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Abstract.  We show that the existential theory of the recursively enumerable degrees in

the language L containing predicates for order and n-jump comparability for all n, and

constant symbols for least and greatest elements, is decidable.  The decidability follows

from our main theorem, where we show that any finite L-structure which is consistent

with the order relation, the order-preserving property of the jump operator, and the

property of the jump operator that the jump of an element is strictly greater than the

element, can be embedded into the r.e. degrees.
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0.  Introduction.  Decidability and undecidability of (fragments of) elementary theories
of recursion-theoretic structures have been central topics of research in recursion theory for
more than two decades.  Results of this nature have been obtained by Lachlan [La1], [La2],
Simpson [Si], Herrmann [He], Harrington (unpublished), Lerman and Soare [LrSo],
Schmerl (cf. [Lr1]), Epstein [Ep], Shore [Sh1], [Sh2], Lerman [Lr1], Lerman and Shore
[LrSh], Sacks [Sa1], Harrington and Slaman [HaSl] (cf. [SlWo]), Jockusch and Soare
(unpublished, cf. [Lr1]), Jockusch and Slaman [JoSl] and Hinman and Slaman [HiSl].

Sharp results have been obtained for the poset of degrees D = áD,£ñ.  In this case, Lachlan
[La1] showed that Th(D) is undecidable, and Simpson [Si] showed that this theory is
recursively isomorphic to second order arithmetic; Shore [Sh1] and Lerman [Lr1] showed

that "$ÇTh(D) (the "$-fragment of the elementary theory of D) is decidable, and this

decidability result has been extended by Jockusch and Slaman [JoSl] to "$ÇTh(áD,£,Èñ).

Schmerl (cf. [Lr1]) showed that $"$ÇTh(D) is undecidable.  Sharp results have also been

obtained for the elementary theory of the poset D[0,0'] =  áD[0,0'], £ñ of the degrees
below 0'.   Epstein [Ep] and Lerman [Lr1] showed that Th(D[0,0']) is undecidable and

Shore [Sh2] showed that this theory has degree 0(w); Lerman and Shore [LrSh] showed

that " $ Ç Th(D [0,0']) is decidable, while Schmerl (cf. [Lr1]) showed that

$"$ÇTh(D[0,0']) is undecidable.  Gaps in our knowledge remain for other structures.
There are some natural operations on degree structures which motivate the study of

decidability in languages other than the language of posets.  Most degree structures are
uppersemilattices and so support a join operator È.  The join operator is definable from £

by an "-predicate.  Hence $ÇTh(áD[0,0'],£,Èñ) is decidable.  D also supports the jump
operator, ', an order-preserving function of one variable on degrees such that a' > a for all
a.  Cooper [Co1, Co2] has shown that the jump operator is definable over D, but Lerman

and Shore [LrSh] have shown that the definition cannot be an "$-definition. Thus the

study of the elementary theory of D' = áD,£,'ñ is more complex than the study of Th(D).
The results of Lachlan [La1] and Simpson [Si] cover Th(D') as well; thus Th(D') is
undecidable, and is recursively isomorphic to second-order arithmetic.  On the other hand,
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Jockusch and Soare (cf. [Lr1]) have shown that Th(áD,'ñ) is decidable.  
In this paper, we develop methods which enable us to build configurations of

recursively enumerable degrees while simultaneously controlling the configurations of the
mth-jumps of these degrees.  Our results will yield a decision procedure for the existential
theory of the recursively enumerable degrees in an expanded language, and can be used to

give a decision procedure for a fragment of $ÇTh(áD,£,',0ñ).  We expect the methods
introduced in this paper to be useful in providing a decision procedure for

$ÇTh(áD,£,',0ñ).  (Hinman and Slaman [HiSl] have recently proved that $ÇTh(D') is
decidable using a forcing argument.)  

For every degree a, we let R(a) = áR(a),£ñ be the poset of degrees r.e. in a, and

we set R = R(0).  For each m Î N (N is the set of natural numbers) and a,b Î R, we
define

a £m b  Û   a(m) £ b(m).

A jump poset is a 5-tuple áP,£,P',£ ',fñ, such that áP,£ñ and áP',£ 'ñ are posets of
cardinality ³ Ê2 with least and greatest elements, and f is an order-preserving map from P
onto P'.  An m-jump poset is a structure 

P = áP0,£0,P1,£1,f1, . . . ,Pm,£m,fmñ

such that for each k < m, áPk,£k,Pk+1,£k+1,fk+1ñ is a jump poset.   We define a <w-jump
poset analogously.

We now state our main theorem.

Theorem 7.8:  Fix n Î N, and let P = áP0,£0,P1,£1,f1, . . . ,Pm,£m,fmñ be a finite m-jump
poset such that P0 has least element 0 and greatest element 1.  Then there is a finite set G0

of r.e. degrees, and there are finite sets Gk = {d: $aÎG0(a(k)Ê=Êd)} for each k Î  [1,m]
such that the following diagram of Figure 1 commutes.  Furthermore, the embedding maps

0 Î P0 to 0 and 1 Î P0 to 0'.  (In fact, the proof of Theorem 9.9 can easily be extended to

countable <w-jump posets.)  n
 

We specify a finite set of axioms for m-jump posets.  These axioms assert that

á  Pi,£iñ is a poset for each i £ m, 0 is the least element of  P0, 1 is the greatest element of  P0,

and  fi is a surjective order-preserving map from á  Pi±1,   £i±1ñ onto á  Pi,   £iñ.  Given any

existential sentence in the language L = á0,1,£0,£1, . . . ,£m,...ñ, the sentence asserts that one
of a finite number of diagrams is consistent with the axioms of m-jump posets, i.e., can be
embedded into an m-jump poset.  We can recursively determine whether or not one of these
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f1 f2  fm

áP0,£0ñ ¾¾¾®áP1,£1ñ ¾¾¾® ....... ¾¾¾®áPm,£mñ

 ½ ½ ½

@ ½ @ ½ ÊÊÊ   Ê Ê @ ½

   ¯ ' ¯   '                   ' ¯Ê   

áG0,£ñ¾¾¾®áG1,£ñ ¾¾¾® ........ ¾¾¾®áGm,£ñ

½ ½ÊÊ                   ½

Í½  Í½ ÊÊÊ    Ê ÊÍ ½

¯ ' ¯ '                ' ¯Ê   

    R¾¾¾¾¾¾®R(0') ¾¾¾®........ ¾¾¾®R(0(m))  
Figure 1

diagrams is consistent.  If not, then the sentence is false; if so, then by Theorem 7.8, the
sentence is true.  Furthermore, this process is uniform in m, and mentions only finitely
many relations £k.  Hence:

Corollary 7.9: The existential theory of R(<w) = áR,0,0',£,   ££1. . . ,   ££m,...ñ is decidable.
n

This corollary extends the result in [LmLr2] where it is shown that the existential theory of

áR,0,0',£,£1ñ is decidable.  

Fix m.  The simplest sentences of this existential theory in the language L require us
to construct a degree a such that 0(k) < a(k) < 0(k+1) for all k £ m.  The Sacks Jump
Inversion Theorem [Sa2] allows us to construct such degrees.  One begins with a degree
dm such that 0(m) < dm < 0(m+1)

 and dm is r.e. in 0(m).  The jump inversion theorem is

now applied to obtain a degree dm-1 which is r.e. in 0(m-1) such that (dm-1)' = dm and

0(m-1) < dm-1 <ÊÊÊ0(m).  This procedure can be iterated, producing d0 = a.  Attempts

were made to decide the full $-Theory in this way, but the Shore Non-Inversion Theorem
[Sh3] showed that such attempts were doomed to failure.  Our approach is to construct the

r.e. degrees directly.  To do this, we introduce a 0(n)-priority argument for each n Î N.
Priority arguments of this sort were developed by Ash [A1,A2] and Knight [Kn] for
recursive model theory, but their approach does not seem to be applicable here.  Groszek
and Slaman [GS] have been developing a different general framework for 0(n)-priority
arguments, and our proof has been influenced by the techniques of Ash, Groszek and
Slaman.  In particular, although our trees are different from those used by Ash, the
properties used in the tree decomposition are, in many cases, based on ideas introduced in
Ash [A1].  A framework is also being developed by Kontosthatis [Ko1,Ko2,Ko3].  Other
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theorems proved using our framework can be found in [LmLr1], [LmLr2], and [LLW],
and an overview of the framework is presented in [LmLr3].  Our treatment of individual
requirements is modeled after the solution to the "deep degree" problem by Lempp and
Slaman [LmSl].

We use the following notation.  If A Í N, then we let A denote the complement of

A.  For A,B Í N, we let A\B denote the difference of A and B.  Given a set P, we let |P|

denote the cardinality of P.  A k-dimensional space is a set S = {a}´Nk´{b} for some

choice of finite sequences a and b of elements of N; in this case, we write dim(S) = k.  If A

= {a}´Nk´{b} and i Î N, then we let A[i] denote {áa,i,x,bñ: x Î Nk-1}ÇA and call A[i] a
section of A.  

We depart a little from the standard classification of sentences, although our
classification is equivalent to the standard classification.  Thus a   S0- or   P0-formula is one
in which all quantifiers are bounded.  A   Sm-formula is one of the form

Q1x1...Qkxk$yR(x1 , . . . ,xk,y), where each Qixi is a finite block of bounded universal
quantifiers or a finite block of bounded existential quantifiers and R is a   Pm±1-formula.

Similarly, a   Pm-formula is one of the form Q1x1...Qkxk"yR(x1 , . . . ,xk,y), where each Qixi

is a finite block of bounded universal quantifiers or a finite block of bounded existential
quantifiers and R is a   Sm±1-formula. 

Let g be a   Sm- or   Pm-sentence.  Then g can either be written as Qx$yd(x,y) where

d is Pm-1, or as Qx"yd(x,y) where d is   Sm±1.  The formula   g[z] is obtained from g by

replacing the first block of unbounded quantifiers $y  or "y  with a similar block where all
variables are restricted to numbers £ z.

A string is a finite sequence of letters from an alphabet.  If S is an alphabet, we let

S<w be the set of all strings from S.  We write s Ì t if t properly extends s, and s|t if s

and t are incomparable.  We say that s lies along t if s Í t.  For s,t Î S<w,  we let lh(s)

denote the cardinality of the domain of s.  If s ¹ á ñ (the empty string), then s- is the

unique t Ì s such that lh(t) = lh(s)-1.  We define the string s^t by

ì s(x) if x < lh(s)
s^t(x) = Êí

î t(x-lh(s)) if lh(s) £ x < lh(s)+lh(t).

If x £ lh(s), then s |̀ x, the restriction of s  to x, is the string t of length x such that t(y) =

s(y) for all y £ x.  Restriction is defined similarly for infinite sequences from an alphabet.
We also use interval notation for strings.  Thus [s,t] = {r: s Í r  Í t}.  sÙt denotes the

longest r such that r Í s,t, and if s and t are comparable, then sÚt is the longer of s and

t.
A tree is a set of strings which is closed under restriction.  The paths through a
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tree T are the infinite sequences L such that L |̀ x Î T for all x Î N.  We let [T] denote the
set of paths through T.  

The high/low hierarchy for R is defined as follows.  For n ³ 0, we say that a is

lown (a Î   Ln) if   a(n) =   0 (n), and a is highn (a Î   Hn) if   a(n) =   0 (n+1).  If   0 (n) <   a(n) <
  0 (n+1) for all n, then we say that a is intermediate.

á   Fe
k: e Î Nñ will be the standard enumeration of all partial recursive functionals of k

variables.  (We will frequently suppress the superscript, writing   Fe for   Fe
k.)  Thus

  Fe
k(A;  x1, . . . ,  xk) = y if the eth partial recursive functional of k variables, computing from

oracle A and input  x1, . . . ,  xk, outputs the value y.  For each e,k Î  N , we will have a

recursive approximation á   Fe,s
k : s Î Nñ to   Fe

k.  We say that   Fe,s
k (A;  x1, . . . ,  xk)¯ if we obtain

an output from this computation in fewer than s steps; otherwise,   Fe,s
k (A;  x1, . . . ,  xk)­ .  If

  Fe,s
k (A;  x1, . . . ,  xk)¯,  then we let the use of this computation be the greatest element u for

which a question "u Î A?" is asked of the A oracle during the computation.  We will work
under the convention that:

(0.1) If u is the use of a computation at stage s, then u < s.

We will be constructing partial recursive functionals within a recursive construction by

declaring axioms D(s;x) = y to reflect the fact that the partial recursive functional D with

input x produces output y when computing from any oracle s, (so from any oracle A É s).

If x = á  x1, . . . ,  xmñ and z = á  zm+1, . . . ,  zkñ , then  limx   Fe
k(A;x,z) denotes

 limx1
. . .  limxm

  Fe
k(A;  x1, . . . ,  xm,  zm+1, . . . ,  zk).  Other notation follows [So].

1.  The Basic Modules.  We will introduce the basic modules for requirements of
dimensions 1 and 2 in this section.  While the proof of the theorem will need requirements
of higher dimensions, the descriptions of the basic modules for these higher dimension
requirements is similar to the descriptions for requirements of dimensions 1 and 2,
requiring only more iterations of the limit process.    

Fix a finite m-jump poset P = áP0,£0,P1,£1,f1, . . . ,Pm,£m,fmñ, and assume that P0

has least element 0 and greatest element 1.  Let g0 be the identity function, and for each k Î

[1,m], let gk = fk°fk-1°... °f1.  Assume, also, that there are d ¹ d Î  P0 with the following

properties:

(1.1) For all k £ m, gk(0) <k gk(d) <k gk(1) and for all c Î   P0\{d} such that 
gk(0) <k gk(c) <k gk(1), gk(d) and gk(c) are incomparable.

6



(1.2) For all k £ m, gk(0) <k gk(d) <k gk(1) and for all c Î  P0\{d} such that 

gk(0) <k gk(c) <k gk(1), gk(d) and gk(c) are incomparable.

These conditions will reduce the number of different types of requirements needed for our
construction.  In particular, we will not have to treat, as special cases, requirements to
make any of the sets which we are constructing non-lowk or non-highk for any k £ m.

We will construct an r.e. set Ab for each b Î P0.  We specify that A0 = ¯ and A1 is

the complete r.e. set K.  We will also be constructing partial recursive functionals D with

subscripts and superscripts designating the requirement for which D is acting.  

Definition 1.1:  Uniformly in A Í N and e,r Î N, we fix a sentence br(A;e) which is

Sr+1 and whose validity agrees with that of e Î  A(r) if r is odd, and which is Pr+1 and

whose validity agrees with that of e Ï  A(r) if r is even.  n

For all b,c Î P0 and k £ m, we will have to show that

gk(b) £ gk(c)  Û   Ab
(k) £T  Ac

(k).

Each such equivalence will be satisfied if we satisfy the following conditions for

sufficiently many b and c:  There is a partial recursive functional D (depending on the

condition) such that for all e Î N:

(1.3)  Re,b,c
0,k+1: gk(c) £/  gk(b) Þ D(Ac) is total & "x(limu1. . .limukD(Ac;u1,. . . ,uk,x)¯) &

 $x(limu1. . .limukD(Ac;u1,. . . ,uk,x)¯ ¹ limv1. . .limvk
  Fe
k+1(Ab;v1,. . . ,vk,x)).

(1.4)  Re,b,c
1,k : gk(b) £ gk(c) & b ¹ 1 ÞÊ"e$q£1((limu1. . .limukD(Ac;u1,. . . ,uk,e)¯ = q) & 

(q = 1 iff bk(Ab;e) is true)).

(1.5)  Re,b,c
2,k+1: gk(1) £ gk(c) ÞÊ"e$q£1((limu1. . .limukD(Ac;u1,. . . ,uk,e)¯ = q) & 

(q = 1 iff bk+1(¯;e) is not true)).

(Conditions (1.1) and (1.2) and properties of the jump operator will allow us to be selective
about those b and c for which we satisfy requirements.  The second superscript in a

requirement  Re,b,c
i,k  is the dimension of the requirement, and corresponds to the particular

tree of strategies on which we begin to split the requirement up.)  We refer to requirements
listed in (1.3) as incomparability requirements, to those listed in (1.4) as comparability
requirements, and to those listed in (1.5) as highness requirements.
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The Basic Module:  Dimension 0 comparability requirements.   Re,b,c
1,0  is satisfied

by coding Ab into Ac.  The construction will have the following property:

(1.6) If e Î  Ab
s+1\  Ab

s, and b £ c, then e Î  Ac
s+1\  Ac

s.  

Thus to decide whether e Î Ab, we ask if e Î Ac.  If the answer is no, then e Ï Ab.  If the

answer is yes, then we find the least s such that e Î  Ac
s, and note that e Î Ab iff e Î  Ab

s.
We have thus proved:

Lemma 1.1:  Let b,c Î  P0 be given such that b £ c.  Assume that the construction

satisfies (1.6).  Then Ab £T Ac.  n

The Basic Module: Dimension 1 incomparability requirements.  We satisfy

{  Re,b,c
0,1 : e Î N} through a modification of the Friedberg-Muchnik strategy.  We construct a

partial recursive functional D such that D(Ac) is total.  We will appoint a witness x and try

to guarantee that   Fe
1(Ab;x) ¹ D(Ac;x)¯.  We begin by activating this requirement.  To do

so, we declare an axiom D(  Ac
s;x) = 0 with use x.  If, at some later stage t, we find that

  Fe,t
1 (  Ab

t ;x)¯ = 0, with use q, then we will restrain Ab |̀ (q+1) from changing after stage t,

and place x into Ac.  This will allow us to redefine D(Ac;x) = 1 with use x.  There are two
possible types of outcomes.  If, during the construction, we never see a computation

  Fe,t
1 (  Ab

t ;x) = 0, then D(Ac;x) = 0 and either   Fe
1(Ab;x)­ or   Fe

1(Ab;x)¯ ¹ 0.  If we eventually

place x into Ac, then D(Ac;x) = 1 ¹ 0 =   Fe
1(Ab;x).  

The Basic Module:  Dimension 1 comparability requirements.  If f1(b) £ f1(c)
and f1(1) £/  f1(c), then we will want

                      ÊÊÊÊæ1 if b1(Ab;e) is true (i.e., e Î Ab
' )

limuD(Ac;u,e) =Ê  í

                      Ê      è0 if b1(Ab;e) is not true (i.e., e Ï Ab
' ).

We wait for a stage s at which b1(  Ab
s;e) is true with use < s, declaring axioms D(  Ac

s;u,e) =
0 for progressively larger u until such an s is found.  If we ever find such a stage s, we

restrain  Ab
s |̀ s (so Ab |̀ s =  Ab

s |̀ s), and declare axioms D(  Ac
t;v,e) = 1 for all t ³ Ês and all

sufficiently large v, having use s.  

The Basic Module: Dimension 2 incomparability requirements.   Re,b,c
0,2  will

be treated as a connected infinite set of dimension 1 incomparability requirements,
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producing the desired result in the limit.  Fix D.  We will appoint a witness x, and try to

guarantee that if {v:   Fe
2(Ab;v,x) = 0} is infinite, then {u: D(Ac;u,x) = 1} is cofinite, and if

{v:   Fe
2(Ab;v,x) = 0} is finite, then {u: D(Ac;u,x) = 0} is cofinite.  We thus begin to declare

axioms D(Ac;u,x) = 0 for progressively larger u, with large use p.  (At each stage, only
finitely many axioms of this kind are declared, and several may share the same use.)  If, at
some later stage t, we find some v0 such that   Fe,t

2 (  Ab
t ;v0,x) = 0, then we restrain  Ab

t |̀ t (so

Ab |̀ t =  Ab
t |̀ t), and place p into Ac at stage t, allowing us to declare new axioms D(  Ac

t;u,x)
= 1 with use p for each u for which we have previously declared an axiom with output 0.
We now repeat this procedure for larger values u for which no axiom has yet been

declared, trying to find v1 > v0 for   Fe
2.  Thus either {v:   Fe

2(Ab;v,x)¯ = 0} is finite and {u:

D(Ac;u,x)¯ = 0} is cofinite, or {v:   Fe
2(Ab;v,x)¯ = 0} is infinite and {u: D(Ac;u,x)¯ = 1} =

N.  In either case,  Re,b,c
0,2  is satisfied.  

The Basic Module: Dimension 2 highness requirements.  If f1(1) £1 f1(c)
and K is the complete recursively enumerable set, then we will want to satisfy

               æ 0 if e Î K' (i.e., b2(¯,e) is not true or, equivalently, b1(K,e) is true)

limuD(Ac;u,e) =  í

              è 1 if e Ï K' (i.e., b2(¯,e) is true or, equivalently, b1(K,e) is not true).

The strategy for satisfying this requirement is similar to that for the dimension 2

incomparability requirements.  While   Fe,s
1 (  Ks;e)­, we declare axioms D(  Ac

s;u,e) = 1 for

progressively larger u, with use 0.  If we discover that   Fe,s
1 (  Ks;e)¯ with use v, then we

declare axioms D(  Ac
s;u,e) = 0 with large use p for progressively larger u for which axioms

have not yet been defined.  If  Kt |̀ v ¹  Ks |̀ v at some later stage t, then we place p into Ac at

stage t, and reset the axiom D(  Ac
t;u,e) = 1 with use p for values of u for which the axiom

was previously set to 0, and begin again to declare axioms having output 1 and use r ³ t for

yet larger values of u.  Thus either that   Fe
1(K;e)¯ and {u: D(Ac;u,x)¯ = 0} is cofinite, or

  Fe
1(K;e)­ and {u: D(Ac;u,x)¯ = 1} = N.  In either case,  Re,1, c

2,2  is satisfied.  

Comparability requirements of dimension 2, and requirements of dimension 3 or
greater are handled in a way similar to that in which their counterparts of lower dimension
are handled, except that more iterations of the limit operation are required.  As no new
strategies are involved, we will not discuss basic modules for these requirements.

Conflicts between requirements are resolved by placing requirements on iterated
trees of strategies, and using the trees to determine when requirements should act.  We fix
the maximum dimension n of the requirements to be satisfied, and assign each requirement
to all nodes of a given level of the tree  Tn.  Associated with a requirement is a sentence of
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the form (   jn®   yn)&(Ø   jn®   cn), where   jn is a sentence which determines when to initiate
action during the construction, and   yn and   cn are properties which must result from this
action.   For k < n, nodes of a tree  Tk will be derivatives of nodes of a tree  Tk+1 .  Each
derivative is to generate action based on the truth of a sentence   jk obtained from the
sentence jk+1 assigned to the node from which it is derived, by appropriately bounding the
outer block of quantifiers.  And the action must result in satisfying some property derived
from yn and cn.  Rather than bounding quantifiers for the sentence obtained from yn and
cn, we assign spaces to the nodes on which we ensure that a given functional has an
iterated limit (sometimes requiring a specified value for this limit).  When we reach  T0, we
will be able to recursively specify when action should be taken and what that action should
be.  We then piece together the various sentences and actions on  T0 taken to show that the
sentence assigned to  Tn is satisfied. 

The processes of assigning derivatives and of determining which derivatives should
act are delicate, and differ with the type of requirement.  This assignment must be done in
such a way that the action taken by derivatives can be pieced together to show that the
original sentence on  Tn is true.  The priority argument is hidden in this decomposition; thus
if the decomposition is done correctly, there are no conflicts between requirements on  T0 as
we have determined when nodes can act in a way which avoids conflicts (which, however,
are seen on  T1).  The key is to determine the derivative responsible for the definition of a
given axiom. For incomparability requirements, the nodes specifying axioms for a given
functional and argument in the limit are all derived from a single node of  Tn, and control
must be expanded to ensure that limits exist when the node is not on the true path of the
construction.  In the case of comparability and highness requirements, nodes on each path
through  Tn may specify axioms for a given functional and argument.  In these cases, we
must define control of axioms carefully, dividing control among many nodes.  We also take
advantage of the fact that if k is the dimension of the requirement, axioms will frequently be
corrected (since the oracle set will change below the use of the axiom) whenever the true
path approximation changes its mind about the ultimate node of  Tk which is responsible for
defining the axioms.  

The notion of control will determine the axioms for which a node is responsible.
Determining when a node should act will involve additional concepts, such as freeness,
admissibility, implication chains, and links.  We will define the assignment of requirements
to trees in Section 2, and prove some lemmas about paths in Section 3.  Links will be
analyzed in Section 4.  Implication chains and backtracking will be discussed in Section 5.
Control will be discussed in Section 6.  The construction and proof based on the machinery
introduced in previous sections will be discussed in Section 7.
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2.  The Requirements and systems of trees.  The framework for our priority
argument uses systems of trees, and much of it can be presented independently of the set of
requirements to be satisfied.  Systems of trees are introduced in this section, and the
mechanism for assigning requirements to the trees is described.  (The reader is referred to
[LmLr1], where systems of trees are used to prove some standard theorems of recursion
theory.  The framework there is a little different, as some of the subtleties needed here do
not occur at the lower levels, but the many similarities in the approaches might be helpful.)

Fix n Î N henceforth.

Definition 2.1 (Definition of trees):  We set  T±1 = {0,¥} and  T0 = {0,¥}<w.  If 0 <
k £ n and  Tk±1 has been defined, let 

 TkÊ=Ê{s Î ( Tk±1)<w: "i<lh(s)"j<lh(s)(i < j ® s(i) Ì s(j))}.  

 TkÊ = Ê á Tk,Íñ is the kth tree of strategies, ordered by inclusion.  We refer to the elements
of  Tk as nodes of  Tk, and view each node of  Tk as following its immediate predecessor by

a designated node of  Tk±1.   If s Î  Tk, x Î  Tk±1, and s = s-^áxñ, then we say that s- has

outcome x  along s, and define out(s) = x.  If j £ k, then we define  outj(s) by reverse

induction;  outk(s) = s, and  outj±1(s) = out(  outj(s)).  Outcomes are of two types, activated

or validated.  If k = 0, t Ê s, and lh(s) > 0, then we say that s- is activated (validated,

resp.) along t if out(s) = 0 (out(s) = ¥, resp.).  If k > 0, then s- is activated (validated,

resp.) along t if out(s)- is activated (validated, resp.) along out(s).   (Activation and
validation represent different ways of satisfying a requirement depending on whether the
sentence generating action is true or false.  The steps taken when a requirement associated
with the node s- is first activated may be later extended when that requirement is validated.)

If s Í t Î  Tk and lh(s) > 0, then we say that s- has finite (infinite, resp.) outcome along

t if either k = 0 and out(s) = 0 (out(s) = ¥, resp.), or k > 0 and out(s)- has infinite
(finite, resp.) outcome along out(s).  (Note that s- is activated (validated, resp.) along s if

either k is even and s- has finite (infinite, resp.) outcome along s, or k is odd and s- has

infinite (finite, resp.) outcome along s.)  n

In order to provide the reader with some intuition about these trees, we relate them
to the tree of strategies approach introduced by Harrington, and indicate the relationship
between the way certain concrete requirements are treated by these approaches.  First

consider a typical Friedberg-Muchnik requirement F(A) ¹ B.  The standard tree of

strategies approach assigns such a requirement to a node s of  T1 = {0,1}<w, and proceeds

by stages.  When s  first appears on the true path, a follower x is assigned to the

requirement.  As long as s is on the path through  T1 computed at stage s and Fs(As) ¹  0,
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the path computation at s follows s^á0ñ, and we set Bs(x) = 0.  (We now say that s is

activated.)  If, at some later stage t, we find that Ft(At;x) = 0, the path computation at t

follows s^á1ñ, we set Bt(x) = 1, and never again consider this requirement.  (We now say

that s is validated.)

Our approach replaces stages by the tree  T0 = {0,¥}<w.  (We use ¥ in place of 1
because we want to talk about finite and infinite outcomes.)  In place of stage t, we form a

d-block on  T0 which consists of derivatives of nodes of  T1 which lie on true path
computation through  T1 generated by d Î  T0, and such that the requirement for these nodes
of  T1 has not yet been validated.  Each derivative along the path gets a chance to try to
satisfy its requirement when it is reached, and the block ends either when we newly

validate a node, or begin to deal with one new requirement.  The outcome x = n^ábñ of s

along r = s^áxñ Î  T1 is used to code whether or not F(A;x) = 0.  x will tell us whether or

not the requirement assigned to s has been activated or validated, and in addition, that the

decision to activate or validate was made based on the outcome of n along x.  Thus if s is

activated along r, then s will will have infinitely many derivatives along the true path   L0

through  T0, all of which will be activated.  The outcome x = n^ábñ of s will indicate that n

is the derivative of s at which we made the decision to determine the outcome of s along r,

namely, the first derivative of s along   L0 (we will call n both the initial and principal

derivative of s along   L0), and the outcome b = 0 of n along   L0 indicates that n is activated

along   L0.  If s is validated along r, then the outcome x of s will determine the node n of
 T0 at which we made the decision to determine the outcome of s along r (we will call n the

principal derivative of s along d), and the outcome b = ¥ of n along   L0 indicates that n is

validated along x.  If n is not the first (i.e., initial) derivative m of s along r, then we create

a link from m to n.  These links partially correspond, in standard priority arguments, to

initializing all extensions of r.  At higher levels, they also serve the purpose of not
allowing nodes restrained by the link to act and cause a change in the approximation to the
true path.  This allows us to show that when the outcome of a node is switched by the
approximation, it must be switched because of action taken for the requirement for which
the node is responsible.  (We note that this approach differs from that in [LmLr1], where

the outcome of n was not coded along the outcome of s, and ¥ was used in place of a node

of  T0 to represent activation on  T1, i.e., denoting that s has infinitely many derivatives
along   L0.  This approach works for 0'''-constructions, i.e., constructions which do not

require a tree beyond  T3.  Once  T4 is reached, initial derivatives of s, i.e. derivatives of a

node s on  T4 which do not properly contain another derivative of s, are no longer unique,
and our approximations need to code these initial derivatives, rather than use a catch-all

symbol ¥ to denote an infinite outcome.)
Next, consider a typical thickness requirement on  T2.  We are given an infinite
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recursive set R, and activation corresponds to putting only finitely many elements of R into
a set A, while validation corresponds to putting all elements of R into A.  Suppose that this

thickness requirement is assigned to a node s of the true path   L2 through  T2.  Then s will
have derivatives along the true path   L1 through  T1, each of which will have the role of
placing finitely many elements of R into A if a certain   S1-sentence is true.  First suppose

that one of these sentences is false, say the one corresponding to the derivative x of s.

Then x will be the last (and principal) derivative of s along   L1, and will have infinite

outcome along   L1, designating that no derivative of x is validated along the true path   L0 on
 T0, i.e., that no derivative of x finds a witness for its existential sentence at the stage

specified by the framework.  No elements ³ the least element of R for which x has
responsibility are placed into A in this case.  

Now suppose that all of the sentences are true.  Then s will have infinite outcome

along   L2, indicating that s has infinitely many derivatives along   L1, each of which is
validated.  Each such node will place the elements of R for which it is responsible into A.
As each element of R will be assigned to such a node, all elements of R will be placed into

A.  (The infinite outcome of s along   L2 is the initial derivative of s along   L1 (which also is

the principal derivative of s along   L1), followed by its first validated derivative n along   L0

and the outcome ¥ for n indicating that n is validated.)

We will need a one-to-one weight function on elements of T = È{  Tk: 0 £ k £ n}

which will w -order T.  (We take the disjoint union here, differentiating between the empty
nodes of the various trees.  A similar function was called par in [LmLr1].)  The weight
function will have various properties, which will be used to show that constructions in
which action is determined by weight are able to protect certain computations.

Definition 2.2:  It is routine to check that a one-to-one recursive weight function

wt: T ® N can be defined to satisfy the following properties for all s,t Î  Tk:

(2.1) If s Ì t then wt(s) < wt(t).

(2.2) If k > 0, then wt(out(s)) < wt(s).

(2.3) If k > 0 and out(s) Ì out(t), then wt(s) < wt(t).  n

Definition 2.3:  The action taken at each stage of the construction will be associated with
a node of  T0.  This node will be derived from a node of  Tk where k is the dimension of the
requirement, i.e., we begin to split up the requirement into subrequirements on  Tk±1.
Nodes of  Tk will be of one of two types.  Each node on  Tk working on a given
incomparability requirement can pick a different witness for its functional, and we call such
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requirements locally distributed.  For any comparability or highness requirement and
argument x, each path through  Tk must contain a node working to define a value for a
functional on argument x;  such requirements are called densely distributed.  n

We will take action to ensure the satisfaction of requirements.  This action will
consist in placing numbers into certain sets, and in trying to keep numbers out of other
sets.  Certain sets will be associated with a requirement R.  OS(R), the oracle set of R,
will contain a particular oracle from which the requirement wants to define axioms.  We
will want to prevent numbers from entering the oracles in RS(R), the restraint set of R.
And TS(R) will be the target set of R, a set of oracles into which numbers should be
placed in order to satisfy the requirement while preserving the ability to satisfy other

requirements.  If a requirement is assigned to a node s, then the above definitions and

notation are inherited by s from R, and inherited by all derivatives of s from s.

Fix an m-jump poset, P = áP0,£0,P1,£1,f1, . . . ,Pm,£m,fmñ.  There will be three
types of requirements, which we now define.

Definition 2.4:  Incomparability requirements have dimension k ³ 1 and type 0. They
are locally distributed requirements, each associated with an element of

 Z0,k = {áb,cñ Î  P2: gk-1(c) £/  gk-1(b) & (gk(c) £ gk(b) or k = m+1) 
& gk-1(b) ¹ gk-1(0) & gk-1(c) ¹ gk-1(1)}.

We establish a requirement R =  Re,b,c
0,k  for each áb,cñ Î  Z0,k and e Î  N  as described in

Section 1, whose goal is to make the condition

$x(limu1. . .limuk-1D(Ac;u1, . . . ,uk-1,x) ¹ limv1. . .limvk-1
  Fe
k(Ab;v1, . . . ,vk-1,x))

true, if the latter limit exists.  (The construction will automatically ensure that the first of the
above limits exists for all x.)  We set RS(R) = {Aa: gk-1(a) £ gk-1(b)}, OS(R) = {Ac}, and
TS(R) = {Aa: gk-1(a) £/  gk-1(b) & a ¹ 1}.    n

Definition 2.5:  Comparability requirements have type 1 and dimension k ³ 1.  They
are densely distributed requirements, each associated with an element of 

 Z1,k ={áb,cñ Î  P2: gk(b) £ gk(c) & gk-1(b) £/  gk-1(c) & gk(1) £/  gk(c)}.

We establish a requirement R =  Re,b,c
1,k  for each áb,cñ Î  Z1,k and e Î  N  as described in

Section 1, whose goal is to ensure that 
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                                        Ê      ì Ab
(k)(e)   if k is odd

limu1. . .limukD(Ac;u1, . . . ,uk,e) = í

                              î Ab
(k)(e)    if k is even.

We set RS(R) = {Aa: gk(a) £ gk(b)}, TS(R) = {Aa: gk(a) £/  gk(b) & a ¹ 1}, and OS(R) =
{Ac}.  n

Definition 2.6:  Highness requirements have type 2 and dimension k ³ 2. They are
densely distributed requirements, each associated with an element of 

 Z2,k = {á1,cñ Î P2: gk-1(1) £ gk-1(c) & gk-2(1) £/  gk-2(c)}.

We establish a requirement R =  Re,1, c
2,k  for each á1,cñ Î  Z2,k and e Î  N  as described in

Section 1, whose goal is to ensure that

                                               ì ¯(k)(e) if k is odd

limu1. . .limuk-1D(Ac;u1, . . . ,uk-1,e) = í

                                     î ¯(k)(e)    if k is even.

We set RS(R) = ¯, TS(R)Ê=Ê{Aa: gk-1(1)Ê£Êgk-1(a) & aÊ¹Ê1}, and OS(R) = {Ac}.  n

Lemma 2.1:  Let P = áP,£,P1,£1,f1, . . . ,Pm,£m,fmñ be an m-jump poset with least element
0 and greatest element 1.  Suppose that we have a map h from P to the r.e. sets given by

bÊÊÊ®ÊÊÊAb which maps 0 to ¯, 1 to K, and satisfies the following conditions for all

b,c Î P:

(i) áb,cñ Î  Z0,k Þ  Ac
(k±1) £/ T  Ab

(k±1).

(ii) b £ c Þ Ab £T Ac.

(iii) áb,cñ Î  Z1,k Þ  Ab
(k) £T  Ac

(k).

(iv) á1,cñ Î  Z2,k Þ  é (k) £T  Ac
(k±1).

Then the m-jump poset generated by the image of h in the r.e. degrees is isomorphic to P.

Proof:  Fix b,c Î P.  We proceed by cases.

Case 1:  gk(b) £k gk(c).  As the jump operator is order-preserving, we can assume
that k is the least r such that gr(b) £r gr(c).  

Subcase 1.1:  k = 0.  Then  Ab
(k) £T  Ac

(k) by (ii).
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Subcase 1.2:  kÊ> 0.  

Subcase 1.2.1:  gk(1) £/ k gk(c).  Then  Ab
(k) £T  Ac

(k) by (iii).  

Subcase 1.2.2:  gk(1) £k gk(c).  As the jump operator is order-preserving,  Ab
(k)

£T  A1
(k).  By (iv), A1

(k) £T  Ac
(k).  But the degrees form a poset, so  Ab

(k) £T  Ac
(k).

Case 2: gk(c) £/ k gk(b).  As the jump operator is order-preserving, it suffices to

show that  Ac
(k) £/ T  Ab

(k) under the assumption that k is the largest r £ m such that gr(c) £/ r

gr(b).  

Subcase 2.1:  gk(b) ¹ gk(0) and gk(c) ¹ gk(1).  Then  Ac
(k) £/ T  Ab

(k) by (i).

Subcase 2.2:  gk(b) = gk(0) and gk(c) = gk(1).  As the jump operator has the

property that 0(k) < 0(k+1) and h(1) = K has degree 0',  Ac
(k) £/ T  Ab

(k).  

Subcase 2.3:  gk(b) = gk(0), gk(c) ¹ gk(1), and c ¹ d.  Then by (1.1), gk(c) £/ k

gk(d), so as gk(0) <k gk(d) <k gk(1) by (1.1), we can apply (i) to conclude that  Ac
(k) £/ T

 Ad
(k).  As the jump operator is order-preserving,  A0

(k) £T  Ad
(k), so as the degrees form a

poset,  Ac
(k) £/ TÊ  A0

(k).  By Case 1,  Ab
(k) ºT   A0

(k), so  Ac
(k) £/ T  Ab

(k).

Subcase 2.4:  gk(b) = gk(0), gk(c) ¹ gk(1), and c = d.  We proceed as in Case

2.3, replacing d with d and (1.1) with (1.2).  

Subcase 2.5: gk(c) = gk(1), gk(b) ¹ gk(0) and b ¹ d.  By (1.1), gk(d) £/ k gk(b),

so as gk(0) <k gk(d) <k gk(1) by (1.1), we can apply (i) to conclude that  Ad
(k) £/ T  Ab

(k).  As

the jump operator is order-preserving,  Ad
(k) £T A1

(k), so as the degrees form a poset, A1
(k) £/ T

 Ab
(k).  By Case 1,  Ac

(k) ºT  A1
(k).  Hence  Ac

(k) £/ T  Ab
(k).

Subcase 2.6:  gk(c) = gk(1), gk(b) ¹ gk(0) and b = d.  We proceed as in Case

2.5, replacing d with d and (1.1) with (1.2).   n

The next lemma relates target sets, oracle sets and restraint sets for various
requirements.  It is used to show that once we satisfy requirements, we can preserve this
satisfaction if the requirement lies on the true path for the construction.  It is also used to
show that action taken for requirements which do not lie along the true path for the
construction is corrected, when necessary, in the process of returning to the true path. This
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lemma provides a crucial connection between the general framework and the particular set
of requirements which we must satisfy.

Lemma 2.2 (Interaction Lemma):  Fix requirements R =  Re,b,c
j,k  and R = Re, b,c

j, k
 such

that k ³ k.  Then the following conditions hold:

(i) TS(R)ÇRS(R) = ¯.

(ii) If tp(R) Î {0,2}, then OS(R) Í TS(R).

(iii) Suppose that tp(R) = 1, that Ab Î TS(R), and that if tp(R) Î {0,2} then 

k < k.  Then Ac Î TS(R).

(iv) If tp(R) = 2, then Ac Î TS(R).

Proof:  We note that that if tp(R) = 0, then gk-1(c) £/ k-1 gk-1(b).  (i) and (ii) are
now routine to verify.  

(iii):  Suppose that tp(R) = 1 and Ab Î TS(R).  Then gk(b) £k gk(c), so as kÊ£ k,

gk(b) £k gk(c).  (iii) now follows if tp(R) = 1.

Suppose that tp(R) = 2. Since Ab Î TS(R), gk-1(1) £k-1 gk-1(b). As gk(b) £k gk(c)

and k < k, gk-1(1) £k-1 gk-1(c). Hence Ac Î TS(R).

Finally, suppose that tp(R) = 0.  Since Ab Î TS(R), gk-1(b) £/ k-1 gk-1(b).  As gk(b)

£k gk(c) and k < k, gk-1(b) £k-1 gk-1(c).  It now follows that gk-1(c) £/ k-1 gk-1(b), else by

transitivity, gk-1(b) £/ k-1 gk-1(b), yielding a contradiction.  Hence Ac Î TS(R).

(iv):  Suppose that tp(R) = 2.  Then gk-1(1) £k-1 gk-1(c).  As k £ k, gk-1(1) £k-1

gk-1(c).  It is now easily checked that Ac Î TS(R).  n

Definition 2.7:  Fix a recursive ordering {Ri:Êi Î N} of all requirements.  We say that

Ri has higher priority than Rj if i < j.  If Ri =  Re,b,c
j,k , is assigned to node s Î  Tk, then we

say that tp(s) = j and dim(s) = k.  n

Requirements of dimension k will be assigned to nodes of trees  Tr for r ³ k, and
subrequirements of these requirements will be assigned to nodes of  Tj for j < k.  Whenever

Ri is assigned to two nodes s and t and tp(s) Î {1,2}, then we say that s º t.  (We will

extend the definition of º to additional pairs of nodes later, and then take the reflexive,

symmetric, transitive closure of the relation defined to make º an equivalence relation.
Equivalent nodes work on the same functional, and sometimes on the same arguments for
that functional.  To satisfy requirements for all e, we will define a given functional as a
disjoint union of many partial recursive functionals.  The union over nodes in many
equivalence classes will define the functional (for a specified oracle) on a recursive domain.
We will take steps to ensure that functionals are total on specified oracles, whenever this is
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required.)
The assignment of requirements to nodes of trees will proceed by induction on k =

n-j for j £ n.  (n will be the largest dimension of a requirement in our list.)  The inductive
step of the definition will proceed in four steps.  In Step 1, we will define the path

generating function l on nodes of trees which have already had requirements assigned to

all of their predecessors.  If s Î  Tk, then l(s) will be a node on  Tk+1.  Given a path L Î

[  Tk], {l(s):Ês Ì L} gives an approximation to a path l(L) Î [  Tk+1].  When l(s)|l(s-), a
link will be formed on  Tk.  These links, defined in Step 2, will prevent action by nodes of

 Tk which do not seem to come from the true path approximation for trees of higher
dimension.  We will have to decide which nodes of  Tk+1 are eligible to assign
subrequirements to a given node of  Tk.  Conditions ensuring consistency between the
different trees enter into this decision, and these conditions are delineated in Step 3.  The
requirement assignment process is described in Step 4.

Definition 2.8:  We proceed by induction on k = n-j, assigning requirements to nodes of
 Tk and dividing  Tk into blocks of requirements.  If k = n, then the requirement Ri is

assigned to every node s of  Tn such that lh(s) = i.  Each node of  Tn is a block.  Thus for

s Î  Tn, we say that s lies in the s-block, that we begin the s-block at s, and that a path

through the s-block is completed at s.

Suppose that k < n.  There are four steps.

Step 1:  Definition of the path generating function l.  Given a node h Î
 Tk such that requirements have been assigned to all predecessors of h, the function l will

define a node l(h) Î  Tk+1.  The process is meant to capture the following situation.  For

each x Ì h, x will be derived from a node s Î  Tk+1.  A sentence Ms will be associated

with s, and a fragment Mx of that sentence will be associated with x.  Suppose that the first

unbounded quantifier of Ms is a universal quantifier.  If s has dimension ³ k+1, we bound
the leading block of universal quantifiers by numbers which are strictly increasing with

lh(x).  As long as each x succeeds in satisfying its sentence Mx, the approximation given

by l predicts that s^án^ábññ Í l(h), where n will be the initial derivative of s along h

(defined formally below) and b is the outcome of n along h.  If we find a first x for which

Mx is false, then s^áx^ábññ Í l(h), where b is the outcome of x along h.  If the first

unbounded quantifier of Ms is an existential quantifier, then we proceed as above after

replacing Mx with ØMx.  (If dim(s) £ k, then outcomes on  Tk give rise to unique outcomes
on  Tk+1.)

If h  = á ñ then l(h) = á ñ.  Suppose that h  ¹ á ñ.  By (2.4), it will follow by

induction that up(h-) Í l(h-), where up(h-) is the node of  Tk+1 from which h- is derived.
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(up(h-) has been defined inductively in Step 4 for h-.)  

(2.4) If either up(h-) = l(h-) or h- has infinite outcome along h, then we set l(h) = 

up(h-)^áhñ.  We set l(h) = l(h-) otherwise.

(It follows from Definition 2.1 that l(h) Î  Tk+1.)  It follows from (2.4) that:

(2.5) If s Í l(h) then out(s) Í h and l(out(s)) = s; and

(2.6)  If l(h-) Ê s and l(h) Ê/  s, then for all d Ê h, l(d) Ê/  s.

  We define   lr(h) for r Î [k,n] by   lk(h) = h and   lr(h) = l(   lr±1(h)) for r > k.  Given

x Í h, we say that x is the principal derivative of up(x) (defined in Step 4) along h if
either x has infinite outcome along h, or x is the shortest derivative of up(x) along h and

for all g Ì h, if up(g) = up(x), then g has finite outcome along h.  (We do not require that

up(x) Í l(h).)  And if r ³ k and z Î  Tr, we call x the principal derivative of z along h if

either r = k and x = z Ì h, or r > k, x is the principal derivative of up(x) along h and up(x)

is the principal derivative of z along l(h).

Step 2:  Links.  We will place restrictions on the stages of the construction at
which nodes are eligible to be switched by the approximation to the true path.  One
restriction requires a node to be free when it is switched by the true path approximation,
i.e., that it not be contained in any link.  Links are formed when a switch occurs, and can
be broken when the outcome of a switched node is switched back.  (Links correspond to
initialization, after injury, in the standard approach to infinite injury priority arguments.

Suppose that a node s Î  T2 has initial derivative n (defined inductively in Step 4) along a

path   L1 through  T1, and principal derivative p É n along h Ì   L1.  Then we form a primary

h-link [n,p] from n to p, thereby restraining any node x Î  [n,p) from acting and
destroying computations declared by p.  (Note that if [n,p] is an  h-link, then p is not

restrained by [n,p].  However, as we can have [n,p) = [n,d) as intervals with p ¹ d, we

use closed interval notation [n,p] for  h-links to make sure that there is a one-to-one
correspondence between intervals which determine links, and the links themselves.)  Any

such x Î [n,p) will either be a derivative of a node which is no longer on the

approximation to the true path, or a derivative of a node r Í s.  In the former case, clause

(2.7) of the definition of h-consistency which is presented in Step 3 will also prevent

derivatives of x from acting.  The links are aimed at preventing derivatives of r Í s from

acting.  Derivatives of such a node r which extend p will be able to act, and we will show

that there is no harm in preventing derivatives of r restrained by the link from acting.  We
will allow derivatives of p to act, and so do not restrain p in this link.)  

19



A node h Î  Tk such that lh(h) > 0 is said to be switching if there is an r > k such

that   lr(h-)|   lr(h).  For the least such r, we say that h is r-switching.  If j Î [r,n] and h is r-

switching, we say that h  switches  upj(h-).  

Fix h Î  Tk.  Each h-link will be derived from a primary   lj(h)-link for some j ³ k,

and will have either finite or infinite outcome.  We define the h-links of  Tk by induction

on n-k.  If k = n, then there are no h-links.  Suppose that k < n.  

We first determine the primary h-links.  Suppose that x Í h and x
-
 is the principal

derivative of g = up(x
-
) along h, but is not the initial derivative of g along h.  Let m be the

initial derivative of g along h.  Then [m,x
-
] is a primary h-link and has infinite outcome.  

h-links can also be created by pulling down l(h)-links.  Suppose that [r,t] is a

l(h)-link on Tk+1.  Assume that the initial derivative m of r along h and the principal
derivative p of t along h both exist.  Then [m,p] is an h-link derived from [r,t].  [m,p]

has finite outcome if [r,t] has infinite outcome, and has infinite outcome otherwise.

If [r,t] is derived from some link [z,k], then every link derived from [r,t] is

derived from [z,k]. We say that x  is h-restrained  if there is an h-link [m,p] such that m

Í x Ì p.  In this case, we say that x  is h-restrained by [m,p].  x  is h-free if x is not h-
restrained.  x is free if x is x-free.

Step 3:  h-consistency.  We decide, in this step, whether a node s Î  Tk+1 is

allowed to assign subrequirements at h.  This will depend on four conditions.  The first

condition, (2.7), requires h to predict that s is on the true path of  Tr for all r Î [k+1,n].

The second condition, (2.8), requires that if s Î  Tk+1, once a witness x  Ì  h  for an

existential sentence associated with s is found, no derivatives of s can extend x.  In this

case, h has all the information needed to correctly predict the outcome of s.  However, we

do not search for such witnesses on  Tk if k ³ dim(s), as we have not yet begun to

decompose the sentence associated with s in this case.  Rather, we will require an outcome

of s to code the outcome of a unique derivative of s along a path of  Tk, and so impose
condition (2.9) requiring that there be a unique such derivative.  Condition (2.10) requires

that s be l(h)-free.  Lemma 4.4 will show that this condition implies condition (2.7), but
for now, it is convenient to require both conditions.

For h Î  Tk, we say that s Î  Tk+1 is h-consistent if the following conditions hold:

(2.7)  upr(s) Í   lr(h) for all r Î [k+1,n].

(2.8) If s Ì l(h) and dim(s) > k, then for all n Ì h, if up(n) = s then n has finite 

outcome along h.
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(2.9) For all n Ì h, if dim(s) £Êk then up(n) ¹ s.

(2.10) s is l(h)-free.

(We note that our definition of h-consistency differs from that in [LmLr1] in that
we impose (2.10) as an additional restriction.  This restriction is needed to show that

whenever a path approximation is switched precisely at s Î  Tr, then for all k ³ r, the path

approximation on  Tk is switched precisely at the node from which s is derived.  Many of
the lemmas we prove rely on this fact.  If k £ 3, however, this property of switching is
automatic, so (2.10) does not need to be imposed.)

Step 4:  Assignment of Derivatives.  Let h  Î   Tk be given such that

requirements have been assigned to all predecessors of h, but not to h.  We want to assign

a requirement to h.  The requirement chosen will be one which has been assigned to some

h-consistent node of  Tk+1.  
Requirements are assigned in blocks. (Blocks on  T0 are the counterpart of stages

in the usual approach to priority constructions.  Thus if a block is begun at d Î  T0 and a

path through the block is completed at x Î  T0, then [d,x] corresponds to a set of substages

of a given stage.)  We begin a block at d Î  Tk if either d = á ñ or a path through a block

was completed at d
-
.  If we begin a block at d, then this block is called the d-block. A

path through the d-block is completed at x Ê d if up(x) completes a path through some

block of Tk+1 and x is an initial derivative of up(x).  We say that g lies in the d-block if d

Í g and no path through the d-block has been completed at any b Ì g.  
Fix d such that h is in the d-block.  If either h = á ñ, h = d, or h is switching, set r

= á ñ.  Otherwise, fix r Í l(h) such that r- = up(h-).  (By induction using (2.7), up(h-) Í

l(h-) and h provides an outcome for a derivative of up(h-); hence by (2.7), up(h-) Ì l(h)

so such a r must exist.)  Fix the shortest s such that r Í s Í l(h) and s is h-consistent.

(We note that for any j ³ k, any   lj(h)-link [   mj,   pj] satisfies   pj Ì   lj(h), so l(h) is l(h)-free.

Furthermore, (2.7) for k will follow from (2.7) for k+1.  It thus follows that l(h) is h-

consistent, so s must exist.)  Let Ri be the requirement assigned to s.  We assign Ri to h,

designate h as a derivative of s, and say that up(h) = s.  We assign a type, dimension,

oracle set, target set, and restraint set to h in the same way as these were assigned to s.  

The derivative operation can be iterated; thus for every z such that s is a derivative

of z, we call h a derivative of z.  h is also a derivative of h.  If r > k, z ÎÊ  Tr, and h is a

derivative of z then we write upr(h) = z.  If there is no x Ì h such that up(x) = s, then for

all n Ê h, we call h the initial derivative of s  along n, and if s is the initial derivative of z
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along s, then h is also the initial derivative of z  along any n Ê h.  We specify that h º s.

z is an antiderivative of x if x is a derivative of z.

If   Lk is a path through  Tk, then we let l(   Lk) = lims{l(   Lk|̀ s)}, and define   Lk+1 =

l(   Lk).  (We will show in Lemma 3.2 that lh(   Lk+1) exists and is infinite.)  For   Lk Î  [  Tk],
the   Lk-links are the h-links for those h such that   lj(h) Ì   Lj for all j Î  [k,n].  We now

define x  to be   Lk-restrained or   Lk-free as in Step 2, with   Lk in place of h.  

The description of the assignment of requirements to nodes is now complete.  We

take the reflexive, symmetric, and transitive closure of º as defined in Step 4 and before
Step 1 to generate an equivalence relation.  n

We note an important relationship between the functions wt and l.  Suppose that k

< n, s Ì t Î  Tk, and l(s) ¹ l(t).  By (2.5), out(l(s)) Í s and out(l(t)) Í t, so by (2.4)

and (2.5) and as s Ì t, out(l(s)) Í s Ì out(l(t)) Í t.  It now follows from (2.3) that:

(2.11) For all k < n and s Ì t Î  Tk, if l(s) ¹ l(t), then wt(l(s)) < wt(l(t)).

We now indicate how to specify the sentence which generates the action for a

requirement assigned to a given node.  Our requirements will be of the form (j ® y) &

(Øj ® c).  We will show that for requirements, all of whose antiderivatives lie on the true

paths determined by the construction, y is true if j is true, and c is true if j is false.  To

achieve this goal, we will have to correct action taken when it seemed that j was false if we

later discover that j is true.  The interplay between this correction feature and the
determination of the node which controls the definition of a given axiom is the essence of
priority arguments.  Furthermore, as requirements will be introduced on  Tk for k > 0 and

the construction takes place on  T0, we must work with fragments of j on  T0 rather than j

itself.  When introduced, j is assigned to a node s of  Tk, and fragments of j, obtained by

bounding some of the quantifiers of j, are assigned to derivatives of s. We now define the
sentences and describe the decomposition process.  In order to avoid notational confusion

later, we use M in place of j.

Definition 2.9 (Sentences, Base Step):  For each s  Î   Tk such that dim(s)Ê= k,

there is a requirement R =  Re,b,c
j,k  which is assigned to upn(s).  We will assign a sentence

Ms to s such that Ms is   Pk+1 if k is even, and is   Sk+1 if k is odd.  Thus we require Ms to
have, as its final quantifier, a universal quantifier.   

Suppose that  Re,b,c
j,k , is assigned to node s of  Tk.  For k ³ 1, let   gk(e,x,b) be the
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formula with free variable x

$x0"y0³x0"x1$y1³x1
..."xk-2$yk-2³xk-2$s"t³s(   Fe

t (  Ab
t ;y,x) = 0)

if k is odd (there is no block $x0...$yk-2³xk-2 when k = 1), and 

"x0$y0³x0$x1"y1³x1
..."xk-2$yk-2³xk-2$s"t³s(   Fe

t (  Ab
t ;y,x) = 0)

if k is even.  If j = 0, we let Ms be the sentence gk(e,wt(s),b).  If A is recursively

enumerable, then by Definition 1.1, we can fix a sentence br(A;e), such that, if r is odd,

then br(A;e) is a   Sr+1 sentence whose truth agrees with the truth of "e Î  A(r)", and if r is

even, then br(A;e) is a   Pr+1 sentence whose truth agrees with the truth of "e Î/   A(r)".

Furthermore, we can write br(A;e) as Qx$s"t³sbr(At;e), where Qx is a quantifier block

and br(At,e) is quantifier free.  Suppose that the requirement  Re,b,c
j,k  is assigned to s for j Î

{1,2}.  We let Ms be the sentence bk(Ab,e) if j = 1, and bk(¯,e) if j = 2.  Our construction

will have the property that if upr(s) = z
r
 lies on the true path of Tr for all r Î [k.n], then Mz

r

is true iff Dz
r(Ac;y) takes the value which ensures the satisfaction of the requirement

assigned to z
r
.  n

Definition 2.10 (Sentences, Inductive Step):  Suppose that dim(s) > k.  Define

Ms =   (Mup(s))
[wt(s)].  n

3.  Paths and Switching. In this section, we prove some technical lemmas about
properties of the path generation process.  The first lemma shows that the paths through the
trees are infinite, and that initial and principal derivatives exist.  This lemma is used many
times to analyze the process of decomposing requirements.

Lemma 3.1 (Limit Path Lemma):  Fix k Î [0,n) and a path   L
k Î [  Tk], and let   L

k+1 =

l(   L
k) = lim{l(h): h Ì   L

k}.  Then:

(i) If s Ì l(   L
k), then s has an initial derivative n along   L

k and l(n)Ê= s.

(ii) If s Ì l(   L
k), then there is a p Í   L

k such that p- is the principal derivative of 

s along   L
k, l(p)

-
=Ês, and for all h Í   L

k, l(p) Í l(h) iff p Í h.  

(iii) For any d-block such that d Ì   L
k, there is a x Ì   L

k such that x completes a 

path through the d-block.

(iv) lh(   L
k+1) = ¥.
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Proof:  We proceed by induction on j = n-k.

(i):  By (2.4) and as s Ì l(   L
k), s must have a derivative along   L

k.  Hence if n is

the shortest derivative of s along   L
k, then n is the initial derivative of s along   L

k.  By

(2.7), l(n) Ê s.  By (2.4) and (2.7), no t É s can have a derivative m Ì n.  Hence by

(2.4), l(n) = s.

(ii):  If dim(s) £ k, then by (2.9), the initial derivative n of s along   L
k is the

principal derivative of s along   L
k.  (ii) follows in this case from (i), (2.5) and (2.6).  

Suppose that dim(s) > k.  By (i), let n be the initial derivative of s along   L
k.  If

there is no p Ì   L
k such that up(p-) = s and p- has infinite outcome along p, then it follows

as in the case for dim(s) £ k that n is the principal derivative of s along   L
k.  Otherwise, fix

the shortest such p.  We note that p- is the principal derivative of s along   L
k.  By (2.4),

induction, (2.7) and (2.6), l(p)Ê= s^ápñ Í   L
k+1, and if h Ì   L

k then l(h)ÊÊ s^ápñ iff h

Ê p.    
(iii),(iv):  It follows easily from (2.7) that   L

k+1 = l(   L
k) = lim{l(h): h  Ì    L

k}

exists.  First suppose that lh(   L
k+1) = ¥.  By (iii) inductively, there are infinitely many

blocks along   L
k+1, so infinitely many t Ì   L

k+1 such that t completes a path through a

block.  By (i), each such t has an initial derivative along   L
k.  Hence by Definition 2.8, Step

4, there are infinitely many x Ì   L
k which complete paths through blocks, and (iii) holds in

this case.

Now suppose that lh(   L
k+1) < ¥ in order to obtain a contradiction.  Then by (2.7),

there is an h Ì   L
k such that for all x satisfying h Í x Ì   L

k, l(x) =   L
k+1.  If h Í x Ì   L

k

and x completes a path through a block, then x must be an initial derivative of some node Í

L
k+1

.  As this is possible only finitely often and lh(   L
k) = ¥, we can assume without loss of

generality that there is no x such that h Í x Ì   L
k and x completes a path through any

block.  By (2.6) and the choice of r in Step 4 of Definition 2.8, if h Í x Ì d Ì   L
k then x

is nonswitching, so up(x) Ì up(d) Í   L
k+1.  But this is impossible if lh(   L

k+1) < ¥ and

lh(   L
k) = ¥.  n

From now on, whenever we write L
k
 Î [  Tk], we assume that there is a   L

0 Î  [  T0]

such that   L
k =   l

k(   L
0).  Furthermore, if we write h Î  Tk, we assume that h Ì   L

k for some
  L
k Î  [Tk].  If this is not the case, then h  and   L

k are irrelevant to our construction.
The next lemma describes some useful properties of the out function.
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Lemma 3.2 (Out Lemma):  Fix k £ n and rk Î  Tk.  Then:

(i) If k > 0 then l(out(rk)) = rk.

(ii) If k < n and lh(rk) > 0, then there is a unique rk+1 Î  Tk+1 such that 
out(rk+1) = rk.

Proof:  (i):  rk = (rk)-^áout(rk)ñ, and (out(rk))- is the principal derivative of (rk)-

along out(rk).  Hence (i) follows from Lemma 3.1(ii) (Limit Path).

(ii):  Let nk = (rk)-, nk+1 = up(nk), and rk+1 = nk+1^árkñ.  Then out(rk+1) = rk.

To see uniqueness, we note that if out(tk+1) = rk, then tk+1 = (tk+1)-^árkñ, and up((rk)-) =

(tk+1)-.  Hence (tk+1)- = nk+1 and tk+1 = rk+1.  n 

Our next lemma analyzes the behavior of the function l.  Suppose that h extends h-

on Tk in Step 4 of Definition 2.8.  We discuss the relationship of the path computed by

l
j
(h-) to the path computed by l

j
(h ) for all j such that k £ j £ n.  Three types of

phenomena can occur, and one will occur for each j.  These phenomena induce a partition
of [k,n] into three intervals.

There will be a largest p ³ k such that for all j Î [k,p], l
j
(h) is an immediate

successor of l
j
(h-) = upj(h-).  h is not j-switching for any j Î [k,p].

If p ¹ n, then there will be two possibilities.  The first is that upp(h-) = (l
p
(h))- has

infinite outcome along l
p
(h).  Then h will be (p+1)-switching, and will switch upj(h-) for

all j Î [p+1,n].  h will switch the outcome of upp+1(h-) from infinite along l
p+1

(h-) to

finite along l
p+1

(h).  It will follow from (2.10) that for all j ³ p+1, h will switch the

outcome of upj(h-) from infinite along l
j
(h-) to finite along l

j
(h) if j-(p+1) is even, and

from finite along l
j
(h-) to infinite along l

j
(h) if j-(p+1) is odd.  There will be a largest s Î

(p,n] such that for all j Î [p,s), upj(h-) will be the principal derivative of upj+1(h-) along

l
j
(h), and l

j
(h) will be an immediate successor of upj(h-).  [p+1,s] is the interval where

the second type of phenomenon occurs.  
If s < n, then the third type of phenomenon begins at s+1 (we set s = p if upp(h-) =

(l
p
(h))- has finite outcome along l

p
(h), which is the second possibility alluded to in the

preceding paragraph, and if this is the case, then h is not switching).  Here ups(h-) =

(l
s
(h))- will have finite outcome along l

s
(h) and will not be the principal derivative of

ups+1(h-) along l
s
(h).  Thus by (2.4), l

s+1
(h) = l(ups(h-)), so l

t
(h) = l

t
(ups(h-)) for all t

> s. 
The three types of phenomena mentioned above can be observed if we consider the

usual way for satisfying a thickness requirement on T2.  h decides, for h-, whether to place
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an additional element x into a set S which is to be either a finite or a thick subset of a

recursive set R.  We assume that some elements have already been placed in S.  If h is the
first stage at which we consider x, then we set p = s = 1 if we decide to place x into S and

we set p = 1 and s = 2 otherwise.  And if h is not the first stage at which we consider x,

and we decide to place x into S at h, then we set p = 0 and s = 1.

Lemma 3.3 (l-Behavior Lemma):  Fix h Î  Tk and assume that a requirement has

been assigned to h.  Then there are p and s such that kÊ£ p £ sÊ£ n and the following
conditions hold:

(i) For all i Î [k,p], l
i
(h-) = upi(h-) = (l

i
(h))-, if i < p then l

i
(h-) is the initial 

derivative of l
i+1

(h-) along l
i
(h), and if i > k then out(l

i
(h)) = l

i-1
(h).  

(ii) For all i Î (p,s], upi(h-) = l
i
(h)-, l

i
(h-)|l

i
(h) = l

i
(h)-^ál

i-1
(h)ñ.

(iii) For all i Î (s,n], l
i
(h) = l

i
((l

s
(h))-). 

Proof:  We verify (i)-(iii) by induction on lh(h), analyzing what can happen when
requirements are assigned in Step 4 of Definition 2.8 for h-.  

If i = k, then h- = l
k
(h-) = (l

k
(h))- = upk(h-).  Fix the largest p £ n such that for all

i Î [k,p], l
i
(h-) = (l

i
(h))- = upi(h-).  (i) now follows from (2.4).

If h is nonswitching, then we set s = p and note that (ii) holds vacuously, and that

(iii) holds vacuously if s = n.  So suppose that s < n.  As it is not the case that l
s+1

(h-) =

(l
s+1

(h))- = ups+1(h-), it follows from (2.4) that (l
s
(h))- cannot be an initial derivative of

ups+1(h-).  As h is nonswitching, it follows from (2.4) that (l
s
(h))- = l

s
(h-) has finite

outcome along l
s
(h).  Thus by (2.4), l

s+1
(h) = l

s+1
(h-), so for all i > s,

l
i
(h) = l

i
(l

s+1
(h)) = l

i
(l

s+1
(h-)) = l

i
(l

s
(h-)) = l

i
((l

s
(h))-),

and (iii) must also hold.

Suppose that h is switching.  By (i), let z
p
 = upp(h-) = (l

p
(h))-, and let z

p+1
 =

upp+1(h-).  We first show that h is (p+1)-switching, and that z
p
 has infinite outcome along

l
p
(h ).  For suppose that z

p
 has finite outcome along l

p
(h ) in order to obtain a

contradiction.   z
p
 cannot be an initial derivative of z

p+1
, else p would have been chosen ³

p+1.  But if z
p
 is not an initial derivative of z

p+1
, then as z

p
 has finite outcome along

l
p
(h), l

p+1
(h) = l(z

p
) = l(l

p
(h-)) and so h is nonswitching, contrary to assumption.  We

conclude that z
p
 has infinite outcome along l

p
(h), and so by (2.4) and (i), that l

p+1
(h) =

z
p+1

^ál
p
(h)ñ.  Thus (ii) holds for i = p+1.  Fix the least s Î (p,n), if any, such that the
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conditions of (ii) fail for i = s+1; otherwise, let s = n. (ii) now follows.  (iii) holds
vacuously for s = n, so assume that s < n.

As s+1 > p+1, we note that ups(h-) = (l
s
(h))- cannot have infinite outcome along

l
s
(h), else ups(h-) would be the principal derivative of ups+1(h-) along l

s
(h), so by (2.4),

the condition specified in (ii) would hold for i = s+1. For the same reason, ups(h-) =

(l
s
(h))- cannot be the initial derivative of ups+1(h-) along l

s+1
(h). Thus by (2.4), l

s+1
(h)

= l(l
s
(h)-), so l

i
(h) = l

i
((l

s
(h))-) for all i Î (s,n].  n

Definition 3.1:  Fix k £ r £ n, x Í h Î Tk and L Î [Tk].  We say that x is (h,r)-true if

l
j
(x) Í l

j
(h) for all j Î [k,r], and that x is (L,r)-true if l

j
(x) Ì l

j
(L) for all j Î [k,r].  x

is h-true if x is (h,n)-true, and x is L-true if x is (L,n)-true.  x  is true if x is x-true.  n

The next lemma, which is an easy corollary of Lemma 3.1 (Limit Path), proves the
existence of many true nodes.  

Lemma 3.4 (True Node Lemma):  Fix k £ r £ n and h Í L
k
 Î [Tk].  Then:

(i) Every z Í l
r
(h) is (l

r
(h),r)-true.

(ii) If s is (l(h),r)-true, then the initial derivative of s along h is (h,r)-true.

(iii) If s is (l(h),r)-true, x Í h, and x
-
 is the principal derivative of s- along h, 

then x is (h,r)-true.

Proof:  (i) follows by definition.  (ii) and (iii) follow from clauses (i) and (ii),
respectively, of Lemma 3.1 (Limit Path).  n

We now turn our attention to an analysis of the possible ways of extending paths.
We first show that we can always take nonswitching extensions.

Lemma 3.5 (Nonswitching Extension Lemma):  Fix n Î Tk.  Then either n^ábñ is

nonswitching for every b Î Tk-1 such that n^ábñ Î Tk and b
-
 has infinite outcome along b,

or n^ábñ is nonswitching for every b Î Tk-1 such that n^ábñ Î  Tk and b
-
 has finite

outcome along b.  Moreover, if n^ábñ is a nonswitching extension of n, then for all j ³ k,

the l
j
(n)-links and the l

j
(n^ábñ)-links coincide.

Proof:  We proceed by induction on n-k.  We note that no node on Tn is
switching, and that there are no links on Tn.

Suppose that k < n and n is not the initial derivative of up(n) along n.  Fix b Î Tk-1

such that b
-
 has finite outcome along b.  By (2.4), l(n^ábñ) = l(n).  Thus 
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l
j
(n^ábñ) = l

j
(l(n^ábñ)) = l

j
(l(n)) = l

j
(n) 

for all j Î (k,n], so n^ábñ is not switching.

Suppose that k < n and n is the initial derivative of up(n) along n.  By Lemma 3.1(i)

(Limit Path), up(n) = l(n).  By induction, either up(n)^áxñ is nonswitching for all x Î Tk

such that up(n)^áxñ Î  Tk+1 and x
-
 has infinite outcome along x , or up(n)^áxñ i s

nonswitching for all x Î Tk such that up(n)^áxñ Î Tk+1 and x
-
 has finite outcome along x.

If dim(n) £ k, then l(n^ábñ) = up(n)^án^ábññ by (2.9), (2.4) and Lemma 3.1(ii) (Limit
Path), so by Lemma 3.1(i) (Limit Path), 

(3.1) l
j
(n^ábñ) = l

j
(l(n^ábñ)) = l

j
(up(n)^án^ábññ) Ê l

j
(up(n)) = l

j
(l(n)) = l

j
(n) 

for all j Î (k,n], and n^ábñ is nonswitching.  Otherwise, dim(n) > k.  If up(n)^áxñ is

nonswitching for every x Î Tk such that up(n)^áxñ Î Tk+1 and x
-
 has infinite (finite, resp.)

outcome along x, fix b Î Tk-1 such that n^ábñ Î  Tk and b
-
 has finite (infinite, resp.)

outcome along b.  By (2.4) and Lemma 3.1(i) (Limit Path), l(n^ábñ) = up(n)^án^ábññ.

Hence (3.1) holds for all j Î (k,n], and n^ábñ is nonswitching.

Fix j ³ k.  As l
j
(n^ábñ) Ê  l

j
(n), any primary l

j
(n)-link is a primary l

j
(n^ábñ)-

link.  Fix p and s as in the proof of Lemma 3.3 (l-Behavior).  As n^ábñ is a nonswitching

extension of n, it follows from Lemma 3.3(ii) (l-Behavior) that p = s.  If j £ p, then by

Lemma 3.3(i) (l-Behavior), (l
j
(n^ábñ))- = l

j
(n) and l

j
(n) is the initial derivative of

up(l
j
(n)) along l

j
(n^ábñ); and if j > p, then by Lemma 3.3(iii) (l-Behavior), l

j
(n^ábñ) =

l
j
(n).  In either case, any primary l

j
(n^ábñ)-link is a primary l

j
(n)-link.  The lemma now

follows from Step 2 of Definition 2.8.    n

The next lemma, together with the Nonswitching Extension Lemma, allows us to

analyze the computation of l.

Lemma 3.6 (Switching Lemma):  Fix k £ n and x Î Tk.  Then either:

(i)   x^ábñ is switching for all b Î Tk-1 such that b
-
 has finite outcome along b; or 

(ii)  x^ábñ is switching for all b Î Tk-1 such that b
-
 has infinite outcome along b; or

(iii) x is the initial derivative of upj(x) along l
j
(x) for all j Î [k,n].

Proof:  We proceed by induction on n-k.  (iii) holds if k = n.  Suppose that k < n.

Let m be the initial derivative of up(x) along x.  If m Ì x, then by (2.7) and (2.8), up(x)

must have infinite outcome along l(x), so if b is an infinite outcome for x, then
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l(x)|l(x^ábñ), so (ii) holds.  Suppose that m = x.  By Lemma 3.1(i) (Limit Path), up(x) =
l(x).  If up(x)^ánñ is switching for all nÊÎ Tk such that n- has finite outcome along n, then
(ii) holds.  If up(x)^ánñ is switching for all nÊÎ Tk such that n- has infinite outcome along

n, then (i) holds.  Otherwise, by induction, up(x) is the initial derivative of upj(up(x)) =

upj(x) along l
j
(l(x)) = l

j
(x) for all j Î [k+1,n], so (iii) holds.  n

Our next lemma shows that if L
k
 Î  [Tk], then there is a nice approximation to

l
k+2

(L
k
) from L

k
.  This lemma will enable us to show that, under certain circumstances,

nodes not along l
k+2

(L
k
) will not declare many axioms.  The lemma is a standard infinite

injury lemma, stating that for any node t which is not along the true path, i.e., not along

l
k+2

(L
k
), there will only be finitely many nodes a along L

k
 which think that t is along the

true path, i.e., such that l
k+2

(a) Ê t.  The machinery which we develop does not require
us to look, locally, beyond the interaction of nodes from three consecutive levels.  This is
also the case with Harrington's approach to 0(n)-priority arguments, which uses the
Recursion Theorem.

Lemma 3.7 (Infinite Injury Lemma):  Fix k £ n-2 and L
k
 Î [Tk].  Let L

k+1
 = l(L

k
)

and L
k+2

 = l(L
k+1

).  Fix t Î Tk+2 such that t Ì/  L
k+2

.  Then {a Ì L
k
: l

k+2
(a) Ê t} is

finite.

Proof:  Let r = L
k+2

Ùt.  As t Ì/  L
k+2

, r Ì t.  Fix x Î Tk+1 such that r^áxñ Í t.

By (2.4), if a Ì L
k
 and l

k+2
(a) Ê t, then l(a) Ê x.  If x Ì/  L

k+1
, then by Lemma 3.1

(Limit Path), {a Ì L
k
: l(a) Ê x} is finite, and the lemma follows.

Suppose that x Ì L
k+1

.  Fix h ¹ x such that r^áhñ Ì L
k+2

.  By (2.4), h Ì  L
k+1

,

so x and h are comparable.  dim(r) > k+1, else x = h by (2.9), a contradiction.  x
-
 cannot

have infinite outcome along x, else by (2.8), h Í x, so by (2.4) and as x Ì L
k+1

, r^áxñ Í

L
k+2

.  Hence by (2.4), x Ì h, x
-
 has finite outcome along L

k+1
 and h- has infinite outcome

along L
k+1

.  By Lemma 3.1 (Limit Path), we can fix b Ì L
k
 such that for all g, if b Í g Ì

L
k
 then l(g) Ê h.  But then for all such g, if l

k+2
(g) Ê r, then l

k+2
(g) Ê r^áhñ.  n

4. Links.  In this section, we analyze the effect of link formation on the path generation
process.  We show that links must be nested, so that the process of removing links by
switching paths must be done in an orderly way, no matter how the path is extended.  We
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relate the restraint of x Î Tk by an h-link to the satisfaction of whether or not the

antiderivatives of x lie along the paths computed by h.  If h switches x, then by (2.10), x

will be h--free; we show that x is also h-free.  And we show that if upj(x) is L
j
-free for all j

³ k and k £ dim(x), then x has sufficiently many L
k-1

-free derivatives.
We will need to show that we can return a node to the true path by taking switching

extensions which change the outcomes at the ends of links.  We will need to determine

which links must be switched in this way.  This determination depends on the fact that h-

links on Tk are either nested or disjoint.  

Lemma 4.1 (Nesting Lemma):  Fix k £ n and h Î Tk.  Suppose that, for i £ 1, [mi,pi]

is an h-link and that p0 Ì p1.  Then m1 Í m0 or p0 Ì m1.

Proof:  We proceed by induction on n-k.  We note that there are no links on Tn, so
the lemma holds trivially for k = n.  Assume that the lemma is true for k+1 in place of k.  

For each i £ 1, fix the l(h)-link [ri,ti] from which [mi,pi] is derived if such a link

exists; otherwise, [mi,pi] is a primary h-link, and we set ri = ti = up(mi) = up(pi).  It

follows from the definition of links that for i £ 1, mi is the initial derivative of ri along h

and pi is the principal derivative of ti along h.   As p0 Ì p1, it follows from Lemma 3.1(ii)

(Limit Path) that t0 Ì t1.  If t0 Ì  r1, then by Lemma 3.1(i),(ii) (Limit Path), m0 Ì p0 Ì

m1 Ì p1 and the lemma holds.  Otherwise, r1 Í t0 Ì t1.  If r0 = t0, then r1 Í r0.  And if

r0 ¹ t0, then by induction, r1 Í  r0.  So in either case, it follows from Lemma 3.1(i)

(Limit Path), that m1 Í m0.  n

Our next definition traces links back to higher trees.  Again, a node is free if it is
not restrained by a link.  We will show that all free nodes have all their antiderivatives
along the computed paths.  The converse of this statement is not true.

Definition 4.1:  Fix k £ rÊ£ n and x Ì  h  Î  Tk.  Let [m,p] be an h-link.  We say that

[m,p] is an (h,r)-link if [m,p] is derived from a primary l
r
(h)-link.  [m,p] is an (h,£r)-

link if [m,p] is an (h,j)-link for some j Î [k,r].  We say that x is (h,r)-restrained if there

is an (h,r)-link [m,p] which h-restrains x.  In this case, we say that x is (h,r)-restrained by

[m,p].  We say that x is (h,r)-free if x is not (h,r)-restrained.  We say that x is r-free if x

is (x,r)-free.  If L
k
 Î  [Tk], then we say that x is (L

k
,r)-free if x is (h,r)-free for all

(L
k
,r)-true h Ê x, and that x is L

k
-free if x is (L

k
,n)-free.  n

Recall that if [m,p] is an h-link, then p is not restrained by [m,p].  However, as we

can have [m,p) = [m,d) with p ¹ d for intervals, we used closed interval notation [m,p] for
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h-links to make sure that there is a one-one correspondence between intervals which
determine links, and the links themselves.

The next lemma identifies the outcome of a link with the actual outcome of the node
ending the link.

Lemma 4.2 (Faithful Outcome Lemma):  Fix m Ì p Ì h Î Tk such that [m,p] is an

h-link.  Then [m,p] has finite outcome iff p has finite outcome along h.

Proof:  We proceed by induction on n-k.  As there are no links on Tn, the lemma
holds for k = n.  Assume that k < n.  

If [m,p] is a primary h-link, then p has infinite outcome along h, and by Step 2 of

Definition 2.8, [m,p] has infinite outcome.  Otherwise, [m,p] is derived from some l(h)-

link [r,t].  By Definition 2.1, induction, and Step 2 of Definition 2.8,  

p has finite outcome along h iff up(p) = t has infinite outcome along l(h) 
iff [r,t] has infinite outcome iff [m,p] has finite outcome.  n

The next lemma relates the presence of antiderivatives of a node x on a path

computed by h to the restraint of x by an h-link.  It will follow from this lemma that (2.10)
implies (2.7).

Lemma 4.3 (Link Analysis Lemma):  Fix k £ r £ n and x Í h Î Tk.  Then:

(i) (a) If up(x) Í/  l(h), then there is a primary h-link [m,p] such that up(m) ¹ 

up(x) and [m,p] h-restrains all d Í h such that up(d) = up(x).

(b) If x Ì d Ì h, up(x) Í up(d) and up(x) Í/  l(h), then there is a primary 

h-link [m,p] which h-restrains both x and d.

(c) If [m,p] is an h-link which h-restrains the principal derivative x of up(x), 

then either there is a primary h-link [m,p] which h-restrains x and up(x) 

Í/  l(h), or [m,p] is derived from a l(h)-link which l(h)-restrains up(x).

(d) If there is a primary h -link [m ,p ] which h -restrains the initial 

derivative of up(x), then either up(x) Í/  l(h) or m is the initial derivative 

of up(x) along h.

(ii) If up(x) Í  l(h) and up(x) is (l(h),r)-restrained by [r,t], then x is (h,r)-

restrained by an h-link [m,p] derived from [r,t]. 

(iii)Suppose that j £ r and upj(x) is (l
j
(h),r)-restrained by [r,t]. Then x is 

(h,£r)-restrained. Furthermore, if upi(x) Í l
i
(h) for all i Î  [k,j], then x is 

(h,r)-restrained by an h-link derived from [r,t].  
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Proof:  (ia):  Let k = up(x)Ùl(h) and let d be any derivative of up(x) along h.  As

up(x) Í/  l(h), k Ì up(x).  Hence by Lemma 3.1(i),(ii) (Limit Path), k has an initial

derivative m Ì d and a principal derivative p Ì h such that m Ì p.  By (2.4) and as k Ì

up(x), p Í/  d.  Hence d is h-restrained by the primary h-link [m,p].  As up(m) = k Í l(h),

up(m) ¹ up(x).

(ib):  As up(x) Í/  l(h), it follows from the proof of (ia) that there is a primary h-

link [m,p] which restrains x, and that up(m) = up(p) Ì up(x).  Fix r Í h such that r- = p .

By (2.4), up(m) must have finite outcome along l(r), but infinite outcome along up(x) Í

up(d).  If p Ì d, then by (2.4), d cannot lie along d, contradicting (2.7).  p ¹ d as up(p) ¹

up(d).  But p,d Ì h, so p É d.

(ic):  Suppose that [m,p] is a primary h-link which h-restrains the principal

derivative of up(x) along h.  We assume that up(x) Í l(h) and derive a contradiction.  We

compare the relative locations of up(x) and up(m) = up(p) on Tk+1.

First suppose that up(m) Ì up(x).  Fix b Î Tk such that up(m)^ábñ Í up(x) Í l(h).

By (2.5), b Í x.  By (2.4), b
-
 is the principal derivative of up(m) along h, so b

-
 = p.  But

then p Ì x so [m,p] cannot h-restrain x.

Suppose that up(m) = up(x).  As x and p are, respectively, the principal derivatives

of up(x) and up(p) along h and up(m) = up(p), x = p.  So [m,p] cannot h-restrain x.

Suppose that up(x) Ì up(m).  Fix b Î Tk such that up(x)^ábñ Í up(m).  By (2.5),

b Í m.  By (2.4), b
-
 is the principal derivative of up(x) along p Í h; as x Ì p and x is the

principal derivative of up(x) along h, it follows from (2.4) that b
-
 = x.  But then x Ì m so

[m,p] cannot h-restrain x.

Suppose that up(x)|up(m).  Let t = up(x)Ùup(m), and fix a,b such that t^áañ Í

up(x) and t^ábñ Í up(m).  As x is h-restrained by the primary h-link [m,p] and up(x) ¹

up(m) = up(p), m Ì x Ì p.  By (2.7), t^áañ Í l(x) and t^ábñ Í l(m),l(p), contradicting

(2.6).  Thus [m,p] cannot h-restrain x.

Now suppose that [m,p] is an h-link which h-restrains the principal derivative x of

up(x), but that there is no primary h-link which h-restrains x.  By (ia), up(x) Í l(h), so

up(x), up(m), and up(p) are all comparable, and [up(m),up(p)] is a l(h)-link.  As [m,p] h-

restrains x, m Í x Ì p.  As x is the principal derivative of up(x) along h, it follows from

Lemma 3.1(ii) (Limit Path) that up(m) Í  up(x).  And as p is the principal derivative of

up(p) along h, it follows from Lemma 3.1(ii) (Limit Path) that up(x) Ì up(p).  Hence

[up(m),up(p)] l(h)-restrains up(x).

(id):  Suppose that [m,p] is a primary h-link which h-restrains the initial derivative

n of up(x), and that up(x) Í l(h).  We assume that m ¹ n and derive a contradiction.  By
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Lemma 4.1 (Nesting), there can be no primary n-link which n-restrains m, so by (ia), up(m)

Í l(n).  By (2.7), up(n) Í l(n), so up(m) and up(n) are comparable.  By Lemma 3.1(i)
(Limit Path), up(m) Í up(n).  As [m,p] is a primary h-link and n Ì p, all derivatives of

up(m) which are Ì n must have finite outcome along n, but p has infinite outcome along h.

As m ¹ n, it follows that up(m) has infinite outcome along l(n), but finite outcome along

l(h).  But up(m) Ì up(n) = up(x) Í l(h), so by (2.7), up(n) Í l(n),l(h).  Thus up(m)
must have the same outcome along both l(n) and l(h), yielding a contradiction.

(ii):  Suppose that [r,t] is a l(h)-link which restrains up(x) and is derived from the

primary l
r
(h)-link [k,z].  By Lemma 3.1 (Limit Path), let m (p, resp.) be the initial

(principal, resp.) derivative of r (t, resp.) along h.  As up(x) Î [r,t), it follows from

(2.10) and Lemma 3.1(i),(ii) (Limit Path) that x Î [m,p), so x is h-restrained by [m,p]

which is derived from [k,z].
(iii):  Immediate by induction from (i) and (ii).  n

We now show that free nodes lie along the computed path, so (2.10) implies (2.7).

Lemma 4.4 (Free Implies True Path Lemma):  Fix k £ r £ n and x Ì  h Í  L
k
 Î

[Tk] such that x is (h,r)-free.  Then for all j Î [k,r], upj(x) Í lj(h). 

Proof:  Immediate from Lemma 4.3(ia),(iii) (Link Analysis).  Ö

When a requirement is assigned to d Î T0, then by (2.10) and the process of

pulling links down from tree to tree, upi(d) is l
i
(d)-free for all i £ n.  If h- = d and i £ n,

i.e., h determines an outcome for d, then h may or may not switch upi(d).  We show that

in either case, no l
i
(h)-link restrains upi(d) for any i £ n.  In fact, we show that this

happens not only for d Î T0, but also for all k £ n, d Î Tk and all i ÎÊ[k,n].

Lemma 4.5 (Free Extension Lemma):  Fix k £ n and h Î Tk.  Then for all i Î [k,n],

upi(h-) is l
i
(h)-free.  Furthermore, if r Î [k+1,n] and h is r-switching, then for all i Î

[r,n], l
i
(h-) |l

i
(h), upi(h-) = l

i
(h-)Ùl

i
(h), and upi(h-) has finite outcome along l

i
(h) iff

upi(h-) has infinite outcome along l
i
(h-).

Proof:  Fix p and s as in Lemma 3.3 (l-Behavior).  First suppose that h is

nonswitching.  Then by Lemma 3.3 (l-Behavior), p = s, upi(h-) = (l
i
(h))- = l

i
(h-) if i Î

[k,s], and l
i
(h) = l

i
(ups(h-)) = l

i
(l

s
(h-)) = l

i
(h-) if i Î [s+1,n].  It follows from Lemma

3.5 (Nonswitching Extension) that for all i Î [k,n], the primary l
i
(h)-links and the
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primary l
i
(h-)-links coincide.  By (2.10), for all i Î [k,n], upi(h-) is l

i
(h-)-free.  Hence

for all i Î [k,n], upi(h-) must be l
i
(h)-free.

Now suppose that h is switching.  We first show that for all i Î [k,n], upi(h-) Í

l
i
(h).  If i Î [k,p], then by Lemma 3.3 (l-Behavior), upi(h-) = (l

i
(h))- = l

i
(h-); so as, by

(2.7), upi(h-) Í  l
i
(h-), it must be the case that upi(h-) Í  l

i
(h).  If i Î [p+1,s], then by

Lemma 3.3 (l-Behavior), l
i
(h-) |l

i
(h) and upi(h-) = l

i
(h-)Ùl

i
(h); so upi(h-) Í l

i
(h).  If i

Î [s+1,n], then by Lemma 3.3 (l-Behavior), l
i
(h) = l

i
(ups(h-)).  By (2.7), upi(ups(h-))

Í l
i
(ups(h-)).  Hence upi(h-) = upi(ups(h-)) Í l

i
(h).

We next show that for all i Î [k,n], upi(h-) is both l
i
(h-)-free and l

i
(h)-free.  By

(2.10), upi(h-) is l
i
(h-)-free.  Suppose that upi(h-) is not l

i
(h)-free for some i, which we

fix in order to obtain a contradiction.  Then there is a l
i
(h)-link which restrains upi(h-).

We note that for any m Î [k,n] and any l
m

(h)-link [mm,pm], pm Ì  l
m

(h) and pm is not

l
m

(h)-restrained by [mm,pm].  By Lemma 3.3(i),(ii) (l-Behavior), if i £ s then upi(h-) =

(l
i
(h))-.  Hence it must be the case that i > s.  But then by Lemma 3.3 (l-Behavior), l

i
(h)

= l
i
(ups(h-)), and by (2.10), upi(ups(h-)) is l

i
(ups(h-))-free.  Hence upi(h-) = upi(ups(h-))

is l
i
(h)-free, yielding the desired contradiction.  

Finally, we must show that for all i Î  [p+1,n], l
i
(h-) |l

i
(h ), upi(h-) =

l
i
(h-)Ùl

i
(h), and upi(h-) has finite outcome along l

i
(h) iff upi(h-) has infinite outcome

along l
i
(h-).  This follows from Lemma 3.3(ii) (l-Behavior) for i Î [p+1,s].  We now

proceed by induction on i Î  [s+1,n].  By (2.7) and as upi(h-) Í  l
i
(h), upi(h-) Í

l
i
(h-)Ùl

i
(h).  Suppose that upi(h-) Ì l

i
(h-)Ùl

i
(h) in order to obtain a contradiction.  Fix

ri Í  l
i
(h-)Ùl

i
(h) such that (ri)- = upi(h-).  Then by (2.4), (out(ri))- is the principal

derivative of upi(h-) along out(ri) Í  l
i-1

(h-)Ùl
i-1

(h).  Now (out(ri))- Ì  upi-1(h-), else

either l
i-1

(h-) and l
i-1

(h) are comparable, or upi-1(h-) ¹ l
i-1

(h-)Ùl
i-1

(h).  Hence by (2.8),

(out(ri))- is the initial derivative of upi(h-) along both l
i-1

(h-) and l
i-1

(h), and (ri)- has

infinite outcome along both l
i
(h-) and l

i
(h).  But then all derivatives of upi(h-) must have

finite outcome along both l
i-1

(h-) and l
i-1

(h).  As upi-1(h-) is such a derivative, we have
contradicted our induction hypothesis.

Suppose that upi(h-) has finite outcome along l
i
(h) (l

i
(h-), resp.).  Then there is a

derivative ni-1 of upi(h-) which has infinite outcome along l
i-1

(h) (l
i-1

(h-), resp.).  Since

upi-1(h-) is l
i-1

(h)-free (l
i-1

(h-)-free, resp.), ni-1 = upi-1(h-).  By induction, upi-1(h-) has

finite outcome along l
i-1

(h-) (l
i-1

(h), resp.).  As upi-1(h-) is l
i-1

(h-)-free (l
i-1

(h)-free,

resp.), all derivatives of upi(h-) along l
i-1

(h-) (l
i-1

(h), resp.) must have finite outcome
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along l
i-1

(h-) (l
i-1

(h), resp.).  Hence by (2.4), upi(h-) has infinite outcome along l
i
(h-)

(l
i
(h), resp.).  Now upi(h-) cannot have infinite outcome along both l

i
(h-) and l

i
(h), else

by (2.4), upi-1(h-) would have finite outcome along both l
i-1

(h-) and l
i-1

(h) contrary to

our induction assumption.  Hence pi(h-) has finite outcome along l
i
(h) iff upi(h-) has

infinite outcome along l
i
(h-).    n

The nodes which are L
k
-free are the nodes which have the responsibility to

determine the value of most of the axioms.  However, we will be unable to recursively
identify these nodes, and so, will be unable to prevent other nodes from defining a large
number of axioms.  We will have to show that the nodes to which we want to assign
responsibility for defining most of the axioms can automatically transfer this responsibility
to their derivatives.  In order for this transfer to occur, we will need to show that principal
derivatives of free nodes are free, and that if a free node has infinite outcome along the true

path L
k+1

 through Tk+1, then it has infinitely many free derivatives along the true path L
k

through Tk.  We show this in our next lemma.  We will later show that these nodes also
have the opportunity to correct many axioms defined by other nodes.  We first note an
important fact, whose proof we leave to the reader.

(4.1) Fix k £ r £ n, b Í L
k
 Î [Tk], and m Ì n Ì h such that h is (b,r)-true.  Then [m,n] 

is a (b,r)-link iff [m,n] is an (h,r)-link.

Lemma 4.6 (Free Derivative Lemma):  Fix k < n and L
k
 Î  [Tk].  For all r Î [k,n],

let L
r
 = l

r
(L

k
).  Suppose that s Ì L

k+1
 is L

k+1
-free.  Then:

(i) If d Ì L
k
 is the principal derivative of s along L

k
, then d is L

k
-free.

(ii) If s has infinite outcome along L
k+1

 and dim(s) > k, then there are infinitely 

many L
k
-free derivatives of s.

Proof:  (i):  By Lemma 3.1(ii) (Limit Path), fix the principal derivative d of s

along L
k
.  Suppose that d  is L

k
-restrained by a L

k
-link [m ,p] in order to obtain a

contradiction.  By repeated applications of Lemma 3.1(i) (Limit Path) we may fix h Ì L
k

such that p Ì h and h is L
k
-true.  By (4.1), [m,p] is an h-link.  Without loss of generality,

we may assume that [m,p] is a primary h-link.  (Else by Lemma 4.3(ic) (Link Analysis), s

would be l(h)-restrained by a l(h)-link.  But then l(h) is L
k+1

-true, so by (4.1), s would

not be L
k+1

-free, a contradiction.)  Let up(m) = up(p) = t.  By (2.7) and assumption, s Í

l(d),l(h), so by (2.6), s Í l(p).  By (2.7), t Í l(p); hence s and t are comparable.  By
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Lemma 3.1(ii) (Limit Path) and as d Ì p, it must be the case that s Ì t.  d cannot be the

initial derivative of s along d, else by Lemma 3.1(i) (Limit Path) and as m Í d, t Í s,

yielding a contradiction.  Let n be the initial derivative of s along h.  By Lemma 3.1(i)

(Limit Path), n Ì m Ì d, and we have already shown that d Ì p.  But [n,d] and [m,p] are

h-links, contradicting Lemma 4.1 (Nesting).

(ii):  We note by (i) that if z Ì L
n
, then for all j such that k £ j £ n, the principal

derivative z
j
 of z along L

j
 is L

j
-free.  As lh(L

k
) = ¥, it follows inductively from Lemma

3.1(iv) (Limit Path) that lh(L
j
) = ¥ for all j such that k £ j £ n.  Hence there are infinitely

many z Ì L
n
 such that z

j
 extends upj(s) for all j such that k £ j £ n.  Fix such a node x.  It

suffices to show that s has a free derivative along L
k
 which extends z

k
.

By (2.4) and Lemma 3.1(ii) (Limit Path), if we fix gk Ì L
k
 such that (gk)- = z

k
,

then gk is L
k
-true.  Hence by (4.1), for all j such that k £ j £ n and all d

j
 Í l

j
(gk), d

j
 is L

j
-

free iff d
j
 is l

j
(gk)-free.  In particular, s is l(gk)-free.  It thus follows easily from Lemma

4.4 (Free Implies True Path) and hypothesis that s is gk-consistent.  Furthermore, as z
j
 is

the principal derivative of z
j+1

 along l
j
(gk) for all j Î [k,n-1] and (gk)- = z

k
, it follows

from Lemma 3.3 (l-Behavior) that either gk is switching, or (gk)- is the initial derivative of

z along L
k
.  In either case, we set r = á ñ in Definition 2.8, Step 4 when we are ready to

assign a requirement to gk.  As s Ì l(gk) Ì L
k+1

, it follows from (2.4) and (2.6) that we
will take nonswitching extensions in Definition 2.8, Step 4, beginning at gk, and reach a

node b
k
 at which s is the shortest node eligible to determine a derivative along L

k
.  By

Lemma 3.5 (Nonswitching Extension), no new links are formed when nonswitching

extensions are taken.  Since s Ì l(gk), it will be the case that l(b
k
) = l(gk), and so, that s

is b
k
-free and b

k
-consistent.  By Definition 2.8, Step 4, we define up(b

k
) = s, and b

k
 will

be L
k
-true and L

k
-free.  Hence by (4.1), b

k
 will be a L

k
-free derivative of s.  n
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