up function.  In order

to successfully correct axioms, we will need to show that if x is pseudotrue,   d1,   r1,   h1 Î
 T1, x É out(   h1) = h , and   r1 Î  PL(   d1,   h1)\PL(   d1,l(x)), then some element of (h,x]

switches   r1.  The next lemma will allow us to draw such a conclusion when the need to
correct is due to the existence of a nonamenable implication chain (the relationship of the
nonamenable implication chain on  Tr±1 to the situation on  T1 is not readily apparent, as it is
absorbed in the control machinery of Section 6).  We will also need an inclusion relation
between PL sets at higher levels, in order to analyze the formation of implication chains.

Lemma 5.18 (Nonamenable Backtracking Lemma):  Fix k < n,   dk+1,   rk+1,   hk+1 Î
 Tk+1 and   xk É out(   hk+1) =   hk, such that   dk+1 Ì    hk+1,l(   xk),   dk+1 is l (   xk)-free, x =
 out0(   xk) and  out0(   hk+1) are admissible and pseudotrue, and   rk+1 Î PL(   dk+1,   hk+1). Then:

(i) Some element of (   hk,   xk] switches   rk+1.  

(ii) {up(   gk):   gk Î PL((   hk)-,   xk)} Ê PL(   dk+1,   hk+1).

Proof:  We first note that PL(   dk+1,l(   xk)) = ¯.  As   dk+1 is l (   xk)-free, (5.13)

cannot place any elements into   dk+1 is l(   xk)-free.  Suppose that   tk+1 É    dk+1 requires

extension for some   mk+1 Ì    dk+1.  As  out0(   xk) =  out0(l(   xk)) is pseudotrue,  out0(l(   xk)) is

completion consistent via á ñ and is not a 0-completion.  Hence by Lemma 5.5(ii)
(Completion-Respecting),   tk+1 has a primary completion   kk+1 which has infinite outcome
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along l(   xk).  But then [   mk+1,   kk+1] is a primary l(   xk)-link restraining   dk+1, so   dk+1 is not

l(   xk)-free, contrary to hypothesis.
By (2.6), no element of (   hk,   xk] can switch any   gk+1 Ì    dk+1.  We first consider the

case in which   rk+1 is placed in PL(   dk+1,   hk+1) through (5.13), and show that (i) and (ii) are

satisfied.  As   dk+1 Ì    hk+1, there is a   mk+1 Ì    hk+1 and a primary   hk+1-link [   mk+1,   rk+1]

which restrains   dk+1.  As   dk+1 Ì  l(   xk) and PL(   dk+1,l(   xk)) = ¯, it follows that   rk+1  Ï

PL(   dk+1,l(   xk)); thus [   mk+1,   rk+1] is not a l(   xk)-link.  Hence by (2.6) and (2.10), some

element   tk of (   hk,   xk] must switch   rk+1 so (i) holds, and by (2.4),   rk = (   tk)- has infinite

outcome along   tk.  Now   rk+1 Ì    hk+1, so by Lemma 3.1(i),   rk+1 has an initial derivative
  rk Ì   hk.  Hence [   rk,   rk] is a primary   xk-link which restrains (   hk)-, so by (5.13),   rk Î

PL((   hk)-,   xk) and (ii) holds.
We complete the proof of (i) by showing that if   rk+1 is placed into PL(   dk+1,   hk+1)

by (5.14) as an element of the component PL(   sk+1,   zk+1) for some   zk+1 Í    hk+1, or if   rk+1

=   sk+1 for this component, then some element of (   hk,   xk] switches   rk+1.  Let   tk+1 be the
immediate successor of   sk+1 along   hk+1, and note that   tk+1 requires extension for some

  mk+1 which we fix.  By (5.14),   mk+1 Ì    dk+1 Ì    sk+1.  As  out0(   hk+1) is pseudotrue,
 out0(   hk+1) is completion consistent via á ñ and is not a 0-completion.  Hence by Lemma

5.5(ii) (Completion-Respecting),   tk+1 has a primary completion   kk+1 which has infinite

outcome along   hk+1.  By Lemma 5.4 (Compatibility),   tk+1 must have a k-completion   kk Í
  hk Ì    xk, so   kk+1 must have a principal derivative   kk along   xk.  Let   ak be the immediate

successor of   kk along   xk.  Suppose first that   kk has finite outcome along   xk, for the sake of
obtaining a contradiction.  Then by (2.4),   kk =   kk and   kk+1 has infinite outcome along

l(   ak), so [   mk+1,   kk+1] would be a primary l(   ak)-link restraining   rk+1.  By (2.6) and (2.10)

and as   kk is the principal derivative of   kk+1 along   xk, [   mk+1,   kk+1] must be a primary l(   xk)-

link restraining   dk+1, contrary to the hypothesis that   dk+1 is l(   xk)-free.
We conclude that   kk has infinite outcome along   xk.  As   kk+1 has infinite outcome

along   hk+1, it follows from (2.4) and (2.8) that   hk Í    kk.  By Lemma 5.3(ii) (Implication
Chain) and Lemma 5.2 (Requires Extension),   ak will require extension for some   sk such

that up(   sk) =   sk+1.  As x is pseudotrue,   lj(x) is not a primary completion for any j £ n.

Hence by Lemma 5.9 (Completion-Consistency),   x ± is completion-consistent via á ñ.

Hence   ak must have a k-completion   kk Í (   xk)- Ì   xk.  As x is admissible, it follows from
(5.28) that there are no amenable k-implication chains along   xk, so by Lemma 5.3(ii)

(Implication Chain),   kk must have infinite outcome along   xk.  Fix   ak Í   xk such that (   ak)- =
  kk.  By Definition 5.3 and since   kk+1 has infinite outcome along   hk+1, all elements of

PL(   dk+1,   hk+1) coming from a component PL(   sk+1,   zk+1) for some   zk+1 Í   hk+1 are elements

of PL(   sk+1,   kk+1); and as   kk+1 has finite outcome along l(   ak), it follows from Lemma
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5.1(iv) (PL Analysis) that PL(   sk+1,   kk+1) = PL(   sk+1,l(   ak)).  By Lemma 5.12(i),(ii) (PL)

and Lemma 5.11(v) (Amenable Backtracking), PL(   sk+1,l(   kk)) = ¯, every node in

PL(   sk+1,l(   ak)) is switched by some element of (   ak,   kk], and {up(   gk):   gk Î PL(   kk,   kk)} =
PL(   sk+1,   kk+1).  Furthermore,   ak switches   sk+1 = up(   kk), so (i) holds.

By (5.2),   sk is the initial derivative of   sk+1 along   xk.  As   sk+1 Ì (   hk+1)-, it follows

from Lemma 3.1(i) that   sk Ì out((   hk+1)-) Í (   hk)-.  We have shown that   hk Í    kk.  Hence

by (5.14), PL(   kk,   kk) is a component of PL((   hk)-,   xk).  Furthermore, as   sk+1 Ì  (   hk+1)-, it

follows from Lemma 3.1(i) (Limit Path) that   sk Ì (   hk)-. By Definition 5.6, up(   kk) =   sk+1.
Hence [   sk,   kk] is a primary   xk-link restraining (   hk)-.  (ii) now follows holds.  n
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