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0. Introduction

Decidability and undecidability of (fragments of) elementary theories
of recursion-theoretic structures have been central topics of research in
recursion theory for more than two decades. Results of this nature have
been obtained by Lachlan [La1, La2], Simpson [Si], Herrmann [He],
Harrington (unpublished), Lerman and Soare [LrSo], Schmerl (cf. [Lr1]),
Epstein [Ep], Shore [Sh1, Sh2], Lerman [Lr1], Lerman and Shore
[LrSh], Sacks [Sa1], Harrington and Slaman [HaSl] (cf. [SlWo]),
Jockusch and Soare (unpublished, cf. [Lr1]), Jockusch and Slaman [JoSl]
and Hinman and Slaman [HiSl]. Sharp results have been obtained for the
poset of degrees D=(D, �). In this case, Lachlan [La1] showed that
Th(D) is undecidable, and Simpson [Si] showed that this theory is recur-
sively isomorphic to second order arithmetic; Shore [Sh1] and Lerman
[Lr1] showed that \_ & Th(D) (the \_-fragment of the elementary theory
of D) is decidable, and this decidability result has been extended by
Jockusch and Slaman [JoSl] to \_ & Th((D, �, _) ). Schmerl (cf. [Lr1])
showed that _\_ & Th(D) is undecidable. Sharp results have also been
obtained for the elementary theory of the poset D[0, 0$]=([0, 0$], �) of
the degrees below 0$. Epstein [Ep] and Lerman [Lr1] showed that
Th(D[0, 0$]) is undecidable and Shore [Sh2] showed that this theory has
degree 0(|); Lerman and Shore [LrSh] showed that \_ & Th(D[0, 0$]) is
decidable, while Schmerl (cf. [Lr1]) showed that _\_ & Th(D[0, 0$]) is
undecidable. Gaps in our knowledge remain for other structures.

There are some natural operations on degree structures which moti-
vate the study of decidability in languages other than the language of
posets. Most degree structures are uppersemilattices and so support a join
operator _ . The join operator is definable from � by an \-predicate.
Hence _ & Th((D[0, 0$], �, _) ) is decidable. D also supports the jump
operator, $, an order-preserving function of one variable on degrees such
that a$>a for all a. Cooper [Co1, Co2] has shown that the jump operator
is definable over D, but Lerman and Shore [LrSh] have shown that the
definition cannot be an \_-definition. Thus the study of the elementary
theory of D$=(D, �, $) is more complex than the study of Th(D). The
results of Lachlan [La1] and Simpson [Si] cover Th(D$) as well; thus
Th(D$) is undecidable, and is recursively isomorphic to second-order
arithmetic. On the other hand, Jockusch and Soare (cf. [Lr1]) have shown
that Th((D, $) ) is decidable.

In this paper, we develop methods which enable us to build configura-
tions of recursively enumerable degrees while simultaneously controlling
the configurations of the m th jumps of these degrees. Our results will yield
a decision procedure for the existential theory of the recursively
enumerable degrees in an expanded language, and can be used to give a
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decision procedure for a fragment of _ & Th((D, �, $, 0) ). We expect the
methods introduced in this paper to be useful in providing a decision pro-
cedure for _ & Th((D, �, $, 0) ). (Hinman and Slaman [HiSl] have
recently proved that _ & Th(D$) is decidable using a forcing argument.)

For every degree a, we let R(a)=(R(a), �) be the poset of degrees r.e.
in a, and we set R=R(0). For each m # N (N is the set of natural
numbers) and a, b # R, we define

a�mb � a(m)�b(m).

A jump poset is a 5-tuple (P, �, P$, �$, f) , such that (P, �) and
(P$, �$) are posets of cardinality �2 with least and greatest elements,
and f is an order-preserving map from P onto P$. An m-jump poset is a
structure

P=(P0 , �0 , P1 , �1 , f1 , ..., Pm , �m , fm)

such that for each k<m, (Pk , �k , Pk+1 , �k+1 , fk+1) is a jump poset.
We define a <|-jump poset analogously.

We now state our main theorem.

Theorem 7.8. Fix n # N, and let P=(P0 , �0, P1 , �1 , f1 , ...,Pm , �m , fm)
be a finite m-jump poset such that P0 has least element 0 and greatest ele-
ment 1. Then there is a finite set G0 of r.e. degrees, and there are finite sets
Gk =[d : _a # G0(a(k)=d)] for each k # [1, m] such that the diagram of
Fig. 1 commutes. Furthermore, the embedding maps 0 # P0 to 0 and 1 # P0

to 0$. (In fact, the proof of Theorem 7.8 can easily be extended to countable
<|-jump posets.)

Figure 1.

3DECIDABILITY OF THE EXISTENTIAL THEORY



File: 607J I54604 . By:CV . Date:11:06:96 . Time:15:35 LOP8M. V8.0. Page 01:01
Codes: 3412 Signs: 2800 . Length: 45 pic 0 pts, 190 mm

We specify a finite set of axioms for m-jump posets. These axioms assert
that (Pi , �i) is a poset for each i�m, 0 is the least element of P0 , 1 is
the greatest element of P0 , and fi is a surjective order-preserving map from
(Pi&1 , �i&1) onto (Pi , �i) . Given any existential sentence in the
language L=(0, 1, �0, �1 , ..., �m , ...) , the sentence asserts that one of a
finite number of diagrams is consistent with the axioms of m-jump posets,
i.e., can be embedded into an m-jump poset. We can recursively determine
whether or not one of these diagrams is consistent. If not, then the sentence
is false; if so, then by Theorem 7.8, the sentence is true. Furthermore, this
process is uniform in m, and mentions only finitely many relations �k .
Hence:

Corollary 7.9. The existential theory of R(<|)=(R, 0, 0$, �, �1 , ...,
�m , ...) is decidable.

This corollary extends the result in [LmLr2] where it is shown that the
existential theory of (R, 0, 0$, �, �1) is decidable.

Fix m. The simplest sentences of this existential theory in the language
L require us to construct a degree a such that 0(k)<a(k)<0(k+1) for all
k�m. The Sacks Jump Inversion Theorem [Sa2] allows us to construct
such degrees. One begins with a degree dm such that 0(m)<dm<0 (m+1) and
dm is r.e. in 0(m). The jump inversion theorem is now applied to obtain a
degree dm&1 which is r.e. in 0 (m&1) such that (dm&1)$=dm and 0(m&1)<
dm&1<0(m). This procedure can be iterated, producing d0=a. Attempts
were made to decide the full _-Theory in this way, but the Shore Non-
Inversion Theorem [Sh3] showed that such attempts were doomed to
failure. Our approach is to construct the r.e. degrees directly. To do this,
we introduce a 0(n)-priority argument for each n # N. Priority arguments of
this sort were developed by Ash [A1, A2] and Knight [Kn] for recursive
model theory, but their approach does not seem to be applicable here.
Groszek and Slaman [GS] have been developing a different general
framework for 0(n)-priority arguments, and our proof has been influenced
by the techniques of Ash, Groszek and Slaman. In particular, although our
trees are different from those used by Ash, the properties used in the tree
decomposition are, in many cases, based on ideas introduced in Ash [A1].
A framework is also being developed by Kontostathis [Ko1, Ko2, Ko3].
Other theorems proved using our framework can be found in [LmLr1,
LmLr2, and LLW], and an overview of the framework is presented in
[LmLr3]. Our treatment of individual requirements is modeled after the
solution to the ``deep degree'' problem by Lempp and Slaman [LmSl].

We use the following notation. If A�N, then we let A� denote the com-
plement of A. For A, B�N, we let A"B denote the difference of A and B.
Given a set P, we let |P| denote the cardinality of P. A k-dimensional space
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is a set S=[a� ]_Nk_[b� ] for some choice of finite sequences a� and b� of
elements of N; in this case, we write dim(S)=k. If A=[a� ]_Nk_[b� ] and
i # N, then we let A[i] denote [(a� , i, x� , b� ) : x� # Nk&1] & A and call A[i] a
section of A.

We depart a little from the standard classification of sentences, although
our classification is equivalent to the standard classification. Thus a 70 - or
60 -formula is one in which all quantifiers are bounded. A 7m-formula is
one of the form Q1x� 1 } } } Qk x� k_y� R(x� 1 , ..., x� k , y� ), where each Qix� i is a finite
block of bounded universal quantifiers or a finite block of bounded existen-
tial quantifiers and R is a 6m&1-formula. Similarly, a 6m-formula is one
of the form Q1 x� 1 } } } Qk x� k\y� R(x� 1 , ..., x� k , y� ), where each Qi x� i is a finite
block of bounded universal quantifiers or a finite block of bounded existential
quantifiers and R is a 7m&1-formula.

Let # be a 7m- or 6m-sentence. Then # can either be written as
Q� x� _y� $(x� , y� ) where $ is 6m&1, or as Q� x� \y� $(x� , y� ) where $ is 7m&1. The
formula #[z] is obtained from # by replacing the first block of unbounded
quantifiers _y� or \y� with a similar block where all variables are restricted
to numbers �z.

A string is a finite sequence of letters from an alphabet. If S is an
alphabet, we let S <| be the set of all strings from S. We write _/{ if {
properly extends _, and _ | { if _ and { are incomparable. We say that _
lies along { if _�{. For _, { # S <|, we let lh(_) denote the cardinality of
the domain of _. If _{( ) (the empty string), then _& is the unique {/_
such that lh({)=lh(_)&1. We define the string _7{ by

_7{(x)={_(x)
{(x&lh(_))

if x<lh(_)
if lh(_)�x<lh(_)+lh({).

If x�lh(_), then _�x, the restriction of _ to x, is the string { of length x
such that {( y)=_( y) for all y<x. Restriction is defined similarly for
infinite sequences from an alphabet. We also use interval notation for
strings. Thus [_, {]=[\ : _�\�{]. _ 7 { denotes the longest \ such that
\�_, {, and if _ and { are comparable, then _ 6 { is the longer of _
and {.

A tree is a set of strings which is closed under restriction. The paths
through a tree T are the infinite sequences 4 such that 4�x # T for all
x # N. We let [T] denote the set of paths through T.

The high�low hierarchy for R is defined as follows. For n�0, we say that
a is lown (a # Ln) if a(n)=0(n), and a is highn (a # Hn) if a(n)=0 (n+1). If
0(n)<a(n)<0(n+1) for all n, then we say that a is intermediate.

(8k
e : e # N) will be the standard enumeration of all partial recursive

functionals of k variables. (We will frequently suppress the superscript,
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writing 8e for 8k
e .) Thus 8k

e(A; x1 , ..., xk)=y if the e th partial recursive
functional of k variables, computing from oracle A and input x1 , ..., xk ,
outputs the value y. For each e, k # N, we will have a recursive approxima-
tion (8k

e, s : s # N) to 8k
e . We say that 8k

e, s(A; x1 , ..., xk) a if we obtain an
output from this computation in fewer than s steps; otherwise,
8k

e, s(A; x1 , ..., xk) A . If 8k
e, s(A; x1 , ..., xk) a , then we let the use of this computa-

tion be the greatest element u for which a question ``u # A?'' is asked of the
A oracle during the computation. We will work under the convention that:

If u is the use of a computation at stage s, then u<s. (0.1)

We will be constructing partial recursive functionals within a recursive con-
struction by declaring axioms 2(_; x� )=y to reflect the fact that the partial
recursive functional 2 with input x� produces output y when computing
from the oracle _, (so from any oracle A#_). If x� =(x1 , ..., xm) and
z� =(zm+1 , ..., zk), then limx� 8k

e(A; x� , z� ) denotes limx1
} } } limxm 8k

e(A; x1 , ...,
xm , zm+1 , ..., zk). Other notation follows [So].

1. The Basic Modules

We will introduce the basic modules for requirements of dimensions 1
and 2 in this section. While the proof of the theorem will need requirements
of higher dimensions, the descriptions of the basic modules for these higher
dimension requirements is similar to the descriptions for requirements of
dimensions 1 and 2, requiring only more iterations of the limit process.

Fix a finite m-jump poset P=(P0 , �0 , P1 , �1 , f1 , ..., Pm , �m , fm) ,
and assume that P0 has least element 0 and greatest element 1. Let g0 be
the identity function, and for each k # [1, m], let gk=fk b fk&1 b } } } b f1 .
Assume, also, that there are d{d� # P0 with the following properties:

(1.1) For all k�m, gk(0)<k gk(d)< k gk(1) and for all c # P0"[d]
such that gk(0)< k gk(c)< k gk(1), gk(d ) and gk(c) are incomparable.

(1.2) For all k�m, gk(0)< k gk(d� )< k gk(1) and for all c # P0"[d� ]
such that gk(0)< k gk(c)< k gk(1), gk(d� ) and gk(c) are incomparable.

These conditions will reduce the number of different types of require-
ments needed for our construction. In particular, we will not have to treat,
as special cases, requirements to make any of the sets which we are constructing
non-lowk or non-highk for any k�m.

We will construct an r.e. set Ab for each b # P0 . We specify that A0=<
and A1 is the complete r.e. set K. We will also be constructing partial
recursive functionals 2 with subscripts and superscripts designating the
requirement for which 2 is acting.

6 LEMPP AND LERMAN
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Definition 1.1. Uniformly in A�N and e, r # N, we fix a sentence
;r(A; e) which is 7r+1 and whose validity agrees with that of e # A(r) if r
is odd, and which is 6r+1 and whose validity agrees with that of e � A(r)

if r is even.

For all b, c # P0 and k�m, we will have to show that

gk(b)�gk(c) � A (k)
b �T A (k)

c .

Each such equivalence will be satisfied if we satisfy the following conditions
for sufficiently many b and c: There is a partial recursive functional 2
(depending on the condition) such that for all e # N:

(1.3) R0, k+1
e, b, c : gk(c)�� gk(b) O 2(Ac) is total 6

\x(limu1
} } } limuk 2(Ac ; u1 , ..., uk , x) a ) 6

_x(limu1
} } } limuk 2(Ac ; u1 , ..., uk , x) a

{limv1
} } } limvk 8k+1

e (Ab ; v1 , ..., vk , x)).
(1.4) R1, k

e, b, c : gk(b)�gk(c) 6 b{1 O
\e_q�1((limu1

} } } limuk 2(Ac ; u1 , ..., uk , e) a =q) 6
(q=1 iff ;k(Ab ; e) is true)).

(1.5) R2, k+1
e, b, c : gk(1)�gk(c) O

\e _q�1((limu1
} } } limuk 2(Ac ; u1 , ..., uk , e) a =q) 6

(q=1 iff ;k+1(<; e) is not true)).

(Conditions (1.1) and (1.2) and properties of the jump operator will allow
us to be selective about those b and c for which we satisfy requirements.
The second superscript in a requirement Ri, k

e, b, c is the dimension of the
requirement, and corresponds to the particular tree of strate-
gies on which we begin to split the requirement up.) We refer to require-
ments listed in (1.3) as incomparability requirements, to those listed in (1.4)
as comparability requirements, and to those listed in (1.5) as highness
requirements.

The Basic Module: Dimension 0 Comparability Requirements. R1, 0
e, b, c is

satisfied by coding Ab into Ac . The construction will have the following
property:

(1.6) If e # As+1
b "As

b , and b�c, then e # As+1
c "As

c .

Thus to decide whether e # Ab , we ask if e # Ac . If the answer is no, then
e � Ab . If the answer is yes, then we find the least s such that e # As

c , and
note that e # Ab iff e # As

b . We have thus proved:

Lemma 1.1. Let b, c # P0 be given such that b�c. Assume that the
construction satisfies (1.6). Then Ab�T Ac . K

The Basic Module: Dimension 1 Incomparability Requirements. We
satisfy [R0, 1

e, b, c : e # N] through a modification of the Friedberg-Muchnik

7DECIDABILITY OF THE EXISTENTIAL THEORY
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strategy. We construct a partial recursive functional 2 such that 2(Ac) is
total. We will appoint a witness x and try to guarantee that 81

e(Ab ; x){
2(Ac ; x) a . We begin by activating this requirement. To do so, we declare
an axiom 2(As

c ; x)=0 with use x. If, at some later stage t, we find that
81

e, t(A
t
b ; x) a =0, with use q, then we will restrain Ab�(q+1) from chang-

ing after stage t, and place x into Ac . This will allow us to redefine
2(Ac ; x)=1 with use x. There are two possible types of outcomes. If,
during the construction, we never see a computation 81

e, t(At
b ; x)=0, then

2(Ac ; x)=0 and either 81
e(Ab ; x) A or 81

e(Ab ; x) a {0. If we eventually
place x into Ac , then 2(Ac ; x)=1{0=81

e(Ab ; x).

The Basic Module: Dimension 1 Comparability Requirements. If
f1(b)�f1(c) and f1(1)�� f1(c), then we will want

lim
u

2(Ac ; u, e)={1 if ;1(Ab ; e) is true (i.e., e # A$b)
0 if ;1(Ab ; e) is not true (i.e., e � A$b).

We wait for a stage s at which ;1(As
b ; e) is true with use <s, declaring

axioms 2(As
c ; u, e)=0 for progressively larger u until such an s is found. If

we ever find such a stage s, we restrain As
b �s (so Ab�s=As

b�s), and declare
axioms 2(At

c ; v, e)=1 for all t�s and all sufficiently large v, having
use s.

The Basic Module: Dimension 2 Incomparability Requirements. R0, 2
e, b, c

will be treated as a connected infinite set of dimension 1 incomparability
requirements, producing the desired result in the limit. Fix 2. We will
appoint a witness x, and try to guarantee that if [v : 82

e(Ab ; v, x)=0] is
infinite, then [u : 2(Ac ; u, x)=1] is cofinite, and if [v : 82

e(Ab ; v, x)=0] is
finite, then [u : Ac ; u, x)=0] is cofinite. We thus begin to declare axioms
2(Ac ; u, x)=0 for progressively larger u, with large use p. (At each stage,
only finitely many axioms of this kind are declared, and several may
share the same use.) If, at some later stage t, we find some v0 such that
82

e, t(A
t
b ; v0 , x)=0, then we restrain At

b�t (so Ab �t=At
b�t), and place p

into Ac at stage t, allowing us to declare new axioms 2(At
c ; u, x)=1 with

use p for each u for which we have previously declared an axiom with
output 0. We now repeat this procedure for larger values u for which no
axiom has yet been declared, trying to find v1>v0 for 82

e . Thus either
[v : 82

e(Ab ; v, x) a =0] is finite and [u : 2(Ac ; u, x) a =0] is cofinite, or
[v : 82

e(Ab ; v, x) a =0] is infinite and [u : 2(Ac ; u, x) a =1]=N. In either
case, R0, 2

e, b, c is satisfied.

The Basic Module. Dimension 2 Highness Requirements. If f1(1)�1

f1(c) and K is the complete recursively enumerable set, then we will want
to satisfy

8 LEMPP AND LERMAN
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lim
u

2(Ac ; u, e)={
0 if e # K$(i.e., ;2(<, e) is not true or,

equivalently, ;1(K, e) is true)
1 if e � K$(i.e., ;2(<, e) is true or,

equivalently, ;1(K, e) is not true).

The strategy for satisfying this requirement is similar to that for the dimen-
sion 2 incomparability requirements. While 81

e, s(K
s; e) A , we declare axioms

2(As
c ; u, e)=1 for progressively larger u, with use 0. If we discover that

81
e, s(K

s; e) a with use v, then we declare axioms 2(As
c ; u, e)=0 with large

use p for progressively larger u for which axioms have not yet been defined.
If Kt�v{Ks�v at some later stage t, then we place p into Ac at stage t, and
reset the axiom 2(At

c ; u, e)=1 with use p for values of u for which the
axiom was previously set to 0, and begin again to declare axioms having
output 1 and use r�t for yet larger values of u. Thus either 81

e(K; e) a and
[u : 2(Ac ; u, x) a =0] is cofinite, or 81

e(K; e) A and [u : 2(Ac ; u, x) a =1]=N.
In either case, R2, 2

e, 1, c is satisfied.

Comparability requirements of dimension 2, and requirements of dimen-
sion 3 or greater are handled in a way similar to that in which their coun-
terparts of lower dimension are handled, except that more iterations of the
limit operation are required. As no new strategies are involved, we will not
discuss basic modules for these requirements.

Conflicts between requirements are resolved by placing requirements on
iterated trees of strategies, and using the trees to determine when require-
ments should act. We fix the maximum dimension n of the requirements to
be satisfied, and assign each requirement to all nodes of a given level of the
tree T n. Associated with a requirement is a sentence of the form (,n � �n) 6
(c,n � /n), where ,n is a sentence which determines when to initiate
action during the construction, and �n and /n are properties which must
result from this action. For k<n, nodes of a tree T k will be derivatives of
nodes of a tree T k+1. Each derivative is to generate action based on the
truth of a sentence .k obtained from the sentence .k+1 assigned to the
node from which it is derived, by appropriately bounding the outer block
of quantifiers. And the action must result in satisfying some property
derived from �n and /n. Rather than bounding quantifiers for the sentence
obtained from �n and /n, we assign spaces to the nodes on which we ensure
that a given functional has an iterated limit (sometimes requiring a speci-
fied value for this limit). When we reach T 0, we will be able to recursively
specify when action should be taken and what that action should be. We
then piece together the various sentences and actions on T 0 taken to show
that the sentence assigned to T n is satisfied.

The processes of assigning derivatives and of determining which
derivatives should act are delicate, and differ with the type of requirement.

9DECIDABILITY OF THE EXISTENTIAL THEORY
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This assignment must be done in such a way that the action taken by
derivatives can be pieced together to show that the original sentence on T n

is true. The priority argument is hidden in this decomposition; thus if
the decomposition is done correctly, there are no conflicts between
requirements on T 0 as we have determined when nodes can act in a way
which avoids conflicts (which, however, are seen on T 1). The key is to
determine the derivative responsible for the definition of a given axiom. For
incomparability requirements, the nodes specifying axioms for a given func-
tional and argument in the limit are all derived from a single node of T n,
and control must be expanded to ensure that limits exist when the node is
not on the true path of the construction. In the case of comparability and
highness requirements, nodes on each path through T n may specify axioms
for a given functional and argument. In these cases, we must define control
of axioms carefully, dividing control among many nodes. We also take
advantage of the fact that if k is the dimension of the requirement, axioms
will frequently be corrected (since the oracle set will change below the use
of the axiom) whenever the true path approximation changes its mind
about the ultimate node of T k which is responsible for defining the axioms.

The notion of control will determine the axioms for which a node is
responsible. Determining when a node should act will involve additional
concepts, such as freeness, admissibility, implication chains, and links. We
will define the assignment of requirements to trees in Section 2, and prove
some lemmas about paths in Section 3. Links will be analyzed in Section 4.
Implication chains and backtracking will be discussed in Section 5. Control
will be discussed in Section 6. The construction and proof based on the
machinery introduced in previous sections will be discussed in Section 7.

2. The Requirements and Systems of Trees

The framework for our priority argument uses systems of trees, and
much of it can be presented independently of the set of requirements to be
satisfied. Systems of trees are introduced in this section, and the mechanism
for assigning requirements to the trees is described. (The reader is referred
to [LmLr1], where systems of trees are used to prove some standard
theorems of recursion theory. The framework there is a little different, as
some of the subtleties needed here do not occur at the lower levels, but the
many similarities in the approaches might be helpful.) Fix n # N henceforth.

Definition 2.1 (Definition of Trees). We set T &1=[0, �] and T 0=
[0, �]<|. If 0<k�n and T k&1 has been defined, let

T k=[_ # (T k&1)<| : \i<lh(_) \j<lh(_)(i< j � _(i)/_( j))].

10 LEMPP AND LERMAN
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T k=(T k, �) is the kth tree of strategies, ordered by inclusion. We refer
to the elements of T k as nodes of T k, and view each node of T k as follow-
ing its immediate predecessor by a designated node of T k&1. If _ # T k,
! # T k&1, and _=_&7(!) , then we say that _& has outcome ! along _,
and define out(_)=!. If j�k, then we define out j (_) by reverse induction;
outk(_)=_, and out j&1(_)=out(out j (_)). Outcomes are of two types,
activated or validated. If k=0, {$_, and lh(_)>0, then we say that _&

is activated (validated, resp.) along { if out(_)=0 (out(_)=�, resp.). If
k>0, then _& is activated (validated, resp.) along { if out(_)& is activated
(validated, resp.) along out(_). (Activation and validation represent dif-
ferent ways of satisfying a requirement depending on whether the sentence
generating action is true or false. The steps taken when a requirement
associated with the node _& is first activated may be later extended when
that requirement is validated.) If _�{ # T k and lh(_)>0, then we say that
_& has finite (infinite, resp.) outcome along { if either k=0 and out(_)=0
(out(_)=�, resp.), or k>0 and out(_)& has infinite (finite, resp.) out-
come along out(_). (Note that _& is activated (validated, resp.) along _ if
either k is even and _& has finite (infinite, resp.) outcome along _, or k is
odd and _& has infinite (finite, resp.) outcome along _.)

In order to provide the reader with some intuition about these trees, we
relate them to the tree of strategies approach introduced by Harrington,
and indicate the relationship between the way certain concrete
requirements are treated by these approaches. First consider a typical
Friedberg�Muchnik requirement 8(A){B. The standard tree of strategies
approach assigns such a requirement to a node _ of T 1=[0, 1]<|, and
proceeds by stages. When _ first appears on the true path, a follower x is
assigned to the requirement. As long as _ is on the path through T 1 com-
puted at stage s and 8s(As){0, the path computation at s follows _7(0) ,
and we set Bs(x)=0. (We now say that _ is activated.) If, at some later
stage t, we find that 8t(At; x)=0, the path computation at t follows
_7(1) , we set Bt(x)=1, and never again consider this requirement. (We
now say that _ is validated.)

Our approach replaces stages by the tree T 0=[0, �] <|. (We use � in
place of 1 because we want to talk about finite and infinite outcomes.) In
place of stage t, we form a $-block on T 0 which consists of derivatives of
nodes of T 1 which lie on the true path computation through T 1 generated
by $ # T 0, and such that the requirement for these nodes of T 1 has not yet
been validated. Each derivative along the path gets a chance to try to
satisfy its requirement when it is reached, and the block ends either when
we newly validate a node, or begin to deal with one new requirement. The
outcome !=&7(;) of _ along \=_7(!) # T 1 is used to code whether
or not 8(A; x)=0. ! will tell us whether or not the requirement assigned

11DECIDABILITY OF THE EXISTENTIAL THEORY
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to _ has been activated or validated, and in addition, that the decision to
activate or validate was made based on the outcome of & along !. Thus if
_ is activated along \, then _ will have infinitely many derivatives along the
true path 40 through T 0, all of which will be activated. The outcome
!=&7(;) of _ will indicate that & is the derivative of _ at which we made
the decision to determine the outcome of _ along \, namely, the first
derivative of _ along 40 (we will call & both the initial and principal
derivative of _ along 40), and the outcome ;=0 of & along 40 indicates
that & is activated along 40. If _ is validated along \, then the outcome !
of _ will determine the node & of T 0 at which we made the decision to
determine the outcome of _ along \ (we will call & the principal derivative
of _ along \), and the outcome ;=� of & along 40 indicates that & is
validated along !. If & is not the first (i.e., initial) derivative + of _ along
\, then we create a link from + to &. These links partially correspond, in
standard priority arguments, to initializing all extensions of \. At higher
levels, they also serve the purpose of not allowing nodes restrained by the
link to act and cause a change in the approximation to the true path. This
allows us to show that when the outcome of a node is switched by the
approximation, it must be switched because of action taken for the require-
ment for which the node is responsible. (We note that this approach differs
from that in [LmLr1], where the outcome of & was not coded along the
outcome of _, and � was used in place of a node of T 0 to represent activa-
tion on T 1, i.e., denoting that _ has infinitely many derivatives along 40.
This approach works for 0$$$-constructions, i.e., constructions which do not
require a tree beyond T 3. Once T 4 is reached, initial derivatives of _, i.e.
derivatives of a node _ on T 4 which do not properly contain another
derivative of _, are no longer unique, and our approximations need to code
these initial derivatives, rather than use a catch-all symbol � to denote an
infinite outcome.)

Next, consider a typical thickness requirement on T 2. We are given an
infinite recursive set R, and activation corresponds to putting only finitely
many elements of R into a set A, while validation corresponds to putting
all elements of R into A. Suppose that this thickness requirement is
assigned to a node _ of the true path 42 through T 2. Then _ will have
derivatives along the true path 41 through T 1, each of which will have the
role of placing finitely many elements of R into A if a certain 71-sentence
is true. First suppose that one of these sentences is false, say the one corre-
sponding to the derivative ! of _. Then ! will be the last (and principal )
derivative of _ along 41, and will have infinite outcome along 41, designat-
ing that no derivative of ! is validated along the true path 40 on T 0, i.e.,
that no derivative of ! finds a witness for its existential sentence at the
stage specified by the framework. No elements � the least element of R for
which ! has responsibility are placed into A in this case.

12 LEMPP AND LERMAN
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Now suppose that all of the sentences are true. Then _ will have infinite
outcome along 42, indicating that _ has infinitely many derivatives along
41, each of which is validated. Each such node will place the elements of
R for which it is responsible into A. As each element of R will be assigned
to such a node, all elements of R will be placed into A. (The infinite out-
come of _ along 42 is the initial derivative of _ along 41 (which also is the
principal derivative of _ along 41), followed by its first validated derivative
& along 40 and the outcome � for & indicating that & is validated.)

We will need a one-to-one weight function on elements of T=
� [T k : 0�k�n] which will |-order T. (We take the disjoint union here,
differentiating between the empty nodes of the various trees. A similar func-
tion was called par in [LmLr1].) The weight function will have various
properties, which will be used to show that constructions in which action
is determined by weight are able to protect certain computations.

Definition 2.2. It is routine to check that a one-to-one recursive
weight function wt: T � N can be defined to satisfy the following properties
for all _, { # T k:

If _/{ then wt(_)<wt({). (2.1)

If k>0, then wt(out(_))<wt(_). (2.2)

If k>0 and out(_)/out({), then wt(_)<wt({). (2.3)

Definition 2.3. The action taken at each stage of the construction will
be associated with a node of T 0. This node will be derived from a node of
T k where k is the dimension of the requirement, i.e., we begin to split up
the requirement into subrequirements on T k&1. Nodes of T k will be of one
of two types. Each node on T k working on a given incomparability
requirement can pick a different witness for its functional, and we such
requirements locally distributed. For any comparability or highness require-
ment and argument x, each path through T k must contain a node working
to define a value for a functional on argument x; such requirements are
called densely distributed.

We will take action to ensure the satisfaction of requirements. This
action will consist in placing numbers into certain sets, and in trying to
keep numbers out of other sets. Certain sets will be associated with a
requirement R. OS(R), the oracle set of R, will contain a particular oracle
from which the requirement wants to define axioms. We will want to pre-
vent numbers from entering the oracles in RS(R), the restraint set of R.
And TS(R) will be the target set of R, a set of oracles into which numbers
should be placed in order to satisfy the requirement while preserving the
ability to satisfy other requirements. If a requirement is assigned to a node _,

13DECIDABILITY OF THE EXISTENTIAL THEORY
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then the above definitions and notation are inherited by _ from R, and
inherited by all derivatives of _ from _.

Fix an m-jump poset, P=(P0 , �0 , P1 , �1 , f1 , ..., Pm , �m , fm). There
will be three types of requirements, which we now define.

Definition 2.4. Incomparability requirements have dimension k�1
and type 0. They are locally distributed requirements, each associated with
an element of

Z0, k=[(b, c) # P2 : gk&1(c)�� gk&1(b) 6 (gk(c)�gk(b) or k=m+1)

6 gk&1(b){ gk&1(0) 6 gk&1(c){ gk&1(1)].

We establish a requirement R=R0, k
e, b, c for each (b, c) # Z0, k and e # N as

described in Section 1, whose goal is to make the condition

_x(lim
u1

} } } lim
uk&1

2(Ac ; u1 , ..., uk&1 , x){lim
v1

} } } lim
vk&1

8k
e(Ab ; v1 , ..., vk&1 , x))

true, if the latter limit exists. (The construction will automatically ensure
that the first of the above limits exists for all x.) We set RS(R)=[Aa :
gk&1(a)�gk&1(b)], OS(R)=[Ac], and TS(R)=[Aa : gk&1(a)�� gk&1(b) 6
a{1].

Definition 2.5. Comparability requirements have type 1 and dimension
k�1. They are densely distributed requirements, each associated with an
element of

Z1, k=[(b, c) # P2 : gk(b)�gk(c) 6 gk&1(b)�� gk&1(c) 6 gk(1)�� gk(c)].

We establish a requirement R=R1, k
e, b, c for each (b, c) # Z1, k and e # N as

described in Section 1, whose goal is to ensure that

lim
u1

} } } lim
uk

2(Ac ; u1 , ..., uk , e)={A (k)
b (e)

A (k)
b (e)

if k is odd
if k is even.

We set RS(R)=[Aa : gk(a)�gk(b)], TS(R)=[Aa : gk (a) �� gk(b) 6 a{1],
and OS(R)=[Ac ].

Definition 2.6. Highness requirements have type 2 and dimension
k�2. They are densely distributed requirements, each associated with an
element of

Z2, k=[(1, c) # P2 : gk&1(1)�gk&1(c) 6 gk&2(1)�� gk&2(c)].

14 LEMPP AND LERMAN
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We establish a requirement R=R2, k
e, 1, c for each (1, c) # Z2, k and e # N as

described in Section 1, whose goal is to ensure that

lim
u1

} } } lim
uk&1

2(Ac ; u1 , ..., uk&1 , e)={<(k)(e) if k is odd
<(k) (e) if k is even.

We set RS(R)=<, TS(R)=[Aa : gk&1(1)�gk&1(a) 6 a{1], and OS(R)=
[Ac].

Lemma 2.1. Let P=(P, �, P1 , �1 , f1 , ..., Pm , �m , fm) be an m-jump
poset with least element 0 and greatest element 1. Suppose that we have a
map h from P to the r.e. sets given by b � Ab which maps 0 to <, 1 to K,
and satisfies the following conditions for all b, c # P:

(i) (b, c) # Z0, k O A (k&1)
c �� T A (k&1)

b .

(ii) b�c O Ab�T Ac .

(iii) (b, c) # Z1, k O A (k)
b �T A (k)

c .

(iv) (1, c) # Z2, k O <(k)�T A (k&1)
c .

Then the m-jump poset generated by the image of h in the r.e. degrees is
isomorphic to P.

Proof. Fix b, c # P. We proceed by cases.

Case 1: gk(b)�k gk(c). As the jump operator is order-preserving, we
can assume that k is the least r such that gr(b)�r gr(c).

Subcase 1.1: k=0. Then A (k)
b �T A (k)

c by (ii).

Subcase 1.2: k>0.

Subcase 1.2.1: gk(1)�� k gk(c). Then A (k)
b �T A (k)

c by (iii).

Subcase 1.2.2: gk(1)�k gk(c). As the jump operator is order-preserv-
ing, A(k)

b �T A (k)
1 . By (iv), A (k)

1 �T A (k)
c . But the degrees form a poset, so

A(k)
b �T A (k)

c .

Case 2: gk(c)�� k gk(b). As the jump operator is order-preserving, it suf-
fices to show that A (k)

c �� T A (k)
b under the assumption that k is the largest

r�m such that gr(c)�� r gr(b).

Subcase 2.1: gk(b){ gk(0) and gk(c){ gk(1). Then A(k)
c �� T A (k)

b by (i).

Subcase 2.2: gk(b)= gk(0) and gk(c)= gk(1). As the jump operator
has the property that 0(k)<0(k+1) and h(1)=K has degree 0$, A(k)

c �� T A (k)
b .

Subcase 2.3: gk(b)= gk(0), gk(c){ gk(1), and c{d. Then by (1.1),
gk(c)�� k gk(d ), so as gk(0)<k gk(d)<k gk(1) by (1.1), we can apply (i) to
conclude that A(k)

c �� T A (k)
d . As the jump operator is order-preserving,
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A(k)
0 �T A (k)

d , so as the degrees form a poset, A (k)
c �� T A (k)

0 . By Case 1,
A(k)

b #T A (k)
0 , so A (k)

c �� T A (k)
b .

Subcase 2.4: gk(b)= gk(0), gk(c){ gk(1), and c=d. We proceed as
in Case 2.3, replacing d with d� and (1.1) with (1.2).

Subcase 2.5: gk(c)= gk(1), gk(b){ gk(0) and b{d. By (1.1),
gk(d )�� k gk(b), so as gk(0)<k gk(d)<k gk(1) by (1.1), we can apply (i) to
conclude that A(k)

d �� T A (k)
b . As the jump operator is order-preserving,

A(k)
d �T A (k)

1 , so as the degrees form a poset, A (k)
1 �� T A (k)

b . By Case 1,
A(k)

c #T A (k)
1 . Hence A (k)

c �� T A (k)
b .

Subcase 2.6: gk(c)= gk(1), gk(b){ gk(0) and b=d. We proceed as in
Case 2.5, replacing d with d� and (1.1) with (1.2). K

The next lemma relates target sets, oracle sets and restraint sets for
various requirements. It is used to show that once we satisfy requirements,
we can preserve this satisfaction if the requirement lies on the true path for
the construction. It is also used to show that action taken for requirements
which do not lie along the true path for the construction is corrected, when
necessary, in the process of returning to the true path. This lemma provides
a crucial connection between the general framework and the particular set
of requirements which we must satisfy.

Lemma 2.2 (Interaction Lemma). Fix requirements R=R j, k
e, b, c and R� =

R }~ , k�
e~ , b� , c~ such that k� �k. Then the following conditions hold:

(i) TS(R) & RS(R)=<.

(ii) If tp(R) # [0, 2], then OS(R)�TS(R).

(iii) Suppose that tp(R)=1, that Ab # TS(R� ), and that if tp(R� ) #
[0, 2] then k<k� . Then Ac # TS(R� ).

(iv) If tp(R)=2, then Ac # TS(R� ).

Proof. We note that if tp(R)=0, then gk&1(c)�� k&1 gk&1(b). (i) and
(ii) are now routine to verify.

(iii) Suppose that tp(R)=1 and Ab # TS(R� ). Then gk(b)�k gk(c), so
as k�k� , gk� (b)�k� gk� (c). (iii) now follows if tp(R� )=1.

Suppose that tp(R� )=2. Since Ab # TS(R� ), gk� &1(1)�k� &1 gk� &1(b). As
gk(b)�k gk(c) and k<k� , gk� &1(1)�k� &1 gk� &1(c). Hence Ac # TS(R� ).

Finally, suppose that tp(R� )=0. Since Ab # TS(R� ), gk� &1 �� k� &1 gk� &1(b� ).
As gk(b)�k gk(c) and k<k� , gk� &1(b)�k� &1 gk� &1(c). It now follows that
gk� &1(c)�� k� &1 gk� &1(b� ), else by transitivity, gk� &1(b)�� k� &1 gk� &1(b� ), yielding
a contradiction. Hence Ac # TS(R� ).

(iv) Suppose that tp(R)=2. Then gk&1(1)�k&1 gk&1(c). As k�k� ,
gk� &1�k� &1 gk� &1(c). It is now easily checked that Ac # TS(R� ). K
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Definition 2.7. Fix a recursive ordering [Ri : i # N] of all require-
ments. We say that Ri has higher priority than Rj if i< j. If Ri=R j, k

e, b, c is
assigned to node _ # T k, then we say that tp(_)= j and dim(_)=k.

Requirements of dimension k will be assigned to nodes of trees T r for
r�k, and subrequirements of these requirements will be assigned to nodes
of T j for j<k. Whenever Ri is assigned to two nodes _ and { and
tp(_) # [1, 2], then we say that _#{. (We will extend the definition of #

to additional pairs of nodes later, and then take the reflexive, symmetric,
transitive closure of the relation defined to make # an equivalence rela-
tion. Equivalent nodes work on the same functional, and sometimes on the
same arguments for that functional. To satisfy requirements for all e, we
will define a given functional as a disjoint union of many partial recursive
functionals. The union over nodes in many equivalence classes will define
the functional (for a specified oracle) on a recursive domain. We will take
steps to ensure that functionals are total on specified oracles, whenever this
is required.)

The assignment of requirements to nodes of trees will proceed by induc-
tion on k=n& j for j�n. (n will be the largest dimension of a requirement
in our list.) The inductive step of the definition will proceed in four steps.
In Step 1, we will define the path generating function * on nodes of trees
which have already had requirements assigned to all of their predecessors.
If _ # T k, then *(_) will be a node on T k+1. Given a path 4 # [T k],
[*(_) : _/4] gives an approximation to a path *(4) # [T k+1]. When
*(_) | *(_&), a link will be formed on T k. These links, defined in Step 2, will
prevent action by nodes of T k which do not seem to come from the true
path approximation for trees of higher dimension. We will have to decide
which nodes of T k+1 are eligible to assign subrequirements to a given node
of T k. Conditions ensuring consistency between the different trees enter
into this decision, and these conditions are delineated in Step 3. The
requirement assignment process is described in Step 4.

Definition 2.8. We proceed by induction on k=n& j, assigning
requirements to nodes of T k and dividing T k into blocks of requirements.
If k=n, then the requirement Ri is assigned to every node _ of T n such
that lh(_)=i. Each node of T n is a block. Thus for _ # T n, we say that _
lies in the _-block, that we begin the _-block at _, and that a path through
the _-block is completed at _.

Suppose that k<n. There are four steps.

Step 1: Definition of the path generating function *. Given a node
' # T k such that requirements have been assigned to all predecessors of ',
the function * will define a node *(') # T k+1. The process is meant to cap-
ture the following situation. For each !/', ! will be derived from a node
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_ # T k+1. A sentence M_ will be associated with _, and a fragment M! of
that sentence will be associated with !. Suppose that the first unbounded
quantifier of M_ is a universal quantifier. If _ has dimension �k+1, we
bound the leading block of universal quantifiers by numbers which are
strictly increasing with lh(!). As long as each ! succeeds in satisfying its
sentence M! , the approximation given by * predicts that _7(&7(;)) �
*('), where & will be the initial derivative of _ along ' (defined formally
below) and ; is the outcome of & along '. If we find a first ! for which M!

is false, then _7(!7(;)) �*('), where ; is the outcome of ! along '.
If the first unbounded quantifier of M_ is an existential quantifier, then we
proceed as above after replacing M! with cM! . (If dim(_)�k, then out-
comes on T k give rise to unique outcomes on T k+1.)

If '=( ) then *(')=( ) . Suppose that '{( ). By (2.4), it will follow
by induction that up('&)�*('&), where up('&) is the node of T k+1

from which '& is derived. (up('&) has been defined inductively in Step 4
for '&.)

If either up('&)=*('&) or '& has infinite outcome along ',
then we set *(')=up('&)7('). We set *(')=*('&) otherwise. (2.4)

(It follows from Definition 2.1 that *(') # T k+1.) It follows from (2.4) that:

If _�*(') then out(_)�' and *(out(_))=_; (2.5)

and

If *('&)$_ and *(')$3 _, then for all $$', *($)$3 _. (2.6)

We define *r(') for r # [k, n] by *k(')=' and *r(')=*(*r&1(')) for
r>k. Given !�', we say that ! is the principal derivative of up(!) (defined
in Step 4) along ' if either ! has infinite outcome along ', or ! is the shor-
test derivative of up(!) along ' and for all #/', if up(#)=up(!), then # has
finite outcome along '. (We do not require that up(!)�*(').) And if r�k
and ` # T r, we call ! the principal derivative of ` along ' if either r=k and
!=`/', or r>k, ! is the principal derivative of up(!) along ' and up(!)
is the principal derivative of ` along *(').

Step 2: Links. We will place restrictions on the stages of the con-
struction at which nodes are eligible to be switched by the approximation
to the true path. One restriction requires a node to be free when it is
switched by the true path approximation, i.e., that it not be contained in
any link. Links are formed when a switch occurs, and can be broken when
the outcome of a switched node is switched back. (Links correspond to
initialization, after injury, in the standard approach to infinite injury
priority arguments. Suppose that a node _ # T 2 has initial derivative &
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(defined inductively in Step 4) along a path 41 through T 1, and principal
derivative ?#& along '/41. Then we form a primary '-link [&, ?] from
& to ?, thereby restraining any node ! # [&, ?) from acting and destroying
computations declared by ?. (Note that if [&, ?] is an '-link, then ? is not
restrained by [&, ?]. However, as we can have [&, ?)=[&, $) as intervals
with ?{$, we use closed interval notation [&, ?] for '-links to make sure
that there is a one-to-one correspondence between intervals which deter-
mine links, and the links themselves.) Any such ! # [&, ?) will either be a
derivative of a node which is no longer on the approximation to the true
path, or a derivative of a node \�_. In the former case, condition (2.7) of
the definition of '-consistency which is presented in Step 3 will also prevent
derivatives of ! from acting. The links are aimed at preventing deriva-
tives of \�_ from acting. Derivatives of such a node \ which extend ?
will be able to act, and we will show that there is no harm in preventing
derivatives of \ restrained by the link from acting. We will allow derivatives
of ? to act, and so do not restrain ? in this link.)

A node ' # T k such that lh(')>0 is said to be switching if there is an
r>k such that *r('&) | *r('). For the least such r, we say that ' is r-switch-
ing. If j # [r, n] and ' is r-switching, we say that ' switches up j ('&).

Fix ' # T k. Each '-link will be derived from a primary * j (')-link for
some j�k, and will have either finite or infinite outcome. We define the
'-links of T k by induction on n&k. If k=n, then there are no '-links.
Suppose that k<n.

We first determine the primary '-links. Suppose that !�' and !& is the
principal derivative of #=up(!&) along ', but is not the initial derivative
of # along '. Let + be the initial derivative of # along '. Then [+, !&] is
a primary '-link and has infinite outcome.

'-links can also be created by pulling down *(')-links. Suppose that
[\, {] is a *(')-link on T k+1. Assume that the initial derivative + of \
along ' and the principal derivative ? of { along ' both exist. Then [+, ?]
is an '-link derived from [\, {]. [+, ?] has finite outcome if [\, {] has
infinite outcome, and has infinite outcome otherwise.

If [\, {] is derived from some link [`, }], then every link derived from
[\, {] is derived from [`, }]. We say that ! is '-restrained if there is an
'-link [+, ?] such that +�!/?. In this case, we say that ! is '-restrained
by [+, ?]. ! is '-free if ! is not '-restrained. ! is free if ! is !-free.

Step 3: '-consistency. We decide, in this step, whether a node _ #
T k+1 is allowed to assign subrequirements at '. This will depend on four
conditions. The first condition, (2.7), requires ' to predict that _ is on the
true path of T r for all r # [k+1, n]. The second condition, (2.8), requires
that if _ # T k+1, once a witness !/' for an existential sentence associated
with _ is found, no derivatives of _ can extend !. In this case, ' has all the
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information needed to correctly predict the outcome of _. However, we do
not search for such witnesses on T k if k�dim(_), as we have not yet begun
to decompose the sentence associated with _, in this case. Rather, we will
require an outcome of _ to code the outcome of a unique derivative of _
along a path of T k, and so impose condition (2.9) requiring that there be
a unique such derivative. Condition (2.10) requires that _ be *(')-free.
Lemma 4.4 will show that this condition implies condition (2.7), but for
now, it is convenient to require both conditions.

For ' # T k, we say that _ # T k+1 is '-consistent if the following conditions
hold:

(2.7) upr(_)�*r(') for all r # [k+1, n].

(2.8) If _/*(') and dim(_)>k, then for all &/', if up(&)=_ then &
has finite outcome along '.

(2.9) For all &/', if dim(_)�k then up(&){_.

(2.10) _ is *(')-free.

(We note that our definition of '-consistency differs from that in
[LmLr1] in that we impose (2.10) as an additional restriction. This restric-
tion is needed to show that whenever a path approximation is switched
precisely at _ # T r, then for all k�r, the path approximation on T k is
switched precisely at the node from which _ is derived. Many of the lem-
mas we prove rely on this fact. If k�3, however, this property of switching
is automatic, so (2.10) does not need to be imposed.)

Step 4: Assignment of Derivatives. Let ' # T k be given such that require-
ments have been assigned to all predecessors of ', but not to '. We want
to assign a requirement to '. The requirement chosen will be one which has
been assigned to some '-consistent node of T k+1.

Requirements are assigned in blocks. (Blocks on T 0 are the counterpart
of stages in the usual approach to priority constructions. Thus if a block
is begun at $ # T 0 and a path through the block is completed at ! # T 0,
then [$, !] corresponds to a set of substages of a given stage.) We begin
a block at $ # T k if either $=( ) or a path through a block was completed
at $&. If we begin a block at $, then this block is called the $-block. A path
through the $-block is completed at !$$ if up(!) completes a path through
some block of T k+1 and ! is an initial derivative of up(!). We say that #
lies in the $-block if $�# and no path through the $-block has been
completed at any ;/#.

Fix $ such that ' is in the $-block. If either '=( ) , '=$, or ' is switch-
ing, set \=( ). Otherwise, fix \�*(') such that \&=up('&). (By induc-
tion using (2.7), up('&)�*('&) and ' provides an outcome for a
derivative of up('&); hence by (2.7), up('&)/*(') so such a \ must exist.)
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Fix the shortest _ such that \�_�*(') and _ is '-consistent. (We note
that for any j�k, any * j (')-link [+ j, ? j] satisfies ? j/* j ('), so *(') is
*(')-free. Furthermore, (2.7) for k will follow from (2.7) for k+1. It thus
follows that *(') is '-consistent, so _ must exist.) Let Ri be the requirement
assigned to _. We assign Ri to ', designate ' as a derivative of _, and say
that up(')=_. We assign a type, dimension, oracle set, target set, and
restraint set to ' in the same way as these were assigned to _.

The derivative operation can be iterated; thus for every ` such that _ is
a derivative of `, we call ' a derivative of `. ' is also a derivative of '. If
r>k, ` # T r, and ' is a derivative of ` then we write upr(')=`. If there is
no !/' such that up(!)=_, then for all &$', we call ' the initial
derivative of _ along &, and if _ is the initial derivative of ` along _, then
' is also the initial derivative of ` along any &$'. We specify that '#_.
` is an antiderivative of ! if ! is a derivative of `.

If 4k is a path through T k, then we let *(4k)=lims[*(4k�s)], and define
4k+1=*(4k). (We will show in Lemma 3.2 that lh(4k+1) exists and is
infinite.) For 4k # [T k], the 4k-links are the '-links for those ' such that
* j (')/4 j for all j # [k, n]. We now define ! to be 4k-restrained or 4k-free
as in Step 2, with 4k in place of '.

The description of the assignment of requirements to nodes is now com-
plete. We take the reflexive, symmetric, and transitive closure of # as
defined in Step 4 and before Step 1 to generate an equivalence relation. K

We note an important relationship between the functions wt and *.
Suppose that k<n, _/{ # T k, and *(_){*({). By (2.5), out(*(_))�_
and out(*({))�{, so by (2.4) and (2.5) and as _/{, out(*(_))�_/
out(*({))�{. It now follows from (2.3) that:

(2.11) For all k<n and _/{ # T k, if *(_){*({), then
wt(*(_))<wt(*({)).

We now indicate how to specify the sentence which generates the action
for a requirement assigned to a given node. Our requirements will be of the
form (. � �) 6 (c. � /). We will show that for requirements, all of
whose antiderivatives lie on the true paths determined by the construction,
� is true if . is true, and / is true if . is false. To achieve this goal, we will
have to correct action taken when it seemed that . was false if we later dis-
cover that . is true. The interplay between this correction feature and the
determination of the node which controls the definition of a given axiom
is the essence of priority arguments. Furthermore, as requirements will be
introduced on T k for k>0 and the construction takes place on T 0, we
must work with fragments of . on T 0 rather than . itself. When intro-
duced, . is assigned to a node _ of T k, and fragments of ., obtained by
bounding some of the quantifiers of ., are assigned to derivatives of _. We

21DECIDABILITY OF THE EXISTENTIAL THEORY



File: 607J I54622 . By:CV . Date:11:06:96 . Time:15:44 LOP8M. V8.0. Page 01:01
Codes: 3060 Signs: 2086 . Length: 45 pic 0 pts, 190 mm

now define the sentences and describe the decomposition process. In order
to avoid notational confusion later, we use M in place of ..

Definition 2.9 (Sentences, Base Step). For each _ # T k such that
dim(_)=k, there is a requirement R=R j, k

e, b, c which is assigned to upn(_).
We will assign a sentence M_ to _ such that M_ is 6k+1 if k is even, and
is 7k+1 if k is odd. Thus we require M_ to have, as its final quantifier, a
universal quantifier.

Suppose that R j, k
e, b, c , is assigned to node _ of T k. For k�1, let #k(e, x, b)

be the formula with free variable x

_x0\y0�x0\x1_y1�x1 } } } \xk&2_yk&2�xk&2_s\t�s(8t
e(A

t
b ; y� , x)=0)

if k is odd (there is no block _x0 } } } _yk&2�xk&2 when k=1), and

\x0_y0�x0_x1\y1�x1 } } } \xk&2_yk&2�xk&2_s\t�s(8t
e(A

t
b ; y� , x)=0)

if k is even. If j=0, we let M_ be the sentence #k(e, wt(_), b). If A is recur-
sively enumerable, then by Definition 1.1, we can fix a sentence ;r(A; e),
such that, if r is odd, then ;r(A; e) is a 7r+1 sentence whose truth agrees
with the truth of ``e # A(r) '', and if r is even, then ;r(A; e) is a 6r+1 sentence
whose truth agrees with the truth of ``e � A(r) ''. Furthermore, we can write
;r(A; e) as Q� x� _s \t�s;� r(At; e), where Q� x� is a quantifier block and
;� r(At, e) is quantifier free. Suppose that the requirement R j, k

e, b, c is assigned
to _ for j # [1, 2]. We let M_ be the sentence ;k(Ab , e) if j=1, and
;k(<, e) if j=2. Our construction will have the property that if upr(_)=`r

lies on the true path of T r for all r # [k, n], then M`r is true iff 2`r(Ac ; y� )
takes the value which ensures the satisfaction of the requirement assigned
to `r.

Definition 2.10 (Sentences, Inductive Step). Suppose that dim(_)>k.
Define M_=(Mup(_))

[wt(_)].

3. Paths and Switching

In this section, we prove some technical lemmas about properties of the
path generation process. The first lemma shows that the paths through the
trees are infinite, and that initial and principal derivatives exist. This lemma
is used many times to analyze the process of decomposing requirements.

Lemma 3.1 (Limit Path Lemma). Fix k # [0, n) and a path 4k # [T k],
and let 4k+1=*(4k)=lim[*(') : '/4k]. Then:
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(i) If _/*(4k), then _ has an initial derivative & along 4k and
*(&)=_.

(ii) If _/*(4k), then there is a ?�4k such that ?& is the principal
derivative of _ along 4k, *(?)&=_, and for all '�4k, *(?)�*(') iff ?�'.

(iii) For any $-block such that $/4k, there is a !/4k such that !
completes a path through the $-block.

(iv) lh(4k+1)=�.

Proof. We proceed by induction on j=n&k.

(i) By (2.4) and as _/*(4k), _ must have a derivative along 4k.
Hence if & is the shortest derivative of _ along 4k, then & is the initial
derivative of _ along 4k. By (2.7), *(&)$_. By (2.4) and (2.7), no {#_ can
have a derivative +/&. Hence by (2.4), *(&)=_.

(ii) If dim(_)�k, then by (2.9), the initial derivative & of _ along 4k

is the principal derivative of _ along 4k. (ii) follows in this case from (i),
(2.5) and (2.6).

Suppose that dim (_)>k. By (i), let & be the initial derivative of _ along
4k. If there is no ?/4k such that up(?&)=_ and ?& has infinite outcome
along ?, then it follows as in the case for dim (_)�k that & is the principal
derivative of _ along 4k. Otherwise, fix the shortest such ?. We note that
?& is the principal derivative of _ along 4k. By (2.4), induction, (2.7) and
(2.6), *(?)=_7(?) �4k+1, and if '/4k then *(')$_7(?) iff '$?.

(iii, iv) It follows easily from (2.7) that 4k+1=*(4k)=
lim[*(') : '/4k] exists. First suppose that lh(4k+1)=�. By (iii) induc-
tively, there are infinitely many blocks along 4k+1, so infinitely many
{/4k+1 such that { completes a path through a block. By (i), each such
{ has an initial derivative along 4k. Hence by Definition 2.8, Step 4, there
are infinitely many !/4k which complete paths through blocks, and (iii)
holds in this case.

Now suppose that lh(4k+1)<� in order to obtain a contradiction.
Then by (2.7), there is an '/4k such that for all ! satisfying '�!/4k,
*(!)=4k+1. If '�!/4k and ! completes a path through a block, then !
must be an initial derivative of some node �4k+1. As this is possible only
finitely often and lh(4k)=�, we can assume without loss of generality that
there is no ! such that '�!/4k and ! completes a path through any
block. By (2.6) and the choice of \ in Step 4 of Definition 2.8, if
'�!/$/4k then ! is nonswitching, so up(!)/up($)�4k+1. But this is
impossible if lh(4k+1)<� so lh(4k)=�. K
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From now on, whenever we write 4k # [T k], we assume that there is a
40 # [T 0] such that 4k=*k(40). Furthermore, if we write ' # T k, we
assume that '/4k for some 4k # [T k]. If this is not the case, then ' and
4k are irrelevant to our construction.

The next lemma describes some useful properties of the out function.

Lemma 3.2 (Out Lemma). Fix k�n and \k # T k. Then:

(i) If k>0 then *(out(\k))=\k.

(ii) If k<n and lh(\k)>0, then there is a unique \k+1 # T k+1 such
that out(\k+1)=\k.

Proof. (i) \k=(\k)&7(out(\k)) , and (out((\k))& is the principal
derivative of (\k)& along out(\k). Hence (i) follows from Lemma 3.1(ii)
(Limit Path).

(ii) Let &k=(\k)&, &k+1=up(&k), and \k+1=&k+17(\k) . Then
out(\k+1)=\k. To see uniqueness, we note that if out({k+1)=\k, then
{k+1=({k+1)&7(\k) , and up((\k)&)=({k+1)&. Hence ({k+1)&=&k+1

and {k+1=\k+1. K

Our next lemma analyzes the behavior of the function *. Suppose that '
extends '& on T k in Step 4 of Definition 2.8. We discuss the relationship
of the path computed by * j ('&) to the path computed by * j (') for all j
such that k� j�n. Three types of phenomena can occur, and one will
occur for each j. These phenomena induce a partition of [k, n] into three
intervals.

There will be a largest p�k such that for all j # [k, p], * j (') is an
immediate successor of * j ('&)=up j ('&). ' is not j-switching for any
j # [k, p].

If p{n, then there will be two possibilities. The first is that
up p('&)=(* p('))& has infinite outcome along * p('). Then ' will be
( p+1)-switching, and will switch up j ('&) for all j # [ p+1, n]. ' will
switch the outcome of up p+1('&) from infinite along * p+1('&) to finite
along * p+1('). It will follow from (2.10) that for all j�p+1, ' will switch
the outcome of up j ('&) from infinite along * j ('&) to finite along * j (') if
j&( p+1) is even, and from finite along * j ('&) to infinite along * j (') if
j&( p+1) is odd. There will be a largest s # ( p, n] such that for all
j # [ p, s), up j ('&) will be the principal derivative of up j+1('&) along
* j ('), and * j (') will be an immediate successor of up j ('&). [ p+1, s] is
the interval where the second type of phenomenon occurs.

If s<n, then the third type of phenomenon begins at s+1 (we set s=p
if up p('&)=(* p('))& has finite outcome along * p('), which is the second
possibility alluded to in the preceding paragraph, and if this is the case,
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then ' is not switching). Here ups('&)=(*s('))& will have finite outcome
along *s(') and will not be the principal derivative of ups+1('&) along
*s('). Thus by (2.4), *s+1(')=*(ups('&)), so *t(')=*t(ups('&)) for all
t>s.

The three types of phenomena mentioned above can be observed if we
consider the usual way for satisfying a thickness requirement on T 2.
' decides, for '&, whether to place an additional element x into a set S
which is to be either a finite or a thick subset of a recursive set R. We assume
that some elements have already been placed in S. If ' is the first stage at
which we consider x, then we set p=s=1 if we decide to place x into S and
we set p=1 and s=2 otherwise. And if ' is not the first stage at which we
consider x, and we decide to place x into S at ', then we set p=0 and s=1.

Lemma 3.3 (*-Behavior Lemma). Fix ' # T k and assume that a require-
ment has been assigned to '. Then there are p and s such that k�p�s�n
and the following conditions hold:

(i) For all i # [k, p], *i ('&)=upi ('&)=(*i ('))&, if i< p then
*i ('&) is the initial derivative of *i+1('&) along *i ('), and if i>k then
out(*i ('))=*i&1(').

(ii) For all i # ( p, s], upi ('&)=*i (')&, *i ('&) | *i (')=*i (')&7

(*i&1(')).

(iii) For all i # (s, n], *i (')=*i ((*s('))&).

Proof. We verify (i)�(iii) by induction on lh('), analyzing what can
happen when requirements are assigned in Step 4 of Definition 2.8 for '&.

If i=k, then '&=*k('&)=(*k('))&=upk('&). Fix the largest p�n
such that for all i # [k, p], *i ('&)=(*i ('))&=up i ('&). (i) now follows
from (2.4).

If ' is nonswitching, then we set s=p and note that (ii) holds vacuously,
and that (iii) holds vacuously if s=n. So suppose that s<n. As it is not the
case that *s+1('&)=(*s+1('))&=ups+1('&), it follows from (2.4) that
(*s('))& cannot be an initial derivative of ups+1('&). As ' is nonswitching,
it follows from (2.4) that (*s('))&=*s('&) has finite outcome along *s(').
Thus by (2.4), *s+1(')=*s+1('&), so for all i>s,

*i (')=*i (*s+1('))=*i (*s+1('&))=*i (*s('&))=*i ((*s('))&),

and (iii) must also hold.
Suppose that ' is switching. By (i), let ` p=up p('&)=(* p('))&, and let

` p+1=up p+1('&). We first show that ' is ( p+1)-switching, and that ` p

has infinite outcome along * p('). For suppose that ` p has finite outcome
along * p(') in order to obtain a contradiction. ` p cannot be an initial
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derivative of ` p+1, else p would have been chosen �p+1. But if ` p is not
an initial derivative of ` p+1, then as ` p has finite outcome along * p('),
*p+1(')=*(` p)=*(* p('&)) and so ' is nonswitching, contrary to assump-
tion. We conclude that ` p has infinite outcome along * p('), and so by (2.4)
and (i), that * p+1(')=` p+17(* p(')) . Thus (ii) holds for i=p+1. Fix the
least s # ( p, n), if any, such that the conditions of (ii) fail for i=s+1;
otherwise, let s=n. (ii) now follows. (iii) holds vacuously for s=n, so
assume that s<n.

As s+1>p+1, we note that ups('&)=(*s('))& cannot have infinite
outcome along *s('), else ups('&) would be the principal derivative of
ups+1('&) along *s('), so by (2.4), the condition specified in (ii) would
hold for i=s+1. For the same reason, ups('&)=(*s('))& cannot be
the initial derivative of ups+1('&) along *s+1('). Thus by (2.4), *s+1(')=
*(*s(')&), so *i (')=*i ((*s('))&) for all i # (s, n]. K

Definition 3.1. Fix k�r�n, !�' # T k and 4 # [T k]. We say that !
is (', r)-true if * j (!)�* j (') for all j # [k, r], and that ! is (4, r)-true if
* j (!)/* j (4) for all j # [k, r]. ! is '-true if ! is (', n)-true, and ! is 4-true
if ! is (4, n)-true. ! is true if ! is !-true.

The next lemma, which is an easy corollary of Lemma 3.1 (Limit Path),
proves the existence of many true nodes.

Lemma 3.4 (True Node Lemma). Fix k�r�n and '�4k # [T k].
Then:

(i) Every `�*r(') is (*r('), r)-true.

(ii) If _ is (*('), r)-true, then the initial derivative of _ along ' is
(', r)-true.

(iii) If _ is (*('), r)-true, !�', and !& is the principal derivative of
_& along ', then ! is (', r)-true.

Proof. (i) follows by definition. (ii) and (iii) follow from clauses (i) and
(ii), respectively, of Lemma 3.1 (Limit Path). K

We now turn our attention to an analysis of the possible ways of extend-
ing paths. We first show that we can always take nonswitching extensions.

Lemma 3.5 (Nonswitching Extension Lemma). Fix & # T k. Then either
&7(;) is nonswitching for every ; # T k&1 such that &7(;) # T k and ;&

has infinite outcome along ;, or &7(;) is nonswitching for every ; # T k&1

such that &7(;) # T k and ;& has finite outcome along ;. Moreover, if
&7(;) is a nonswitching extension of &, then for all j�k, the * j (&)-links and
the * j (&7(;) )-links coincide.
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Proof. We proceed by induction on n&k. We note that no node on T n

is switching, and that there are no links on T n.
Suppose that k<n and & is not the initial derivative of up(&) along &.

Fix ; # T k&1 such that ;& has finite outcome along ;. By (2.4),
*(&7(;) )=*(&). Thus

* j (&7(;) )=* j (*(&7(;) ))=* j (*(&))=* j (&)

for all j # (k, n], so &7(;) is not switching.
Suppose that k<n and & is the initial derivative of up(&) along &. By

Lemma 3.1(i) (Limit Path), up(&)=*(&). By induction, either up(&)7(!)
is nonswitching for all ! # T k such that up(&)7(!) # T k+1 and !& has
infinite outcome along !, or up(&)7(!) is nonswitching for all ! # T k such
that up(&)7(!) # T k+1 and !& has finite outcome along !. If dim(&)�k,
then *(&7(;) )=up(&)7(&7(;)) by (2.9), (2.4), and Lemma 3.1(ii)
(Limit Path), so by Lemma 3.1(i) (Limit Path),

* j (&7(;) )=* j (*(&7(;) ))=* j(up(&)7(&7(;)) )

$* j (up(&))=* j (*(&))=* j (&) (3.1)

for all j # (k, n], and &7(;) is nonswitching. Otherwise, dim(&)>k. If
up(&)7(!) is nonswitching for every ! # T k such that up(&)7(!) # T k+1

and !& has infinite (finite, resp.) outcome along !, fix ; # T k&1 such that
&7(;) # T k and ;& has finite (infinite, resp.) outcome along ;. By (2.4)
and Lemma 3.1(i) (Limit Path), *(&7(;) )=up(&)7(&7(;)) . Hence
(3.1) holds for all j # (k, n], and &7(;) is nonswitching.

Fix j�k. As * j (&7(;) )$* j (&), any primary * j (&)-link is a primary
* j (&7(;) )-link. Fix p and s as in the proof of Lemma 3.3 (*-Behavior). As
&7(;) is a nonswitching extension of &, it follows from Lemma 3.3(ii)
(*-Behavior) that p=s. If j�p, then by Lemma 3.3(i) (*-Behavior),
(* j (&7(;) ))&=* j (&) and * j (&) is the initial derivative of up(* j (&))
along * j (&7(;) ); and if j>p, then by Lemma 3.3(iii) (*-Behavior),
* j (&7(;) )=* j (&). In either case, any primary * j (&7(;) )-link is a
primary * j (&)-link. The lemma now follows from Step 2 of Definition 2.8. K

The next lemma, together with the Nonswitching Extension Lemma,
allows us to analyze the computation of *.

Lemma 3.6 (Switching Lemma). Fix k�n and ! # T k. Then either:

(i) !7(;) is switching for all ; # T k&1 such that ;& has finite out-
come along ;; or
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(ii) !7(;) is switching for all ; # T k&1 such that ;& has infinite out-
come along ;; or

(iii) ! is the initial derivative of up j (!) along * j (!) for all j # [k, n].

Proof. We proceed by induction on n&k. (iii) holds if k=n. Suppose
that k<n. Let + be the initial derivative of up(!) along !. If +/!, then by
(2.7) and (2.8), up(!) must have infinite outcome along *(!), so if ; is an
infinite outcome for !, then *(!) | *(!7(;) ), so (ii) holds. Suppose that
+=!. By Lemma 3.1(i) (Limit Path), up(!)=*(!). If up(!)7(&) is switch-
ing for all & # T k such that && has finite outcome along &, then (ii) holds.
If up(!)7(&) is switching for all & # T k such that && has infinite outcome
along &, then (i) holds. Otherwise, by induction, up(!) is the initial
derivative of up j (up(!))=up j (!) along * j (*(!))=* j (!) for all
j # [k+1, n], so (iii) holds. K

Our next lemma shows that if 4k # [T k], then there is a nice approxima-
tion to *k+2(4k) from 4k. This lemma will enable us to show that, under
certain circumstances, nodes not along *k+2(4k) will not declare many
axioms. The lemma is a standard infinite injury lemma, stating that for any
node { which is not along the true path, i.e., not along *k+2(4k), there will
only be finitely many nodes : along 4k which think that { is along the true
path, i.e., such that *k+2(:)${. The machinery which we develop does not
require us to look, locally, beyond the interaction of nodes from three
consecutive levels. This is also the case with Harrington's approach to
0(n)-priority arguments, which uses the Recursion Theorem.

Lemma 3.7 (Infinite Injury Lemma). Fix k�n&2 and 4k # [T k]. Let
4k+1=*(4k) and 4k+2=*(4k+1). Fix { # T k+2 such that {/3 4k+2. Then
[:/4k : *k+2(:)${] is finite.

Proof. Let \=4k+27{. As {/3 4k+2, \/{. Fix ! # T k+1 such that
\7(!)�{. By (2.4), if :/4k and *k+2(:)${, then *(:)$!. If !/3 4k+1,
then by Lemma 3.1 (Limit Path), [:/4k : *(:)$!] is finite, and the
lemma follows.

Suppose that !/4k+1. Fix '{! such that \7(')/4k+2. By (2.4),
'/4k+1, so ! and ' are comparable. dim(\)>k+1, else !=' by (2.9), a
contradiction. !& cannot have infinite outcome along !, else by (2.8), '�!,
so by (2.4) and as !/4k+1, \7(!) �4k+2. Hence by (2.4), !/', !& has
finite outcome along 4k+1 and '& has infinite outcome along 4k+1.
By Lemma 3.1 (Limit Path), we can fix ;/4k such that for all #, if
;�#/4k then *(#)$'. But then for all such #, if *k+2(#)$\, then
*k+2(#)$\7('). K
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4. Links

In this section, we analyze the effect of link formation on the path
generation process. We show that links must be nested, so that the process
of removing links by switching paths must be done in an orderly way, no
matter how the path is extended. We relate the restraint of ! # T k by an
'-link to the satisfaction of whether or not the antiderivatives of ! lie along
the paths computed by '. If ' switches !, then by (2.10), ! will be '&-free;
we show that ! is also '-free. And we show that if up j (!) is 4 j-free for all
j�k and k�dim(!), then ! has sufficiently many 4k&1-free derivatives.

We will need to show that we can return a node to the true path by
taking switching extensions which change the outcomes at the ends of
links. We will need to determine which links must be switched in this way.
This determination depends on the fact that '-links on T k are either nested
or disjoint.

Lemma 4.1 (Nesting Lemma). Fix k�n and ' # T k. Suppose that, for
i�1, [+i , ?i] is an '-link and that ?0 /?1 . Then +1 �+0 or ?0 /+1 .

Proof. We proceed by induction on n&k. We note that there are no
links on T n, so the lemma holds trivially for k=n. Assume that the lemma
is true for k+1 in place of k.

For each i�1, fix the *(')-link [\i , {i] from which [+i , ?i] is derived if
such a link exists; otherwise, [+i , ?i] is a primary '-link, and we set
\i={i=up(+i)=up(?i). It follows from the definition of links that for
i�1, +i is the initial derivative of \i along ' and ?i is the principal
derivative of {i along '. As ?0 /?1 , it follows from Lemma 3.1(ii) (Limit
Path) that {0 /{1 . If {0 /\1 , then by Lemma 3.1(i, ii) (Limit Path),
+0 /?0 /+1 /?1 and the lemma holds. Otherwise, \1 �{0 /{1 . If \0={0 ,
then \1 �\0 . And if \0 {{0 , then by induction, \1 �\0 . So in either case,
it follows from Lemma 3.1(i) (Limit Path), that +1 �+0 . K

Our next definition traces links back to higher trees. Again, a node is
free if it is not restrained by a link. We will show that all free nodes have
all their antiderivatives along the computed paths. The converse of this
statement is not true.

Definition 4.1. Fix k�r�n and !/' # T k. Let [+, ?] be an '-link.
We say that [+, ?] is an (', r)-link if [+, ?] is derived from a primary
*r(')-link. [+, ?] is an (', �r)-link if [+, ?] is an (', j)-link for some
j # [k, r]. We say that ! is (', r)-restrained if there is an (', r)-link [+, ?]
which '-restrains !. In this case, we say that ! is (', r)-restrained by [+, ?].
We say that ! is (', r)-free if ! is not (', r)-restrained. We say that ! is
r-free if ! is (!, r)-free. If 4k # [T k], then we say that ! is (4k, r)-free if !
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is (', r)-free for all (4k, r)-true '$!, and that ! is 4k-free if ! is (4k, n)-
free.

Recall that if [+, ?] is an '-link, then ? is not restrained by [+, ?].
However, as we can have [+, ?]=[+, $) with ?{$ for intervals, we used
closed interval notation [+, ?] for '-links to make sure that there is a one-
one correspondence between intervals which determine links, and the links
themselves.

The next lemma identifies the outcome of a link with the actual outcome
of the node ending the link.

Lemma 4.2 (Faithful Outcome Lemma). Fix +/?/' # T k such that
[+, ?] is an '-link. Then [+, ?] has finite outcome iff ? has finite outcome
along '.

Proof. We proceed by induction on n&k. As there are no links on T n,
the lemma holds for k=n. Assume that k<n.

If [+, ?] is a primary '-link, then ? has infinite outcome along ', and
by Step 2 of Definition 2.8, [+, ?] has infinite outcome. Otherwise, [+, ?]
is derived from some *(')-link [\, {]. By Definition 2.1, induction, and
Step 2 of Definition 2.8,

? has finite outcome along ' iff up(?)={ has infinite outcome
along *(') iff [\, {] has infinite outcome iff [+, ?] has finite
outcome. K

The next lemma relates the presence of antiderivatives of a node ! on a
path computed by ' to the restraint of ! by an '-link. It will follow from
this lemma that (2.10) implies (2.7).

Lemma 4.3 (Link Analysis Lemma). Fix k�r�n and !�' # T k. Then:

(i) (a) If up(!)�3 *('), then there is a primary '-link [+, ?] such
that up(+){up(!) and [+, ?] '-restrains all $�' such that up($)=up(!).

(b) If !/$/', up(!)�up($) and up(!)�3 *('), then there is a
primary '-link [+, ?] which '-restrains both ! and $.

(c) If [+~ , ?~ ] is an '-link which '-restrains the principal derivative !
of up(!), then either there is a primary '-link [+, ?] which '-restrains ! and
up(!)�3 *('), or [+~ , ?~ ] is derived from a *(')-link which *(')-restrains
up(!).

(d) If there is a primary '-link [+, ?] which '-restrains the initial
derivative of up(!), then either up(!)�3 *(') or + is the initial derivative of
up(!) along '.
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(ii) If up(!)�*(') and up(!) is (*('), r)-restrained by [\, {], then !
is (', r)-restrained by an '-link [+, ?] derived from [\, {].

(iii) Suppose that j�r and up j (!) is (* j ('), r)-restrained by [\, {].
Then ! is (', �r)-restrained. Furthermore, if upi (!)�*i (') for all i # [k, j],
then ! is (', r)-restrained by an '-link derived from [\, {].

Proof. (ia) Let }=up(!) 7 *(') and let $ be any derivative of up(!)
along '. As up(!)�3 *('), }/up(!). Hence by Lemma 3.1(i, ii) (Limit
Path), } has an initial derivative +/$ and a principal derivative ?/' such
that +/?. By (2.4) and as }/up(!), ?�3 $. Hence $ is '-restrained by the
primary '-link [+, ?]. As up(+)=}�*('), up(+){up(!).

(ib) As up(!)�3 *('), it follows from the proof of (ia) that there is a
primary '-link [+, ?] which restrains !, and that up(+)=up(?)/up(!).
Fix \�' such that \&=?. By (2.4), up(+) must have finite outcome along
*(\), but infinite outcome along up(!)�up($). If ?/$, then by (2.4), $
cannot lie along $, contradicting (2.7). ?{$ as up(?){up($). But ?, $/',
so ?#$.

(ic) Suppose that [+, ?] is a primary '-link which '-restrains the
principal derivative of up(!) along '. We assume that up(!)�*(') and
derive a contradiction. We compare the relative locations of up(!) and
up(+)=up(?) on T k+1.

First suppose that up(+)/up(!). Fix ; # T k such that up(+)7(;) �
up(!)�*('). By (2.5), ;�!. By (2.4), ;& is the principal derivative of
up(+) along ', so ;&=?. But then ?/! so [+, ?] cannot '-restrain !.

Suppose that up(+)=up(!). As ! and ? are, respectively, the principal
derivatives of up(!) and up(?) along ' and up(+)=up(?), !=?. So [+, ?]
cannot '-restrain !.

Suppose that up(!)/up(+). Fix ; # T k such that up(!)7(;)�up(+).
By (2.5), ;�+. By (2.4), ;& is the principal derivative of up(!) along ?�';
as !/? and ! is the principal derivative of up(!) along ', it follows from
(2.4) that ;&=!. But then !/+ so [+, ?] cannot '-restrain !.

Suppose that up(!) | up(+). Let {=up(!)7up(+), and fix :, ; such
that {7(:)�up(!) and {7(;)�up(+). As ! is '-restrained by the
primary '-link [+, ?] and up(!){up(+)=up(?), +/!/?. By (2.7),
{7(:)�*(!) and {7(;) �*(+),*(?), contradicting (2.6). Thus [+, ?]
cannot '-restrain !.

Now suppose that [+~ , ?~ ] is an '-link which '-restrains the principal
derivative ! of up(!), but that there is no primary '-link which '-restrains
!. By (ia), up(!)�*('), so up(!), up(+~ ), and up(?~ ) are all comparable, and
[up(+~ ), up(?~ )] is a *(')-link. As [+~ , ?~ ] '-restrains !, +~ �!/?~ . As ! is the
principal derivative of up(!) along ', it follows from Lemma 3.1(ii) (Limit
Path) that up(+~ )�up(!). And as ?~ is the principal derivative of up(?~ )
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along ', it follows from Lemma 3.1(ii) (Limit Path) that up(!)/up(?~ ).
Hence [up(+~ ), up(?~ )] *(')-restrains up(!).

(id) Suppose that [+, ?] is a primary '-link which '-restrains the
initial derivative & of up(!), and that up(!)�*('). We assume that +{&
and derive a contradiction. By Lemma 4.1 (Nesting), there can be no
primary &-link which &-restrains +, so by (ia), up(+)�*(&). By (2.7),
up(&)�*(&), so up(+) and up(&) are comparable. By Lemma 3.1(i) (Limit
Path), up(+)�up(&). As [+, ?] is a primary '-link and &/?, all
derivatives of up(+) which are /& must have finite outcome along &,
but ? has infinite outcome along '. As +{&, it follows that up(+) has
infinite outcome along *(&), but finite outcome along *('). But
up(+)/up(&)=up(!)�*('), so by (2.7), up(&)�*(&), *('). Thus up(+)
must have the same outcome along both *(&) and *('), yielding a contra-
diction.

(ii) Suppose that [\, {] is a *(')-link which restrains up(!) and is
derived from the primary *r(')-link [}, `]. By Lemma 3.1 (Limit Path), let
+ (?, resp.) be the initial (principal, resp.) derivative of \ ({, resp.) along
'. As up(!) # [\, {), it follows from (2.10) and Lemma 3.1(i, ii) (Limit
Path) that ! # [+, ?), so ! is '-restrained by [+, ?] which is derived from
[}, `].

(iii) Immediate by induction from (i) and (ii). K

We now show that free nodes lie along the computed path, so (2.10)
implies (2.7).

Lemma 4.4 (Free Implies True Path Lemma). Fix k�r�n and !/'�
4k # [T k] such that ! is (', r)-free. Then for all j # [k, r], up j (!)�* j (').

Proof. Immediate from Lemma 4.3(ia, iii) (Link Analysis). K

When a requirement is assigned to $ # T 0, then by (2.10) and the process
of pulling links down from tree to tree, up i ($) is *i ($)-free for all i�n. If
'&=$ and i�n, i.e., ' determines an outcome for $, then ' may or may
not switch up i ($). We show that in either case, no *i (')-link restrains
upi ($) for any i�n. In fact, we show that this happens not only for $ # T 0,
but also for all k�n, $ # T k and all i # [k, n].

Lemma 4.5 (Free Extension Lemma). Fix k�n and ' # T k. Then for all
i # [k, n], upi ('&) is *i (')-free. Furthermore, if r # [k+1, n] and ' is
r-switching, then for all i # [r, n], *i ('&) | *i ('), upi ('&)=*i ('&) 7 *i ('),
and upi ('&) has finite outcome along *i (') iff upi ('&) has infinite outcome
along *i ('&).
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Proof. Fix p and s as in Lemma 3.3 (*-Behavior). First suppose that
' is nonswitching. Then by Lemma 3.3 (*-Behavior), p=s, upi ('&)=
(*i ('))&=*i ('&) if i # [k, s], and *i (')=*i (ups('&))=*i (*s('&))=
*i ('&) if i # [s+1, n]. It follows from Lemma 3.5 (Nonswitching
Extension) that for all i # [k, n], the primary *i (')-links and the primary
*i ('&)-links coincide. By (2.10), for all i # [k, n], upi ('&) is *i ('&)-free.
Hence for all i # [k, n], up i ('&) must be *i (')-free.

Now suppose that ' is switching. We first show that for all i # [k, n],
upi('&)�*i('). If i # [k, p], then by Lemma 3.3 (*-Behavior),
upi ('&)=(*i ('))&=*i ('&); so as, by (2.7), upi ('&)�*i ('&), it must be
the case that upi ('&)�*i ('). If i # [ p+1, s], then by Lemma 3.3
(*-Behavior), *i ('&) | *i (') and upi ('&)=*i ('&) 7 *i ('); so up i ('&)�
*i ('). If i # [s+1, n], then by Lemma 3.3 (*-Behavior), *i (')=
*i (ups('&)). By (2.7), upi (ups('&))�*i (ups('&)). Hence upi ('&)=
upi (ups('&))�*i (').

We next show that for all i # [k, n], up i ('&) is both *i ('&)-free and
*i (')-free. By (2.10), upi ('&) is *i ('&)-free. Suppose that up i ('&) is not
*i (')-free for some i, which we fix in order to obtain a contradiction. Then
there is a *i (')-link which restrains upi ('&). We note that for any
m # [k, n] and any *m(')-link [+m, ?m], ?m/*m(') and ?m is not *m(')-
restrained by [+m, ?m]. By Lemma 3.3(i, ii) (*-Behavior), if i�s then
upi ('&)=(*i ('))&. Hence it must be the case that i>s. But then by
Lemma 3.3 (*-Behavior), *i (')=*i (ups('&)), and by (2.10), upi (ups('&))
is *i (ups('&))-free. Hence upi ('&)=up i (ups('&)) is *i (')-free, yielding the
desired contradiction.

Finally, we must show that for all i # [ p+1, n], *i ('&) | *i ('),
upi ('&)=*i ('&) 7 *i ('), and up i ('&) has finite outcome along *i (') iff
upi ('&) has infinite outcome along *i ('&). This follows from Lemma
3.3(ii) (*-Behavior) for i # [ p+1, s]. We now proceed by induction on
i # [s+1, n]. By (2.7) and as upi ('&)�*i ('), upi ('&)�*i ('&) 7 *i (').
Suppose that upi ('&)/*i ('&) 7 *i (') in order to obtain a contradiction.
Fix \i�*i ('&) 7*i (') such that (\i)&=up i ('&). Then by (2.4),
(out(\i))& is the principal derivative of up i ('&) along out(\i)�
*i&1('&) 7*i&1('). Now (out(\i))&/up i&1('&), else either *i&1('&) and
*i&1(') are comparable, or up i&1('&){*i&1('&) 7 *i&1('). Hence by
(2.8), (out(\i))& is the initial derivative of upi ('&) along both *i&1('&)
and *i&1('), and (\i)& has infinite outcome along both *i ('&) and *i (').
But then all derivatives of upi ('&) must have finite outcome along both
*i&1('&) and *i&1('). As upi&1('&) is such a derivative, we have con-
tradicted our induction hypothesis.

Suppose that upi ('&) has finite outcome along *i (') (*i ('&), resp.).
Then there is a derivative &i&1 of upi ('&) which has infinite outcome along
*i&1(') (*i&1('&), resp.). Since upi&1('&) is *i&1(')-free (*i&1('&)-free,
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resp.), &i&1=upi&1('&). By induction, upi&1('&) has finite outcome along
*i&1('&) (*i&1('), resp.). As upi&1('&) is *i&1('&)-free (*i&1(')-free,
resp.), all derivatives of up i ('&) along *i&1('&) (*i&1('), resp.) must have
finite outcome along *i&1('&) (*i&1('), resp.). Hence by (2.4), up i ('&) has
infinite outcome along *i ('&) (*i ('), resp.). Now up i ('&) cannot have
infinite outcome along both *i ('&) and *i ('), else by (2.4), up i&1('&)
would have finite outcome along both *i&1('&) and *i&1(') contrary to
our induction assumption. Hence upi ('&) has finite outcome along *i (') iff
upi ('&) has infinite outcome along *i ('&). K

The nodes which are 4k-free are the nodes which have the responsibility
to determine the value of most of the axioms. However, we will be unable
to recursively identify these nodes, and so, will be unable to prevent other
nodes from defining a large number of axioms. We will have to show that
the nodes to which we want to assign responsibility for defining most of the
axioms can automatically transfer this responsibility to their derivatives. In
order for this transfer to occur, we will need to show that principal
derivatives of free nodes are free, and that if a free node has infinite out-
come along the true path 4k+1 through T k+1, then it has infinity many
free derivatives along the true path 4k through T k. We show this in our
next lemma. We will later show that these nodes also have the opportunity
to correct many axioms defined by other nodes. We first note an important
fact, whose proof we leave to the reader.

(4.1) Fix k�r�n, ;�4k # [T k], and +/&/' such that ' is (;, r)-
true. Then [+, &] is a (;, r)-link iff [+, &] is an (', r)-link.

Lemma 4.6 (Free Derivative Lemma). Fix k<n and 4k # [T k]. For all
r # [k, n], let 4r=*r(4k). Suppose that _/4k+1 is 4k+1-free. Then:

(i) If $/4k is the principal derivative of _ along 4k, then $ is
4k-free.

(ii) If _ has infinite outcome along 4k+1 and dim(_)>k, then there
are infinitely many 4k-free derivatives of _.

Proof. (i) By Lemma 3.1(ii) (Limit Path), fix the principal derivative
$ of _ along 4k. Suppose that $ is 4k-restrained by a 4k-link [+, ?] in
order to obtain a contradiction. By repeated applications of Lemma 3.1(i)
(Limit Path) we may fix '/4k such that ?/' and ' is 4k-true. By (4.1),
[+, ?] is an '-link. Without loss of generality, we may assume that [+, ?]
is a primary '-link. (Else by Lemma 4.3(ic) (Link Analysis), _ would be
*(')-restrained by a *(')-link. But then *(') is 4k+1-true, so by (4.1), _
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would not be 4k+1-free, a contradiction.) Let up(+)=up(?)={. By (2.7)
and assumption, _�*($), *('), so by (2.6), _�*(?). By (2.7), {�*(?);
hence _ and { are comparable. By Lemma 3.1(ii) (Limit Path) and as
$/?, it must be the case that _/{. $ cannot be the initial derivative of _
along $, else by Lemma 3.1(i) (Limit Path) and as +�$, {�_, yielding a
contradiction. Let & be the initial derivative of _ along '. By Lemma 3.1(i)
(Limit Path), &/+/$, and we have already shown that $/?. But [&, $]
and [+, ?] are '-links, contradicting Lemma 4.1 (Nesting).

(ii) We note by (i) that if `/4n, then for all j such that k�j�n, the
principal derivative ` j of ` along 4 j is 4 j-free. As lh(4k)=�, it follows
inductively from Lemma 3.1(iv) (Limit Path) that lh(4 j)=� for all j such
that k�j�n. Hence there are infinitely many `/4n such that ` j extends
up j (_) for all j such that k�j�n. Fix such a node !. It suffices to show
that _ has a free derivative along 4k which extends `k.

By (2.4) and Lemma 3.1(ii) (Limit Path), if we fix #k/4k such that
(#k)&=`k, then #k is 4k-true. Hence by (4.1), for all j such that k�j�n
and all $ j�* j (#k), $ j is 4 j-free iff $ j is * j (#k)-free. In particular, _ is *(#k)-
free. It thus follows easily from Lemma 4.4 (Free Implies True Path) and
hypothesis that _ is #k-consistent. Furthermore, as ` j is the principal
derivative of ` j+1 along * j (#k) for all j # [k, n&1] and (#k)&=`k, it
follows from Lemma 3.3 (*-Behavior) that either #k is switching, or (#k)&

is the initial derivative of ` along 4k. In either case, we set \=( ) in
Definition 2.8, Step 4 when we are ready to assign a requirement to #k. As
_/*(#k)/4k+1, it follows from (2.4) and (2.6) that we will take non-
switching extensions in Definition 2.8, Step 4, beginning at #k, and reach a
node ;k at which _ is the shortest node eligible to determine a derivative
along 4k. By Lemma 3.5 (Nonswitching Extension), no new links are for-
med when nonswitching extensions are taken. Since _/*(#k), it will be the
case that *(;k)=*(#k), and so, that _ is ;k-free and ;k-consistent. By
Definition 2.8, Step 4, we define up(;k)=_, and ;k will be 4k-true and
4k-free. Hence by (4.1), ;k will be a 4k-free derivative of _. K

5. Implication Chains

In order to coordinate the action of nodes working for the same (densely
distributed) requirement of type 1 or 2 so that iterated limits will exist, we
will have to force extensions of certain nodes to follow specified paths, so
that we can form implication chains. This will allow us to show that the
nodes work together to specify the same outcome for their axioms. Suppose
that _ and _̂ are two such nodes. If _ and _̂ are incomparable, then the
notion of control defined in Section 6 allows us to prevent the node which
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is off the true path from declaring too many axioms. So we restrict our
attention in this section to the case where _ and _̂ are comparable. We try
to arrange that, whenever possible, either both _ and _̂ are activated or
both _ and _̂ are validated. (Such attempts begin on T dim(_)&1, as the
notion of control is used to coordinate action taken by the construction for
this requirement at nodes on trees T k for k<dim(_)&1, allowing us to
verify the existence of iterated limits, except for the outermost iteration.)
Whenever faced with a path along which this is not the case, we try to
force an extension of paths which causes one of these two nodes to switch
before declaring any new axioms. As we also want these nodes to act in
accordance with the validity of the sentences which generate their action,
we try to construct implication chains between nodes which yield implica-
tions either from M_ to M_̂ or from M_̂ to M_ (see Definitions 2.9 and
2.10). These implication chains are carried down to T 0, where decisions on
action can be made effectively, based on the truth of the sentences.

We now describe the construction of implication chains in more detail.
Fix 40 # [T 0] and assume that 40 is the true path for the construction. For
all i�n, let 4i=*i (40). Suppose that we have _r/_̂r/4r such that
r=dim(_r)&1, up(_r){up(_̂r), and _r and _̂r are working for the same
densely distributed requirement R. Then at most one of _r and _̂r will have
all of its antiderivatives on T i lying along 4i for all i # [r, n], but we will
not be able to recursively identify if either of these nodes has this property,
and if so, which one has the property. We may then be forced to define
infinitely many axioms for R for derivatives of both _r and _̂r. Such axioms
have value determined by the prediction of the truth of certain sentences
derived from the sentence assigned to R. However, we can only show that
these predictions are correct, and hence that the proper value is specified,
when all antiderivatives of the node lie on the true path. Thus the values
produced by derivatives of _̂r and derivatives of _r may be different,
preventing us from computing limits needed to satisfy R. We must therefore
try to coordinate the actions taken for _r and _̂r.

The same sentence, Mup(_r) , will be assigned to both up(_r) and up(_̂r).
The sentences M_r and M_̂r , assigned to _r and _̂r, respectively, will be
obtained by bounding all quantifiers in the first quantifier block of Mup(_r)

by numbers wt(_r) and wt(_̂r), respectively, where wt(_r)<wt(_̂r). If the
quantifier block is a block of universal quantifiers, then M_̂r will formally
imply M_r , and if it is a block of existential quantifiers, then M_r will for-
mally imply M_̂r . Assume the latter, and so, that r is even, for concreteness.

The coordination problem arises when we reach {r such that ({r)&=_̂r,
and _r has finite outcome along {r iff _̂r is has infinite outcome along {r.
We briefly describe the attempt to coordinate action. There are two
cases to consider, depending on whether _r has finite or infinite outcome
along {r.
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Case 1. First suppose that _r has finite outcome along {r, and so, that
_̂r has infinite outcome along {r. Recall that _r/_̂r/{r. We will only need
to follow this case if up(_r)/up(_̂r), so we assume that this latter condi-
tion holds. (If this is not the case, then we will be able to show that there
are too few conflicting axioms to prevent the existence of iterated limits.)
The sentences M_r and M_̂r assigned to _r and _̂r are obtained by bounding
the leading unbounded quantifier block (a block of existential quantifiers)
in Mup(_r)=Mup(_̂r) by numbers wt(_r)<wt(_̂r), respectively. As _r has
finite outcome along {r, we are predicting that M_r is false, so do not have
a formal implication from the truth of M_r to the truth of M_̂r . But if it
were the case that wt(_r)�wt(_̂r) and as we are predicting that M_̂r is true,
M_̂r would formally imply M_r . We thus try to create an implication
between sentences by replacing _r with a derivative _~ r of up(_r) which
extends {r. (The process of obtaining _~ r will require us to switch certain
nodes which are the ends of primary links, or which caused other implica-
tion chains to be created. We may need to iterate this process down to T 0,
and nodes of T 1 which are switched will place elements into sets, so could
injure the truth of the instance of M_̂r on T 1. We will be able to check to
see if this is the case, and will show that it will be unnecessary to pass from
{r to _~ r in this situation, as the construction will resolve conflicts between
axioms declared by derivatives of _r and axioms declared by derivatives of
_̂r automatically. We will try to provide more intuition as to how this
occurs later.) Suppose that we decide to extend {r to _~ r. (In this case, we
say that {r requires extension for _r.) We now look at {~ r such that
({~ r)&=_~ r. If _~ r has finite outcome along {~ r, we proceed as in Case 2 below
(with _~ r in place of _̂r and _̂r in place of _r), where it is assumed that _r

has infinite outcome along {r. If _~ r has infinite outcome along {~ r, then we
will have switched the outcome of up(_r), thus forcing up(_̂r) off the true
path, and will have prevented derivatives of _̂r from defining any axioms
which might prevent the computation of an iterated limit, as we have
delayed the declaration of axioms by derivatives of _̂r.

Case 2. Suppose that _r has infinite outcome along {r. We now have a
formal implication from M_r which seems to be true, to M_̂r which seems
to be false. (We will not allow this to happen for r=0.) If the immediate
successor of _r along {r does not require extension, then we call _̂r a
pseudocompletion of _r. We form an r-implication chain ((_r, _̂r, {r)), to try
to resolve this discrepancy on T r&1. This discrepancy is first observed at
{~ r&1=out({r) along 4r&1. We will then have _~ r&1/_̂r&1/{~ r&1 such that
_~ r&1 and _̂r&1 are, respectively, the principal derivatives of _r and _̂r along
{~ r&1, and ({~ r&1)&=_̂r&1. Furthermore, _~ r&1 has finite outcome along
{~ r&1 and _̂r&1 has infinite outcome {~ r&1. We now have the situation for
r&1 which we discussed in Case 1 for r. If {~ r&1 requires extension for _~ r&1,
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then the r-implication chain ((_r, _̂r, {r)) will be called amenable, and we
will either be able to extend our implications between sentences to level
r&1 and build an amenable (r&1)-implication chain, or will switch paths
as described above.

Once we have an (r&1)-implication chain, we repeat this process. There
are three possibilities. Either we eventually switch _r, thus removing _̂r

from the current path. Or we switch _̂r (this can occur when we try to build
a j-implication chain for j even), thus resolving the conflict by forcing
derivatives of _r and _̂r to define axioms with identical outputs (no axioms
are defined by _̂r while we are resolving the conflict), or we reach T 0 and
do not allow the construction of a 0-implication chain. We show that the
action of the construction on T 0 is still in accordance with the potential
truth of the sentences described.

The process of defining implication chains requires us to define several
notions by simultaneous induction on lh(') for ' # T 0. We begin by defin-
ing 'k requires extension for &k, where 'k=*k('). (In Case 1 of our intuitive
remarks, 'k corresponds to {r and &k to _r.) When 'k requires extension for
&k, then either k=dim(&k)&1 and we will be beginning an attempt to con-
struct a k-implication chain, or k<dim(&k)&1 and we will be attempting
to extend a (k+1)-implication chain which has been defined by the time
'k is reached, to a k-implication chain. If 'k requires extension for &k, then
we will begin a process of defining the k-completion of 'k for &k. (The
k-completion will correspond to the node _~ r when k=r in Case 1). We may
need to switch nodes while constructing a k-completion, and may thereby
discover a new node which requires extension, and so wants to find a
j-completion. In order to resolve potential conflicts about which completion
to pursue, we stipulate that we obtain the j-completion of the new node
before continuing with the process of finding the k-completion of the
original node. (We will show that this process is finitary.) Nodes which are
first encountered during the process of finding a k-completion will not be
implication-free, and so will not be allowed to control the declaration of
axioms. The decision as to whether 'k requires extension for &k will depend
on the elements in PL(up(&k), *('k)), a set of ends of primary links along
*('k) which restrain up(&k), and nodes extending up(&k) which caused
implication chains to be created. These are nodes which will have to be
switched in order to obtain the k-completion of 'k, and in the iterative pro-
cess of finding a 0-implication chain, could place elements into sets which
might destroy the truth of the instance M_̂1 of the sentence whose truth at
a given stage caused us to try to construct the implication chain. (We note
that this can only occur for requirements of type 1.) Should such a destruc-
tion occur, then 'k will not require extension for &k; we will show that if
&k really is on the true path for the construction, then any way of returning
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&k to the true path will cause such a destruction, and that such a destruc-
tion will also allow us to correct axioms. The amenable implication chains
are those which give rise to sets PL(up(&k), *('k)) for which no such
destruction will occur.

There are five conditions which must be satisfied in order for a node to
require extension. Fix nodes &k/$k/'k (the nodes corresponding to _r, _̂r

and {r, respectively, in Case 1 of our intuitive remarks), and let !k be the
immediate successor of &k along 'k. Condition (5.1) requires that, if k=r,
then for all i�k, the principal derivatives of &k along out i (!k) and $k along
outi ('k) are implication-free (see Definition 5.7). This will correspond to
assuming that all action to find j-completions for j�k which was started
before out0('k) has been completed, so we are free to try to resolve the
current conflict between sentences. (If k<r, then we must try to build com-
pletions even when a node is not implication-free as part of the process for
finding completions for other nodes.) We also require that out0(!k) is
pseudotrue; should this condition fail, then !k will not be allowed to define
axioms. Condition (5.2) implies that two nodes disagree about the value to
be assigned to a newly declared axiom, but there is no implication between
the sentences. This corresponds to Case 1 of our intuitive remarks, and &k

in (5.2) corresponds to _r in Case 1. By (5.2) and Lemma 4.3(ia) (Link
Analysis), condition (5.3) will imply that up(&k)/up($k); and the failure of
(5.3) will imply that up(&k) and up($k) are incomparable, so by (2.6), no
derivatives of up(&k) can extend $k. In the latter case, it is impossible to
carry out the extension process needed to find a completion. (5.4) is the
condition which determines if any node which must be switched during
the iteration process for finding completions will place elements into the
restraint set for the sentence whose apparent truth caused us to want
to act; the condition requires that such nodes do not exist. This will
always be the case for requirements of type 2, so (5.4) only applies
to requirements of type 1. Condition (5.5)(i) is the condition required
to start building an r-implication chain, and condition (5.5)(ii) describes
the situation which arises in extending a (k+1)-implication chain to a
k-implication chain.

Definition 5.1. Suppose that k�r<n and &k/!k�$k/'k # T k are
given such that ('k)&=$k, (!k)&=&k, and r=dim(&k)&1. We say that 'k

requires extension for &k if &k is the shortest node for which the following
conditions hold:

(5.1) If k=r, then for all i�r, the principal derivatives of &r along
outi (!r) and $r along outi ('r) are implication-free (see Definition 5.7), and
out0(!r) is pseudotrue (see Definition 5.9).
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(5.2) tp(&k) # [1, 2], &k#$k, up($k){up(&k), $k has infinite outcome
along 'k, &k is the principal derivative of up(&k) along 'k, and &k has finite
outcome along 'k (so &k is the initial derivative of up(&k) along 'k).

(5.3) There is no primary 'k-link which restrains &k.

(5.4) If k=r and tp($k)=1, then for every ?k+1 # PL(up(&k), *('k)),
TS(?k+1) & RS($k)=< (see Definition 5.3 for the definition of PL sets).

(5.5) One of the following conditions holds:

(i) r=k.

(ii) There is an amenable (k+1)-implication chain ((_ j, _̂ j, { j):
r� j�k+1) along *('k) such that 'k=out({k+1), and $k (&k, resp.) is the
principal derivative of _̂k+1 (_k+1, resp.) along 'k. (See Definitions 5.4
and 5.2 for the definitions of amenable and implication chain.)

We say that 'k requires extension if 'k requires extension for some &k. K

Implication chains keep track of the implications between sentences for
a requirement. The first and second coordinates of the triple at a given level
of the implication chain determine the nodes which are potentially respon-
sible for defining axioms for the requirement. The third coordinate keeps
track of the conflicting outcomes of the first and second coordinates. The
k-implication chain follows the implications of sentences from the starting
level, T r, down to T k. The conditions mentioned in Definition 5.2 are
described in the motivation at the beginning of the section. In addition, we
require the principal derivatives of _r along out i ({� r) and _̂r along outi({r)
to be implication-free for all i�r (Condition (5.10)). This will correspond
to assuming that all action to find j-completions for j�k which was started
before out i ({� r) or out i ({r) was completed before that node is reached, so
we are free to try to resolve the current conflict between sentences. If k<r,
then we have already begun building the implication chain, and must con-
tinue to extend it within other implication chains; thus the principal
derivatives of _k and _̂k along out i ({k) need not be implication-free.
(We note that Condition (5.6) below allows up(_r) | up(_̂r).)

We will also need to describe the situation when the first triple of an
implication chain can be formed by taking an immediate extension of a
node _̂r in the absence of a requires extension configuration; such a _̂r will
be called a pseudocompletion.

Definition 5.2. Fix k � r � n. A k-implication chain is a sequence
((_ j, _̂ j, { j) : r� j�k) such that:

(5.6) _r#_̂r and up(_r){up(_̂r).

(5.7) tp(_r) # [1, 2], dim(_r)=r+1.
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(5.8) (i) _k/_̂k.

(ii) _̂k=({k)&/{k.

(5.9) If k<r, then up(_k)=_̂k+1 and up(_̂k)=_k+1.

(5.10) (i) Fix {� r�_̂r such that ({� r)&=_r. Then for all i�r, the prin-
cipal derivative of _r along outi ({� r) is implication-free (see Definition 5.7),
and _̂r is implication-free.

(ii) For all i�r, the principal derivative of _̂r along out i ({r) is
implication-free.

(5.11) (i) _k has infinite outcome along _̂k.

(ii) _̂k has finite outcome along {k.

(5.12) If k<r, then ((_ j, _̂ j, { j): r�j�k+1) is a (k+1)-implica-
tion chain along {k+1 and out({k+1)/{k.

We say that this implication chain is along \k # T k (4k # [T k], resp.) if
{k�\k ({k/4k, resp.).

Suppose that k=r, Conditions (5.6), (5.7), (5.8)(i), (5.9), (5.10)(i), and
(5.11)(i) hold, and _̂r is an initial derivative. In this case, we call _̂r a
pseudocompletion of _r. _̂r is a pseudocompletion if it is a pseudocompletion
of some node. K

The process of building a new r-implication chain, or of extending a
(k+1)-implication chain to a k-implication chain, will require us to build
completions. We will define PL sets, which keep track of the antiderivatives
of those nodes of T 1 which will eventually have to be switched (and might
thereby injure restraint sets), should we need to pull the implication chains
down to T 0 during the process of building completions. Consider the situa-
tion wherein a node of T k requires extension. Thus assume that we have
&k/$k/'k # T k such that ('k)&=$k and 'k requires extension for &k. We
wish to construct a }k

#'k such that up(}k)=up(&k)=&k+1. By (2.10), this
requires taking extensions of 'k with the goal of making &k+1 a *(}k)-free
node. Thus we must eliminate the links which restrain &k+1.

Let 'u=*u('k) for all u # [k, n]. We will show later that, in this situa-
tion, there is an 'k+1-link which restrains &k+1 and &k+1/$k+1=up($k).
By Lemma 4.1 (Nesting), there will be an 'k+1-link [+k+1, ?k+1] which
restrains &k+1 and contains all 'k+1-links which restrain &k+1, and ?k+1

will be 'k+1-free. By (2.10), we must eliminate this link in order to make
&k+1 free; this is done as follows. Let [+k+1, ?k+1] be derived from the
primary ' j-link [+ j, ? j] (we allow j=k+1). By Lemma 3.5 (Nonswitching
Extension) and since all blocks defined in Section 2 are finite, we will be
able to find a nonswitching extension '~ k of 'k such that up j ('~ k)=? j and
'~ k is an initial derivative of up j&1('~ k)#' j&1. By Lemma 3.6 (Switching),
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we can find '̂k such that ('̂k)&='~ k, *i ('̂k)#*i ('~ k) for all i<j, and '̂k

switches ? j. [+k+1, ?k+1] will not be a *k+1('̂k)-link, and every *k+1('̂k)-
link which restrains &k+1 will be properly contained in the interval
[+k+1, ?k+1]. Hence barring other considerations, we can repeat this pro-
cess for the longest *k+1('̂k)-link which restrains &k+1, and eventually find
a new derivative }k of &k+1 of T k. (There may be additional considerations,
but for this paragraph, assume that there are none.) This procedure will be
induced by taking extensions of nodes on T 0 which will be nonswitching
except when needed to switch one of the above nodes ending a link.
out0(}k) will act according to the validity of its sentence unless k=0, in
which case we force }0 to have infinite outcome, and show that this action
is in accordance with the validity of the sentence assigned to }0. If k>0
and the action of out0(}k) produces an immediate successor '� of out0(}k)
such that }k has infinite outcome along *k('� ), then the process halts
since we will then have switched &k+1, so will have forced $k+1 not to lie
along 4k+1. Otherwise, we will have constructed a k-implication chain,
and *k&1('� ) will require extension, so we can repeat this process. ? j is
placed in PL(&k+1, 'k+1) via (5.13) whenever j=k+1, i.e., whenever
[+k+1, ?k+1] is a primary 'k+1-link. Each such ? j will be the last node of
a primary 'k+1-link which restrains &k+1. The nodes in PL(&k+1, 'k+1) are
those which cause a small element to be placed in a set when we carry out
the backtracking process for k=0, and may thereby injure the oracle of the
computation which has generated the implication chain. We will check to
see, for all nodes in PL(&k+1, 'k+1), whether this action causes an element
to be placed into this oracle. If not, then the implication chains construc-
ted during this process are called amenable (see Definition 5.4). The
derivative operation will provide a one-one correspondence between
PL(&k+1, 'k+1) and PL($k, *k('� )), so it will suffice to consider only the
nodes in PL sets.

There are additional considerations which we need to take into account.
Our proof requires that we follow the backtracking process for a node
whenever that node requires extension. In the preceding paragraph,
* j&1('~ k) will have infinite outcome along * j&1('̂k). It is thus possible that
* j&1('̂k) will require extension for some # j&1. Furthermore, it is possible
that for such a # j&1, if # j=up(# j&1), then there is a * j ('̂k)-link which
restrains # j, but no *k+1('̂k)-link derived from this * j ('̂k)-link restrains
&k+1, so this situation is not covered by (5.13).

Suppose that * j&1('̂k) requires extension for # j&1. By (5.1) and since
* j&1('̂k) is implication-restrained, dim(# j)>j. In order to make our con-
struction cohere, we must perform the backtracking process for * j&1('̂k)
(which entails removing all links around # j) before proceeding as in the
preceding paragraph for the next link which restrains &k+1. This may
require us to switch additional primary links, say [\t, {̂t] on T t for t� j,
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with &k+1/outk+1(\t)/$k+1. Also, once we have found a new derivative
{ j&1 of # j, we must force it to have infinite outcome along its immediate
extension in order to preclude the existence of a ( j&1)-implication chain
along the true path. In either case, we have to switch nodes on T k+1 if
t=k+1 or j=k+1, respectively, until we complete the backtracking
process for * j&1('̂k), i.e., until we reach the primary completion of
* j&1('̂k). For the first case, we put all nodes {k+1 # PL(#k+1, 'k+1) into
PL(&k+1, 'k+1) via (5.14)(ii) as these nodes have to be switched in
order to backtrack *('̂k), and call PL(#k+1, 'k+1) a component of
PL(&k+1, 'k+1). For the second case, we put #k+1 into PL(&k+1, 'k+1) via
(5.14)(i).

In the preceding paragraphs, we have tried to motivate the definition of
PL(&k+1, 'k+1) by looking ahead to some '̂k

#out('k+1), and seeing
which nodes �'k+1 need to be switched in order to carry out the back-
tracking process beginning at '̂k. However, in the definition of PL sets
below, we will want to inductively describe this set in advance, as we pass
from &k+1 to 'k+1, in anticipation of later finding '̂k and having to carry
out the corresponding backtracking process. When we wanted to place an
element {k+1 into PL(&k+1, 'k+1) through (5.13), it was the case that {k+1

was the end of a primary 'k+1-link restraining &k+1, so these nodes are
readily identified in advance. We will show that the other case, described
in the preceding paragraph and specified in (5.14), corresponds precisely to
a reversal of a backtracking process beginning at a node $k+1 which
requires extension for some +k+1/&k+1 with &k+1/($k+1)&, and so we
can again identify these nodes in advance. (($k+1)& will be the #k+1 of the
preceding paragraph.) Once we complete the backtracking process for
$k+1, i.e., once we find a primary completion }k+1 of $k+1, the component
corresponding to action for $k+1 does not place elements #}k+1 into
PL(&k+1, 'k+1). Thus the node !k+1 in (5.14) (for j=k+1) must satisfy
!k+1�}k+1.

The backtracking process is induced by the process described above,
starting at out0('k) and ending at out0(}k). Thus we begin at out0('k), and
proceed as described above by taking extensions on T 0 which are never
j-switching for any j�k, until we reach a node }0

#out0('k) which has the
properties of out0(}k). As activated and validated outcomes are unique on
T 0, there will be a unique way to carry out the backtracking process, as
long as we decide to follow activated outcomes of nodes when not
otherwise specified. Assume that }k has been defined in this way. For all
i�k, out i (}k) will be called the i-completion of 'k for &k, and will be
defined in Definition 5.6. In the definition of the PL sets, which we now
present, it would be helpful for the reader to think of j as the k+1 of the
preceding remarks. The definition is an inductive definition, proceeding by
induction on n&j and then by induction on lh(' j)&lh(& j).
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Definition 5.3. Fix j<n and & j/' j # T j. We place { j/' j into
PL(& j, ' j) if one of the following conditions holds:

(5.13) There is a + j such that + j�& j/{ j and [+ j, { j] is a primary
' j-link.

(5.14) There are + j, $ j, and ! j such that + j/& j/($ j)&/$ j�
! j�' j, $ j requires extension for + j and has no j-completion with infinite
outcome along ! j, and either:

(i) { j=($ j)&; or

(ii) { j # PL(($ j)&, ! j).

If nodes satisfying the hypotheses of (5.14) exist, then we call PL(($ j)&, ! j)
a component of PL(& j, ' j).

Lemma 5.1 (PL Analysis Lemma). Fix j�n and & j�\� j/_ j�' j # T j

such that (_ j)&=\� j. Then:

(i) PL(& j, \� j)�PL(& j, _ j).

(ii) PL(& j, _ j)"PL(& j, \� j)�[\� j].

(iii) If PL(& j, _ j)"PL(& j, \� j){<, then either PL(& j, _ j)"
PL(& j, \� j)=[\� j] and \� j is the last node of a primary _ j-link, or _ j requires
extension.

(iv) If \� j has finite outcome along _ j then PL(& j, _ j)=PL(& j, \� j).

(v) If \� j is ' j-free and for every $ j and + j such that $ j requires
extension for + j and + j/& j/($ j)&/$ j�' j, it is the case that there is a
} j/' j such that } j is the j-completion of $ j and } j has infinite outcome
along ' j, then PL(& j, _ j)=PL(& j, ' j).

(vi) If ! j�' j and PL(\� j, ! j) is a component of PL(& j, ' j), then
PL(\� j, ! j) _ [\� j]�PL(& j, ' j).

(vii) If PL(\� j, ' j) is a component of PL(& j, ' j) and (' j)& #
PL(& j, ' j), then (' j)& # PL(\� j, ' j) or (' j)&=\� j.

(viii) If every $ j�\� j which requires extension has a j-completion �\� j

with infinite outcome along _ j, then PL(& j, ' j)�PL(& j, \� j) _ PL(\� j, ' j) _

[\� j].

(ix) Given \~ j such that PL(\~ j, ' j) is a component of PL(\� j, ' j)
and PL(\� j, ' j) is a component of PL(& j, ' j), then PL(\~ j, ' j) _ [\~ j]�
PL(& j, ' j).

Proof. (i) By definition.

(ii, iii) Any primary _ j-link which is not a primary \� j-link has \� j as
its last element. And new components can first appear at _ j only if _ j
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requires extension. Hence (iii) holds. (ii) now follows from (5.13), (5.14)(i),
and induction on lh(' j)&lh(& j) for (5.14)(ii).

(iv) If \� j has finite outcome along _ j, then \� j is not the last element
of a primary _ j-link. By (5.2), if _ j requires extension, then \� j has infinite
outcome along _ j. (iv) now follows from (i) and (iii).

(v) As \� j is ' j-free, it follows from (4.1) that the primary ' j-links
which restrain & j coincide with the primary _ j-links restraining & j. Hence all
nodes placed in PL(& j, ' j) via (5.13) are already in PL(& j, _ j). Suppose that
& j/($ j)&/$ j�' j and $ j requires extension for + j/& j. By the hypothesis
of (v), there is a } j such that [+ j, } j] is a primary ' j-link which restrains
& j. As \� j is ' j-free and & j�\� j, } j�\� j=(_ j)&. Hence by (5.14), all elements
placed in PL(& j, ' j) via (5.14) are already in PL(& j, _ j), so (v) follows.

(vi) Immediate from (5.14).

(vii) We proceed by induction on lh(\� j)&lh(& j). By definition, if
PL(\� j, ' j) is a component of PL(& j, ' j), then & j/\� j and there is a +� j/& j

such that _ j requires extension for +� j. Hence if (' j)& enters PL(& j, ' j) via
(5.13), then the corresponding primary link [+ j, (' j)&] also restrains \� j.
Thus (' j)& # PL(\� j, ' j) as desired.

Suppose that (' j)& enters PL(& j, ' j) via (5.14). Then there are $ j/{ j�' j

such that & j/$ j=({ j)&, { j requires extension for some + j/& j, PL($ j, ' j)
is a component of PL(& j, ' j), and either (' j)&=$ j or (' j)& # PL($ j, ' j). If
\� j/$ j, then as + j/& j/\� j, PL($ j, ' j) is a component of PL(\� j, ' j), so
(vii) follows from (5.14). If \� j=$ j, then (vii) is immediate. Otherwise,
as $ j, \� j/' j, it follows that $ j/\� j/' j; hence as +� j/& j/$ j, PL(\� j, ' j)
is a component of PL($ j, ' j). Now lh(\� j)&lh($ j)<lh(\� j)&lh(& j) and
(' j)&{$ j, so by induction, (' j)& # PL($ j, ' j). But PL($ j, ' j) is a compo-
nent of PL(& j, ' j) and lh($ j)&lh(& j)<lh(\� j)&lh(& j), so by induction,
either (' j)&=\� j or (' j)& # PL(\� j, ' j).

(viii) Suppose that { j # PL(& j, ' j). First assume that (5.13) holds for { j.
Then there is a + j/{ j such that [+ j, { j] is a primary ' j-link restraining & j.
If { j/\� j, then { j is placed into PL(& j, \� j) by (5.13). And if { j

#\� j, then { j

is placed into PL(\� j, ' j) by (5.13).
Next assume that { j is placed into PL(& j, ' j) by (5.14), because of the

component PL($ j, !� j) associated with some $ j
#& j which requires exten-

sion for some + j/& j. If $ j�\� j, then by hypothesis, $ j has a j-completion
} j�\� j which has infinite outcome along \� j, so by the properties of ! j in
(5.14), { j/!� j�\� j. Hence either { j=\� j, or { j is placed into PL(& j, \� j) by
(5.14). Otherwise, \� j/$ j. As + j/& j�\� j, PL($ j, !� j) is a component of
PL(\� j, ' j), so { j is placed into PL(\� j, ' j) by (5.14).

(ix) Immediate from (vi). K
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As mentioned earlier, the process of extending a k-implication chain to
a 0-implication chain may injure the validity of a sentence whose truth we
are trying to preserve. When this happens, we will not act to extend the
k-implication chain. Our next definition allows us to differentiate between the
k-implication chains which we want to extend (the amenable implication
chains), and those which we do not want to extend (the nonamenable
implication chains). Condition (5.15) applies when up(_̂r) has an initial
derivative /_r, specifying that in this case, when we first observe the
(k+1)-implication chain along a path of T k+1 generated by a node on T k,
then we have a configuration of nodes on T k which gives rise to a requires
extension situation, so Condition (5.4) will be applicable. Condition (5.16)
imposes a restriction similar to that imposed by (5.4) when up(_̂r) does not
have an initial derivative /_r. This restriction requires the ability to
preserve certain computations while the backtracking process is carried
out. (Note that at the beginning level r for an implication chain, it is
possible to have an implication chain which arises without a requires
extension situation, if, for example, _̂r is an initial derivative.) We will show
later that similar restrictions are automatically carried down to lower levels.
A similar restriction needs to apply to separate the pseudocompletions
which potentially give rise to amenable implication chains from those
which do not. Thus we also define amenable pseudocompletions.

Definition 5.4. Suppose that k=r and that _̂r is a pseudocompletion
of _r. We say that _̂r is an amenable pseudocompletion of _r if either
tp(_r){1, or for every ?r # PL(_r, _̂r), TS(?r) & RS(_r)=<.

Now suppose that ((_ j, _̂ j, { j) : r�j�k) is a k-implication chain
along \k, and for each j # [k, r], fix {� j/{ j such that ({� j)&=_ j. Let &k be
the principal derivative of up(_̂k) along {k. We say that ((_ j, _̂ j, { j):
r�j�k) is amenable if one of conditions (5.15) and (5.16) below holds,
and if k=r, then _k is the shortest string satisfying (5.6)�(5.11), and (5.15)
or (5.16) for _̂k and {k.

(5.15) {� k requires extension for &k and _̂k is the primary k-completion
of {� k. (See Definition 5.6 for the definition of k-completion.)

(5.16) k=r and _̂r is an amenable pseudocompletion of _r.

A nonamenable implication chain is an implication chain which is not
amenable. K

The backtracking process requires us to keep track, along each path, of
the nodes which require extension but have no 0-completion along the
path, and to find 0-completions for these nodes in reverse order of the
order in which we discover that they require extension. This ordering is
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defined in Definition 5.8, and depends on the definition of completions
(Definition 5.6). In order to show that backtracking can be carried out, we
require that the final paths through T 0 be admissible (see Definition 5.9).
There is a potential circularity here, which we avoid by requiring these
nodes to be preadmissible. Preadmissibility ensures that nodes will only be
switched when they do not interfere with the backtracking process; and in
the course of finding completions, nodes will be switched only as required
by the backtracking process. Completions are then defined as the nodes
reached when the backtracking process has been completed.

Because of the interdependence of the next five definitions, we will
explain some of the terminology used in the next definition. A node \ will
be completion-respecting if for all j�n, any node along * j (\) which
requires extension has a completion along * j (\). \ is completion-consistent
via the sequence S if the paths determined by \ are compatible with
primary completions of all nodes of S, where the nodes in S are those
which require extension but have not yet found primary completions, and
the order in which the completions are to be found is the reverse of the
ordering of S. \ is implication-free if \ is not a derivative of any node which
is captured in the backtracking process, and is implication-restrained
otherwise. Implication-restrained nodes will not define too many axioms
during the construction, so there is no harm in forcing their outcomes.

The clauses of Definition 5.5 spell out the extensions which allow us to
maintain compatibility with the backtracking process. Condition (5.17)(i)
requires that we take switching extensions of primary 0-completions and
pseudocompletions on T 0, and Condition (5.17)(ii) requires that non-
switching extensions be taken for all nodes which are not captured during a
backtracking process but are derivatives of captured nodes. Condition (5.18)
covers extensions taken during the backtracking process. Clause (i)
requires that we take (k+1)-switching extensions of nodes of T k which are
primary completions. This condition is needed to maintain compatibility
with all completions which are forced to be taken during the construction.
Clause (ii) requires us to switch outcomes of primary links in a minimal
way, in order to return a designated node to the true path. Clause (iii)
specifies that no other nodes captured by the backtracking process have
switching extensions. (The reader may want to refer back to the remarks
following Definition 5.2 for intuition.)

Definition 5.5. Fix _ # T 0. If lh(_)>0, let \=_&, and assume that \
is completion-consistent via some sequence S=('i : i<m) for some m�0
(see Definition 5.8), and for each i<m, fix k(i) such that 'i # T k(i) and &i

such that 'i requires extension for &i . We say that _ is preadmissible if
either _=( ) , or _{( ) , \ is admissible (see Definition 5.9), and the
following conditions hold:
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(5.17) (i) If either \ is a primary 0-completion or an amenable
pseudocompletion, then \ has infinite outcome along _.

(ii) If the hypotheses of (i) fail, S=( ) , and \ is implication-
restrained (see Definition 5.7), then _ is a nonswitching extension of \.

(5.18) If S{( ) , then one of the following conditions holds:

(i) (a) There are k(m) and 'm # T k(m) such that \& is completion-
consistent via ('i : i�m) , \ is a 0-completion of 'm , and

(b) _ is a (k(m)+1)-switching extension of \.

(ii) (a) (i.a) fails, and there is a j>k(m&1) and a *k(m&1)+1(\)-
link [+k(m&1)+1, ?k(m&1)+1] restraining up(&m&1) of shortest length which
is derived from a primary * j (\)-link [+ j, ? j] such that \ is the initial
derivative of up j&1(\) along \ and up j&1(\) is a derivative of ? j; and

(b) _ is a j-switching extension of \.

(iii) (i.a) and (ii.a) fail, _ is a nonswitching extension of \, and if
there are two nonswitching immediate extensions of \, then \ is activated
along _.

(We note that the extensions specified by (5.18) are unique.) K

We described role of completions earlier. We will need to show later that
completions never require extension. This will follow from our requirement
that completions be nonswitching extensions.

Definition 5.6. Fix k�n and }k # T k. We say that }k is the k-comple-
tion if out0(}k) is nonswitching and either:

(5.19) There are m�0, #k/\k/}k, and a sequence S=('i : i�m)
such that 'm=\k requires extension for #k, up(#k)=up(}k), both out0(\k)
and out0((}k)&) are completion-consistent via S (see Definition 5.8), and
there is no k-completion }~ k of \k such that }~ k/}k (in this case, we say
that }k is the primary k-completion of \k ( for #k)); or

(5.20) There is a j>k and a } j # T j such that } j is a primary j-com-
pletion of some \ j and }k is an initial derivative of } j. (In this case, we say
that }k is the k-completion of \ j.)

We say that }k is a completion if }k is a k-completion of some \ j. (We note
that if } is a 0-completion, then it must be a 0-completion of the last
element, \k, of the sequence via which }& is completion-consistent, and
cannot be the 0-completion of any other node. It also follows from (5.18)
that for all j�k, there is at most one j-completion of \k.) K

The process of finding a 0-completion of 'k may force paths to follow
nodes on T j for all j�n which were not previously followed. For j�k, the
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new nodes will be those in the interval [out j ('k), } j], where } j is the
j-completion of 'k. We will not want to switch any of these nodes except
for } j, unless we are forced to do so during the backtracking process (it is
here that we need to add Condition (5.14) to the definition of PL). Thus
we call nodes in this interval primarily implication-restrained (Condition
(5.21)) if j=k and hereditarily implication-restrained (Condition (5.22)) if
j<k. In addition, we do not want derivatives of implication-restrained nodes
to be switched, unless we are forced to switch these derivatives during the
backtracking process; so we specify that all derivatives of implication-
restrained nodes are also implication-restrained (Condition (5.23)).

Definition 5.7. A node !k # T k is primarily implication-restrained if:

(5.21) There is an 'k�!k which requires extension, but there is no
k-completion }k�!k of 'k.

!k is hereditarily implication-restrained if:

(5.22) There are j>k and ' j such that outk(' j)�!k, ' j requires
extension, and there is no k-completion }k�!k of ' j.

!k is inductively implication-restrained if the following condition holds:

(5.23) up j (!k) is implication-restrained for some j # (k, n].

!k is implication-restrained if !k is either primarily, hereditarily, or induc-
tively implication-restrained. !k is implication-free if !k is not implication-
restrained. (By Definition 2.1, the implication-restrained nodes can be
recursively recognized.) K

Suppose that !k # T k. !k is completion-respecting if for all j # [k, n] and
all \ j�* j (!k), if \ j requires extension, then \ j has a j-completion along
* j (!k). It is possible for such a node \ j�* j (!k) to have a k-completion
along !k but not to have a j-completion along * j (!k). This will happen only
during an iteration of the backtracking process, and in this case, \ j will
have an i-completion along *i ($k) for all i # [k, j). Such a \ j has already
found a j-completion, and does not need to find another one; in fact, an
attempt to maintain compatibility with its j-completion may conflict with
being able to carry out a finitary backtracking process. Thus we will need
to determine the nodes \ j�* j (!k) which require extension but do not have
k-completions along !k. These are the nodes for which we need to find
k-completions, and are placed in the completion-deficient set at !k. These
nodes are ordered into a sequence by the order of the appearance of their
images under outk on the path of T k under construction. This ordering is
completion-consistent if it respects the dimension ordering of the trees on
which the nodes appear, refined by the length of nodes on trees of the same
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dimension. We will show that the backtracking process produces comple-
tions in the reverse order to the completion-consistent ordering, if paths
through trees are admissible, as defined in Definition 5.9.

Definition 5.8. Fix k�n, !k # T k and a set S of nodes of
� [\ j�*i (!k) : k� j�n]. We say that !k is completion-deficient for S if
the following condition holds:

(5.24) For all j # [k, n] and \ j�* j (!k), \ j # S iff \ j requires exten-
sion and has no k-completion �!k.

!k is completion-respecting if for all j # [k, n] and \ j�* j (!k), if \ j requires
extension, then there is a j-completion } j�* j (!k) of \ j.

Given S such that !k is completion-deficient for S, let S� =('i : i<m) be
the linear ordering of S induced by the inclusion ordering on outk(&) for
& # S. By (2.5) and Lemma 5.6 (Uniqueness of Requiring Extension), this
ordering will be well-defined. For all i<m, fix k(i) such that 'i # T k(i).
(Note that, by Lemma 3.2(ii) (Out) and Lemma 3.1(ii) (Limit Path), this
ordering will be independent of k as long as k�k(i) for all i<m.) We say
that !k is completion-consistent via S� if the following conditions hold:

(5.25) If i< j<m, then k(i)�k( j).

(5.26) If i< j<m and k(i)=k( j), then 'i/'j .

!k is hereditarily completion-consistent if every \k�!k is completion-
consistent. K

Admissible nodes, as defined below, are nodes which are preadmissible,
hereditarily completion-consistent in a uniform manner as specified by
Condition (5.27), act in a way to preclude the existence of amenable
implication chains along the final paths through the trees as specified in
(5.28), and preserve a correspondence between PL sets on consecutive
trees, as specified in (5.29)(i�iii). Condition (5.29)(i) specifies that when the
extension of a path on T k causes the path on T k+1 to switch and a node
to leave a viable PL set on T k+1, then a derivative of that node enters a
corresponding PL set on T k. If the above happens during the backtracking
process for a node, then (5.29)(ii) specifies that immediately at the end of
that process, the PL set on T k for the predecessor of the node requiring
extension consists exactly of derivatives of all nodes in a corresponding PL
set on T k+1 at the beginning of the backtracking process. Furthermore, if
no additional nodes need to go through the backtracking process at this
point, then (5.29)(iii) specifies that the node completing the backtracking
process is implication-free. Pseudotrue nodes are nodes which are not
involved in the backtracking process, so action of the construction at these
nodes is according to the truth of the sentences generating action.
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Definition 5.9. Fix k�n and _k # T k, and let _=out0(_k). We say
that _k is k-completion-free if for every j # [k, n], * j (_) is not a primary
completion, and if k=0, we say that _=_k is completion-free if _ is 0-com-
pletion-free. We say that _ is pseudotrue if _ is preadmissible, completion-
consistent via ( ) , and completion-free. We say that _ is admissible if _ is
preadmissible, hereditarily completion-consistent, completion-consistent via
a sequence S, and the following conditions hold:

(5.27) If !/_ is completion-consistent via S� and ' # S� , then either '
has a 0-completion }�_, or ' # S.

(5.28) If '�_ is pseudotrue, then there is no amenable j-implication
chain along * j (') for any j�n.

(5.29) (i) For all k<n and +k/&k/'k�*k(_) # T k, if up(+k)/
up(&k), *('k) and &k is implication-free, then

PL(up(+k), up(&k))�[up(!k) : !k # PL(&k, 'k)] _ PL(up(+k), *('k)).

(ii) For all k<n and +k/&k=('k)&/'k/}k�*k(_) # T k, if 'k

requires extension for +k and }k is the primary completion of 'k, then

PL(up(+k), *('k))=[up(!k) : !k # PL(&k; }k)].

(iii) If '�_ is completion-consistent via ( ) and ' is a 0-completion,
then ' is implication-free.

40 # [T 0] is admissible if every _/40 is admissible. 4k # [T k] is admissible
if 4k=*k(40) for some admissible 40 # [T 0]. K

We now show that an amenable k-implication chain gives rise to a node
on T k&1 which requires extension.

Lemma 5.2 (Requires Extension Lemma). Fix k such that 0<k<n and
fix _k # T k. Let r=dim(_k)&1, and assume that k�r. Suppose that
((_ j, _̂ j, { j) : r�j�k) is an amenable k-implication chain. Let 'k&1=
out({k) and let &k&1 be the principal derivative of _k along 'k&1. Assume
that '=out0('k&1) is preadmissible. Then 'k&1 requires extension for &k&1.

Proof. Let $k&1=('k&1)&. As 'k&1=out({k) and as, by (5.8)(ii),
_̂k=({k)&, $k&1 is the principal derivative of _̂k along 'k&1. We verify
(5.1)�(5.5).

Condition (5.1) is vacuous. By (5.6) and (5.9), _k#_̂k#_r, so by (5.7),
tp(&k&1) # [1, 2]. Furthermore, &k&1 and $k&1 are, respectively, the
principal derivatives of _k and _̂k along 'k&1, so &k&1#$k&1. By (5.6) and
(5.9), upr+1(&k&1){upr+1($k&1), so up(&k&1){up($k&1). By (5.11),
_̂k has finite outcome along {k and _k has infinite outcome along {k, so by
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(2.4) and as &k&1 and $k&1 are, respectively, the principal derivatives of _k

and _̂k along 'k&1, &k&1 has finite outcome along 'k&1 and $k&1 has
infinite outcome along 'k&1. Hence (5.2) holds.

By Lemma 3.2(i) (Out) and hypothesis, *('k&1)={k
#_k=up(&k&1). By

(5.2), &k&1 must be both the initial and principal derivative of up(&k&1)
along *('k&1), so cannot be the first node in a primary *('k&1)-link.
Condition (5.3) now follows from Lemma 4.3(i)(d) (Link Analysis). Condi-
tion (5.4) is vacuous as k&1<r. Condition (5.5) follows from the
hypothesis. The minimality of lh(&k&1) follows from the uniqueness of _r

for _̂r given by Definition 5.4, if k=r. And if k<r, then the minimality of
lh(&k&1) follows from (5.15) and the fact that, by Definition 5.6, a primary
completion along a preadmissible path is the primary completion of exactly
one node. K

Suppose that 'k requires extension for &k, }k is the k-completion of 'k,
and (!k)&=}k. If }k has finite outcome along !k, then a k-implication
chain will have been formed along !k. Otherwise, we show that [&k, }k] is
a primary !k-link.

Lemma 5.3 (Implication Chain Lemma). Fix k�r<n and &k/$k/
'k/}k/!k # T k such that k<dim(&k)=r+1, ('k)&=$k, (!k)&=}k, and
out0(!k) is preadmissible. Assume that 'k requires extension for &k, and that
}k is the k-completion of 'k for &k. Then:

(i) If }k has infinite outcome along !k, then [&k, }k] is a primary
!k-link.

(ii) If }k has finite outcome along !k, then there is an amenable
k-implication chain ((_ j, _̂ j, { j) : r�j�k) such that {k=!k, _̂k=}k, and
_k=$k.

Now fix $� k/}� k/!� k # T k such that (!� k)&=}� k, }� k has finite outcome
along !� k, }� k is an amenable pseudocompletion of $� k, and for all i�k, the
principal derivative of }� k along outi (!� k) is implication-free. Then:

(iii) (($� k, }� k, !� k)) is an amenable k-implication chain.

Proof. We proceed by induction on n&k, and then by induction on
lh(}k).

(i) By (5.19), up(&k)=up(}k), and by (5.2), &k is the initial derivative
of up(&k) along !k. Since }k has infinite outcome along !k, [&k, }k] is a
primary !k-link.

(ii) We first show that (5.6)�(5.12) hold. By (5.19), up(&k)=up(}k).
Hence (5.6) follows from (5.2) if k=r, and from (5.5)(ii) and (5.6) induc-
tively if k<r. Condition (5.7) follows from (5.2), the definition of r, and
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(5.5)(i) if k=r, and (5.5)(ii) and (5.7) inductively if k<r. Condition (5.8)
follows from the definitions of _k, _̂k, and {k in (ii). Conditions (5.9) and
(5.12) follow from (5.5)(ii) and (5.19). Condition (5.10) follows from the
definitions of _k, _̂k, and {k in (ii), (5.1), and hypothesis if k=r, and by
(5.5)(ii) and (5.10) inductively if k<r. Condition (5.11) follows from the
definitions of _k, _̂k, and {k in (ii), (5.2), and hypothesis. Hence ((_ j, _̂ j, { j):
r�j�k) is a k-implication chain.

Condition (5.15) follows from hypothesis, so this k-implication chain
is amenable. We complete the proof of (ii) by verifying the minimality
condition for the case k=r. By the minimality of the choice of &r in
Definition 5.1 and by (5.15), the minimality condition can only fail if there
is a +r/&r such that ((+r, }r, !r)) is an amenable r-implication chain,
which we assume in order to obtain a contradiction. Now by (5.2), &r is an
initial derivative, and by Definition 5.6, up(&r)=up(}r) and }r is not an
initial derivative. Hence by Definition 5.2, }r cannot be a pseudocompletion.
Thus (5.16) must fail for ((+r, }r, !r)). By Definition 5.6, }r is the
primary completion of only one node, and by hypothesis, that node must
be 'r. Hence by (5.15) for ((+r, }r, !r)) , 'r must require extension for +r.
By Definition 5.1, 'r requires extension for at most one node. But 'r

requires extension for &r, so &r=+r, yielding a contradiction.

(iii) Immediate from hypothesis and the definition of amenable
pseudocompletions (Definitions 5.2 and 5.4). K

We will need to know that admissible paths are always compatible with
completions, except when we are iterating the backtracking process to try
to eliminate an amenable implication chain. In the latter case, by (5.18)
and (5.24), the only completions which may be incompatible with the path
under construction are the primary completions.

Lemma 5.4 (Compatibility Lemma). Fix \ # T 0 such that \ is pre-
admissible. Fix i�n, ;�\, and 'i�*i (;) such that 'i requires extension,
and suppose that }�\ is the 0-completion of 'i. Fix v<i, let 'v=outv('i),
and suppose that 'v�*v(\)=\v. Then for all j�v, \ j=* j (\)$* j (})=} j.

Proof. We proceed by induction on j�v, noting that, by hypothesis,
the lemma holds for j=0. Assume that j>0. As 'v�\v, it follows from
(2.5) that 'q=outq('i)�\q for all q� j. By (5.22), every ! j such that
' j�! j/} j is implication-restrained. We note, by (5.18) and (5.25), that if
u<n, _u # T u requires extension and has u-completion {u, _=out0(_u), { is
the 0-completion of _u and is preadmissible, and _/$�{, then $ cannot
be t-switching for any t�u.

As \ is preadmissible, \& is admissible and thus hereditarily completion-
consistent. Fix ! j such that ' j�! j/} j. As j<i, it follows from the above
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paragraph that ! j is not ( j+1)-switching, so if ! j is the principal derivative
of up(! j) along } j, then ! j must be the initial derivative of up(! j) along } j;
thus there is no + j such [+ j, ! j] is a primary } j-link. By (5.19) and (5.25)
and as j<i, ! j is not a primary completion or an amenable pseudocomple-
tion. Fix $ such that }/$�\ and up j ($&)=! j. If $& is primarily or
hereditarily implication-restrained, then by (5.18), $ will not switch ! j.
Otherwise, $& will be inductively implication-restrained. We will show that
$& is neither a primary 0-completion nor an amenable pseudocompletion.
It will then follow from (5.17)(ii) that $ does not switch ! j. Thus as
} j&1�\ j&1 by induction, it follows from (2.4) that \ j

$} j.
We complete the proof of the lemma by assuming that $& is either a

primary 0-completion or an amenable pseudocompletion, and obtaining a
contradiction. First assume that dim(! j)> j. If j is even, then by repeated
applications of (5.5)(ii), (5.9) and (5.15) ((5.16) cannot apply at any t< j),
it follows that ! j is a primary completion or an amenable pseudo-
completion, contrary to the preceding paragraph. Suppose that j is odd. By
repeated applications of (5.5)(ii), (5.9) and (5.15) ((5.16) cannot apply at
any t< j), it follows that up j&1($&) is a primary completion, and that the
immediate successor of ! j along } j requires extension, contrary to (5.25)
which would require j�i. Thus in either case, we have a contradiction.

Now suppose that dim(! j)�j. By Lemma 3.1(i) (Limit Path), ! j has an
initial derivative ! j&1/} j&1, and as ' j&1=out(' j) and ' j�! j, it follows
from (2.5) and Lemma 3.1(i) (Limit Path) that ' j&1�! j&1. If dim(! j)< j,
then by (2.9), ! j&1 is the only derivative of ! j along } j&1, so it follows by
induction that $& is neither a primary 0-completion nor an amenable
pseudocompletion. Suppose that dim(! j)= j. By (5.9), (5.1), and (5.10),
! j&1 would have to be implication-free. But by Lemma 3.1(i) (Limit Path),
! j&1 # [' j&1, } j&1], so is hereditarily implication-restrained, yielding the
desired contradiction. K

One consequence of the next lemma is that if ' is admissible and
pseudotrue, then for all j�n, if \ j�* j (') requires extension, then \ j has a
primary completion along * j ('). Hence for pseudotrue nodes, completion-
respecting and completion-consistent via ( ) coincide. We will need a
somewhat more general statement.

Lemma 5.5 (Completion-Respecting Lemma). (i) Fix k<n and $k/
!k�}k # T k such that }=out0(}k) is admissible, $k and !k both require
extension, and }k is the primary completion of $k. Then !k has a primary
completion {k/}k, and {k has infinite outcome along }k.

(ii) Fix ' # T 0 such that ' is preadmissible and completion-consistent
via ( ) . Suppose that \ j�* j (') requires extension for & j and # j=(\ j)&.
If ' is the 0-completion corresponding to a primary k-completion _̂k and _̂k
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is the primary completion of the immediate successor of _k along _̂k, then
assume further that it is neither the case that j�k, j&k is odd and
up j (_̂k)=# j, nor the case that j�k, j&k is even and up j (_k)=# j. Then \ j

has a primary completion } j/* j (') which has infinite outcome along * j (').

(iii) Fix !, ' # T 0 such that ' and ! are preadmissible and completion-
consistent via S=( ) , and !&='. Suppose that \ j�* j (') requires extension.
Then \ j has a primary completion } j/* j (!) which has infinite outcome
along * j (!).

Proof. (i) By (5.26) and Definition 5.6, !k has a primary completion
{k/}k. By (5.18)(i) and as, by (5.18), (5.24), and (5.25), if } is the
0-completion corresponding to }k, then no node in (out0($k), }] can be
v-switching for any v�k, {k has infinite outcome along }k.

(ii, iii) We prove (ii), and indicate the modifications needed for (iii)
in parentheses. We assume that \ j satisfies the hypotheses of (ii) or (iii),
and either \ j has no primary completion } j/* j (') (* j (!), resp.), or that
} j exists and has finite outcome along * j (') (* j (!), resp.), and derive a
contradiction under the assumption, in the proof of (ii), that the exclusion-
ary conditions in (ii) fail. (For (iii), fix & j and # j such that \ j requires
extension for & j and # j=(\ j)&.) Without loss of generality, we may assume
that j is the smallest number for which the conclusion fails for some
\ j�* j (') (* j (!), resp.) satisfying the hypothesis of (ii) ((iii), resp.). As '
is completion-consistent via ( ) , \ j has a 0-completion }�'. Now for (ii),
}{', else ' would be the 0-completion corresponding to the primary
j-completion of \ j and so k= j, _̂k=} j=up j ('), and _k=# j, contrary to
hypothesis. Hence }/' (}/!, resp.). If j=0, then by (5.17)(i) or (5.18)(i),
the immediate successor of } along ' (!, resp.) switches up j+1(}); so } has
infinite outcome along '. Hence j>0.

By Lemma 5.4 (Compatibility), \ j has a ( j&1)-completion } j&1�
' j&1=* j&1('), and by Definition 5.6, } j&1 is an initial derivative of the
primary completion } j of \ j, and } is an initial derivative of } j&1. As '#}
(!#}, resp.), it follows from (2.4) that } j&1/' j&1 (} j&1/! j&1=
* j&1(!), resp.). Fix { j&1�' j&1 (! j&1, resp.) such that ({ j&1)&=} j&1. By
Lemma 3.1(ii) (Limit Path), (*({ j&1))&=} j.

We assume that all derivatives of } j along ' j&1 (! j&1, resp.) have finite
outcome along ' j&1 (! j&1, resp.), and derive a contradiction. Under this
assumption and by (5.19), there is a primary *({ j&1)-link [+ j, } j] which
restrains \ j with + j/\ j/} j. As \ j�* j (') (* j (!), resp.), it follows from
(2.6) and since { j&1�' j&1 (! j&1, resp.) that [+ j, } j] is a *(; j&1)-link for
all ; j&1 such that { j&1�; j&1�' j&1 (! j&1, resp.), so [+ j, } j] is a * j (')-
link (* j (!)-link, resp.). But then } j/* j (') (* j (!), resp.), and by (2.4), } j

has infinite outcome along * j (') (* j (!), resp.), contrary to the choice of j.

55DECIDABILITY OF THE EXISTENTIAL THEORY



File: 607J I54656 . By:CV . Date:11:06:96 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 3548 Signs: 2593 . Length: 45 pic 0 pts, 190 mm

We conclude that there is a derivative }� j&1/' j&1 (! j&1, resp.) of } j which
has infinite outcome along ' j&1 (! j&1, resp.). Fix {� j&1�' j&1 (! j&1, resp.)
such that ({� j&1)&=}� j&1. By Lemma 3.1(ii) (Limit Path), (*({� j&1))&=} j

and } j has finite outcome along *({� j&1). Hence by Lemma 5.3(ii) (Implica-
tion Chain) and Lemma 5.2 (Requires Extension), {� j&1 requires extension
for some derivative # j&1 of # j. We assume that one of the exclusionary
conditions of (ii) holds for {� j&1, and derive a contradiction. By (5.9),
dim(')> j, so (5.5)(ii) must hold for the immediate successor of _k

along _̂k; fix the corresponding (k+1)-implication chain ((_i, _̂i, :i):
r�i�k+1). First suppose that k�j&1, ( j&1)&k is odd, and
up j&1(_̂k)=}� j&1. By (5.9), up j&1(_̂k)=_ j&1 and so up j (_̂k)=_̂ j=} j.
Thus by (5.5), the failure of (5.16), and our assumptions, _̂ j=} j is the
primary completion both of the immediate successor of # j along _̂ j, and of
the immediate successor of _ j along _̂ j, so # j=_ j=up j (_k), k�j, and k&j
is even, and the exclusionary conditions of (ii) hold for \ j, contrary to our
assumption. Finally, suppose that k�j&1, k&( j&1) is even, and
up j&1(_k)=}� j&1. By (5.9), up j&1(_k)=_ j&1 and so up j (_k)=_̂ j=} j.
Thus by (5.5), the failure of (5.16), and our assumptions, _̂ j=} j is the
primary completion both of the immediate successor of # j along _̂ j, and of
the immediate successor of _ j along _̂ j, so # j=_ j=up j(_̂k), k�j, and k&j
is odd, and the exclusionary conditions of (ii) hold for \ j, contrary to our
assumption.

By the minimality of the choice of j and as {� j&1 requires extension for
some derivative # j&1 of # j, it follows that {� j&1 has a primary completion
#� j&1 which has infinite outcome along ' j&1 (! j&1, resp.). By (5.19),
up(#� j&1)=# j, so by (2.4) and as # j�* j ('), # j has finite outcome along
* j (') (* j (!), resp.). But by (5.2), # j has infinite outcome along \ j�* j')
(* j (!), resp.), a contradiction. K

We now show that at most one new string requires extension at any
admissible '.

Lemma 5.6 (Uniqueness of Requiring Extension Lemma). Fix ' # T 0

such that ' is preadmissible and lh(')>0. Let ' and '& be completion-
consistent via S and S� , respectively. Suppose that i�j and *i ('), * j (') # S"S� .
Then i= j.

Proof. For all u�n, let 'u=*u('). Fix p and s as in Lemma 3.3
(*-Behavior) for '. First assume that j>s, in order to obtain a contradiction.
Then by Lemma 3.3 (*-Behavior), there will be a !/' such that * j (!)=' j.
By (5.27) for the admissible node '& and as ' j � S� , there will be a
0-completion } of ' j such that !/}�'&. Hence by Definition 5.8, ' j � S,
contrary to hypothesis.
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We conclude that j�s, and hence, by Lemma 3.3 (*-Behavior), that
(' j)&=up j (('i)&). We assume that j>i and derive a contradiction. Let
{i='i. By (5.5)(ii), there is an r>i and an amenable (i+1)-implication
chain ((_t, _̂t, {t) : r�t�i+1) such that {i=out({i+1). By Lemma 3.2(i)
(Out), {i+1=*(out({i+1))=*({i)='i+1.

We now claim that if i<t�j and t&i is odd then:

{t�'t. (5.30)

By the preceding paragraph, (5.30) is true for t=i+1. We proceed by
induction, assuming that (5.30) holds, and verifying (5.30) with t+2 in
place of t, under the assumption that t+2�j. Let \t=({t)&, \t+1=up(\t)
and \i=({i)&. By (5.8)(ii), \t=_̂t, and by (5.9), \t=upt(\i) and
\t+1=upt+1(\i)=_t+1. By Lemma 4.5 (Free Extension), \i is {i-free.
Hence \t+1 is 't+1-free. By (5.30) and (2.4), \t+1/*t+1('). Hence we
can fix {� t+1�'t+1 such that ({� t+1)&=\t+1.

By (5.2), \i has infinite outcome along {i, so as {i='i and \i is {i-free,
it follows from (2.4) that \i+1=up(\i) has finite outcome along 'i+1; thus
by (5.11) and (5.30), \t has finite outcome along 't. As \i is {i-free,
\t=upt(\i) must be 't-free. So as {t�'t, it follows from the definition of
links that all derivatives of \t+1 along 't have finite outcome along 't.
Hence by (2.4), {� t+1=\t+17(#t)�'t+1, where #t�'t and (#t)& is the
initial derivative of \t+1 along 't. Thus (#t)&�\t, and so by (5.30),
#t�{t. By (5.12) and (5.30), out({t+1)�{t�'t and \t+1/{t+1. Now all
derivatives of \t+1 have finite outcome along out({t+1)�'t. Hence by
(2.4), {� t+1�{t+1. Now by (5.12), out({t+2)�{t+1, and by (5.5)(ii),
(out({t+2))&=\t+1. So as ({� t+1)&=\t+1 and {� t+1, out({t+2)�{t+1, we
have {� t+1=out({t+2). As \t+2=up(\t+1) is 't+2-free and \t+1 has
infinite outcome along {� t+1�{t+17't+1, it follows from (2.4) that
{t+2=\t+27({� t+1)�'t+2, verifying (5.30) with t+2 in place of t.
Furthermore, we note that \t+2 has finite outcome along {t+2, and by
(5.8) and (5.9), \t+2=up(\t+1)=upt+2(\i). Hence since up j (('i)&)=
(' j)& and by (5.2) and (5.30), j>t+2.

We conclude that j&i is even, and that (5.30) holds for t= j&1. By
(5.12) and (5.30), out({ j)/{ j&1�' j&1. Iterating (5.5)(ii) and recalling
that (' j)&=up j (('i)&) and that j&i is even, we see that (' j)&=
_ j/_̂ j/{ j; hence ' j

$3 { j and so by (2.4) and as out({ j)/' j&1�out(' j),
it must be the case that ' j/3 { j and so that ' j 7 { j=_ j. By (5.2), _ j has
infinite outcome ; j&1 along ' j, so by (2.4), all derivatives of _ j which are
/' j&1 must have finite outcome along ' j&1, and (; j&1)& is the initial
derivative of _ j along ' j&1. As { j&1�' j&1, all derivatives of _ j which are
/{ j&1 must have finite outcome along { j&1. By Lemma 3.1(ii) (Limit
Path), ; j&1�{ j&1 and by (2.4), (; j&1)& is the principal derivative of _ j
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along { j&1. Hence since out({ j)/{ j&1 and by (2.4), _ j7(; j&1) �{ j, so
_ j7(; j&1)�{ j 7' j, contradicting the fact that ' j 7 { j=_ j. K

In order to show that the backtracking process is finitary, we will need
to know that if a node requires extension, then its immediate predecessor
is not a primary j-completion.

Lemma 5.7 (Primary Completion Lemma). Fix j�n and ' j # T j such
that ' j is preadmissible and requires extension, and let '=out0(' j) and
$ j=(' j)&. Then:

(i) $ j is not a primary j-completion or an amenable pseudocompletion.

(ii) If ' j{* j ('&), then either ' is switching or '& is not primarily or
hereditarily implication-restrained; hence ' is not a 0-completion.

Proof. We prove (i) and (ii) simultaneously by induction on r&j. For
all i�n, let 'i=*i (').

(i) Let r=dim($ j)&1. Let ' j require extension for + j. To see that
$ j is not a primary j-completion or a pseudocompletion, we proceed by
induction on r&j and then by induction on lh(' j), assuming to the
contrary and deriving a contradiction. Let ' j require extension for + j.
There are several cases.

Case 1: j=r. There are two subcases, depending on whether we
assume that $r is a primary completion or a pseudocompletion.

Subcase 1.1: $r is a primary completion of some \r which requires
extension for some &r. By Definition 5.6, up(&r)=up($r); and by (5.2) and
the hypothesis of the lemma, $r has infinite outcome along 'r. Hence
[&r, $r] is a primary 'r-link. By (5.2), up(+r){up($r), so +r{&r. By (5.3),
it now follows that +r/&r. We show that (5.1)�(5.5) hold for
+r/#r=(\r)&/\r, and thus contradict the minimality of lh(&r) for \r in
Definition 5.1.

By Definition 5.1 and the preceding paragraph, +r/&r/\r/$r, and by
(5.2), #r=(\r)& has infinite outcome along 'r. Hence up(#r){up(+r), else
by (5.2) and the preceding paragraph, [&r, $r] and [+r, #r] would be
primary 'r-links, contradicting Lemma 4.1 (Nesting). (5.1)�(5.3) and
(5.5) can now be routinely verified, using those same conditions and the
assumptions that up(&r)=up($r), 'r requires extension for +r, and \r

requires extension for &r. By (2.7), (5.3), and Lemma 4.3(i)(a) (Link
Analysis), up(+r)�*(+r), *('r), so by (2.6), up(+r)�*(\r); and by (5.3)
and Lemma 4.3(i)(a) (Link Analysis), up(&r)/*(\r). Thus up(+r) and
up(&r) are comparable. By (5.2), +r and &r are both initial derivatives, so by
Lemma 5.1(i) (Limit Path) and as +r/&r, it follows that up(+r)/up(&r).
As ('r)&=$r and up(&r)=up($r), it follows from Lemma 4.5 (Free
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Extension) that up(&r)�*('r). By (5.2), &r has finite outcome along \r and
is the principal derivative of up(&r) along \r; so by (2.4), up(&r) has infinite
outcome along *(\r). Let ;r be the immediate successor of &r along \r. By
(2.4), *(;r) is the immediate successor of up(&r) along *(\r), and by (5.1),
out0(;r)=out0(*(;r)) is pseudotrue. By (5.1), &r is implication-free, so by
(5.23), up(&r) is implication-free. Hence by Lemma 5.5(iii) (Completion-
Respecting) and Lemma 5.1(viii),(i) (PL Analysis),

PL(up(+r), *(\r))�PL(up(+r), up(&r)) _ [up(&r)] _ PL(up(&r), *(\r))

�PL(up(+r), *('r)) _ [up(&r)] _ PL(up(&r), *(\r)).

Thus (5.4) for +r/#r/\r follows from Lemma 2.2(i) (Interaction) and
(5.4) for +r/$r/'r and for &r/#r/\r, contradicting the minimality of
lh(&r) for \r in Definition 5.1.

Subcase 1.2: $r is an amenable pseudocompletion. Let $r be a pseudo-
completion of &r. By (5.2) and (5.11)(i), +r has finite outcome along 'r and
&r has infinite outcome along 'r, so &r{+r. We compare the locations +r

and &r.

Subcase 1.2.1: &r/+r. Let {r be the immediate successor of +r along
'r. By (5.2), +r is an initial derivative, so up(+r){up(&r). (5.6)�(5.12) are
routinely verified for ((&r, +r, {r)) , using the conditions obtained from
the assumptions that 'r requires extension for +r and that $r is a pseudo-
completion of &r. As +r/$r, it follows from Lemma 5.1(i) (PL Analysis)
that PL(&r, +r)�PL(&r, $r), so (5.16) follows from the amenability
condition for pseudocompletions. Thus ((&r, +r, {r)) is an amenable
implication chain along {r. But by (5.1), out0({r) is pseudotrue, so we have
contradicted (5.28).

Subcase 1.2.2: +r/&r. Let !r be the immediate successor of &r along
'r. Recall that &r has infinite outcome along 'r, and by (5.2), +r is the
principal derivative of up(+r) along 'r, so up(+r){up(&r). Conditions
(5.1)�(5.3) and (5.5) are now routinely verified for +r/&r/!r, using the
conditions obtained from the assumptions that 'r requires extension for +r

and that $r is a pseudocompletion of &r. Recall that &r has infinite outcome
along 'r, hence along !r, so by Lemma 3.3 (*-Behavior), up(&r)=(*(!r))&

and up(&r) has finite outcome along *(!r). By (5.2), +r is an initial
derivative, so by Lemma 3.1(i) (Limit Path), up(+r)/up(&r). Hence by
Lemma 5.1(iv) (PL Analysis),

PL(up(+r), *(!r))=PL(up(+r), up(&r)).
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Hence by (5.29)(i),

PL(up(+r), up(&r))�[up(#r) : #r # PL(&r, 'r)] _ PL(up(+r), *('r)).

Now by Lemma 5.1(ii) (PL Analysis),

PL(&r, 'r)�PL(&r, $r) _ [$r].

Now $r#+r by (5.2), so by (5.4) for +r and 'r, Definition 5.4 for &r and $r,
and Lemma 2.2(i) (Interaction), for all ? # PL(up(+r), *('r)) _ PL(&r, $r) _

[$r], TS(?) & RS(+r)=<. Thus for all ? # PL(up(+r), *(!r)), TS(?) &

RS(+r)=<, so (5.4) holds for +r/&r/!r. Thus !r requires extension for
some :r�+r. As &r/$r, it follows that !r�$r. Now $='& is the principal
derivative of $r along ', and by (5.1), $ is implication-free. So as $ is
admissible, it follows from (5.27) that $ is completion-consistent via ( ).
Furthermore, upr($)=$r

#&r. Hence by Lemma 5.5(ii) (Completion-
Respecting), !r has a primary completion }r/$r which has infinite
outcome along $r/'r. Thus [:r, }r] is a primary 'r-link restraining +r,
contradicting (5.3) for +r/$r/'r.

Case 2: j=r&1. By case assumption, $r&1 must be a primary comple-
tion; fix \r&1 such that $r&1 is a primary completion of \r&1. By (5.5)(ii),
there is an amenable r-implication-chain ((_r, _̂r, {r)) such that \r&1=
out({r). As 'r&1 requires extension, it follows from (5.5)(ii) that there is an
amenable r-implication-chain ((_� r, _~ r, {� r)) such that 'r&1=out({� r). By
Definition 5.6 and (5.5)(ii), _r=up($r&1)=_~ r, so by (5.8)(i), _� r/_~ r=
_r/_̂r. We show that ((_� r, _̂r, {r)) satisfies (5.6)�(5.12) and (5.15) or
(5.16), contradicting the minimality of lh((_r) for ((_r, _̂r, {r)) in Defini-
tion 5.4.

Conditions (5.6)�(5.12) for ((_� r, _̂r, {r)) follow routinely from
(5.6)�(5.12) for ((_� r, _~ r, {� r)) and ((_r, _̂r, {r)) , once we recall that
_� r/_~ r/_̂r, and note that _� r has infinite outcome along _̂r by (5.11)(i), so
up(_� r){up(_̂r) by (2.8). Let +r be the initial derivative of up(_̂r) along _̂r,
and let +~ r be the initial derivative of up(_~ r) along _~ r. By (5.6), +r{_r and
+~ r{_� r.

Subcase 2.1. +r/_r. Then (5.15) must hold for ((_r, _̂r, {r)) and so
if we fix {~ r�_̂r such that ({~ r)&=_r, then {~ r requires extension for +r.
But _r=_~ r, so by (5.15) or (5.16) for ((_� r, _~ r, {� r)), _r is either a primary
completion or an amenable pseudocompletion. As r> j, we have contradicted
(i) by induction.

Subcase 2.2: _r/+r. We show that ((_� r, _̂r, {r)) is an amenable
implication chain, contradicting the minimality condition in Definition 5.4
as _� /_r.
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It suffices to show that _̂r is an amenable pseudocompletion of _� r. The
relevant conditions from (5.6)�(5.11) follow easily from our assumptions
that ((_� r, _~ r, {� r)) and ((_r, _̂r, {r)) are amenable implication chains. Fix
{~ r�_̂r such that ({~ r)&=_r. Then _̂r is a pseudocompletion of _� r, and by
(5.10)(i), _r and (out0({~ r))& are implication-free. As any implication-free
node on T 0 must be completion-consistent via ( ) (else (5.21) or (5.22)
would cause it to be implication-restrained), (out0({~ r))& is completion-
consistent via ( ). Suppose that !r�_r requires extension. If !r/_r, then
as (out0({~ ))& is a derivative of _r, the exclusionary conditions of
Lemma 5.5(ii) (Completion-Respecting) cannot hold unless _r is the
primary completion of !r, so !r has a primary completion with infinite
outcome along _r. And if _r is the primary completion of !r, then _r has
infinite outcome along {~ r. Hence Lemma 5.1(viii) (PL Analysis) can be
applied (for {~ r as the _ j of the lemma).

Subcase 2.2.1: +~ r/_� r. Then (5.15) must hold for ((_� r, _~ r, {� r))
and so if we fix {̂r�_~ r such that ({̂r)&=_� r, then {̂r requires extension for
+~ r. But then by (5.15) for ((_� r, _~ r, {� r)) , _~ r=_r is the primary completion
of {̂r. By Lemma 5.1(viii) (PL Analysis),

PL(_� r, _̂r)�PL(_� r, _r) _ [_r] _ PL(_r, _̂r).

By (5.29)(ii),

[up(!r) : !r # PL(_� r, _r)]=PL(up(+~ r), *({̂r)).

Hence by (5.4) for +~ r/_� r/{̂r, Lemma 2.2(i) (Interaction) and Definition 5.4
for _r/_̂r, for all ? # PL(_� r, _r) _ [_r] _ PL(_r, _̂r), TS(?) & RS(_� r)=<,
so _̂r is an amenable pseudocompletion of _� r. As r> j, we have contradicted
(i) by induction.

Subcase 2.2.2: +~ r
#_� r. Then (5.16) must hold for both ((_� r, _~ r, {� r))

and ((_r, _̂r, {r)). By Lemma 5.1(viii) (PL Analysis), PL(_� r, {r)�
PL(_� r, _r) _ PL(_r, {r) _ [_r]. Condition (5.16) for ((_� r, _̂r, {r)) now
follows from (5.16) for ((_� r, _~ r, {� r)) and ((_r, _̂r, {r)) and Lemma 2.2(i)
(Interaction). Thus ((_� r, _̂r,{r)) satisfies (5.6)�(5.12) and (5.16), contradicting
the minimality of lh(_r) for ((_r, _̂r, {r)) in Definition 5.4.

Case 3: j<r&1. Let $ j be the j-completion of & j and let & j require
extension for \ j. By (5.5)(ii), there is an amenable r-implication-chain
((_i, _̂i, {i) : r�i�j+1) such that & j=out({ j+1). As ' j requires extension,
it follows from (5.5)(ii) that there is an amenable r-implication-chain
((_� i, _~ i, {� i) : r�i�j+1) such that ' j=out({� j+1). By (5.5)(ii) and (5.9),
_~ j+1=up($ j)=_ j+1. As j+1<r, the conditions of (5.16) at j+1 are not
satisfied by either amenable implication chain, so (5.15) must hold at j+1
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for both implication chains. By (5.5)(ii) for ((_� i, _~ i, {� i) : r�i�j+1) ,
_~ j+1 is a primary completion. By (5.5)(ii) for ((_i, _̂i, {i) : r�i�j+1) , if
{~ j+1 is the immediate successor of _ j+1 along _̂ j+1, then {~ j+1 requires
extension. But _~ j+1=_ j+1, so we have contradicted (i) inductively.

(ii) Let r=dim('&)&1. We assume that ' is nonswitching and '&

is primarily or hereditarily implication-restrained, and derive a contradiction.
By hypothesis, ' j requires extension. As ' j{* j ('&) and ' is nonswitching,
it follows from Lemma 3.3 (*-Behavior) that (' j)&=up j ('&)=* j ('&), so
'& is the principal derivative of (' j)& along '=out0(' j); and by (5.2),
* j ('&) has infinite outcome along ' j. Now by Definition 5.1, j�r. By (2.4),
* j ('&) is the principal derivative of up(* j ('&)) along ' j, so as ' is non-
switching, (' j+1)&=up j+1('&)=* j+1('&). By (5.1), (5.10)(ii), and as '&

is implication-restrained, j+1<r, so by (5.5)(ii), up j+1('&) is a primary
completion. But then as '& is implication-restrained, it follows from
(5.18)(i) that ' is switching, contrary to hypothesis.

If ' is a 0-completion, then by Definition 5.6, ' is nonswitching and '&

is implication-restrained. (ii) now follows. K

In order to show that k-completions exist, it will be necessary for the
paths constructed to be admissible. We thus need to analyze the process of
constructing paths, and to show that we can construct admissible paths.
The proof will proceed by induction on n&k, and then by induction on
lh('k) for 'k # T k. There are some induction hypotheses that will also need
to be verified. We will need to know that admissible nodes are completion-
consistent for some set. And we will need to show a relationship between
certain PL sets on T k at 'k and corresponding PL sets on T k+1 at *('k)
whenever 'k is not completion-respecting. We prove several lemmas which
will give us the desired information. The first lemma treats the case where
the node to be extended is completion-consistent via ( ). We treat the case
where extensions are taken during the backtracking process in Lemmas
5.9�5.14.

Lemma 5.8 (Completion-Respecting Admissible Extension Lemma).
Fix ', ! # T 0 such that !&=', ! is preadmissible, and ' is completion-consistent
via ( ). Then ! is admissible and either ! is completion-consistent via
S=( ) , or ! is completion-consistent via S=(* j (!)) for some j�n.

Proof. As ' is admissible and completion-consistent via S=( ) , (5.27)
is vacuous. We now verify (5.28). As ' is admissible, (5.28) follows by
induction if ! is not pseudotrue. Hence we may suppose that ! is
pseudotrue for the sake of proving (5.28). It then follows that * j (!) is not
a primary completion for any j�n.
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Suppose that ((_ j, _̂ j, { j) : r�j�k) is an amenable k-implication
chain with {k�* j (!) in order to obtain a contradiction. Then by (5.15) or
(5.16), _̂k is a primary completion or an amenable pseudocompletion, and
by (5.11)(ii), _̂k has finite outcome along {k. Thus k>0, else by (5.17)(i)
or (5.18)(i), _̂k would have infinite outcome along {k. By Lemma 5.2
(Requires Extension), out({k) requires extension; so as ' and ! are comple-
tion-consistent via ( ) , it follows from Lemma 5.5(iii) (Completion-
Respecting) that out({k) has a primary completion }k&1 which has infinite
outcome along its immediate successor ;k&1�*k&1(!). But now by (5.19)
and (5.5)(ii), ;k&1 switches _k, so {k�3 *k(!), a contradiction. Hence (5.28)
holds.

We now verify (5.29)(i�iii). For all i�n, let !i=*i (!), 'i=*i ('), and
'� i=upi ('). By (2.5) and Lemma 3.1 (Limit Path), for any #k # T k, if # # T 0

is an initial derivative of #k, then for all ; such that out0(#k)�;�#,
*k(;)=#k; and by (2.4) and Lemma 5.4 (Compatibility), if :##,
#k�*k(:), and #k is a k-completion, then #k/*k(:). Hence if !k were a
k-completion, then out0(!k)�! and either ! would be a 0-completion or
there would be no 0-completion corresponding to !k along !; in either case,
it follows from Definition 5.6, that '=!& must be primarily or hereditarily
implication-restrained so cannot be completion-consistent via ( ) ,
contrary to our hypothesis. Conditions (5.29)(ii) and (5.29)(iii) now follow
from (5.27) by induction.

We now note that if ' is implication-restrained, then ! does not switch
'. For by (5.17), if ! were to switch ' and ' were implication-restrained,
then ' would have to be either a primary completion or an amenable
pseudocompletion. If ' is an amenable pseudocompletion, then dim(')=1
and this is impossible by (5.10); and if ' is a primary completion, then
dim(')>1 and ' must be a 0-completion contrary to (5.29)(iii). Hence by
(5.23), if ! is switching, then '� i is implication-free for all i�n.

We now verify (5.29)(i). Fix k<n and +k/&k/!k such that &k is
implication-free and up(+k)/up(&k), !k+1, and fix p and s for ! as in
Lemma 3.3 (*-Behavior). Note that ' is admissible, so (5.29)(i) holds for
all #�'.

Case 1: k+1�p. Then by Lemma 3.3 (*-Behavior), &k�'k=(!k)&

and up(&k)�'k+1, so as up(+k)/up(&k), it follows that up(+k)/'k+1.
Hence by (5.29)(i) for ' if &k/'k, and by (2.7) and Lemma 5.1(i) (PL
Analysis) if &k='k,

PL(up(+k), up(&k))�[up(:k) : :k # PL(&k, 'k)] _ PL(up(+k), 'k+1).

Again by Lemma 3.3 (*-Behavior), 'k+1/!k+1, so by Lemma 5.1(i) (PL
Analysis), PL(&k, 'k)�PL(&k, !k) and PL(up(+k), 'k+1)�PL(up(+k), !k+1),
so (5.29)(i) holds for k.
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Case 2: k+1>s. By Lemma 3.3 (*-Behavior), there are i<k+1 and
_i=(!i)& such that for all q # [i+1, n], !q=*q(_i)=_q. As &k/!k, it
follows that &k�_k. Let _=out0(_i), and note that by (2.5), _/!. Thus by
(2.5) and (5.29)(i) for _ if &k/_k, and by (2.7) and Lemma 5.1(i) (PL
Analysis) if &k=_k,

PL(up(+k), up(&k))�[up(:k) : :k # PL(&k, _k)] _ PL(up(+k), _k+1).

We have noted that _k+1=!k+1, and that _k�!k; hence by Lemma 5.1(i)
(PL Analysis), PL(&k, _k)�PL(&k, !k), so (5.29)(i) holds for k.

Case 3: p<k+1�s. By Lemma 3.3 (*-Behavior), '� k=(!k)& and !
switches 'k+1. As &k/!k, it follows that &k�'� k. Let ; be the initial
derivative of '� k along !. By (2.7), up(&k)�*(&k). Hence by (2.4), (2.6), and
as up(+k)/up(&k), !k+1, it follows that up(+k)/*('� k). Hence by (5.29)(i)
for ; if &k/'� k, and by Lemma 5.1(i) (PL Analysis) if &k='� k,

PL(up(+k), up(&k))�[up(:k) : :k # PL(&k, '� k)] _ PL(up(+k), *('� k)).

Suppose that \k+1 # (PL(up(+k), up(&k)) & PL(up(+k), *('� k)))"PL(up(+k),
!k+1). As ! is q-switching for some q�k+1, it follows from an earlier
observation that '� k is implication-free. Furthermore, by Lemma 3.3 (*-
Behavior), (!k)&='� k and (!k+1)&='� k+1=up('� k).

First suppose that (5.13) places \k+1 into PL(up(+k), up(&k)). Then
there is a #k+1 such that [#k+1, \k+1] is a primary up(&k)-link restraining
up(+k), so \k+1/up(&k). By Lemma 3.1(i) (Limit Path), \k+1 has an
initial derivative \k/&k. By (2.10) and as \k+1 # PL(up(+k),
*('� k))"PL(up(+k), !k+1) and ! switches '� k+1, '� k+1=\k+1, and \k+1 has
infinite outcome along *('� k) but finite outcome along !k+1; hence by
Lemma 3.3 (*-Behavior), '� k has infinite outcome along !k and [\k, '� k] is
a primary !k-link. Now &k{'� k, else up(&k)='� k+1=\k+1, so
\k+1 � PL(up(+k), up(&k)), contrary to our assumption. Hence [\k, '� k] is
a primary !k-link restraining &k. But then (5.13) places '� k into PL(&k, !k),
as required by (5.29)(i).

Suppose that (5.14) places \k+1 into PL(up(+k), up(&k)), but (5.13) does
not. Now '� k+1=upk+1('), and we have noted that '� k+1 is implication-
free. Let PL(#k+1, ?k+1) be a component of PL(up(+k), up(&k)) which
causes \k+1 to be placed into PL(up(+k), up(&k)), with ?k+1 as long as
possible. It follows from Definition 5.3 that if ?k+1/up(&k), then ?k+1 has
infinite outcome along up(&k). As &k is implication-free, it follows from
(5.23) that up(&k) is implication-free; so by (5.21) and Definition 5.3, ?k+1

must be the primary completion of the immediate successor $k+1 of #k+1

along ?k+1 for some +� k+1/up(+k). By Definition 5.6, $k+1/\k+1, so as
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\k+1 # PL(up(+k), *('� k)), $k+1/\k+1�*('� k). By Lemma 5.5(ii) (Comple-
tion-Respecting), either [+� k+1, ?k+1] is a primary *('� k)-link restraining
up(+k), or '� k+1=?k+1 or '� k+1=#k+1.

Subcase 3.1: [+� k+1, ?k+1] is a primary *('� k)-link restraining up(+k).
Now ?k+1/*('� k), and by (2.7), '� k+1�*('� k); hence ?k+1 and '� k+1 are
comparable. By (2.10), '� k+1 � [+� k+1, ?k+1). Also, '� k+1/3 +� k+1, else as
+k+1

#+� k+1 and ! switches '� k+1, we would not have +k+1/!k+1. Hence
?k+1�'� k+1/!k+1, and so PL(#k+1, ?k+1) is a component of PL(up(+k),
!k+1). But then \k+1 # PL(up(+k), !k+1), a contradiction.

Subcase 3.2: '� k+1=?k+1. Proceed as in the last two sentences of
Subcase 3.1.

Subcase 3.3: '� k+1=#k+1. Recall that $k+1�up(&k)�'k+1 requires
extension. As ' is completion-consistent via ( ) , $k+1 has a 0-completion
?0�'. And as $k+1�'k+1, it follows from Lemma 5.4 (Compatibility)
that for all i�k, $k+1 has an i-completion ?i�'i; and by Definition 5.6,
up(?i)=?i+1 for all i�k. Now upk+1(?0)=?k+1{#k+1=upk+1('), so
?0{'. Hence ?0/'. Thus by induction using (2.4), ?i/'i for all i�k, so
?k/'k.

First suppose that all derivatives of ?k+1 along 'k have finite outcome
along 'k. Then by (2.4), [+� k+1, ?k+1] is a primary 'k+1-link restraining
#k+1

#up(+k). But then by (2.10), ! could not switch '� k+1=#k+1, a
contradiction.

We conclude that there is a derivative ?� k of ?k+1 which has infinite out-
come along 'k. Let _k be the immediate successor of ?� k along 'k. By (2.4),
?k+1 has finite outcome along *(_k), so by Lemma 5.3(ii) (Implication
Chain) and Lemma 5.2 (Requires Extension), _k requires extension for the
initial derivative #k of #k+1 along 'k. As ' is completion-consistent via ( ) ,
_k must have a 0-completion }�'. First suppose that ' is a 0-completion
corresponding to a primary i-completion. As upk+1(')='� k+1=#k+1 and,
by Lemma 5.7(i) (Primary Completion), #k+1 is not a primary completion,
it follows from (5.5)(ii), (5.9) and (5.12) that k+1&i is odd. Hence k&i is
even and by (5.5)(ii), (5.9) and (5.12), '� k is the primary completion of _k.
Otherwise, by Lemma 5.5(ii) (Completion-Respecting), _k must have a
primary completion }k�'k. Now #k+1/up(&k), so by Lemma 3.1(i)
(Limit Path) #k/&k. Thus PL(?� k, }k) is a component of PL(&k, !k) which
places ?� k into PL(&k, !k) via (5.14)(i), completing the proof for the case in
which \k+1=#k+1. Furthermore, by (5.29)(ii) and (5.14)(ii), PL(#k+1,
?k+1)�[up(:k) : :k # PL(?� k, }k)]�[up(:k) : :k # PL(&k, !k)], so (5.29)(i)
holds in this case.

As ' is completion-consistent via S=( ) , it follows from Lemma 3.1(i)
(Limit Path) that any \ j/* j (!) which requires extension satisfies
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\ j=* j (#) for some #�', so has a 0-completion �' by (5.27). Hence if !
is completion-deficient via some Z{( ), then all elements of Z are of the
form * j (!) for some j. The last conclusion of the lemma now follows from
Lemma 5.6 (Uniqueness of Requiring Extension), so ! is admissible. K

When an admissible ' # T 0 requires extension, we will need to find an
admissible 0-completion } of '. The process of constructing } is called
backtracking. The next lemma indicates the manner in which backtracking
preserves completion-consistency.

Lemma 5.9 (Completion-Consistency Lemma). Fix m�0 and \, _ # T 0

such that _ is preadmissible, and _&=\. Assume that \ is completion-consis-
tent via S=('i : i�m) and that _ is completion-deficient for V. Let U be
the sequence obtained by ordering V according to the inclusion relation
induced by out0 on the elements of V. (Note that by Lemma 5.6 (Uniqueness
of Requiring Extension), a linear ordering is obtained in this way.) For
all j�n, let _ j=* j (_), \ j=* j (\), and \� j=up j (\). Then _ is completion-
consistent via U and:

(i) If _ is a 0-completion, then U=('i : i<m).

(ii) If (5.18)(ii)(a) holds for \, j is defined as in (5.18)(ii)(a), s is
defined as in Lemma 3.3 (*-Behavior), \� t+1 is a primary completion for some
t such that j&1�t�s, and \� t has infinite outcome along _t, then t=j&1,
U=S7(_t) and _t requires extension.

(iii) If the hypotheses of (i) or (ii) are not satisfied, then U=S.

(iv) _ satisfies (5.27) and (5.28).

Proof. For each i�m, fix k(i) such that 'i # T k(i). If _ j requires extension
for some j such that _ j{\ j, then by Lemma 5.6 (Uniqueness of Requiring
Extension), we let k(m+1) be the unique such j and let 'm+1=_k(m+1).

Fix u�n, and 'u/_u such that 'u requires extension and 'u � S. By
(2.5), '=out0('u)/_, so '�\. Furthermore, if S� is the set via which ' is
completion-consistent, then 'u # S� . As 'u � S, it follows from (5.27) and the
admissibility of \ that 'u must have a 0-completion along \/_. Hence
'u � U. We conclude that U"S�[_u : u�n 6 out0(_u)�3 \]. By the preceding
paragraph, U"S has at most one element.

Suppose that _ is a 0-completion. By Definition 5.6, _ is nonswitching,
so \ j�_ j for all j�n. By Lemma 5.7(ii) (Primary Completion), _ j cannot
require extension for any j�n. Thus U�S (as sets) by the preceding
paragraph. By Definition 5.6, _ must be a 0-completion of 'm and, as noted
in Definition 5.6, cannot be a 0-completion of 'i for any i<m. Thus (i)
follows.
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Assume that _ is not a 0-completion. (We note that this will be the ease
if \ satisfies (5.18)(ii)(a), as then by (5.18)(ii)(b), _ would be switching,
and 0-completions are nonswitching.) We first show that S�U as sets.
Suppose that 'i # S. By Definition 5.8, 'i has no 0-completion along \. As
_ is switching, it follows from Definition 5.6 that _ is not a 0-completion
of 'i . Hence 'i has no 0-completion along _. By (5.18) and (5.25), _ is not
u-switching for any u�k(i), so 'i �\k(i)�_k(i). Hence 'i # U.

Suppose that the hypotheses of (ii) hold. Then by (5.18)(ii)(b),
Lemma 5.2 (Requires Extension), and Lemma 5.3(ii) (Implication Chain),
_t # U. Now by (2.5), out0(_t)=_, so _t is the last element of U. By
(5.18)(ii)(b), t�k(m); so it follows by induction, our characterization of
U"S, and as _t=*t(_) that (5.25) and (5.26) hold.

In order to complete the proof of (ii), we must show that if j is defined
as in (5.18)(ii)(a), then t=j&1. By Lemma 3.3 (*-Behavior), it must be the
case that (_t)&=\� t. As S � ( ) , it follows from (5.21) or (5.22) that \ is
not implication-free; hence by (5.1), u<dim((_t)&)&1. Now \t+1{\� t+1,
else by (5.5)(ii) and (5.15), \t+1=\� t+1 would be a primary completion,
hence (5.18)(i)(a) would hold, excluding the possibility that (5.18)(ii)(a)
holds. Thus as _ is j-switching, j�t+1. Fix p and s as in Lemma 3.3
(*-Behavior) for _. As _ is j-switching, j=p+1, and as _t requires extension
and _=out0(_t) (else _ # S), t�s. By choice of j in (5.18)(ii)(a), \� j is the
end of a primary \ j-link, so \� j has infinite outcome along \ j and is not an
initial derivative; hence by (2.4) and Lemma 3.3 (*-Behavior), s=j and \� j

has finite outcome along _ j. Hence j�t+1�s+1�j+1, so t�j�t+1.
By hypothesis, \� t has infinite outcome along _t, so t{j. Thus t=j&1,
completing the proof of (ii).

We now complete the proof of (iii). Suppose that u�n and _u # U"S�
[#u : u�n 6 out0(#u)�3 \], in order to obtain a contradiction. By
Lemma 3.3 (*-Behavior), it must be the case that (_u)&=\� u. Furthermore,
as (5.18)(i)(a) and (5.18)(ii)(a) fail to hold for _, it follows from (5.18) that
_ is nonswitching, so by Lemma 3.3 (*-Behavior), \u=\� u. As S{( ) , it
follows from (5.21) or (5.22) that \ is not implication-free; hence by (5.1),
u<dim((_u)&)&1. As _u # U"S and _u requires extension, it now follows
from (5.5) and Lemma 3.3 (*-Behavior) that \u+1=\� u+1 is a primary
completion, and that \ is the 0-completion corresponding to \u+1. But
then (5.18)(i)(a) holds, contradicting the hypotheses of (iii).

(5.27) follows from (i)�(iii); and (5.28) follows by induction as _ is not
pseudotrue. Hence (iv) holds. K

The next lemma keeps track of the relationship between various nodes,
as we follow the step-by-step process of going from a node which requires
extension to its primary completion. At a given step in the process, we will
begin with a node \ # T 0 which is completion-consistent via a sequence
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S=('i : i�m) and extend \ to _ such that _&=\ and _ is completion-
consistent via a sequence U. (We will allow m= &1, but only if U{( ) .)
U has been characterized by Lemma 5.9 (Completion-Consistency); let
w=|U|&1. For each i�m, fix k(i) such that 'i # T k(i), and if * j (_)
requires extension for some j such that * j (_){* j (\), let k(m+1) be that
j and let 'm+1=*k(m+1)(_). For each i�w, let $i=('i)

&, and let 'i require
extension for &i .

Clauses (i) and (ii) of Lemma 5.10 specify that each element of
[up(&i) : i�w] lies along the branch of T k(i)+1 computed by _, and that
the inclusion ordering of elements of this set which lie on the same tree
agrees with the ordering on the indices of these nodes, and so by (5.26), is
the same as the ordering induced on the subset of U corresponding to the
same indices. And clause (v) will be shown to imply that the immediate
successors of the elements in [up(&i) : i�w] which lie along this branch of
T k(i)+1 require extension in the order specified by the indices which agrees
with the order induced by inclusion, and none has a primary completion
along the next node which requires extension. We cannot specify the order-
ing of [&i : i�w] lying on the same tree, but clauses (iii) and (vii) specify
that each &i is shorter than $i&1 , causing a component for a PL set for $i&1

to be formed. Clause (iv) is used to show that on this branch of T k(i)+1,
no elements of T k(i)+1 except those in [up(&i) : i�w] can require extension
without having a primary completion along the path. And clause (vi)
relates nodes on trees of successive dimension, and implies the property
induced by (5.25), namely, that higher dimension nodes find completions
before we encounter any new node on a lower dimensional tree which
requires extension.

Lemma 5.10 (Component Lemma). Fix m� &1 and \, _ # T 0 such
that _ is preadmissible and _&=\. Assume that \ is completion-consistent
via S=('i : i�m) , that _ is completion-consistent via U, and that if
m=&1, then |U|{0. For each i�m, fix k(i) such that 'i # T k(i), and if
* j (_) requires extension for some j such that * j (_){* j (\), let k(m+1) be
that j (which is unique by Lemma 5.6 (Uniqueness of Requiring Extension))
and let 'm+1=*k(m+1)(_). Let w=m&1 if U/S, let w=m if U=S, and
let w=m+1 otherwise. For each i�w, let $i=('i)

&, and let 'i require
extension for &i . For all j�n, let _ j=* j (_), \ j=* j (\), and \� j=up j (\).
Then for all i�w:

(i) up(&i)/\k(i)+1 7 _k(i)+1=\� k(i)+1.

(ii) If 0<i and k(i)=k(i&1), then up(&i&1)/up(&i).

(iii) If 0<i and k(i)=k(i&1), then &i /$i&1.

(iv) Let +k(i)+1�up(&i)/(!k(i)+1)&/!k(i)+1�_k(i)+1 be given such
that !k(i)+1 requires extension for +k(i)+1. Then one of the following holds:
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(a) There is a primary completion }k(i)+1/_k(i)+1 of !k(i)+1 such
that }k(i)+1 has infinite outcome along _k(i)+1.

(b) Either i<w, k(i+1)=k(i), and up(&i+1)�(!k(i)+1)&, or w=0
and up(&0)=(!k(0)+1)&.

(c) _k(m) is the primary completion of 'm and (!k(i)+1)&=up(&m).

(v) If dim(&i)>k(i)+1, then the immediate successor {i of up(&i)
along _k(i)+1 requires extension for some +k(i)+1; and if 0<i and
k(i)=k(i&1), then +k(i)+1/up(&i&1).

(vi) If j<i and k( j)=k(i)&1, then up(&j)/&i .

(vii) If 0<i and k(i)=k(i&1), then PL($i , _k(i)) is a component of
PL($i&1 , _k(i)).

Proof. We proceed by induction on lh(_).

Case 1: m=&1, so w{&1 by hypothesis. By Lemma 5.9 (Comple-
tion-Consistency), w=0, _=out0('0), and \ is completion-consistent via
( ) . Conditions (ii), (iii), (vi), and (vii) are vacuous in this case since
w=0. We verify (i), (iv), and (v).

(i) By (5.3) and Lemma 4.3(i)(a) (Link Analysis), up(&0)�_k(0)+1.
As '0=_k(0), _=out0(_k(0)), so as m=&1{w, _k(0){\k(0). Furthermore,
by (5.2), $0=(_k(0))& has infinite outcome along '0=_k(0). By (2.4) and
as m=&1, _k(0)+1=*(_k(0))=up($0)7(_k(0)) , so _k(0)=out(_k(0)+1),
and (_k(0)+1)&�\k(0)+1. Hence by Lemma 3.3 (*-Behavior), up($0)=
\k(0)+1 7 _k(0)+1=(_k(0)+1)&. By (5.2), up(&0){(_k(0)+1)&. By Definition
5.1, &0 /'0=_k(0)=out(_k(0)+1), so by Lemma 3.1(i) (Limit Path),
up(&0){_k(0)+1. Thus up(&0)/(_k(0)+1)&=\� k(0)+1 7 _k(0)+1, and (i)
follows.

(iv) As '0=*k(0)(_) # T k(0), and '0 requires extension, it follows from
Lemma 5.6 (Uniqueness of Requiring Extension) that _k(0)+1=*k(0)+1(_)
cannot require extension. Fix !k(0)+1�_k(0)+1 satisfying the hypotheses of
(iv), and note that !k(0)+1/_k(0)+1. If \=( ), then (iv) is vacuous. Thus
we may assume that \& exists.

First suppose that \& is completion-consistent via ( ) . As noted in the
proof of (i), (_k(0)+1)&�\k(0)+1, so !k(0)+1�\k(0)+1. Hence Lemma 5.5(iii)
(Completion-Respecting), !k(0)+1 has a primary completion }k(0)+1/
\k(0)+1 which has infinite outcome along \k(0)+1. By (2.10) }k(0)+1�
_k(0)+1, and }k(0)+1 will have infinite outcome along _k(0)+1 unless
' switches }k(0)+1. Thus if ' does not switch }k(0)+1, then (iv)(a) holds.
And if ' switches }k(0)+1, then \� k(0)+1=}k(0)+1, and by (5.5)(ii),
up(&0)=(!k(0)+1)&, so (iv)(b) holds.
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Now suppose that \& is not completion-consistent via ( ) . By the
admissibility of \, \ must be a 0-completion corresponding to a primary
completion \k for some k. Again by Definition 5.6, \i is an initial derivative
of \k for all i<k, so by (2.4), \k=\� k/_k.

First suppose that \� k has finite outcome along _k. Then by Lemma 5.3(ii)
(Implication Chain), _k&1 requires extension, so k=k(0)+1. Furthermore,
\� k(0)+1=\k(0)+1=(_k(0)+1)&. Thus !k(0)+1�\k(0)+1, so (iv)(a) will follow
from Lemma 5.5(ii) (Completion-Respecting) unless up(&0)=(!k(0)+1)&;
but this is ruled out by the hypotheses of (iv).

Now suppose that \� k has infinite outcome along _k. We compare k and
k(0). First suppose that k(0)<k&1. Then by Definition 5.6, \k(0)+1=
\� k(0)+1 is an initial derivative, so \� k(0)+1 cannot be a primary completion.
As \� k is a primary k-completion and upk(\� k(0))=\� k, dim(\� k(0))>k(0)+1.
Hence (5.5)(ii) must hold for _k(0), contradicting the fact that \� k(0)+1 is not
a primary completion.

Next suppose that k(0)=k&1+2q for some q�0. As \� k has infinite
outcome along _k, it follows from Lemma 3.3 (*-Behavior) that \� k(0) has
finite outcome along _k(0). But by (5.2), as _k(0) requires extension, \� k(0)

must have infinite outcome along _k(0), a contradiction.
Finally, suppose that k(0)=k+2q for some q�0. Then by (5.5)(ii),

(5.9), and (5.12), \� k(0)=upk(0)(\� k) is the middle element of a triple in
an implication chain, and by (5.15) or (5.16), \� k(0) must be a primary
completion or an amenable pseudocompletion, contrary to Lemma 5.7(i).

(v) As dim(&i)>k(i)+1, (5.5)(ii) holds and, as i=0, implies (v).

Case 2: m�0. Then out0('0)�\/_. There are two subcases.

Subcase 2.1: i�m. (ii), (iii), and (vi) follow by induction.

(i) First suppose that _ is not v-switching for any v�k(i)+1.
By Lemma 3.3 (*-Behavior), \k(i)+1�_k(0)+1. By (i) inductively and
Lemma 3.3 (*-Behavior),

up(&i)/\k(i)+1=\k(i)+1 7 _k(i)+1�_k(i)+1.

Otherwise, by (5.18) and (5.25), _ is (k(m)+1)-switching and k(i)=k(m).
Thus by the preadmissibility of _, (5.18)(i)(a) or (5.18)(ii)(a) must hold.
Suppose that (5.18)(i)(a) holds. Then there is an '� k(m) # T k(m) such that \&

is completion-consistent via S7('� k(m)). Let '� k(m) require extension for
&� k(m). Then by (5.18)(i)(a), \� k(m) is the primary completion of '� k(m), so by
(5.19), \� k(m)+1=up(&� k(m)). By (ii) inductively and Lemma 3.3 (*-Behavior),

up(&i)/up(&� k(m))=\� k(m)+1=\k(i)+1 7 _k(i)+1/_k(i)+1.

70 LEMPP AND LERMAN



File: 607J I54671 . By:CV . Date:11:06:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 3225 Signs: 2531 . Length: 45 pic 0 pts, 190 mm

Now suppose that (5.18)(ii)(a) holds. Then \� k(m)+1 is the end of a primary
\k(m)+1-link which restrains up(&m). By the case assumption, i�m. Hence
by (ii) inductively and Lemma 3.3 (*-Behavior),

up(&i)�up(&m)/\� k(m)+1=\k(i)+1 7_k(i)+1/_k(i)+1.

(i) now follows.

(iv) Assume the hypothesis of (iv). By (ii), it suffices to verify (iv)
under the assumption that i is the largest integer for which the hypotheses
of (iv) hold for !k(i)+1 and +k(i)+1.

By (5.18) and (5.25), if _ is v-switching, then v�k(m)+1�k(i)+1. And
by the choice of the largest i in the preceding paragraph, !k(i)+1{_k(i)+1

(else by Lemma 5.9 (Completion-Consistency), w=m+1, and we would
choose i=w for _k(i)+1). Now by Lemma 3.3 (*-Behavior), (_k(i)+1)&�
\k(i)+1. We conclude that !k(i)+1�\k(i)+1. Thus by induction, one of
(iv)(a�c) must hold at \k(i)+1. We consider each possibility.

Assume that (iv)(a) holds at \k(i)+1. If \k(i)+1�_k(i)+1, then (iv)(a) will
hold at _k(i)+1. If \k(i)+1�3 _k(i)+1 and (iv)(a) holds at \k(i)+1 but not at
_k(i)+1, then by (5.18) and (5.25), _k(i)+1 is (k(i)+1)-switching and, by
(2.10), must switch the primary completion \� k(i)+1=}k(i)+1 of !k(i)+1.
Thus }k(i)+1 will have finite outcome along _k(i)+1, so by Lemma 5.3(ii)
(Implication Chain) and Lemma 5.2 (Requires Extension), _k(i) requires
extension. As _=out0(_k(i)), w=m+1 and 'w=_k(i). But then by
Lemma 5.2 (Requires Extension), (!k(i)+1)&=up(&w), so (iv)(b) follows
from (5.25) and (ii) inductively.

If (iv)(b) holds at \k(i)+1, then by the maximality of i and as
k(m)=k(w), (iv)(b) will hold at _k(i)+1 unless w=m&1=i ; so assume
that (iv)(b) fails and w=m&1. By Lemma 5.9 (Completion-Consistency),
_k(m) is the primary completion of 'm , and by Definition 5.6, _ is non-
switching; hence \k(i)+1�_k(i)+1. Now either (iv)(a) will hold for !k(i)+1

#

up(&m) at \k(i)+1, and so at _k(i)+1, or (!k(i)+1)&=up(&m). In the latter
case, (iv)(c) holds at _k(i)+1.

Suppose that (iv)(c) holds at \k(i)+1. By (5.19), if :k is a primary
completion with corresponding 0-completion :, then : is an initial
derivative of :k and all nodes ; # (out0(:k), :] are nonswitching; so by
Lemma 3.1(i) (Limit Path), *k(;)=*k(out0(:k)) for such ;. Thus (iv)(c)
will hold at _ unless \ is a 0-completion. In the latter case, by (5.18)(i), _
switches \� k(m)+1. By (5.5)(ii) and the maximality of i, k(i)=k(m) and
\� k(m)+1=up(&m)/!k(i)+1. But !k(i)+1�\k(m)+1 and by Lemma 3.3
(*-Behavior), \k(m)+1 7 _k(m)+1=\� k(m)+1; so !k(i)+1�3 _k(i)+1, contrary to
hypothesis.
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(v) Assume the hypotheses of (v). By (i), up(&i)/\k(i)+1 7 _k(i)+1.
Fix {i �\k(i)+1 7_k(i)+1 such that ({i)

&=up(&i). As {i �\k(i)+1, (v)
follows by induction.

(vii) By (5.18) and (5.25), _ is not v-switching for any v�k(i). Hence
by Lemma 3.3(i) (*-Behavior), \k(i)�_k(i). By induction, PL($i , \k(i)) is
a component of PL($i&1 , \k(i)), and by hypothesis, $i has no primary
completion along \k(i). It now follows from Definition 5.3 that PL($i , _k(i))
is a component of PL($i&1 , _k(i)).

Subcase 2.2: i=w=m+1. By Lemma 5.9 (Completion-
Consistency), (5.18)(ii)(a) holds, and hence by (5.18)(ii) and (5.25), _ is
(k(w)+1)-switching, k(w)+1�k(m)+1, and \� k(w)+1 is a primary
completion. By Lemma 5.3(ii) (Implication Chain) and Lemma 5.9(ii)
(Completion-Consistency), (up(&w), \� k(w)+1, _k(w)+1) is the last triple of
an r-implication chain for some r, and by the assumptions of Case 2, m�0
so dim(&w)>k(w)+1. Hence by (5.5)(ii), if {� k(w)+1 is the immediate
successor of up(&w) along \� k(w)+1, then {� k(w)+1 requires extension for some
+� k(w)+1 which we fix, and {� k(w)+1 has primary completion \� k(w)+1. By
(5.18)(ii)(a), [+� k(w)+1, \� k(w)+1] is a primary \k(w)+1-link, and a \k(m)+1-
link derived from this link restrains up(&m). By Lemma 5.9(ii) (Comple-
tions-Consistency), _k(w)='w requires extension and by (5.1) and as
S{( ) , (5.5)(ii) must hold: hence $w=\� k(w). Furthermore, as _ is
(k(w)+1)-switching, \k(w)=\� k(w). We verify (i)�(vii).

(i) As (up(&w), \� k(w)+1, _k(w)+1) is the last triple of a (k(w)+1)-
implication chain, it follows from (5.8)(i) that up(&w)/\� k(w)+1. By
Lemma 3.3 (*-Behavior), \� k(w)+1=\k(w)+1 7 _k(w)+1. (i) now follows.

(ii) We assume that k(w)=k(m), else there is nothing to verify. We
assume that (ii) fails, and derive a contradiction. By (i) up(&w) and up(&m)
are comparable. First assume that up(&w)=up(&m) in order to obtain a
contradiction. By (i), {� k(w)+1�\k(w)+1 7_k(w)+1, and we have noted that
\� k(w)+1 is the primary completion of {� k(w)+1. Furthermore, as ({� k(w)+1)&=
up(&w)=up(&m), {� k(w)+1 requires extension and S{( ) , it follows from
(5.5) that dim(up(&m))>k(w)+1. Hence by (5.5)(ii) for both 'm and
'w=_k(w), it must be the case that both $m and $w=\k(w) have infinite out-
come along _k(w), and up($m)=up($w)=\� k(w)+1. Hence by (2.8),
'm='w=_k(w). But as k(m)=k(w), 'm �\k(w)=\� k(w)/_k(w), yielding a
contradiction.

Next suppose that up(&m)#up(&m) in order to obtain a contradiction.
As {� k(w)+1 requires extension and \� k(w)+1 is the primary completion of
{� k(w)+1, all nodes in [{� k(w)+1, \� k(w)+1] are implication-restrained. Hence by
(5.1) and (i) for &m , dim(&m)>k(m)+2. By (i), if {m is the immediate
successor of up(&m) along _k(w)+1, then {m �\k(w)+1, so by (v) inductively,
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{m requires extension. Hence by Lemma 5.5(i) (Completion Respecting), {m

has a primary completion }m /\� k(w)+1, and }m has infinite outcome along
\� k(w)+1/_k(w)+1. Thus by (2.4), all derivatives of }m along _k(w) have finite
outcome along _k(w). But by (5.5)(ii) and (5.2) for 'm , up($m)=}m and $m

has infinite outcome along 'm �_k(w), yielding a contradiction. Condition
(ii) now follows.

(iii) We assume that k(m)=k(w), else there is nothing to show.
Condition (5.5)(ii) specifies the relationship between requires extension
situations on T k(w) and (k(w)+1)-implication chains, and specifies that &w

is the initial derivative of up(&w) along _k(w). We have noted that {� k(w)+1

requires extension; let {� k(w)=out({� k(w)+1), and note that {� k(w)/_k(w) by
(2.5). We compare the locations of {� k(w) and 'm , noting that they are
comparable as both are /_k(w). First assume that {� k(w)/'m . (We will
show that this is the only case which can actually occur.) Now \� k(w)+1 is
the primary completion of {� k(w)+1 and \� k(w)+1/_k(w)+1; hence by
Lemma 3.1(i) (Limit Path), \� k(w)+1 has an initial derivative +� k(w)/_k(w)

which is the k(w)-completion of \� k(w)+1. By (5.25) and (5.27), new nodes
on lower dimension trees cannot require extension until all nodes on higher
dimension trees which previously required extension have found their
0-completions; hence as k(w)<k(w)+1, no node in [{� k(w), +� k(w)] can
require extension. Hence +� k(w)/'m . By Lemma 3.1(i) (Limit Path), and as
up(&w)/\� k(w)+1 by (i), it must be the case that &w /{� k(w)/+� k(w)/'m , so
(iii) holds in this case.

{� k(w){'m , else we would contradict Lemma 5.6 (Uniqueness of Requiring
Extension).

Finally, assume that {� k(w)
#'m . By (vi) inductively for {� k(w)+1, up(&m)/

+� k(w)+1, contrary to (5.18)(ii)(a). Hence (iii) holds.

(iv) Assume that the hypotheses of (iv) hold for !k(w)+1�_k(w)+1

which requires extension. By the hypotheses of (iv), up(&w)/(!k(w)+1)&, so
{� k(w)+1{!k(w)+1. As {� k(w)+1/\� k(w)+1/_k(w)+1, it must be the case that
{� k(w)+1/!k(w)+1. As _ is (k(w)+1)-switching, it follows from
Lemma 3.3(ii) (*-Behavior) and (2.4) that (_k(w)+1)&=\� k(w)+1 and
\� k(w)+1 has finite outcome along _k(w)+1. Thus by (5.2),
!k(w)+1�\� k(w)+1/\k(w)+1. As \� k(w)+1 is the primary completion of
{� k(w)+1, (iv)(a) follows from Lemma 5.5(i) (Completion Respecting).

(v) We have already noted that the immediate successor, {� k(w)+1, of
up(&w) along \� k(w)+1/_k(w)+1 requires extension for +� k(w)+1. For the
second clause of (v), we assume that k(w)=k(m), else there is nothing to
verify. As \ is completion-consistent via ('i : i�m) and (5.18)(ii)(a) holds
at \ with \� k(w)+1 a primary completion, [+� k(w)+1, \� k(w)+1] is a primary
\k(w)+1-link which restrains up(&m), so +� k(w)+1�up(&m).
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We assume that +� k(w)+1=up(&m) and derive a contradiction. As
[+� k(w)+1, \� k(w)+1] is a primary \k(w)+1-link and by (i), +� k(w)+1{\� k(w)+1,
+� k(w)+1 has finite outcome along \� k(w)+1/_k(w)+1, and up(+� k(w)+1)=
up(\� k(w)+1), so dim(+� k(w)+1)=dim(&m)>k(m)+1. Thus by (v) for &m , the
immediate successor {m of up(&m) along _k(w)+1 requires extension, so by
(5.2), up(&m)=+� k(w)+1 has infinite outcome along {m �_k(w)+1, a con-
tradiction. (v) now follows.

(vi) We assume that k(w)=k(m)+1, else there is nothing to verify.
By (5.18)(ii)(a) and as _ is (k(w)+1)-switching, there is a primary \k(w)+1-
link [+� k(w)+1, \� k(w)+1] such that the \k(w)-link [+k(w), ?k(w)] derived from
[+� k(w)+1, \� k(w)+1] restrains up(&m). Also, \� k(w)+1 is the primary completion
of the immediate successor {� k(w)+1 of up(&w) along \� k(w)+1, so ?k(w) is the
corresponding k(w)-completion. By (5.2), up(&w) has infinite outcome
along {� k(w)+1, so by (2.4), the initial derivative of up(&w) along ?k(w) is the
principal derivative of up(&w) along ?k(w) and has finite outcome along
?k(w); hence again by (5.2), this initial derivative must be &w . So by (2.4),
if {� k(w)=out({� k(w)+1), then ({� k(w))&=&w . By (5.25) and (5.27), no node in
[{� k(w), ?k(w)] can require extension (else we would contradict the dimension
ordering of (5.25)); so as, by (v), the immediate successor {m of up(&m)
along ?k(w)/_k(w) requires extension, it must be the case that {m /{� k(w).
Thus up(&m)=({m)&/({� k(w))&=&w , and (vi) holds.

(vii) By (iii) and hypothesis , if k(m)=k(w), then 'm requires extension
and &w /$m /'m �$w /'w=_k(w). Condition (vii) now follows from
Definition 5.3, as (5.14) holds. K

The next lemma provides a step-by-step analysis of the effect of extend-
ing \ to _, as specified by (5.18), on the PL sets corresponding to each
element in the sequence via which \ is completion-consistent.

Lemma 5.11 (Amenable Backtracking Lemma). Fix hypotheses as in
Lemma 5.10 (Component). Then for all i�m:

(i) If either (5.18)(i)(a) holds for \ with k(m+1)=k(i), or
(5.18)(ii)(a) holds for \ with j=k(i)+1, then

PL($i , _k(i))=PL($i , \k(i)) _ [\k(i)]

and the union is disjoint,

\� k(i)+1 # PL(up(&i), \k(i)+1),

and

PL(up(&i), _k(i)+1)=PL(up(&i), \k(i)+1)"[\� k(i)+1].
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(ii) If the hypotheses of (i) fail, then PL($i , _k(i))=PL($i , \k(i)) and
PL(up(&i), _k(i)+1)=PL(up(&i), \k(i)+1).

(iii)

[up(!k(i)) : !k(i) # PL($i , _k(i))] _ PL(up(&i), _k(i)+1)

=[up(!k(i)) : !k(i) # PL($i , \k(i))] _ PL(up(&i), \k(i)+1),

and the unions are disjoint.

(iv) If w=m+1, then PL($w , _k(w))=<.

(v) If _ is a 0-completion of 'm , then PL(up(&m), _k(m)+1)=<.

(vi) If _& is not completion-consistent via ( ) , then _ satisfies
(5.29)(i).

Proof. As up(\k(i))=\� k(i)+1 by (5.18), (5.25), and Lemma 3.3
(*-Behavior), (iii) follows from (i) and (ii) by induction on lh(\k(i)). We
first prove (iv) and (v).

If w=m+1, then (_k(w))&=$w by Lemma 5.9 (Completion-Con-
sistency), so there can be no primary _k(w)-link restraining $w or _k(w).
Furthermore, PL($w , _k(w)) can have a component only if lh(_k(w))&
lh($w)�2. (iv) now follows from Definition 5.3. Suppose that _ is a
0-completion of 'm . By Lemma 5.9 (Component); w=m&1. By (5.19),
up(&m)=up(_k(m)), so by (2.10), up(&m) is _k(m)+1-free. Suppose that
elements are placed in PL(up(&m), _k(m)+1) through (5.14) in order to
obtain a contradiction. Then there are +k(m)+1/up(&m)/(!k(m)+1)&/
!k(m)+1�_k(m)+1 such that !k(m)+1 requires extension for +k(m)+1. As
w=m&1, the hypothesis of Lemma 5.10(iv) (Component) holds for \ in
place of _, so one of conditions (iv)(a)�(iv)(c) must hold for i=m. (iv)(b)
cannot hold, as the w corresponding to \ is m, so &m+1 is undefined. (iv)(c)
cannot hold, else \k(m) would be a primary completion, so by (5.18), _
would be a switching extension of \; but _ is a 0-completion, and by
Definition 5.6, 0-completions are nonswitching, yielding a contradiction.
Suppose that (iv)(a) holds. Then !k(m)+1 has a primary completion }k(m)+1

which has infinite outcome along \k(m)+1. Thus by Definition 5.6,
[+k(m)+1, }k(m)+1] is a primary \k(m)+1-link restraining up(&m), so up(&m)
is not \k(m)+1-free, a contradiction. It now follows from Definition 5.3 that
PL(up(&m), _k(m)+1)=<, so (v) holds.

We now verify (i) and (ii). We proceed by induction on lh(_). There are
several cases to consider, depending on the manner in which _ extends \.
By (5.18) and (5.25), we see that if _ is v-switching, then v>k(m) if m�0.
In the first two cases, v>k(i)+2 or _ is nonswitching, and v=k(i)+2, we
show that the hypothesis and conclusion of (ii) hold. The final case is when
v=k(i)+1, in which case (i) will be followed.
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We first note the following:

Claim. If :k/;k/#k # T k, (#k)&=;k, out0(;k) is completion-consistent
via a nonempty set, and #k is not u-switching for any u�k+1, then
PL(:k, ;k)=PL(:k, #k).

Proof. By Lemma 5.1(i) (PL Analysis), PL(:k, ;k)�PL(:k, #k). If
PL(:k, #k)"PL(:k, ;k){<, then by Lemma 5.1(iii) (PL Analysis), either
;k is the end of a primary #k-link and so #k is u-switching for some
u�k+1, or #k requires extension; and in the latter case, it follows
from Lemma 5.9 (Completion-Consistency) that (5.18)(ii) holds for _
with j=k+1, so #k is (k+1)-switching. But this is contrary to our case
assumption. The claim now follows. K

Case 1: _ is v-switching for some v>k(i)+2 or is nonswitching. (i) is
vacuous, and (ii) is immediate from the claim.

Case 2: _ is (k(i)+2)-switching. By the claim, PL($i , _k(i))=
PL($i , \k(i)). It follows from (5.18)(iii) that either (5.18)(i)(a) or
(5.18)(ii)(a) holds. By (5.25), k(i)�k(m), and by (5.18), if _ is v-switching,
then v>k(m). Hence there are two subcases to consider, k(i)=k(m), and
k(i)=k(m)&1. We note that in both cases, (i) is vacuous as k(m+1)>
k(i) if (5.18)(i) is followed, so it suffices to verify (ii).

Subcase 2.1: k(i)=k(m). By Lemma 3.3 (*-Behavior), \k(m)+1/
_k(m)+1.

Subcase 2.1.1: Condition (5.18)(i)(a) holds and i=m, and so as _
is (k(m)+2)-switching, k(m+1)=k(m)+1. Then there are &� m+1 , '� m+1 #
T k(m)+1 such that \k(m)+1 is a primary completion of '� m+1 for &� m+1 and
by Lemma 5.9 (Completion-Consistency), (\k(m)+1)& is completion-
consistent via S7('� m+1) . By Lemma 5.1(i)(iii), PL(up(&m), \k(m)+1)
�PL(up(&m), _k(m)+1) and PL(up(&m), _k(m)+1)"PL(up(&m), \k(m)+1)�
[\k(m)+1]. By Lemma 5.10(vi) (Component), up(&m)/&� m+1. Now
[&� m+1, \k(m)+1] is the only primary _k(m)+1-link which is not a \k(m)+1-
link, and by Lemma 5.7(i) (Primary Completion), _k(m)+1 does not require
extension. Hence neither (5.13) nor (5.14) can place \k(m)+1 into
PL(up(&m), _k(m)+1), so PL(up(&m), _k(m)+1)=PL(up(&m), \k(m)+1).

Subcase 2.1.2: Condition (5.18)(ii)(a) holds and i=m. Then there
is a \k(m)+1-link [+k(m)+1, ?k(m)+1] which restrains up(&m) and is derived
from a primary \k(m)+2-link [+k(m)+2, ?k(m)+2], and _ switches ?k(m)+2.
Note that [?k(m)+1, \k(m)+1] is the only primary _k(m)+1-link which is not
a \k(m)+1-link, and up(&m)/?k(m)+1; hence any node placed into
PL(up(&m), _k(m)+1) via (5.13) is already in PL(up(&m), \k(m)+1). By Lem-
ma 5.10(vi) (Component), if _k(m)+1 requires extension for some &� m+1

which we fix, then up(&m)/&� m+1; hence any node placed into
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PL(up(&m), _k(m)+1) via (5.14) is already in PL(up(&m), \k(m)+1). Thus by
Definition 5.3 and Lemma 5.1(i) (PL Analysis), PL(up(&m), _k(m)+1)=
PL(up(&m), \k(m)+1).

Subcase 2.1.3: i<m. By Lemma 5.10(i) (Component),
PL(up(&i), \k(m)+1)�PL(up(&i), _k(m)+1). By Lemma 5.1(ii) (PL Analysis)
and since \k(m)+1 / _k(m)+1, PL(up(&i), _k(m)+1)"PL(up(&i), \k(m)+1)�
[\k(m)+1]. For each j # [i+1, m], let {k(m)+1

j be the immediate successor
of up(&j) along _k(m)+1 and note that, by Lemma 5.10(v) (Component),
{k(m)+1

j requires extension for each such j. For each j # [i+1, m], let
!k(m)+1

j be the primary completion of {k(m)+1
j along _k(m)+1 if it exists,

and let !k(m)+1
j =_k(m)+1 otherwise. As i+1>0, it follows from (5.1)

that dim(up(&i+1))>k(m)+1. Hence by Lemma 5.10(v) (Component)
and (5.14), we see that PL(up(&i+1), !k(m)+1

i ) is a component of
PL(up(&i), _k(m)+1). Furthermore, by Lemma 5.10(iv) (Component), every
component of PL(up(&i), _k(m)+1) which has \k(m)+1 as an element must
be of the form PL(up(&j), !k(m)+1

j ) for some j # [i+1, m]. By Lemma
5.10(i, ii) (Component), if j # [i, m], then up(&j)�up(&m)/\k(m)+1. It now
follows by induction on m&i that if \k(m)+1 # PL(up(&i), _k(m)+1),
then \k(m)+1 # PL(up(&m), _k(m)+1), and so by Subcase 2.1.2, that
PL(up(&i), _k(m)+1)=PL(up(&i), \k(m)+1).

Subcase 2.2: k(i)=k(m)&1. By Lemma 3.3 (*-Behavior), \k(m)/_k(m).

Subcase 2.2.1: Condition (5.18)(i)(a) holds. Then there are &� m+1 ,
'� m+1 # T k(m) such that \k(m) is a primary completion of '� m+1 for &� m+1 and
by Lemma 5.9 (Completion-Consistency), (\k(m))& is completion-consistent
via S7('� m+1) . By Lemma 5.10(vi) (Component), up(&i)/&� m+1 . Now by
(5.19) and (5.18)(i), [&� m+1, \k(m)] is the only primary _k(m)-link which is
not a \k(m)-link, and by Lemma 5.7(i) (Primary Completion), _k(m) does
not require extension. Hence by Lemma 5.1(i, iii) (PL Analysis),
PL(up(&i), _k(m))=PL(up(&i), \k(m)).

Subcase 2.2.2: Condition (5.18)(ii)(a) holds. Then there is a
primary \k(m)+1-link [+k(m)+1, ?k(m)+1] which restrains up(&m), so
up(&m)/?k(m)+1. Let ?k(m) be the initial derivative of ?k(m)+1 along _k(m).
Then [?k(m), \k(m)] is the only primary _k(m)-link which is not a \k(m)-link,
and by (5.2), &m is the initial derivative of up(&m) along _k(m), hence it
follows from Lemma 3.1(i) (Limit Path) that &m /?k(m). If _k(m) requires
extension for some &� m+1 , then by Lemma 5.10(vi) (Component),
up(&i)/&� m+1. It now follows from Lemma 5.1(i) (PL Analysis) and
Definition 5.3 that PL(up(&i), _k(m)+1)=PL(up(&i), \k(m)+1).

Case 3: _ is (k(i)+1)-switching. By (5.25), k(i)�k(m), so _ must be
(k(m)+1)-switching, i.e., k(i)=k(m). By Lemma 3.3 (*-Behavior),
(_k(m)+1)&=\� k(m)+1. Now _ is preadmissible and m�0, so \ is not
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completion-consistent via ( ); hence (5.18)(i)(a) or (5.18)(ii)(a) must hold. We
note that (ii) is vacuous in this case, and verify (i). We consider three subcases.

Subcase 3.1: Condition (5.18)(i)(a) holds and i=m. By Lemma 5.9
(Completion-Consistency), there is a node '� k(m) # T k(m) such that
(out0(\k(m)))& is completion-consistent via S7('� k(m)) , \k(m) is the k(m)-
completion of '� k(m) for some &� k(m), and _k(m) switches \� k(m)+1. Let
$� k(m)=('� k(m))&.

By Lemma 5.10(iii) (Component), &� k(m)/$m ; and as (out0(\k(m)))& is
completion-consistent via S7('� k(m)) and 'm # S, ('m)&=$m /\k(m). Thus
[&� k(m), \k(m)] is a primary _k(m)-link which restrains $m . It now follows
from (5.13) that \k(m) # PL($m , _k(m)), so by Lemma 5.1(i, ii) (PL
Analysis), PL($m , _k(m))=PL($m , \k(m)) _ [\k(m)].

As \k(m) is a primary completion of '� k(m) and '� k(m) requires extension for
&� k(m), it follows from (5.19) that up(&� k(m))=up(\k(m))=\� k(m)+1. Let {k(m)+1

be the immediate successor of \� k(m)+1 along \k(m)+1. By Definition 5.6,
'� k(m) and (\k(m))& are completion-consistent via the same sequence, so by
Definition 5.6 and Lemma 5.9 (Completion-Consistency), \k(m) and $� k(m)

are completion-consistent via the same sequence, which is non-empty as
m�0. Hence as '� k(m) requires extension, it follows from (5.1) that
dim($� k(m))>k(m)+1. By (5.3) and Lemma 4.3(i)(a) (Link Analysis),
*('� k(m))#\� k(m)+1=up(&� k(m)); so as _k(m) switches \� k(m)+1 and
'� k(m)/\k(m), it follows that {k(m)+1�*('� k(m)); hence by (5.5)(ii) and (5.15),
{k(m)+1 requires extension for up($� k(m)). By Lemma 5.10(v) (Component)
at \&, up($� k(m))/up(&m), and as up(&� k(m))=\� k(m)+1, it follows from
Lemma 5.10(ii) (Component) that up(&m)/\� k(m)+1. Thus by (5.14)(i),
\� k(m)+1 # PL(up(&m), {k(m)+1). As _ switches \� k(m)+1 (and so, by Defini-
tion 5.6, cannot be a primary completion), it follows from Lemma 4.5 (Free
Extension) that \� k(m)+1 is _k(m)+1-free; hence by Lemma 5.10(iv) (Compo-
nent), we may apply Lemma 5.1(v) (PL Analysis) to conclude that
PL(up(&m), \k(m)+1)=PL(up(&m), {k(m)+1); so by Lemma 5.1(i, ii) (PL
Analysis) and Definition 5.3,

PL(up(&m), \k(m)+1)=PL(up(&m), \� k(m)+1) _ [\� k(m)+1]

6 \� k(m)+1 � PL(up(&m), \� k(m)+1).

As _ switches \� k(m)+1 and is (k(m)+1)-switching, it follows from
Lemma 3.3 (*-Behavior) that (_k(m)+1)&=\� k(m)+1 and \� k(m)+1 has finite
outcome along _k(m)+1. Thus by Lemma 5.1(iv) (PL Analysis),
PL(up(&m), _k(m)+1)=PL(up(&m), \� k(m)+1). Thus

PL(up(&m), \k(m)+1)"PL(up(&m), _k(m)+1)=[\� k(m)+1],

and (i) follows in this case.
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Subcase 3.2: Condition (5.18)(ii)(a) holds and i=m. Then there is a
primary \k(m)+1-link [+k(m)+1, \� k(m)+1] which restrains up(&m) such that _
switches \� k(m)+1. By (5.13), \� k(m)+1 # PL(up(&m), \k(m)+1). By induction
(on T 0) using (i) and (ii), if 'm /!k(m)�\k(m) then PL(up(&m), *(!k(m)))�
PL(up(&m), *((!k(m))&)). Thus PL(up(&m), \k(m)+1)� PL(up(&m), *('m)),
so \� k(m)+1 # PL(up(&m), *('m)), from which it follows that \� k(m)+1/*('m).
As ('m)&=$m and by (5.2), $m has infinite outcome along 'm , it follows
from (2.4) that (*('m))&=up($m), and so \� k(m)+1�up($m). By Lem-
ma 3.1(i) (Limit Path), \� k(m)+1 has an initial derivative +� k(m)�$m . Now
(_k(m))&=\k(m) and _ is (k(m)+1)-switching, so by (2.4), \k(m) has infinite
outcome along _k(m); so as up(\k(m))=\� k(m)+1, [+� k(m), \k(m)] must be a
primary _k(m)-link restraining $m . By Definition 5.3, \k(m) � PL($m , \k(m)).
It now follows from (5.13) and Lemma 5.1(i, ii) (PL Analysis) that

PL($m , _k(m))"PL($m , \k(m))=[\k(m)].

By (5.18)(ii), \� k(m)+1 is the last node of a primary \k(m)+1-link which
restrains up(&m). Hence by (5.13), \� k(m)+1 # PL(up(&m), \k(m)+1). As _
switches \� k(m)+1 (and so, by Definition 5.6, cannot be a primary comple-
tion), it follows from (2.10) that \� k(m)+1 is \k(m)+1-free; hence by Lem-
ma 5.10(iv) (Component), we may apply Lemma 5.1(v) (PL Analysis) to
conclude that if {k(m)+1 is the immediate successor of \� k(m)+1 along
\k(m)+1, then PL(up(&m), \k(m)+1)=PL(up(&m), {k(m)+1). Thus by Lem-
ma 5.1(i, ii) (PL Analysis) and Definition 5.3,

PL(up(&m), \k(m)+1)=PL(up(&m), \� k(m)+1) _ [\� k(m)+1]

6 \� k(m)+1 � PL(up(&m), \� k(m)+1).

As _ switches \� k(m)+1 and is (k(m)+1)-switching, it follows from
Lemma 3.3 (*-Behavior) that (_k(m)+1)&=\� k(m)+1 and \� k(m)+1 has finite
outcome along _k(m)+1. Thus by Lemma 5.1(iv) (PL Analysis),
PL(up(&m), _k(m)+1)=PL(up(&m), \� k(m)+1). Thus

PL(up(&m), \k(m)+1)"PL(up(&m), _k(m)+1)=[\� k(m)+1]

6 \� k(m)+1 � PL(up(&m), _k(m)+1),

and (i) follows in this case.

Subcase 3.3: i<m. Recall that k(i)=k(m) and \k(m)/_k(m). By
Lemma 5.10(vii) (Component) and induction using Lemma 5.1(ix) (PL
Analysis),

[\k(m)] _ PL($m , _k(i))�PL($i , _k(i)).
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By Definition 5.3, \k(m) � PL($i , \k(i)). Hence by Lemma 5.1(ii) (PL
Analysis), PL($i , _k(i))=PL($i , \k(i)) _ [\k(m)].

By Subcases 3.1 and 3.2, \� k(m)+1 # PL(up(&m), \k(m)+1). By Definition 5.3
and Lemma 5.10(v) (Component), for all q such that i�q<m,
PL(up(&q+1), \k(m)+1) is a component of PL(up(&q), \k(m)+1). Hence by
induction on m&i, \� k(m)+1 # PL(up(&i), \k(m)+1). Let {k(m)+1 be the
immediate successor of \� k(m)+1 along \k(m)+1. As _ switches \� k(m)+1 (and
so, by Definition 5.6, cannot be a primary completion), it follows from
(2.10) that \� k(m)+1 is \k(m)+1-free. Hence by Lemma 5.10(iv) (Component),
we may apply Lemma 5.1(v) (PL Analysis) to conclude that
PL(up(&i), \k(m)+1)=PL(up(&i), {k(m)+1). By Lemma 5.1(i, ii) (PL
Analysis) and Definition 5.3, and as \� k(m)+1 # PL(up(&i), \k(m)+1),

PL(up(&i), {k(m)+1)=PL(up(&i), \� k(m)+1) _ [\� k(m)+1]

6 \� k(m)+1 � PL(up(&i), \� k(m)+1).

Now (_k(m)+1)&=\� k(m)+1 and \� k(m)+1 has finite outcome along _k(m)+1, so by
Lemma 5.1(iv) (PL Analysis), PL(up(&i), _k(m)+1)=PL(up(&i), \� k(m)+1).
Thus

PL(up(&i), _k(m)+1)=PL(up(&i), \k(m)+1)"[\� k(m)+1].

(i) now follows.
We complete the proof of the lemma by verifying (vi). Fix k<n and

+k/&k/_k such that &k is implication-free and up(+k)/up(&k), _k+1 in
order to verify (5.29)(i). (Note that we may assume, by induction, that
'k=_k in (5.29)(i).) Fix p and s for _ as in Lemma 3.3 (*-Behavior). We
proceed by cases.

Case 1: _ is not j-switching for any j�k+1. Then (_k)&=\k and
(_k+1)&=\k+1. If &k/\k, then PL(&k, \k)�PL(&k, _k) and PL(up(+k), \k+1)
�PL(up(+k), _k+1), so (5.29)(i) follows by induction. Otherwise, &k=\k.
But as &k is implication-free and \ is not completion-consistent via ( ) ,
this is impossible.

Case 2: _ is j-switching for some j�k. By (5.18) and Definition 5.6, _
switches a principal derivative which is not an initial derivative on T j, so
by Lemma 3.3 (*-Behavior), p+1=j=s. If j<k, then there is a $/_ such
that *k($)=_k, so (5.29)(i) follows by induction. Suppose that j=k. If
&k/\� k, then (5.29)(i) holds at out0(\� k), and as j=k=s, _k+1=*(\� k).
Hence (5.29)(i) follows by induction and Lemma 5.1(i) (PL Analysis).
Otherwise, it must be the case that &k=\� k. By Lemma 4.5 (Free
Extension), up(&k)�_k+1, so by Lemma 5.1(i) (PL Analysis),
PL(up(+k), up(&k))�PL(up(+k), _k+1), and (5.29)(i) holds.
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Case 3: _ is (k+1)-switching. Then by Lemma 5.1(i) (PL Analysis),
PL(&k, \k)�PL(&k, _k). Suppose that ?k+1 # (PL(up(+k), \k+1) &

PL(up(+k), up(&k))"PL(up(+k), _k+1). (vi) will follow by induction once
we show that a derivative of ?k+1 lies in PL(&k, _k). There are several sub-
cases.

Subcase 3.1: ?k+1 is the end of a primary \k+1-link restraining
up(+k). By (2.10) and as up(+k)/*(_k), _ must switch ?k+1. If
?k+1

$up(&k), then PL(up(+k), up(&k))�PL(up(+k), _k+1), so (vi) holds.
If ?k+1 | up(&k), then ?k+1 � PL(up(+k), up(&k)), contrary to hypothesis.
Hence ?k+1/up(&k). By Lemma 3.1(i) (Limit Path), ?k+1 has an initial
derivative ?k/&k. But up(\k)=?k+1, and as _ is (k+1)-switching, \k has
infinite outcome along _k. Hence by (5.13), \k # PL(&k, _k).

Subcase 3.2: Condition (5.14) places ?k+1 into PL(up(+k), \k+1)"
PL(up(+k), _k+1) through the component induced by some ;k+1 requiring
extension, and the conditions of (5.13) fail. Then ;k+1 cannot have a
primary completion with infinite outcome along \k+1, else by (2.10) and
Lemma 5.3(i), any component of PL(up(+k), \k+1) induced by ;k+1 would
be a component of PL(up(+k), _k+1). Thus by Lemma 5.10 (iv) (Compo-
nent), (;k+1)&=up(&i) for some i�m, which we fix. Now by (iii), there is
a derivative ?k of ?k+1 such that ?k # PL($i , _k)"PL($i , \k), so by Lem-
ma 5.1(ii) (PL Analysis), ?k=\k. By Definition 5.3, \k has infinite outcome
along _k. Now ?k+1 # PL(up(+k), up(&k)), so again by Definition 5.3,
?k+1/up(&k); thus ?k{&k, and by Lemma 3.1(i) (Limit Path), ?k+1 has
an initial derivative ?~ k/&k. We now see that [?~ k, \k] is a primary _k-link
restraining &k, so by (5.13), \k=?k # PL(&k, _k). K

Our next lemma specifies the correspondence between a PL set which is
encountered when a node 'k requires extension, and another PL set which
is defined at the k-completion }k of 'k.

Lemma 5.12 (PL Lemma). Fix k�r�n, and &k/$k/'k�}k # T k such
that ('k)&=$k and k<dim(&k), and let &k+1=up(&k). Assume that 'k

requires extension for &k, and that }k is the k-completion of 'k for &k, and
is preadmissible. Then:

(i) [{k+1 � *('k) : _\k('k / \k � }k 6 \k switches {k+1)]=
PL(&k+1, *('k)).

(ii) [up(!k) : !k # PL($k, }k)]=PL(&k+1, *('k)).

(iii) If ((_ j, _̂ j, { j)r�j�k+1) is an amenable (k+1)-implication
chain, up(&k)=_k+1 and up($k)=_̂k+1, then [upr(!k) : !k # PL($k, }k)]=
PL(_r, {r).

(iv) Condition (5.29)(ii) holds at }k.
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Proof. (ii) By Lemma 5.11 (iv, v) (Amenable Backtracking), [up(!k) :
!k # PL($k, 'k)]=PL(&k+1, *(}k))=<, so (ii) follows by repeated applica-
tions of Lemma 5.11(iii) (Amenable Backtracking) to those \k such that
'k/\k�}k.

(i) By (5.18), [{k+1�*('k) : _\k('k/\k�}k6\k switches {k+1)] is
identical with V=[{k+1�*('k) : _\k('k/\k�}k 6 (out0(\k))& satisfies
(5.18)(i)(a) with k(m)=k or (5.18)(ii)(a) with j=k+1)]. By Lem-
ma 5.11(i, ii, iv) (Amenable Backtracking), V=[up(!k) : !k # PL($k, }k)].
Hence (i) follows from (ii).

(iii) Let _̂k=}k and _k=$k. By induction and Lemma 5.1(iv) (PL
Analysis), it suffices to show that for all j # [k, r), [up(! j) :! j # PL(_ j, _̂ j)]=
PL(_ j+1, { j+1)=PL(_ j+1, _̂ j+1). Fix j # [k, r), and let {� j=out({ j+1). Note
that {� k='k. By (5.5)(ii) and Lemma 5.2 (Requires Extension), {� j requires
extension for _ j, and _̂ j is the j-completion of {� j. By (5.5)(ii) and (ii),
[up(! j) : ! j # PL(_ j, _̂ j)]=PL(_ j+1, { j+1). By (5.11), _̂ j+1 has finite out-
come along { j+1, so by Lemma 5.1(iv) (PL Analysis), PL(_ j+1, { j+1)=
PL(_ j+1, _̂ j+1).

(iv) Immediate from (ii). K

Let 40 # [T 0] be admissible, and for all k�n, let 4k=*k(40). In order
to show that all requirements are satisfied, we will need to show that if a
node is 4k-free, then it is also implication-free, and so can act according to
the truth of the sentence generating its action. We will be able to show this
under the assumption that 40 is admissible. (5.17)(i) may prevent a node
which is a potential component of a 0-implication chain from acting accor-
ding to the truth of the sentence generating its action, as it forces a
specified outcome for certain implication-free nodes. However, we want to
show that the implication-chain mechanism ensures that the action this
node takes is in accordance with the truth of that sentence. The proof of
this fact relies on the next lemma, which relates the implication-freeness of
one of the first two nodes on T k of a k-implication chain to the implica-
tion-freeness of the other node.

Lemma 5.13 (Free Amenable Implication Chain Lemma). Suppose that
k<r�n, ((_ j, _̂ j, { j) : r�j�k+1) is an amenable (k+1)-implica-
tion-chain, that _̂k is the primary completion of {� k=out({k+1), and that
! # T 0 is preadmissible and the 0-completion corresponding to _̂k. Let
_k=({� k)&. Then _k is implication-free iff _̂k is implication-free. Further-
more, if ! is completion-consistent via ( ) , then ! is implication-free.

Proof. We proceed by induction on r&k. First suppose that _̂k is
implication-free. By Lemma 5.2 (Requires Extension), {� k requires exten-
sion, so by (5.5)(ii) and (5.19), up(_̂k)=_k+1 and up(_k)=_̂k+1. As (5.23)
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fails to hold for _̂k, _k+1 is implication-free. Hence by (5.1) if r=k+1 and
by induction otherwise, _̂k+1 is implication-free. As (5.21) and (5.22) fail
for _̂k, _̂k is completion-consistent via ( ) . (We note that the completion-
consistency of the admissible ' # T 0 via S implies the completion-con-
sistency of *k(') via the subsequence of S consisting of those nodes which
are on T j for some j�k.) By Lemma 5.9(i) (Completion-Consistency)
applied to T k, (_̂k)& must be completion-consistent via ({� k) , and by
(5.19), {� k is completion-consistent via ({� k). By Lemma 5.9 (Completion-
Consistency) applied on T k, _k is completion-consistent via ( ), so (5.21)
and (5.22) fail to hold for _k. Thus we conclude that _k is implication-free.

Now suppose that _k is implication-free. By Lemma 5.2 (Requires Exten-
sion), {� k requires extension, so by (5.5)((ii) and (5.19), up(_̂k)=_k+1 and
up(_k)=_̂k+1. As (5.23) fails to hold for _k, _̂k+1 is implication-free.
Hence by (5.1) if r=k+1 and by induction otherwise, _k+1 is implication-
free. As (5.21) and (5.22) fail for _k, _k is completion-consistent via ( ).
(We again note that the completion-consistency of the admissible ' # T 0 via
S implies the completion-consistency of *k(') via the subsequence of S con-
sisting of those nodes which are on T j for some j�k.) By Lemma 5.9(ii)
(Completion-Consistency) applied on T k, {� k must be completion-consistent
via ({� k) , and by (5.19), (_̂k)& is completion-consistent via ({� k). By
Lemma 5.9 (Completion-Consistency) applied to T k, _̂k is completion-con-
sistent via ( ) , so (5.21) and (5.22) fail to hold for _̂k. We conclude that
_̂k is implication-free.

Suppose that ! is completion-consistent via ( ) but not implication-free,
in order to obtain a contradiction. By (5.10), (5.5), and Definition 5.6, for
all j such that k�j�r=dim(_̂k)&1, out0(_ j) and out0(_̂ j) are comple-
tion-consistent via the same sequence; so _ j is primarily implication-
restrained iff _̂ j is primarily implication-restrained. Furthermore, by (5.10),
neither _r nor _̂r is implication-restrained, and by (5.9), up j (_̂k) # [_ j, _̂ j]
for all j # [k, r]. Hence we fix the largest j such that up j (_̂k) is implication-
restrained, and note that j<r, and that up j (_̂k) is either primarily or
hereditarily implication-restrained.

First suppose that up j (_̂k) is primarily implication-restrained. By (5.6)
and as j<r, up j (_̂k) # [_ j, _̂ j], so by the preceding paragraph, both _ j and
_̂ j are primarily implication-restrained and completion-consistent via the
same sequence. Thus by (5.8)(i), there is an ' j�_ j which requires exten-
sion but has no j-completion �_̂ j. Fix $ j such that (' j)&=$ j and & j such
that ' j requires extension for & j. Now $ j/_ j, so by Lemma 5.5(ii) (Com-
pletion-Respecting) and as ! is completion-consistent via ( ) and is not a
0-completion, ' j has a j-completion } j/* j (!) which has infinite outcome
along * j (!). By Definition 5.6 and (2.7), up j (_̂k)�* j (!), so as
up j (_̂k) # [_ j, _̂ j] and ' j has no j-completion �_̂ j, up j (_̂k) is * j (!)-
restrained by the primary link [& j, } j], contradicting (2.10).
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Now suppose that up j (_̂k) is hereditarily implication-restrained but not
primarily implication-restrained. By (5.6) and as j<r, up j (_̂k) # [_ j, _̂ j],
so by the preceding paragraph, both _ j and _̂ j are hereditarily but not
primarily implication-restrained and are completion-consistent via the
same sequence. Thus there are i> j and 'i # T i such that 'i requires exten-
sion, has no j-completion �up j (_̂k), and out j ('i)�_ j. By Lemma 5.4
(Compatibility) and as ! is completion-consistent via ( ), 'i has a j-com-
pletion } j such that _̂ j�} j�* j (;) for some ;�!. Let {� k�_̂k be defined
by ({� k)&=_k. By Definition 5.6, {� k requires extension; but by Lemma 3.2
(Out), out0('i)/out0({� k)/out0(} j), contradicting (5.26). K

We are now ready to show that completions exist. We proceed as
described in the example preceding Definition 5.3. The definition proceeds
by induction on n&k, and then by induction on the cardinality of PL sets.
The process used, within the proof, to construct completions is called back-
tracking.

Lemma 5.14 (Completion Lemma). Fix ' # T 0 such that ' is admissible,
'k=*k(') requires extension, and '=out0('k). Then there is an effectively
obtainable admissible 0-completion }#' of 'k.

Proof. For all j�n, let ' j=* j ('). Let 'k require extension for &k, set
&k+1=up(&k), and note, by (5.3) and Lemma 4.3(i)(a) (Link Analysis),
that &k+1/'k+1. Fix $k/'k # T k such that ('k)&=$k. Fix u�0 and
S=(:i : i�u) such that ' is completion-consistent via S. We proceed by
induction on n&k, and then by induction on the cardinality of
PL(&k+1, 'k+1). We carry out a backtracking process, constructing increas-
ing sequences (!k

i # T k : i�m) and (!i # T 0 : i�m) of strings for some
m�u such that each !i is an admissible extension of ', and !i=out0(!k

i ).
m will be bounded by the length of longest 'k+1-link restraining &k+1 plus
1. We also define a map !k

i � !� k+1
i # T k+1 for i�m, yielding a decreasing

sequence of strings on T k+1.
We begin by setting to !0=', !k

0='k and !� k+1
0 =*('k). Suppose that !i ,

!k
i , and !� k+1

i have been defined for some fixed i<m. We assume by induc-
tion that:

(5.31) (i) !i is admissible and completion-consistent via S.

(ii) If i>0, then !i is switching.

(5.32) (i) For all j<i, !j /!i , !k
j /!k

i , and !� k+1
i /!� k+1

j .

(ii) !� k+1
i �*(!k

i ).

(5.33) (i) !� k+1
i is *(!k

i )-free.

(ii) (5.18)(i)(a), with !i in place of \, is not satisfied.
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At the end, we will ensure that (5.32) and (5.33)(i) also hold for i=m, and
in addition:

(5.34) !� k+1
m =&k+1 and !m is admissible and the 0-completion

of 'k.

First suppose that i=0. Condition (5.32) is vacuous. Condition (5.31)
follows by hypothesis. Condition (5.33)(i) follows from (2.10). By Defini-
tion 5.6, any node which is a 0-completion is nonswitching, and its
immediate predecessor is implication-restrained. It follows from (5.1) that
dim(('k)&)>k+1, so (5.5)(ii) must be true when 'k requires extension;
and by (5.5)(ii) and (5.18)(i) for (!i)

& and !i , if (!i)
& is implication-

restrained and * j (!i) requires extension, then !i is switching. Hence ' can-
not be a 0-completion, and (5.33)(ii) holds.

We now assume that i�0 and verify (5.31)�(5.34) for i+1. There are
two cases:

Case 1. There is a *(!k
i )-link [+k+1, ?k+1] which restrains &k+1. By

Lemma 4.1 (Nesting), we can assume that [+k+1, ?k+1] is the longest such
link. Now there is a t�k+1 and a primary *t(!k

i )-link [+t, ?t] such that
[+k+1, ?k+1] is derived from [+t, ?t]. ?t is *t(!k

i )-free by Lemma 4.3(iii)
(Link Analysis), and by (4.1), will be *t(!� k

i )-free for any nonswitching
extension !� k

i of !k
i . And as [+t, ?t] is a primary *t(!k

i )-link, ?t has infinite
outcome along *t(!k

i ). Hence by Lemma 4.4 (Free Implies True Path), ?t

is *t&1(!k
i )-consistent for all nonswitching extensions !� k

i of !k
i . By Lem-

ma 3.1(iii) (Limit Path), all blocks defined in Step 4 of Definition 2.8 are
finite, so by repeated applications of Lemma 3.4 (Nonswitching Extension),
we can keep taking nonswitching extensions of !i , and will eventually
reach the shortest such nonswitching ;#!i such that upt(;)=?t,
upt&1(;)#*t&1(!k

i ) and ; is an initial derivative of upt&1(;). (When we
apply the Nonswitching Extension Lemma to extend a string, and it is
possible to take both activated and validated extensions and still be non-
switching, (5.18)(iii) requires that we take the activated extension, in order
to uniquely define the process of taking nonswitching extensions in this
induction.) As !i is admissible, it follows from Lemma 5.9 (Completion-
Consistency) that ; will be admissible and completion-consistent via S
unless there is a \ such that !i �\/; and either (5.18)(i)(a) or
(5.18)(ii)(a) holds for \, and that such a \ will be admissible and comple-
tion-consistent via S. (The clauses of (5.29) not covered by Lemma 5.9 are
covered by Lemmas 5.11�5.13. In particular, (5.29)(i) is covered by Lem-
ma 5.11(vi), (5.29)(ii) by Lemma 5.12(iv), and (5.29)(iii) by Lemma 5.13.)
So assume that such a \ exists in order to obtain a contradiction.

By (4.1), for all # # T 0 such that lh(#)>0, if # is a nonswitching extension
of #&, then for all q�n, the *q(#)-links coincide with the *q(#&)-links.
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Hence (5.18)(ii)(a) cannot hold for \, else \=;. As up(&k) is not !k
i -free,

up(&k) is not *k(\)-free. So \ cannot be the 0-completion of 'k, else by
Definition 2.6, upk+1(\)=up(&k), so by (2.10), up(&k) would have to be
*k(\)-free, which is impossible. It now follows that \ is not a 0-completion,
else by Definition 5.6, \ would have to be the 0-completion of 'k=:u ;
hence (5.18)(i)(a) does not hold for \. The same proof shows that
(5.18)(i)(a) does not hold for \=;.

We conclude that ; is admissible and completion-consistent via S, and
that (5.18)(i)(a) does not hold for ;. By Lemma 3.6 (Switching), we can
choose an extension ;� of ; such that ;� &=; and ;� induces an infinite out-
come for upt&1(;) along *t&1(;� ), thus switching the outcome of ?t to finite
along *t(;� ). Note that (5.18)(ii)(a) holds for ;, so by (5.18)(ii), ;� is pread-
missible. Now t&1 is the p in Lemma 3.3 (*-Behavior), so * j (;)�* j (;� ) iff
j<t.

Subcase 1.1: ?t is not a primary t-completion. Then by (5.18), !i is
not a 0-completion. Set !i+1=;� , !k

i+1=*k(;� ), and !� k+1
i+1 =(*k+1(;� ))&. We

note that neither the hypothesis of Lemma 5.9(i) or of Lemma 5.9(ii)
(Completion-Consistency) is satisfied, so by Lemma 5.9(iii) (Completion-
Consistency), !i+1 is completion-consistent via S. Furthermore, by Lem-
ma 5.9(iv) (Completion-Consistency) and again by Lemmas 5.11(vi),
5.12(iv), and 5.13, !i+1 is admissible. Condition (5.31) now follows for
!i+1 , and (5.32) and (5.33) follow from the properties of ;� , (2.10), and
Lemma 4.5 (Free Extension).

Subcase 1.2: ?t is a primary t-completion. First suppose that
t>k+1. Then by (2.4), (*t(;� ))&=?t and ?t has finite outcome along
*t(;� ). Hence by Lemma 5.3(ii) (Implication Chain) and Lemma 5.2
(Requires Extension), *t&1(;� ) requires extension, so by induction on n&k,
we can find a 0-completion } of *t&1(;� ), and, by Lemma 5.9(i, iv), (Com-
pletion-Consistency) and again by Lemmas 5.11(vi), 5.12(iv), and 5.13, find
an admissible }~ such that }~ &=} and }~ induces an infinite outcome
for (*t&1(}~ ))& along *t&1(}~ ). By Lemma 5.7(i) (Primary Completion),
*t&1(}~ ) does not require extension. We now set !i+1=}~ , !k

i+1=*k(}~ ) and
!� k+1

i+1 =(*k+1(}~ ))&, and note that (5.31)�(5.33) follow from the properties
of }~ , (2.4), (2.10), and Lemma 4.5 (Free Extension) and Lemma 5.9
(Completion-Consistency). ((5.33)(ii) follows since }~ is switching, and by
Definition 5.6, completions are nonswitching.) The induction step is now
complete for this case.

Suppose that t=k+1. Then by (2.4), (*k+1(;� ))&=?k+1 and ?k+1 has
finite outcome along *k+1(;� ). By Lemma 5.3(ii) (Implication Chain), there
is an r<n and an amenable (k+1)-implication chain ((_ j, _̂ j, { j) :
r�j�k+1) such that _̂k+1=?k+1 and the immediate successor of _k+1

along _̂k+1 requires extension for +k+1. Note that as [+k+1, ?k+1]
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restrains &k+1, +k+1�&k+1. And by (5.2) and Lemma 5.10(v) (Compo-
nent), &k+1 has infinite outcome along ?k+1, so as, by (2.8), +k+1 has finite
outcome along ?k+1, +k+1/&k+1. By Lemma 5.2 (Requires Extension),
;� k=*k(;� ) requires extension for some #~ k, and ;� k is not implication-free.
Furthermore, by (5.5)(ii) and (5.8), up(#~ k)=_k+1/_̂k+1=up((;� k)&)=
?k+1/'k+1. By Lemma 5.9(ii) (Completion-Consistency), ;� is completion-
consistent via S7(;� k) , so by Lemma 5.10(ii) (Component), &k+1/
up(#~ k). By Lemma 3.3 (*-Behavior), (*(;� k))&=?k+1 and ?k+1 has finite
outcome along *(;� k), so by Lemma 5.1(iv) (PL Analysis), PL(up(#~ k), *(;� k))=
PL(up(#~ k), ?k+1). Hence by (5.14), PL(up(#~ k), *(;� k)) is a component of
PL(&k+1, *(;� k)), so by (5.14)(i) and Lemma 5.1(vi) (PL Analysis),
up( #~ k ) # PL( &k+1, * ( ;� k ))"PL( up( #~ k ), *( ;� k )). Thus PL( &k+1, * ( ;� k )) #

PL(up(#~ k), *(;� k))=PL(up(#~ k), ?k+1). We now proceed as in the preceding
paragraph to find an admissible switching extension of a 0-completion of
;� k, and justifying the existence of } by induction on the cardinality of the
PL sets.

Case 2. Otherwise. By the case assumption, there are no *(!k
i )-links

restraining &k+1. Hence &k+1 is *(!k
i )-free, so as in Case 1, we can keep

taking nonswitching extensions of !i , taking the activated extension when
both the activated and validated extensions are nonswitching, and will
eventually reach the shortest such nonswitching !i+1 #!i such that
upk+1(!i+1)=&k+1 and !i+1 is admissible and completion-consistent via
S. By (5.31)(ii) and Definition 5.6, !i cannot be a 0-completion. Thus by
Lemma 5.9 (Completion-Consistency) and Lemmas 5.10�5.12, !i+1 is the
shortest nonswitching extension of !i satisfying (5.18)(i)(a), and is
admissible. We set m=i+1, !m

k =*k(!i+1), and !� k+1
m =&k+1. Conditions

(5.32), (5.33)(i), and (5.34) now follow. K

We now show that admissible paths have nice properties; they are com-
pletion-respecting and do not extend amenable implication chains.

Lemma 5.15 (Admissibility Lemma). Let an admissible path 40 # [T 0]
be given, and for all k�n, let 4k=*k(40). Then for all k�n:

(i) 4k does not extend an amenable k-implication chain.

(ii) Every 'k/4k which requires extension has a primary completion
along 4k.

Proof. We proceed by induction on k. First let k=0. Condition (i)
follows from (5.11)(ii) and (5.18)(i) for implication-restrained nodes, and
from (5.11)(ii) and (5.17)(i) for implication-free nodes. And (ii) follows
from Lemma 5.14 (Completion), the uniqueness of primary completions,
and (5.18).
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Suppose that k>0. First suppose that ((_ j, _̂ j, { j) : r� j�k) is an
amenable k-implication chain for some r, with {k/4k, in order to obtain
a contradiction. By (2.5), {� k&1=out({k)/4k&1 and by Lemma 5.2
(Requires Extension), {� k&1 requires extension. By (ii) inductively, {� k&1 has
a (k&1)-completion }k&1/4k&1, and by Lemma 5.3(ii) (Implication
Chain) and (i) inductively, }k&1 has infinite outcome along 4k&1. Fix
!k&1/4k&1 such that (!k&1)&=}k&1. By (5.5)(ii) and (5.19),
up(}k&1)=_k and so by (2.4), _k has finite outcome along 4k. By (5.11)(i),
_k has infinite outcome along {k, so {k/3 4k, yielding the desired contradic-
tion. Hence (i) holds for k.

Now suppose that 'k/4k requires extension for &k. By (5.18), the
uniqueness of completions, and Lemma 5.14 (Completion), 'k has a 0-com-
pletion /40, so by Lemma 5.4 (Compatibility), 'k has a (k&1)-comple-
tion }k&1/4k&1, so has a principal derivative }� k&1/4k&1. First assume
that }� k&1 has finite outcome along 4k&1. Fix {� k&1/4k&1 such that
({� k&1)&=}� k&1, and let }k=up(}� k&1). Then [&k, }k] is a primary
*({� k&1)-link which restrains 'k, so by (2.6), (2.10) and as 'k/4k, no ;k&1

such that {� k&1�;k&1/4k&1 can switch any node /}k, and so }k/4k.
Clause (ii) now follows in this case.

Suppose that }� k&1 has infinite outcome along 4k&1, fix {� k&1/4k&1

such that ({� k&1)&=}� k&1, and let }k=up(}� k&1). Then by (2.4), }k has
finite outcome along *({� k&1), and so by Lemma 5.3(ii) (Implication
Chain), *({� k&1) is the last node of the last triple of an amenable k-implica-
tion chain. By Lemma 5.2 (Requires Extension), {� k&1 requires extension.
By (ii) inductively, {� k&1 has a (k&1)-completion :k&1/4k&1, and by
Lemma 5.3(ii) (Implication Chain) and (i) inductively, :k&1 has infinite
outcome along 4k&1. Fix !k&1/4k&1 such that (!k&1)&=:k&1. By
(5.5)(ii) and (5.19), up(:k&1)=('k)& and so by (2.4), ('k)& has finite out-
come along 4k. By (5.2), ('k)& has infinite outcome along 'k, so 'k/3 4k,
yielding the desired contradiction. Hence (ii) holds for k. K

In order to show that all requirements are satisfied, we will need to show
that if a node is 4k-free, then it is also implication-free, so can act in
accordance with the truth of the sentence trying to generate its action. In
fact, we will need to apply this lemma to ;k/4k such that out0(;k) is
pseudotrue.

Lemma 5.16 (Implication-Freeness Lemma). Fix k�n. Suppose that
;k # T k _ [T k] is admissible, and if lh(;k)<�, then ;=out0(;k) is
pseudotrue. For all i�n, let ;i=*i (;). Let 'k+1/*(;k) be *(;k)-free and
implication-free. Then:

(i) For all j�k, the initial derivative & j of 'k+1 along ; j is
implication-free.
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(ii) If 'k/;k, up('k)='k+1, and 'k is ;k-free, then 'k is implication-
-free.

(iii) If 'k+1 is (k+1)-completion-free, then the initial derivative &k of
'k+1 along ;k is k-completion-free.

(iv) If dim('k+1)=k+1, &k is the initial derivative of 'k+1 along ;k

and has finite outcome along ;k, then &=out0(&k) is completion-consistent
via ( ). If, in addition, $k is the immediate successor of &k along ;k, then
$=out0($k) is pseudotrue.

Proof. Recall that, if ; exists, then ; is pseudotrue, so ;k is completion-
consistent via ( ) and ; j is j-completion-free for all j�n.

(i) Fix j�k. By Lemma 3.1 (Limit Path), & j/; j. Suppose that & j

is not implication-free, in order to obtain a contradiction. Then one of
clauses (5.21)�(5.23) must cause & j to be implication-restrained. If (5.21)
holds, then there is a shortest ! j�& j such that ! j requires extension but
there is no j-completion of ! j along & j. Let ! j require extension for + j. By
Lemma 5.5(ii) (Completion-Respecting), ! j has a j-completion } j/; j and
} j has infinite outcome along ; j. Hence + j/& j/} j/; j, and [+ j, } j] is a
primary ; j-link. By Lemma 4.3(i)(c) (Link Analysis), 'k+1=upk+1(& j)
cannot be *(; j)-free, contrary to hypothesis.

Suppose that (5.22) holds in order to obtain a contradiction, and fix the
largest i for which (i) fails because (5.22) holds for i. By Lemma 5.15(ii)
(Admissibility) for lh(;k)=�, and Lemma 5.4 (Compatibility) and since ;
is completion-free if lh(;k)<�, there is a q>i and a $q # T q such that $q

requires extension, $q has an i-completion }i/;i, and $i=out i ($q)�
&i/}i. As q>i, it follows from (5.18) and (5.26) that no node in ($i, }i]
is (i+1)-switching. Let $i+1=outi+1($q), and by Lemma 5.4 (Com-
patibility) let }i+1 be the (i+1)-completion of $q along *(;i), and note, by
Definition 5.6, that up(}i)=*(}i)=}i+1 and }i is an initial derivative of
}i+1. As &i is an initial derivative of 'i+1, it follows from Lemma 3.1(i)
(Limit Path) that $i+1�up(&i)=&i+1/}i+1, so 'i+1 is implication-
restrained, contrary to the inductive hypothesis.

(5.23) cannot hold, by our induction.

(ii) Suppose that 'k is not implication-free, in order to obtain a con-
tradiction. Then one of clauses (5.21)�(5.23) must cause 'k to be implica-
tion-restrained. (5.23) cannot hold by hypothesis. We assume that 'k is
primarily or hereditarily implication-restrained, and obtain a contradiction.
Fix the shortest $k�'k such that for some j�k and some
+ j/$ j=* j ($k)�; j, $ j requires extension for + j, but there is no k-comple-
tion of $ j along 'k. By Lemma 5.5(ii) (Completion-Respecting), $ j has a
primary j-completion } j/; j which has infinite outcome along ; j. If j=k,
then by Lemma 5.2(i) (Implication Chain), [+ j, } j] is a primary ; j-link.
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And if j>k, then as we have assumed that }k�3 'k, it follows that
$k�'k/}k. Now if [+k, }k] is the ;k-link derived from the primary
* j (;k)-link [+ j, } j], then +k/$k�'k/}k, so 'k is not ;k-free, contrary to
hypothesis.

(iii) If 'k+1 is (k+1)-completion-free, then by Lemma 3.1(i) (Limit
Path), for all j�k+1, * j ('k+1)=* j (&k) is not a primary completion. By
Definition 5.6, no primary completion is an initial derivative. (iii) now
follows.

(iv) For all i�k, let $i=outi ($k), let &i=($i)&, and note that &i is
the principal derivative of &k along $i and that $i�;i by (2.5). We first
show that & is completion-consistent via ( ). Suppose not in order to
obtain a contradiction. Then we may fix the largest i such that &i is implica-
tion-restrained. As &k is implication-free, i<k; note that, by choice of i, &i

is either primarily or hereditarily implication-restrained. First suppose that
&i is hereditarily implication-restrained. By Lemma 5.4 (Compatibility), $i

lies along the i-completion of the node witnessing that &i is hereditarily
implication-restrained, and by (5.18) and (5.25), $i is not (i+1)-switching.
Hence &i is the initial derivative of &i+1 along ;i. By Lemma 3.1 (Limit
Path), an initial derivative can be hereditarily implication-restrained only if
its immediate antiderivative is primarily or hereditarily implication-
restrained; hence &i+1 is primarily or hereditarily implication-restrained,
contrary to the choice of i.

Now suppose that &i is primarily implication-restrained. Then there is an
'i�&i which requires extension but has no primary completion �&i. Fix
+i/'i such that 'i requires extension for +i. By Lemma 5.5(ii) (Comple-
tion-Respecting), 'i has a primary completion }i/;i which has infinite
outcome along ;i. Thus [+i, }i] is a primary ;i link restraining &i. But then
by Lemma 4.3(i)(a) (Link Analysis), &i+1 /3 ;i+1, contradicting (2.5). This
completes the proof of the first part of (iv).

We now note that for all i, $i=*i ($) is not a primary completion. For
as & is completion-consistent via ( ) and $&=&, it follows from (5.27) that
if $i is a primary completion, then it is a primary completion of $i, contrary
to Definition 5.6.

Finally, we show by contradiction that for all i�n, $i does not require
extension. Fix the largest i such that $i requires extension in order to
obtain a contradiction, and let $i require extension for +i. If i>k, then by
(5.2), &k is the principal derivative of 'k+1 along $k, and upn(&k) has a
unique derivative along $ j for all j>k; hence by (2.4), ($ j)&=up j(&k) for
all j>k, contrary to the dimension requirements of Definition 5.1. Hence
i�k. As &k has finite outcome along $k and dim('k+1)=k+1, it follows
from (5.2) that i<k. As ; is pseudotrue or lh(;)=�, it follows either from
Lemma 5.15(ii) (Admissibility) or Lemma 5.5(ii) (Completion-Respecting)
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that $i has a primary completion }i/;i which has infinite outcome along
;i. By Definition 5.1, +i/&i/}i and [+i, }i] is a primary ;i-link. By (5.2),
&i has infinite outcome along $i, so is the principal derivative of up(&i)
along ;i. By Lemma 4.3(i)(c) (Link Analysis), up(&i)�3 ;i+1. But as i<k,
up(&i)=&i+1/$i+1�;i+1, a contradiction. Thus $ is pseudotrue. K

Our next lemma shows that, under the assumption that 40 is admissible,
every requirement R is assigned to a free and implication-free node along
4n. Furthermore, if R has dimension k, then we will show that R is
assigned to a unique free and implication-free node `k along 4k, and that
the principal derivative of `k along 4k&1 is free and implication-free. We
will show later that, as a result of this lemma, the construction will act to
satisfy R in accordance with the truth or falsity of the sentence which tries
to determine the action for R. The implication-freeness of the nodes
involved will enable us to show that sufficiently many derivatives of `k will
also be able to act consistently with their assigned sentences. Again we will
need to apply the lemma not only to 40, but to pseudotrue ;/40.

Lemma 5.17 (Assignment Lemma). Suppose that ; # T 0 _ [T 0] is
admissible, and if lh(;)<�, then ; is pseudotrue. Let R be a requirement
of dimension k. For all i�n, let ;i=*i (;). Then:

(i) If lh(;)=�, then there is a `n/;n such that `n is ;n-free,
implication-free, and n-completion-free, and R is assigned to `n.

(ii) If R is assigned to `n/;n, then there is a unique `k/;k such that
upn(`k)=`n, and `k is ;k-free, implication-free, and k-completion-free.

(iii) If `k exists as in (ii), then the principal derivative `k&1 of `k along
;k&1 is ;k&1-free and implication-free.

(iv) If j�n, ! j/; j is ; j-free and implication-free, $ j�; j, and
($ j)&=! j, then $=out0($ j) is pseudotrue.

(v) If `n/;n and lh(`n)>0, then out0(`n) is pseudotrue, and the
initial derivative of `n along ; is pseudotrue.

Proof. (i) Assume that lh(;)=�. By (5.28) or Lemma 5.15(i)
(Admissibility), there are no amenable j-implication chains along ; j for any
j�n. Fix i such that R=Ri . By Lemma 3.1(iii, iv) all blocks along ;n are
completed, so there are infinitely many blocks along ;n. Hence there is a
`n/;n which completes the (i+1)st block. By Lemma 3.1(i) (Limit Path),
`n has an initial derivative along ;n&1, so a requirement must be assigned
to `n. Such a requirement can only be assigned when Step 4 of Defini-
tion 2.8 is followed, and the requirement assigned is Ri .
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As there are no ;n-links, `n is ;n-free. As all requirements have dimension
�n, it follows from (5.2) and Definition 5.7 that `n is implication-free. As
no nodes on T n require extension, `n is n-completion-free.

(ii, iii) By Lemma 3.1(ii) (Limit Path) inductively, for all i�n, `n has
a principal derivative `i/;i, and by (2.9) for all i such that k�i�n, `i is
the unique derivative of `n along ;i. For all i�n, it follows from Lem-
ma 4.6(i) (Free Derivative), (i), and induction that `i is ;i-free. Now by (i)
and iterating Lemma 5.16(ii, iii) (Implication-Freeness) inductively, we see
that `k is implication-free and k-completion-free. Again by Lemma 5.16(ii)
(Implication-Freeness), `k&1 is implication-free.

(iv) For all i�j, let $i=out i ($ j), and for all i>j, let $i=*i ($ j). We
note that by definition, for all i�j, !i=($i)& is the principal derivative of
! j along ; j. Fix i�n. By Lemma 4.6(i) (Free Derivative), !i is ;i-free, so
by Lemma 5.16(ii) (Implication-Freeness), !i is implication-free; thus
!=!0=out0(!i) is completion-consistent via ( ). Hence by Lemma 5.5(iii)
(Completion-Respecting) applied to $, every 'i/$i which requires exten-
sion has a primary completion /$i. As no node can be its own primary
completion, $i cannot be a primary completion.

We complete the proof of (iv) by assuming that $i requires extension,
and obtaining a contradiction. As ;i is admissible and if lh(;i)<� then ;i

is pseudotrue and so out0(;i) is completion-consistent via ( ) and is not
a 0-completion, it follows from Lemma 5.5(ii) (Completion-Respecting) or
Lemma 5.15(ii) (Admissibility) that $i�;i has a primary completion
}i�;i. But ;i is pseudotrue so is not a primary completion; hence }i/;i.
Fix #i�;i such that (#i)&=}i. If }i has infinite outcome along #i, then by
Lemma 5.3(i) (Implication-Chain), there is a primary #i-link restraining !i;
this link is then a primary ;i-link, contradicting the fact that !i is ;i-free.
Thus }i has finite outcome along #i, so by Lemma 5.3(ii) (Implication
Chain), there is an amenable implication chain along ;i, contradicting
(5.28) or Lemma 5.15(i) (Admissibility).

(v) By the proof of (i), every `n/;n is ;n-free and implication-free.
The first conclusion of (v) now follows from (iv). Let ` be the initial
derivative of `n along ;. Then ` is admissible, and by Lemma 3.1(i) (Limit
Path) and as initial derivatives are not primary completions, for all i�n,
upi (`)=*i (`) is not a primary completion. By Lemma 5.16(i) (Implication-
Freeness), ` is implication-free, hence completion-consistent via ( ). The
second conclusion of (v) now follows. K

In Lemma 5.12 (PL), we showed that the backtracking process yielded
a one-to-one correspondence between the PL sets defined for any two
triples of an amenable implication chain, and that this correspondence was
provided by the up function. In order to successfully correct axioms, we
will need to show that if ! is pseudotrue, $1, \1, '1 # T 1, !#out('1)=',
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and \1 # PL($1, '1)"PL($1, *(!)), then some element of (', !] switches \1.
The next lemma will allow us to draw such a conclusion when the need to
correct is due to the existence of a nonamenable implication chain (the
relationship of the nonamenable implication chain on T r&1 to the situation
on T 1 is not readily apparent, as it is absorbed in the control machinery
of Section 6). We will also need an inclusion relation between PL sets at
higher levels, in order to analyze the formation of implication chains.

Lemma 5.18 (Nonamenable Backtracking Lemma). Fix k<n, $k+1,
\k+1, 'k+1 # T k+1 and !k

#out('k+1)='k, such that $k+1/'k+1, *(!k),
$k+1 is *(!k)-free, !=out0(!k) and out0('k+1) are admissible and
pseudotrue, and \k+1 # PL($k+1, 'k+1). Then:

(i) Some element of ('k, !k] switches \k+1.

(ii) [up(#k) : #k # PL(('k)&, !k)]$PL($k+1, 'k+1).

Proof. We first note that PL($k+1, *(!k))=<. As $k+1 is *(!k)-free,
(5.13) cannot place any elements into $k+1. Suppose that {k+1

#$k+1

requires extension for some +k+1/$k+1. As out0(!k)=out0(*(!k)) is
pseudotrue, out0(*(!k)) is completion consistent via ( ) and is not a
0-completion. Hence by Lemma 5.5(ii) (Completion-Respecting), {k+1 has
a primary completion }k+1 which has infinite outcome along *(!k). But
then [+k+1, }k+1] is a primary *(!k)-link restraining $k+1, so $k+1 is not
*(!k)-free, contrary to hypothesis.

By (2.6), no element of ('k, !k] can switch any #k+1/$k+1. We first
consider the case in which \k+1 is placed in PL($k+1, 'k+1) through
(5.13), and show that (i) and (ii) are satisfied. As $k+1/'k+1, there is a
+k+1/'k+1 and a primary 'k+1-link [+k+1, \k+1] which restrains $k+1.
As $k+1/*(!k) and PL($k+1, *(!k))=<, it follows that \k+1 �
PL($k+1, *(!k)); thus [+k+1, \k+1] is not a *(!k)-link. Hence by (2.6) and
(2.10), some element {k of ('k, !k] must switch \k+1 so (i) holds, and by
(2.4), \k=({k)& has infinite outcome along {k. Now \k+1/'k+1, so by
Lemma 3.1(i), \k+1 has an initial derivative \� k/'k. Hence [\� k, \k] is a
primary !k-link which restrains ('k)&, so by (5.13), \k # PL(('k)&, !k) and
(ii) holds.

We complete the proof of (i) by showing that if \k+1 is placed into
PL($k+1, 'k+1) by (5.14) as an element of the component PL(_k+1, `k+1)
for some `k+1�'k+1, or if \k+1=_k+1 for this component, then some ele-
ment of ('k, !k] switches \k+1. Let {k+1 be the immediate successor of
_k+1 along 'k+1, and note that {k+1 requires extension for some +k+1

which we fix. By (5.14), +k+1/$k+1/_k+1. As out0('k+1) is pseudotrue,
out0('k+1) is completion consistent via ( ) and is not a 0-completion.
Hence by Lemma 5.5(ii) (Completion-Respecting), {k+1 has a primary
completion }k+1 which has infinite outcome along 'k+1. By Lemma 5.4

93DECIDABILITY OF THE EXISTENTIAL THEORY



File: 607J I54694 . By:CV . Date:11:06:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 3392 Signs: 2628 . Length: 45 pic 0 pts, 190 mm

(Compatibility), {k+1 must have a k-completion }� k�'k/!k, so }k+1 must
have a principal derivative }k along !k. Let :k be the immediate successor
of }k along !k. Suppose first that }k has finite outcome along !k, for the
sake of obtaining a contradiction. Then by (2.4), }k=}� k and }k+1 has
infinite outcome along *(:k), so [+k+1, }k+1] would be a primary *(:k)-
link restraining \k+1. By (2.6) and (2.10) and as }k is the principal
derivative of }k+1 along !k, [+k+1, }k+1] must be a primary *(!k)-link
restraining $k+1, contrary to the hypothesis that $k+1 is *(!k)-free.

We conclude that }k has infinite outcome along !k. As }k+1 has infinite
outcome along 'k+1, it follows from (2.4) and (2.8) that 'k�}k. By Lem-
ma 5.3(ii) Implication Chain) and Lemma 5.2 (Requires Extension), :k will
require extension for some _k such that up(_k)=_k+1. As ! is pseudotrue,
* j (!) is not a primary completion for any j�n. Hence by Lemma 5.9
(Completion-Consistency), !& is completion-consistent via ( ). Hence :k

must have a k-completion }~ k�(!k)&/!k. As ! is admissible, it follows
from (5.28) that there are no amenable k-implication chains along !k, so by
Lemma 5.3(ii) (Implication Chain), }~ k must have infinite outcome along
!k. Fix :� k�!k such that (:� k)&=}~ k. By Definition 5.3 and since }k+1 has
infinite outcome along 'k+1, all elements of PL($k+1, 'k+1) coming from
a component PL(_k+1, `k+1) for some `k+1�'k+1 are elements of
PL(_k+1, }k+1); and as }k+1 has finite outcome along *(:k), it follows
from Lemma 5.1(iv) (PL Analysis) that PL(_k+1, }k+1)=PL(_k+1, *(:k)).
By Lemma 5.12(i, ii) (PL) and Lemma 5.11(v) (Amenable Backtracking),
PL(_k+1, *(}~ k))=<, every node in PL(_k+1, *(:k)) is switched by some
element of (:k, }~ k], and [up(#k) : #k # PL(}k, }~ k)]=PL(_k+1, }k+1).
Furthermore, :� k switches _k+1=up(}~ k), so (i) holds.

By (5.2), _k is the initial derivative of _k+1 along !k. As _k+1/('k+1)&,
it follows from Lemma 3.1(i) that _k/out(('k+1)&)�('k)&. We have
shown that 'k�}k. Hence by (5.14), PL(}k, }~ k) is a component of
PL(('k)&, !k). Furthermore, as _k+1/('k+1)&, it follows from Lem-
ma 3.1(i) (Limit Path) that _k/('k)&. By Definition 5.6, up(}~ k)=_k+1.
Hence [_k, }~ k] is a primary !k-link restraining ('k)&. Clause (ii) now
follows. K

6. Control of Spaces

Our requirements will be of the form (. � �) 6 (c. � /). If . seems
to be true at a given stage of the construction, we take action to preserve
the truth of ., to make � true, and to preserve its truth. If . seems to
be false, we try to satisfy / and to preserve its truth. We will define a
recursive true path 40 # [T 0] for the construction. Action taken for �
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and / is determined by nodes !/40, which try to declare axioms for
points in the space controlled by !, according to the apparent truth of ..
Thus we will assign spaces S (sets of points which have geometric dimen-
sion) to the node !, define a functional 2! , and try to arrange that the
value m for the axiom 2!(A; x� , x)=m, where OS(!)=A, is determined by
the truth or falsity of a sentence M! associated with ! for sufficiently many
(x� , x) such that (x� , s, x) # S. (The coordinate s represents a stage of the
construction rather than an argument for a functional, so we separate it.)
In this case, ! will control S. The exact definition of control will vary with
the type of !, but we will try to present the definitions of control for the
three types of requirements in as uniform a way as possible. Fix a require-
ment R=R j, r

e, b, c for the remainder of this section, and so consider the type
j and the dimension r of this requirement to be fixed.

Definition 6.1. The spaces assigned to requirements of type j are
specified as follows. Given ! # T k, let `=upn(!). Suppose that R=R j, r

e, b, c is
assigned to `. The space S! will be defined only if k=r, in which case
we set S!=Nr_[wt(!)]_[!], wt(S!)=wt(!), and dim(S!)=r if j=0; we
set S!=Nr+1_[e]_[!], wt(S!)=e, and dim(S!)=r+1 if j=1; and we
set S!=Nr_[e]_[!], wt(S!)=e, and dim(S!)=r if j=2. Whenever
we specify a section S = [(x1 , ..., xr&k)]_Nu_[(x, !)] of S! , we
define dim(S )=u, and wt(S )=xr&k if r>k. For each i # [k, r], we let
upi (S )=[(x1 , ..., xr&i)]_Ni_[(x, !)] if j # [0, 2], and up i (S )=
[(x1 , ..., xr&i)]_Ni+1_[(x, !)] if j=1. Given u such that S=upu(S ),
we define up(S )=upu+1(S ). We identify two spaces S! and S; whenever
they agree in all but the last coordinate and !#;, in which case we write
S!#S; .

We will define the set of spaces controlled by &k at 'k with initiator $k

(and terminator {k) below. Let S be a space assigned to a node of T k. If
j # [1, 2], then there may be infinitely many nodes along a given path
through T r which are candidates for controlling S, so we may not be able
to recursively identify the node which should control S. Thus we begin to
define control on T r&1 for requirements of types 1 or 2, spreading out the
control of sections of S among many nodes. Implication chains will be used
for such j to ensure that these nodes work together to produce the same
output for the axioms they control on a subset of S which is large enough
to ensure a particular iterated limit. We do define control on T r when j=0,
as there is no ambiguity, in that case, as to which node should control the
space.

Controllers for S will be nodes which are derivatives of a node
;=;r # T r such that S is a section of S; . Control of a space S associated
with a node of type 0 or 2 along a path 4k # [T k] will be determined when

95DECIDABILITY OF THE EXISTENTIAL THEORY



File: 607J I54696 . By:CV . Date:11:06:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 3444 Signs: 3087 . Length: 45 pic 0 pts, 190 mm

we reach the first !k/4k such that wt(!k)�wt(S ) and out0(!k) is
pseudotrue. We impose the latter condition in order to prevent the
specification of axioms while conflicts about the value of the axiom cap-
tured by the implication chain machinery remain to be resolved; so assume
that out0('k) is pseudotrue. To determine control at 'k # T k, we see if there
is such a !k�'k; if !k exists, then the node controlling S at 'k is the same
as the node controlling S at !k. If wt('k)<wt(S ), then S is not controlled
at 'k. Nevertheless, in the latter case, we define a (potential) controller &k

for S at 'k; this node would be the controller were control to be defined.
(Thus S may have a controller at 'k, but may not be controlled at 'k.) The
(potential) controller may be changed before we reach !k, but will not
change thereafter. (We choose this approach, rather than starting at !k,
because when we have to define control for requirements of type 1, we need
to revise our determination of the controlling node beyond !k.) As we want
the controller &k for S at 'k to decide the value for axioms it controls, we
require that &k/'k, so that 'k will have a guess at &k 's outcome. Initiators
determine when it becomes reasonable either to first define the controller,
or to define a new controller, because we see the value we want for the
axioms being controlled.

Terminators for initiators will be defined if j=2 and k=r&1. A
terminator {k for the initiator $k will be the last node of a primary link
[+k, {k] such that +k/$k�{k and wt({k)<wt(S ), and will have the
property that elements entering the target set for the terminator will enable
us to correct axioms. (We specify that +k/$k in order to be able to show
that, under certain circumstances, the corresponding controller is also
restrained by the same link.) Terminators will help us show that the notion
of control defined allows the computation of iterated limits needed to
satisfy requirements. When the initiator $k for the controller &k and the
space S has a terminator {k, then &k forfeits its eligibility to control S.
However, if there is no controller to replace &k, then we will still need to
have derivatives of &k controlling sections of S. We say that &k influences S
in this situation.

Control for requirements of type 1 will have a slightly different flavor. In
this case, we have an extra dimension for the spaces controlled at each
level, so in order to compute iterated limits, we can allow finitely many
axioms to produce the incorrect value on each space of dimension 2 (one
of the dimensions specifies stages for the construction, so we are really
computing a single limit). This will be important, as we will not have the
automatic correction feature which is available for requirements of type 2.
To make use of this added flexibility, we allow terminators {k to be defined
even if wt({k)�wt(S ), but do not allow new initiators to have large weight.
We will thus eventually settle on a final initiator for S along any given
path, or decide that no initiator exists along that path.
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As mentioned above, we will have to keep track of primary links
[+k, ?k] on T k which restrain &k and are safe for &k, and those which are
not safe. The links which may not be safe cause an element to be placed
into some Aa # RS(&k) by switching ?k, and are called &k-injurious. If such
nodes also place elements into Ac # OS(&k), they will allow axioms to be
corrected. When this is the case, [+k, ?k] will be called &k-correcting. In
order to remove [+k, ?k] while preserving the admissibility of strings, addi-
tional nodes may have to have their outcomes switched; these are the
nodes in the set PL(!k) defined below, where !k is the immediate successor
of ?k which determines that [+k, ?k] is a primary link along the given path.
PL(!k) is the set of nodes in PL(&k, !k) which need to be switched to make
&k free, and which come from a specified component of PL(&k, !k), or from
the end of a primary !k-link restraining &k.

Definition 6.2. Fix k<n, &k # T k, and +k/?k=(!k)&/!k�'k # T k

such that [+k, ?k] is a primary 'k-link. If ?k is the primary completion of
some node _k, let PL(!k)=PL((_k)&, !k) _ [(_k)&], and let PL(!k)=
[?k] otherwise. We say that [+k, ?k] is &k-injurious if RS(&k) & TS(;k){<
for some ;k # PL(!k), and is &k-correcting if OS(&k)�TS(;k) for some
;k # PL(!k).

We note that if [+k, ?k] is a &k-injurious primary 'k-link, dim(&k)=k,
and tp(&k)=1, then [+k, ?k] is &k-correcting. For as +k{?k and
up(+k)=up(?k), it follows from (2.9) that dim(+k)�k+1. Hence by
Lemma 2.2(iii) (Interaction), [+k, ?k] is &k-correcting.

We will determine the spaces controlled by &k at 'k below. This notion
of control will have the following properties. If &k # T k is assigned the
requirement R and controls S at 'k, then &k/'k, &k will be the unique
node which controls S at 'k, and if j # [0, 2], then &k will control S at all
;k

$'k such that out0(;k) is pseudotrue. The initiator for S at 'k will be
the longest initiator appointed at any !k�'k which has no terminator
along 'k. Also, if X is a space of the proper dimension to have sections X [i]

controlled on T k, then either only finitely many sections of X will be
controlled along any 4k # [T k], or cofinitely many sections of X will be
controlled along 4k by nodes which are derivatives of a fixed node
&k+1 # T k+1; and if X is controlled along 4k+1, then &k+1 will be the
controller for X along 4k+1. The definition below is arranged to ensure
these properties.

We proceed by induction on r&k if j=0, and on r&k&1 if j # [1, 2],
and then by induction on lh('k) for 'k/4k. (Control will not be defined
on T r if j # [1, 2]; implication chains will ensure the existence of the
iterated limit for r=k.) Let X be a section of the space for which R wants
to define axioms, with dim(X )=k+1 if j # [0, 2], and dim(X )=k+2 if
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j=1. For each i # N and 'k # T k, we determine the node &k/'k which is
the controller for X [i] at 'k, the node $k�'k which is the initiator for X [i]

at 'k, and those nodes �'k which are terminators for X [i] and some
initiator for X [i] at 'k.

Definition 6.3 (Initiators, Controllers, and Terminators). Fix k�r if
j=0, k<r if j # [1, 2], 'k # T k such that lh('k)>0, and a space S, and let
$� k and &� k be, respectively, the initiator and controller for S at ('k)&, if
these exist. We determine whether the controller, initiator, and terminator
for S at 'k exist, and if so, define those strings. We will assume by induc-
tion that

(6.1) $� k exists iff &� k exists.

Case 1. We define controllers when a new initiator is found. There are
two subcases. Subcase 1.1 handles the base step, and Subcase 1.2 handles
the inductive step.

Subcase 1.1: Either k=r, j=0, and S=S ('k)&; or k=r&1,
j # [1, 2], wt('k)�wt(S), and up(S)=Sup(('k)&) ; and in both cases, the
principal derivative (out j ('k))& of ('k)& along out j ('k) is implication-free
for all j�k, and out0('k) is pseudotrue. Then 'k is the initiator for S at 'k

and ('k)& is the controller for S at 'k.

Subcase 1.2: k<r if j=0, k<r&1 if j # [1, 2], wt('k)�wt(S), there
is an initiator $k+1 for up(S) at *('k), but $k+1 is not the initiator for
up(S) at *(('k)&). Let &k+1 be the controller corresponding to $k+1. Then
'k is the initiator for S at 'k. The controller &k for S at 'k is the longest
derivative of &k+1 such that &k/'k. (By (6.2) below inductively, it will be
the case that &k+1/$k+1, so such a derivative will exist.)

Case 2. (We switch controllers and initiators when a new derivative of
up(&� k) is found.) Case 1 is not followed, either k<r and j=0 or k<r&1
and j # [1, 2], wt('k)�wt(S), up(&� k) controls up(S) at *('k), and
up(('k)&)=up(&� k). Then 'k is the initiator for S at 'k and ('k)& is the
controller for S at 'k.

Case 3. Neither of the previous cases is followed, j # [1, 2], &� k and $� k

exist, and there is a primary &� k-correcting 'k-link [+k, ('k)&] such that
+k/$� k�('k)&; and if j=2, then wt('k)�wt(S) and k=r&1. (Again
note, as in the earlier description of terminators, that we require that
+k{$� k.) We call ('k)& a terminator for S and $� k at 'k. (Note that if j=1,
then we allow &� k-correcting primary links to cause a change of control,
even if we discover them at a node whose weight exceeds wt(S). This is
necessary, else we would not be able to correct axioms for a thick subset
of up(S) when control is switched.)
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Subcase 3.1: There is no controller for S at +k. If j=1, then there is
no controller or initiator for S at 'k. If j=2, then &� k ($� k, resp.) is the
controller (initiator, resp.) for S at 'k.

Subcase 3.2: Otherwise. By (6.1) inductively, let $� k and &~ k be, respec-
tively, the initiator and controller for S at +k. Then &~ k is the controller for
S at 'k; and the initiator for S at 'k is $� k if wt('k)>wt(S), and is 'k if
wt('k)�wt(S).

Case 4. Otherwise. The initiator and controller for S at 'k are $� k and
&� k, respectively, if these exist, and fail to exist otherwise.

In all cases, we say that {k is a terminator for S and $k along 'k

(4k # [T k], resp.) if {k is a terminator for S and $k at some !k�'k

(!k/4k, resp.). K

The following properties are easily verified by induction on lh('k), as is
(6.1). (6.5)(ii) follows from Lemma 4.1 (Nesting), (6.2), and Case 3 of
Definition 6.3, where terminators are defined to restrain the previous
initiator.

(6.2) If &k controls S at 'k with initiator $k, then &k/$k�'k.

(6.3) If $k is the initiator for S at both 'k and '~ k, and &k and &~ k are
the controllers for S at 'k and '~ k. respectively, then &k=&~ k.

(6.4) If $k is the initiator for S at 'k, then wt($k)�wt(S).

(6.5) Suppose that 'k/'~ k, and $k and $� k are the initiators for S at
'k and '~ k, respectively. Then:

(i) If wt('~ k)�wt(S), then $k�$� k.

(ii) If wt(S)�wt('k), then $� k�$k; and if j # [0, 2], then $� k=$k.

We are now ready to define control. Recall that control is supported
only on pseudotrue nodes, as defined in Definition 5.9. There is a corre-
sponding notion at non-pseudotrue nodes which we call weak control.
Control is replaced by influence for requirements of type 2, when the
initiator has a terminator.

Definition 6.4 (Control). We say that &k weakly controls S at 'k if &k

is the controller for S at 'k corresponding to the initiator $k, there is no
terminator for $k and S along 'k, and

wt(S)�wt('k). (6.6)

If &k is the controller for S at 'k with initiator $k, there is a terminator for
$k and S along 'k, and (6.6) holds, then we say that &k weakly influences
S at 'k. &k controls (influences, resp.) S at 'k if &k weakly controls (influences,
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resp.) S at 'k and out0('k) is pseudotrue. Given 4k # T k, we say that &k

weakly controls (weakly influences, resp.) S ($k is the initiator for S, resp.)
along 4k if &k weakly controls S ($k is the initiator for S, resp.) at all suf-
ficiently long 'k/4k; and that &k controls (influences, resp.) S along 4k if
there are infinitely many 'k/4k such that out0('k) is pseudotrue, and &k

controls (influences, resp.) S at all sufficiently long 'k/4k such that
out('k) is pseudotrue. K

We note that control along 4k and weak control along 4k coincide if
there are infinitely many pseudotrue 'k/4k.

Suppose that 4k # [T k]. The following fact now follows easily from
(2.1), Lemma 4.1 (Nesting), (6.5), and (6.6), as there must be a longest
initiator along any path if there is any initiator along that path:

(6.7) Suppose that !k/4k and !k extends all initiators and properly
extends all terminators for S at any 'k/4k. (If j # [0, 2], this will be the
case if wt(!k)�wt(S).) Then &k weakly controls (weakly influences, resp.)
S ($k is the initiator for S, resp.) along 4k iff &k weakly controls (weakly
influences, resp.) S ($k is the initiator for S, resp.) at !k iff &k weakly con-
trols (weakly influences, resp.) S ($k is the initiator for S, resp.) at every 'k

such that !k�'k/4k. Furthermore, if &k weakly controls S along 4k,
!k�'k/4k, and $k is the initiator for S at 'k, then $k is the longest node
which is an initiator for S at some #k�'k and which has no terminator
along 'k.

The next lemma specifies some properties of the control process.

Lemma 6.1 (Finite Control Lemma). Fix k�n, an admissible
4k # [T k], and a space S assigned to a node working for requirement R,
where k�dim(R) if j=tp(R)=0, and k<dim(R) if tp(R) # [1, 2]. Then:

(i) [&k # T k : _'k(&k weakly controls or weakly influences S at 'k)] is
finite.

(ii) If j # [0, 2] then:

(a) |[&k/4k : _'k('k/4k 6 &k weakly controls or weakly influen-
ces S at 'k)]|�1; and

(b) |[$k/4k : _'k/4k($k is an initiator for S at 'k 6 S is weakly
controlled or weakly influenced at 'k)]|�1.

(iii) Suppose that k<dim(R). Let F be the set of initiators for S on
T k. Then F is finite and for all 4 # [T k], S is weakly controlled along 4 iff
there is a $k # F such that $k/4 and there is no terminator for $k and S at
any 'k/4.

(iv) If &k/$k/4k, ($k)&=&k, k=dim(R)&1, and &k is a controller
at some 'k/4k, then $k is an initiator at $k.
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Proof. (i) If k=dim(R), then tp(R)=0, and there is a unique node
on T k which controls S. Suppose that k<dim(R), and that &k # T k and &k

weakly controls or weakly influences S at 'k. By (2.1), (6.2), and (6.4),
wt(&k)�wt(S). But as the weight function is one-to-one, there are only
finitely many &k # T k such that wt(&k)�wt(S).

(ii) If k=dim(R), then tp(R)=0, and there is a unique controller &k

for S on T k. Furthermore, for any 'k # T k, if S is weakly controlled at 'k

with initiator $k, then &k/'k and $k is the immediate successor of &k

along 'k.

Suppose that k<dim(R). By (6.6) and Definition 6.4, if S is weakly con-
trolled or weakly influenced at 'k, then wt(S)�wt('k). Clause (ii)(b) now
follows from (6.5)(ii). Clause (ii)(a) follows from (6.3).

(iii) Suppose that k<dim(R). If $k # F then by (6.4), wt($k)�wt(S). As
the weight function is one-to-one, F is finite. By Definitions 6.3 and 6.4, if
&k weakly controls S along 4 # [T k] then 4 must extend some element $k

of F such that there is no terminator for $k and S along 4. Conversely, sup-
pose that 4 extends an element $k of F such that there is no terminator for
$k and S along 4. By (6.7) and Definitions 6.3 and 6.4, S is weakly con-
trolled along 4.

(iv) We note that if tp(R)=0, then *($k)#up(&k), so *($k) extends an
immediate successor of up(&k), and so S is weakly controlled along *($k).
Thus (iv) can fail for tp(R)�2 only if &k is defined as the controller for
some space through Case 3 of Definition 6.3. Suppose that &k is defined by
that case. Then &k must be a controller at some !k/'k. Hence if we fix the
shortest !k/4k at which &k is a controller, then Subcase 1.1, Subcase 1.2,
or Case 2 of Definition 6.3 must be followed at !k. But then !k=$k and $k

is the initiator corresponding to &k at $k. K

Our next lemma spells out some important relationships between
initiators, terminators, and weak control for requirements of type 1.

Lemma 6.2 (Terminator Lemma). Fix k<n&1 and 4k # [T k], and let
4k+1=*(4k). Fix a space X which is assigned to a requirement of type 1
and is weakly controlled by some node of T k+1, and fix i # N. Then:

(i) If $k/4k is an initiator for X [i] at $k, and u�i, then $k is an
initiator for X [u] at $k.

(ii) Suppose that $k+1�'k+1/4k+1 are given such that $k+1 is the
initiator for X at all #k+1 such that 'k+1�#k+1/4k+1, and there is no
initiator $� k+1

#'k+1 for X (the latter condition includes those $� k+1 which
may not lie along 4k+1). Let 'k=out('k+1). Suppose that 'k�$k/4k, $k

is an initiator for X [i], and $k+1 is not the initiator for X at *($k). Then
there is a terminator for X [i] and $k along 4k.
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Proof. (i) By (6.4), wt($k)�wt(X [i])=i; so as u�i, wt($k)�
wt(X [u])=u. By induction on lh($k) and (2.1), if an initiator for one of
X[i] or X [u] exists at ($k)&, then that node is the initiator for both X [i]

and X [u] at ($k)&. Clause (i) now follows from Definition 6.3.

(ii) Let $� k+1 be the initiator for X at *($k). As $k
$'k=out('k+1)

and 'k+1/4k+1, *($k)$'k+1 by (2.4) and (2.6). Hence by choice of 'k+1,
$� k+1�'k+1. Now by (6.7), $� k+1 is the initiator for X at #k+1 iff $� k+1 is
the longest node which is an initiator at some !k+1�#k+1 and which does
not have a terminator along #k+1. Thus $� k+1

#3 $k+1, else $� k+1 would have
a terminator along 'k+1. Hence as *($k)$'k+1 and $k+1 is not the
initiator for X at *($k), $� k+1/$k+1. By (6.7), this is only possible if there
is a #k+1�*($k) such that (#k+1)& is a terminator for X and $k+1 along
#k+1. Let &k be the initial derivative of (#k+1)& along $k, and note, by
Lemma 3.1(i) (Limit Path), that &k/$k. As (#k+1)& is a terminator for X
and $k+1 along #k+1, (#k+1)& must have infinite outcome along #k+1, so
&k must have finite outcome along $k. Now #k+1 /3 4k+1 as there is no ter-
minator for X and $k+1 along 4k+1, else $k+1 would not be the initiator
for X along 4k+1. Furthermore, as $k+1/4k+1, by (2.10), some extension
of $k along 4k must switch (#k+1)&, so there must be a derivative !k

$$k

of (#k+1)& along 4k which has infinite outcome along 4k. It now follows
that !k is a terminator for $k along 4k via the primary 4k-link [&k, !k]. K

The next definition is notational in nature. Given 4k # [T k], a node
&k+1 of T k+1, and a space X whose sections X [i] may be weakly controlled
by nodes of T k, we define CON(&k+1, 4k, X) to be the set of sections of X
which are weakly controlled by derivatives &k of &k+1 such that &k/4k.
This set is partitioned into two sets, ACT(&k+1, 4k, X) corresponding
to the derivatives of &k+1 which are activated along 4k, and
VAL(&k+1, 4k, X) corresponding to the derivatives of &k+1 which are
validated along 4k.

Definition 6.5. Let k<n, &k+1 # T k+1, 4k # [T k], and a space X be
given. We define

CON(&k+1, 4k, X)=. [S�X : _&k/4k(up(&k)=&k+1

6 &k weakly controls S along 4k)],

VAL(&k+1, 4k, X)=. [S�X : _&k/4k(up(&k)=&k+1

6 &k weakly controls S along 4k

6 &k is validated along 4k)],

102 LEMPP AND LERMAN



File: 607J I54703 . By:CV . Date:11:06:96 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 3035 Signs: 2123 . Length: 45 pic 0 pts, 190 mm

and

ACT(&k+1, 4k, X)=. [S�X : _&k/4k(up(&k)=&k+1

6 &k weakly controls S along 4k

6 &k is activated along 4k)].

In the next definition, we introduce thick and thin subsets. Thick subsets
of a space S of dimension k+1 are the union of cofinitely many sections
S[i] of S. Thin subsets are the complements of thick subsets.

Definition 6.6. Fix a space S of dimension k. We say that S� is a thick
subset of S if S� =� [S [i] : i # I] where I is a cofinite set of natural numbers.
We say that S� is a thin subset of S if S� �S and S"S� is a thick subset
of S.

We now show that a node weakly controlling a space passes down weak
control of a thick subset of that space to its derivatives.

Lemma 6.3 (Thick Control Lemma). Fix an admissible 40 # [T 0], and
for all u�n, let 4u=*u(40). Fix k<n, and suppose that &k+1/4k+1

weakly controls the space X along 4k+1. Then:

(i) If &k+1 is validated along 4k+1, then VAL(&k+1, 4k, X) is a thick
subset of X.

(ii) If &k+1 is activated along 4k+1, then ACT(&k+1, 4k, X) is a thick
subset of X.

Proof. If tp(&k+1)=0 and dim(&k+1)=k+1, then &k+1 is the unique
controller for X on T k+1, and its immediate successor $k+1 along 4k+1 is
the unique initiator for X at any node extending $k+1. Thus let
'k+1=$k+1 in this case. Otherwise, we note that as X is weakly controlled
along 4k+1, dim(&k+1)>k+1. By (6.5)(ii), (6.7), (2.4), and Lemma 3.1
(Limit Path), we can fix the shortest 'k+1/4k+1 such that
wt('k+1)>wt(X) and &k+1 is the controller for X with fixed initiator $k+1

at all #k+1 such that 'k+1�#k+1/4k+1. Note that as wt('k+1)>wt(X),
it follows from (6.4) that there is no initiator for X (along any path
through T k+1) which extends 'k+1. In both cases, let 'k=out('k+1). By
Lemma 3.2(i) (Out), *('k)='k+1.

We first show that for all i�wt('k), the controller of X [i] along 4k is a
derivative of &k+1. By Definition 6.3, for all i�wt('k), X [i] will have a con-
troller &k at 'k, and &k will be a derivative of &k+1; furthermore, by Lem-
ma 3.1(ii) (Limit Path), &k

$?k, where ?k is the principal derivative of &k+1

along 4k. By (4.1), the initiator corresponding to &k is restrained by a
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primary link along 4k iff it is restrained by that same link at 'k. Also by
Lemma 6.2(ii) (Terminator) and Definition 6.3, if i�wt('k), 'k/$k/4k

and $k is an initiator for X [i] at $k, then either $k+1 is the initiator for X
at *($k), or tp(&k+1)=1 and there is a terminator for $k and X [i] along 4k.
Thus the controller of X [i] along 4k must be a derivative of &k+1.

Fix i�wt('k). By (6.7), X [i] is weakly controlled along 4k. If ?k has
infinite outcome along 4k, then by (2.8), ?k weakly controls X [i] along 4k.
And if ?k has finite outcome along 4k, then every derivative of &k+1 along
4k has finite outcome along 4k; so if &k weakly controls X [i] along 4k,
then &k has finite outcome along 4k. Clauses (i) and (ii) now follow, as by
Definition 2.1, &k is validated along 4k iff &k+1 is validated along 4k+1. K

The next two lemmas combine to show that if a space X is not weakly
controlled along 4k+1, then either a thick subset of X is weakly controlled
along 4k, or cofinitely many sections of X of dimension k have only a thin
subset weakly controlled along 4k&1. Also, if X is weakly influenced along
4k+1, then a thick subset of X is weakly controlled along 4k.

Lemma 6.4 (Indirect Control Lemma). Fix k<n and an admissible
4k # [T k], and let 4k+1=*(4k). Let X be a section of the space assigned
to the requirement R of dimension r, where r�k+1 if tp(R)=0, and
r>k+1 if tp(R) # [1, 2]. Suppose that X is not weakly controlled along
4k+1, but that X [i] is weakly controlled along 4k for infinitely many i. Then
there is &k/4k such that &k weakly controls a thick subset of X along 4k.
In particular, this will be the case if X is weakly influenced along 4k+1.

Proof. First suppose that k+1=dim(R), and so, that tp(R)=0. By
hypothesis, X is not weakly controlled along 4k+1, and we note that as
tp(R)=0, there is at most one controller for X on T k+1 and there are no
terminators for X along 4k+1. Hence if there is a controller for X on T k+1,
then that controller is not /4k+1. It thus follows from Lemma 3.1(ii)
(Limit Path) that there is !k/4k such that for all !� k

$!k, if !� k/4k, then
*(!� k) does not extend an initiator for X.

Suppose that k+1<dim(R). By Lemma 6.1(iii) (Finite Control), we
can fix a finite subset F of T k+1 such that for all 4 # [T k+1], X is weakly
controlled along 4 iff 4 extends some element of F which does not have
a terminator along 4. As X is not weakly controlled along 4k+1, it follows
from the finiteness of F and Lemma 3.1(ii) (Limit Path) that there is
!k/4k such that for all !� k

$!k, if !� k/4k and *(!� k) extends an element
$k+1 # F, then $k+1/4k+1 and both *(!� k) and 4k+1 properly extend the
same terminator for $k+1 and X along 4k+1.

In either case, we conclude that there are only finitely many initiators for
sections of X along 4k. As infinitely many sections of X are weakly
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controlled along 4k, there must be a $k/4k such that *($k) extends an ele-
ment of F, some &k/$k weakly controls a section of X at $k, and $k is not
restrained by any &k-correcting primary 4k-link. By choice of !k, $k�!k for
each such $k. Fix the longest such $k, and the unique &k for $k. By Defini-
tion 6.3 and (6.7), &k will weakly control all but finitely many sections of
X along 4k.

We now note that if X is weakly influenced along 4k+1, then X has a
controller &k+1 and an initiator $k+1 along 4k+1. By Lemma 3.1(i) (Limit
Path), &k+1 will have a derivative &k/4k and $k=out($k+1) is an initiator
for a section of X at $k. Furthermore, tp(&k+1)=2, so there will be no ter-
minators for sections of X along 4k. Thus by Definitions 6.3 and 6.4, $k

will witness the fact that infinitely many sections of X are weakly controlled
along 4k. The last sentence of the lemma now follows from the first part
of the lemma. K

The next lemma shows that if X is a space which is not weakly con-
trolled along 4k+1 and no section Y of X is weakly controlled along 4k,
then for cofinitely many sections Y of X, there is very little weak control
of sections of Y along 4k&1. More precisely, for cofinitely many sections Y
of X, the number of sections of Y which are weakly controlled at some
node along 4k&1 is finite, and if X is assigned to a requirement of type 0
or 2, then this number is 0 (so no section of Y is weakly controlled along
4k&1). (Because of the definition of terminators, the set of sections of X
weakly controlled along 4k&1 will be a (possibly proper) subset of the set
of sections of X weakly controlled at some #k&1/4k&1.)

Lemma 6.5 (Non-control Lemma). Fix an admissible 40 # [T 0], and
for all u�n, let 4u=*u(40). Fix k # (0, n&1) and a requirement R of
dimension r and type j, where r�k+1 if j=0, and r>k+1 if j # [1, 2]. Let
X be a section of a space assigned to R which is not weakly controlled along
4k+1. Suppose that X [i] is weakly controlled along 4k for at most finitely
many i # N. Then:

(i) For all i # N, either [u : (X [i])[u] is weakly controlled along
4k&1] is cofinite, or [u : (X [i])[u] is weakly controlled at some
#k&1/4k&1] is finite.

(ii) For cofinitely many i # N, [u : (X [i])[u] is weakly controlled at
some #k&1/4k&1] is finite.

(iii) If j # [0, 2], then for cofinitely many i # N, [u : (X [i])[u] is weakly
controlled at some #k&1/4k&1]=<.

Proof. By Lemma 3.7 (Infinite Injury), Lemma 6.1(iii) (Finite Control),
and as, if j=0 and r=k+1, then there can be no controller for X along
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4k+1 and there is at most one controller for X on T k+1, we can choose
'~ k&1/4k&1 such that for all initiators \k+1 # T k+1 for X such that
\k+1/3 4k+1 and all !k&1, if '~ k&1�!k&1/4k&1 then *k+1(!k&1)$3 \k+1.
By hypothesis, the preceding sentence, and Lemma 6.1(iii) (Finite Con-
trol), we can fix 'k+1/4k+1 such that for all initiators \k+1/4k+1 for X,
there is a terminator for \k+1 and X along 'k+1. Let 'k=out('k+1) and
'k&1=out('k), and note that by (2.5), 'k/4k and 'k&1/4k&1. Without
loss of generality, we may assume that 'k&1

$'~ k&1. By (2.5) and (2.6), for
all !k&1 that 'k&1�!k&1/4k&1, *(!k&1)$'k.

By (2.5), *('k)='k+1. Now ('k)&=(out('k+1))& is the principal
derivative of ('k+1)& along 4k, so by Lemma 4.3(i)(c) (Link Analysis),
there is no primary 4k-link which restrains ('k)&. Hence by hypothesis,
there is no initiator $k for any section of X at ('k)&, else by (4.1) and
Lemma 4.4 (Free Implies True Path), $k would have no terminator
along 4k, so by Definition 6.3, cofinitely many sections of X would have
initiators along 4k. But then by Definition 6.4, infinitely many sections
of X would be weakly controlled along 4k, contrary to hypothesis.
Furthermore, 'k cannot be an initiator for a section of X, else either X
would be weakly controlled at 'k+1=*('k), or some section of X would
have an initiator at ('k)&, neither of which is possible. Hence there is no
initiator for any section of X at 'k. Also, *('k&1)='k and ('k&1)&=
(out('k))& is the principal derivative of ('k)& along 4k&1, so again by
Lemma 4.3(i)(c) (Link Analysis), there is no primary 4k&1-link which
restrains ('k&1)&.

Fix i. First assume that i<wt('k). By (6.4) and (2.1), there is no initiator
$k

$'k for X[i]. Hence as there is no initiator for X [i] at 'k, if $k&1/4k&1

is first defined to be an initiator for a section of X [i] by Case 1 or Case 2
of Definition 6.3, then $k&1/'k&1. Also, as there is no primary 4k&1-link
which restrains ('k&1)&, if $k&1/4k&1 is first defined to be an initiator
for a section of X [i] by Case 3 of Definition 6.3, then $k&1/'k&1. We con-
clude that if $k&1 is an initiator for a section of X [i] at any !k&1/4k&1,
then $k&1/'k&1. Now if there is a $k&1/4k&1 such that $k&1 is an
initiator for a section of X [i] and there is no terminator for $k&1 along
4k&1, then by Definition 6.3, infinitely many sections of X will have
initiators along 4k&1, so (i) follows for i from (6.7) and Definition 6.4.
Otherwise, as there is no primary 4k&1-link which restrains ('k&1)&, each
initiator $k&1/4k&1 for a section of X [i] has a terminator {k&1/'k&1, so
by Definition 6.4, for all u�wt('k&1), (X [i])[u] is not weakly controlled at
any !k&1/4k&1, and again, (i) follows for this i.

Suppose that i�wt('k). As there is no initiator $k for X [i] at 'k and
*('k&1)='k, 'k&1 cannot be an initiator for a section of X [i]. Further-
more, for any !k&1/'k&1, it follows from (2.4) that *(!k&1){*('k&1), so
by (2.11) and (6.6), X [i] is not weakly controlled at *(!k&1). Hence
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any initiator for a section of X [i] at some !k&1/4k&1 must properly
extend 'k&1.

The broad outline of the verification of (ii) in this case is as follows. We
first show that if $k&1 is an initiator for a section of X [i] at some
!k&1/4k&1, then *($k&1) extends an initiator for X [i] which, in turn,
extends a node which switches a terminator for X along 4k+1. We then
show that the node on T k which switched the terminator must have its
immediate predecessor switched back by a node on T k&1 in order to return
the terminator for X to 4k+1, and that this switching process can be
characterized in terms of PL sets, in a way to ensure correction of axioms.
The switching process will ensure that $k&1 has a terminator along
4k&1, so only finitely many sections of X [i] are weakly controlled along
4k&1. Furthermore, we will be able to obtain a uniform bound on these
terminators, so (ii) will follow.

Suppose that $k&1/4k&1 is an initiator for a section of X [i]. We have
shown that $k&1

#'k&1, so *($k&1)$'k. By Definition 6.3, there must be
an initiator $k�*($k&1) for X [i] at *($k&1), and again by the second
paragraph of the proof and (6.4), $k

#'k. By Definition 6.3, there is an
initiator $k+1 for X at *($k) with corresponding initiator &k+1. But by
(2.5), $k&1

$out($k)#out('k)='k&1 and by Lemma 3.2(i) (Out),
*k+1(out($k))=*($k), so by choice of 'k&1, $k+1/4k+1 and $k+1 has a
terminator {k+1/'k+1/4k+1. Fix {~ k+1�'k+1 such that ({~ k+1)&={k+1,
and let {~ k=out({~ k+1). By Definition 6.2 and Case 3 of Definition 6.3, there
is a `k+1 # PL({~ k+1) such that OS(&k+1)�TS(`k+1).

We now note that {k+1 has infinite outcome along {~ k+1=*({~ k), and if
{k+1/*($k), then {k+1 does not have infinite outcome along *($k).
Furthermore, {~ k�'k/$k�*($k&1), so by (2.4), if {k+1 were to have
infinite outcome along *k+1($k&1), then that outcome would be the same
as the outcome of {k+1 along {~ k+1=*({~ k), and by (2.6), {k+1 would have
that outcome along *(#k) for all #k # [{~ k, *($k&1)]. In particular, {k+1

would have that same infinite outcome along *($k), which we have shown
not to be the case. Hence {k+1 does not have infinite outcome along
*k+1($k&1). As *($k)$$k+1 and there is a primary *('k)-link
[+k+1, {k+1] which restrains $k+1 with +k+1/$k+1, it follows from (2.10)
that there is a node {̂k such that {~ k�'k/{̂k�$k and {̂k switches {k+1.
((2.10) implies that a node can be switched only when it is free; and by
(2.6), $k+1�*(:k) for all :k such that {~ k�:k�$k. So no node /{k+1 can
be switched by such an :k

#{~ k until {k+1 is switched.) Let {� k=({̂k)&, and
let {k=({~ k)&. Then [{k, {� k] is a primary *($k&1)-link, and up({� k)={k+1.

As 'k � {� k = ({̂k)& / {̂k � $k, it follows from (2.5) and Lemma 3.1
(Limit Path) that {� k has an initial derivative {� k&1 such that
'k&1�{� k&1/out($k)�$k&1; fix {̂k&1�$k&1 such that ({̂k&1)&={� k&1.
Now {~ k=out({~ k+1), so up({k)={k+1, and {k is the principal derivative of
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{k+1 along both 'k and 4k. Furthermore, by (2.10) and as 'k is 4k-free and
{k/'k�{� k, {� k must be switched by some proper extension {~ k&1 of $k&1

along 4k&1. Let {k&1=({~ k&1)&, and note that {k&1 is the principal
derivative of {� k along 4k&1, so [{� k&1, {k&1] is a primary 4k&1-link with
{� k&1/$k&1�{k&1.

We now show that {k&1 is a terminator for $k&1 along 4k&1. First
assume that {k+1 is not a primary completion. Then PL({~ k+1)=[{k+1],
{k&1 # PL({~ k&1), and upk+1({k&1)={k+1. Hence {k&1 is a terminator for
$k&1 along 4k&1.

Now assume that {k+1 is a primary completion of some \k+1, which we
fix, and let _k+1=(\k+1)&. As {k+1 has infinite outcome along {~ k+1 but
finite outcome along *({̂k), it follows from Lemma 5.1(i, ii) (PL Analysis)
and Definition 5.3 that

PL({~ k+1)=PL(_k+1, {~ k+1) _ [_k+1]

=PL(_k+1, {k+1) _ [{k+1] _ [_k+1],

and by Lemma 5.1(iv) (PL Analysis),

PL(_k+1, {k+1)=PL(_k+1, *({̂k)).

By Lemma 5.3(ii) (Implication Chain), Lemma 5.2 (Requires Extension),
and (5.5)(ii), {̂k requires extension for some derivative _k of _k+1. As 40 is
admissible, and, by (2.5), out({̂k)/4k&1, it follows from (5.27), Lem-
ma 5.15(ii) (Admissibility), and Lemma 5.4 (Compatibility) that {̂k has a
(k&1)-completion ;k&1/4k&1, and that }k=up(;k&1) is the primary
completion of {̂k. Furthermore, by Lemma 5.12(ii) (PL),

[up(`k) : `k # PL({� k, }k)]=PL(_k+1, *({̂k)).

Fix ;� k&1/4k&1 such that (;� k&1)&=;k&1, let }~ k=*(;� k&1), and note
that since ;k&1 is the initial derivative of }k, it follows from (2.4) that
(}~ k)&=}k. Now _k+1/'k+1 and by (5.2), _k is an initial derivative of
_k+1; hence by Lemma 3.1(i) (Limit Path), _k/'k/{̂k/}k. We now
recall that there is no primary 4k-link which restrains ('k)&. Thus there
must be a }� k&1/4k&1 such that up(}� k&1)=}k and }� k&1 has infinite out-
come along 4k&1, else by (2.6) and (2.10) [_k, }k] would be a primary
4k-link restraining ('k)&. Fix }̂k&1/4k&1 such that (}̂k&1)&=}� k&1. By
Lemma 5.1(iv) (PL Analysis),

PL({� k, *(}̂k&1))=PL({� k, }k).
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As {� k&1 is the initial derivative of {� k along }̂k&1, it follows from Lem-
ma 5.3(ii) (Implication Chain) and Lemma 5.2 (Requires Extension) that
}̂k&1 requires extension for {� k&1. As 40 is admissible, it follows from
Lemma 5.15(i, ii) (Admissibility) and Lemma 5.3(ii) (Implication Chain)
that there are ?k&1/?~ k&1/4k&1 such that ?k&1 is the primary comple-
tion of }̂k&1, (?~ k&1)&=?k&1 and ?k&1 has infinite outcome along ?~ k&1.
By (5.19), up(?k&1)={� k, so by (2.8), ?k&1={k&1 and ?~ k&1={~ k&1. By
Lemma 5.12(ii) (PL),

PL({� k, *(}̂k&1))=[up(`k&1) : `k&1 # PL(}� k&1, ?k&1)].

Now by Lemma 5.1(i, ii) (PL Analysis) and Definitions 5.3 and 6.3,

PL(?~ k&1)=PL(}� k&1, ?~ k&1) _ [}� k&1]

=PL(}� k&1, ?k&1) _ [?k&1] _ [}� k&1].

Furthermore, up(?k&1)={� k, up(}� k&1)=}k, up({� k)={k+1, and
up(}k)=_k+1. Hence

[upk+1(`k&1) : `k&1 # PL(?~ k&1)]=PL({~ k+1),

so ?k&1={k&1 is a terminator for $k&1 along 4k&1.
We now verify (ii) by showing that only finitely many sections of X [i]

are weakly controlled at nodes /4k&1. By (2.11) and Lemma 3.1 (Limit
Path), fix :k&1/4k&1 such that wt(*(:k&1))>i, :k&1

#'k&1, and
*(:k&1)/4k. By Lemma 6.1(iii) (Finite Control), there are only finitely
many initiators for X [i] on T k; since X [i] is not weakly controlled along
4k, we can assume without loss of generality that every initiator for X [i]

at some node along 4k has a terminator /*(:k&1). Furthermore, by (2.4)
and Lemma 3.1 (Limit Path), we can assume that for all !� k&1 such that
:k&1�!� k&1/4k&1, if *(!� k&1) extends an initiator for X [i], then that
initiator lies along 4k&1. Suppose that :~ k&1 is given such that :k&1�
:~ k&1/4k&1. By (2.4) and (2.6), *(:~ k&1)$*(:k&1). As wt(*(:k&1))>i, it
follows from the choice of :k&1, (2.1), and (6.4) that there is no initiator
for X [i] at *(:~ k&1), so X [i] is not weakly controlled at *(:~ k&1). Hence
:~ k&1 cannot be an initiator for a section of X [i] at any node. Thus there
are only finitely many initiators for sections of X [i] along 4k&1. By the
preceding paragraph every initiator along 4k&1 for a section of X [i] has a
terminator along 4k&1, so we can fix !� k&1/4k&1 such that each such ter-
minator is /!� k&1. It now follows from Definition 6.4 that if u�wt(!� k&1),
then (X [i])[u] is not weakly controlled at any node /4k&1, so (ii) follows.

Fix i and u and assume that j # [0, 2]. Then there are no terminators for
sections of X[i] along 4k&1. Hence if (X [i])[u] is weakly controlled at some
#k&1/4k&1, then by Definition 6.4, there is an initiator for (X [i])[u] which
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has no terminator along 4k&1. By Definition 6.3, for all v�u, (X [i])[v] will
have an initiator along 4k&1 which has no terminator along 4k&1, so by
Definition 6.4, (X [i])[v] will be weakly controlled along 4k&1. Clause (iii)
now follows from (ii). K

As we extend nodes along 4k, the path approximation to 4k+1 via the
function * will occasionally switch paths. We show that for requirements of
types 0 and 2, the choice of initiators is invariant under switches of paths,
as long as the initiator remains on the switched path and no terminators
are eliminated.

Lemma 6.6 (Constancy of Initiator Lemma). Fix k�n and 'k # T k. Let
S be a space associated with the requirement R of dimension r and type
j # [0, 2], and assume that k�r&1 if j=0, and k<r&1 if j=2. Suppose
that S is weakly controlled at *(('k)&) with initiator $k+1, and that
*('k)$$k+1. Then $k+1 is the initiator for S at *('k).

Proof. First assume that j=0 and k=r&1. Let &k+1 be the controller
for S at *('k). Then &k+1 is the only controller for S on T k+1, and the
initiator for S along any path properly extending &k+1 is the immediate
successor of &k+1 along that path. The lemma now follows in this case.

Suppose that k<r&1. Let \k+1=*('k) 7 *(('k)&), and note, by
hypothesis, that \k+1

$$k+1. We assume that \k+1{*('k), else by (2.4),
*('k)=*(('k)&). Under this assumption, it follows from (2.4) that
(*('k))&=\k+1. As S is weakly controlled along *(('k)&), it follows from
(6.6) and (2.11) that wt(S)�wt(*(('k)&))<wt(*('k)), so by (6.4), *('k)
cannot be an initiator for S, and by Case 3 of Definition 6.3, \k+1 cannot
be a terminator for S at *('k). Hence as \k+1=(*('k))&, all terminators
for S along *('k) are /\k+1. By (6.7), $k+1 is the longest initiator for S
along *(('k)&) which has no terminator along *(('k)&), so as
$k+1�\k+1�(*('k))&, $k+1 is the longest initiator for S along *('k)
which has no terminator along *('k). By (6.7), $k+1 is the initiator for S
at *('k). K

In order to show later that the functionals which we define are total on
certain oracles, we want to show that for requirements of types 0 and 2, if
a space is weakly controlled along an approximation to 41 but not along
a later approximation, then that space is never weakly controlled again.
This will fail to be the case only when a terminator is switched. As the
proof does not depend on 41, we prove the general case.

Lemma 6.7 (Loss of Control Lemma). Fix k<n, a space S for a
requirement R of type 0 or 2 with k+1<dim(R), and 'k # T k such that
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wt(S)�wt(*(('k)&)). Suppose that S has no initiator at *(('k)&). Then S
has no initiator at *('k).

Proof. Suppose that S has an initiator $k+1 at *('k) in order to obtain
a contradiction. By (2.4), (*('k))&�*(('k)&). As wt(S)�wt(*(('k)&)),
either *(('k)&)=*('k), or by (2.11), wt(S)<wt(*('k)); and in the latter
case, it follows from (6.4) that *('k) is not an initiator for S at any node.
Hence $k+1�*(('k)&). By Case 3 of Definition 6.3, the immediate suc-
cessor \k+1 of any terminator for S along *(('k)&) is an initiator for S at
\k+1; hence the longest node which is an initiator for S at some node
/*(('k)&) can have no terminator along *(('k)&). As $k+1�*(('k)&), it
follows that there is an initiator for S at *(('k)&), contrary to
hypothesis. K

When a node &1 relinquishes control of a space to a node &̂1, we will need
to know that, often enough, the axioms which were defined by derivatives
of &1 are either the same axioms that would have been defined by
derivatives of &̂1, or are corrected. The next lemma is a key ingredient in
showing that this happens. It allows us to trace the process of switching
initiators, and will be used to show that we can correct axioms for
requirements of types 0 and 2. We consider the case where ' switches
}1 # T 1, causing weak control of a space S to pass from a node &1 to a node
&̂1. We will show that this can occur only when $� �}1/$1, where $1 and
$� 1 are, respectively, the initiators for &1 at *('&) and &̂1 at *('). By
Lemma 3.3 (*-Behavior), for all t�1, ' will switch upt(}1)=}t. We try to
carry this situation up to successive trees, by showing that upt(&1) weakly
controls upt(S) along *t('&) with some initiator $t, upt(&̂1) weakly controls
upt(S) along *t(') with some initiator $� , and $t 7 $� t�}t/$t 6 $� t. Further-
more, the shortest element of [$t, $� t] will alternate by level, i.e., $t/$� t iff
$� t+1/$t+1. We will be able to carry this alternation up inductively
through T p where p+1 is the smallest j such that &t=&̂t, and in some
cases, to T p+1. (In the other cases for t=p+1, we will have to resort to
a different proof, as some of the arguments will fail.) The remaining lem-
mas of this section will then enable us to show, in the next section, that we
can correct axioms when necessary.

Lemma 6.8 (Alternating Initiator Lemma). Fix ' # T 0 and let S be a
section of a space assigned to the requirement R of dimension r�2 and type
0 or 2. Suppose that S is weakly controlled by &1 at *('&) with initiator $1,
S is weakly controlled by &̂1 at *(') with initiator $� 1, and $1{$� 1. Let p
be the smallest t such that upt+1(&1)=upt+1(&̂1) if such a t exists, and
let p=r&1 otherwise. (Note that, if tp(R)=0, then t must exist by the
definition of # for type 0 nodes.) Then for all t # [1, p], there are
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&t/$t�*t('&), &̂t/$� t�*t('), }t=*t('&) 7 *t('), and a space St such that
&t=upt(&1), &̂t=upt(&̂1), S�S t, and:

(6.8) &t weakly controls S t at *t('&) with initiator $t, and if t>1, then
*($t&1)$$t.

(6.9) &̂t weakly controls S t at *t(') with initiator $� t, and if t>1, then
*($� t&1)$$� t.

(6.10) $t�}t/$� t if t is even, and $� t�}t/$t if t is odd.

Furthermore, if t # [2, p], then by (6.8) inductively and Definitions 6.3 and
6.4, &t weakly controls St at *($t&1), so we can fix the initiator $� t�*($t&1)
such that &t weakly controls S t at *($t&1) with initiator $� t. Similarly, by
(6.9) inductively and Definitions 6.3 and 6.4, &̂t weakly controls S t at *($� t&1),
so we can fix the initiator $� t�*($� t&1) such that &̂t weakly controls S t at
*($� t&1) with initiator $� t. (We need to introduce $� t and $� t here, as the
initiators for St at *t('&) and *t(') may differ from those at *($t&1) and
*($� t&1), respectively). Let \t=*($t&1) 7 *($� t&1). Then for all t # [2, p]:

(6.11) (i) $� t�\t/$� t if t is even and $� t�\t/$� t if t is odd.

(ii) $� t=$t if t is even, and $� t=$� t if t is odd.

In addition:

(6.12) (6.8)�(6.11) will hold for t=p+1 unless either:

(i) p+1=r; or

(ii) & p has finite outcome along * p('&) iff &̂ p has finite outcome
along * p(').

Proof. First assume that t=1. Then (6.8) and (6.9) follow by hypo-
thesis. As $1{$� 1, it follows from (6.7) and Definition 6.7 that *(') | *('&),
so by Lemma 3.3 (*-Behavior), *(')&/*('&). Thus by Lemma 6.6
(Constancy of Initiator), *('&) 7 *(')/$1. By (6.4), (6.6), and (2.11),
wt($� 1)�wt(S)�wt(*('&))<wt(*(')), so $� 1{*('). Hence $� 1�*(')&=
*('&) 7 *('), and (6.10) holds.

Suppose that t�2. We first verify (6.11)(i), assuming that t is odd. (An
analogous argument gives the proof for even t by interchanging the hatted
and unhatted nodes, the nodes with bars and tildes, ' and '&, and odd and
even in the proof below.) By (6.10) inductively, $t&1/$� t&1.

Case 1. *($t&1) | *($� t&1). We begin with the proof that $� t�\t. By (2.4)
and Lemma 3.1(ii) (Limit Path), there must be a !t&1 such that $t&1/
!t&1�$� t&1, *($t&1) | *(!t&1), (!t&1)& is a derivative of \t, *(!t&1)�
*($� t&1), and (*(!t&1))&=\t. As \t, $� t�*($� t&1) by (6.2), \t and $� t are
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comparable. Suppose that \t/$� t in order to obtain a contradiction. Then
*(!t&1)�$� t. By (6.4) and Definition 6.7,

wt($� t)�wt(S t)�wt(*($t&1)) (6.13)

and

wt($� t)�wt(St)�wt(*($� t&1)). (6.14)

(Note that (6.13) and (6.14) do not make sense when t=r.) As *($t&1){
*(!t&1), it follows from (6.13), (2.11), (2.1), and (6.14) that

wt(S t)�wt(*($t&1))<wt(*(!t&1))�wt($� t)�wt(S t),

a contradiction. Hence $� t�\t.
We complete the proof of (6.11)(i) for Case 1 by showing that \t/$� t. By

(6.2), \t, $� t�*($t&1), so \t and $� t must be comparable. It suffices to
assume that $� t�\t, and show that t=p+1 and (6.12)(ii) holds. By (6.10),
$t&1/$� t&1, so iterating Lemma 6.6 (Constancy of Initiator) for $t&1/
$� t&1, we see that $� t=$� t; thus by (6.3), &t= &̂t. Hence t=p+1. There are
two cases to consider.

First consider the case in which & p+1 has infinite outcome along $� p+1=
$� p+1. Then & p+1 has infinite outcome along both *($ p)$$� p+1 and
*($� p)$$� p+1, so all derivatives of & p+1 along $ p ($� p. resp.) have finite
outcome along $ p ($� p, resp.). In particular, by (6.2) and inductively by
(6.8) and (6.9), &p has finite outcome along * p('&)$$ p and &̂ p has finite
outcome along * p('&)$$� p, so (6.12)(ii) holds.

Now consider the case in which & p+1 has finite outcome # p along
$� p+1=$� p+1. Then & p+1 has outcome # p along both *($ p)$$� p+1 and
*($� p)$$� p+1, so by (2.5), # p�$ p, $� p. By (2.4) and (2.8), (# p)& has infinite
outcome along # p and is the longest (and principal) derivative of & p+1

along either $ p or $� p. Now by Lemma 4.3(i)(c), (a), any primary $ p-link
($� p-link, resp.) which restrains (# p)& restrains all derivatives of & p+1 along
$p ($� p, resp.). Hence by Definitions 6.3 and 6.4, the controllers for up(S)
corresponding to $ p and $� p, respectively, are the longest derivatives of & p+1

properly contained in $ p and $� p, respectively, so & p=&̂ p=(# p)& and
(6.12)(ii) holds. Thus $� t

#\t unless (6.12)(i) or (ii) holds, concluding the
proof of (6.11)(i) for this case.

Case 2. *($t&1) and *($� t&1) are comparable. By Definition 6.7,
wt(*($t&1)), wt(*($� t&1))�wt(S t), so by Case 3 of Definition 6.3 and (6.4),
$� t ($� t, resp.) has a terminator along *($t&1) iff $� t ($� t, resp.) has a
terminator along *($� t&1). Thus by Definitions 6.3 and 6.4, $� t=$� t, so by
(6.3), &t=&̂t. Hence t=p+1. We now proceed as in the preceding two
paragraphs, showing that (6.12)(ii) holds, and thus that this case is
contrary to hypothesis, and concluding the proof of Case 2.
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We now verify (6.8)�(6.10) and (6.11)(ii). Assume that t is odd. (If t is
even, then an analogous proof is obtained by interchanging the hatted and
unhatted nodes, the nodes with bars and tildes, ' and '&, odd and even,
and (6.8) and (6.9).) We begin by showing that $� t�}t (a portion of (6.10))
by eliminating the other possibilities. Let `t=}t 7 $� t, and assume that
`t/$� t in order to obtain a contradiction. First suppose that `t has finite
outcome `t&1 along $� t, and so that (`t&1)& has infinite outcome along
`t&1 and up((`t&1)&)=`t. As $� t/$� t�*($t&1) by (6.11)(i) and the defini-
tion of $� t, it follows from (2.5) that `t&1/$t&1. By (6.10) inductively,
`t&1/*t&1('&) 7*t&1(')=}t&1. Hence by (2.4) and Lemma 3.1 (Limit
Path), }t, $� t

$`t7(`t&1) , contrary to the choice of `t.
Suppose that `t has infinite outcome �̀ t&1 along $� t. By Lemma 3.3

(*-Behavior) and as t is odd and ' switches }1, }t has finite outcome ;t&1

along *t('). Now it cannot be the case that }t/$� t, else as }t&1/;t&1�
$� t&1�*t&1(') by (6.10), it would follow from (2.4) that }t=`t has finite
outcome along $� t, contrary to our assumption. Hence as `t/$� t, }t | $� t. As
*($� t&1)$$� t

#`t, we have �̀ t&1�$� t&1 by (2.5), and so ( �̀ t&1)& is the initial
derivative of `t along $� t&1. By Lemma 3.1 (Limit Path) and as `t/}t, `t

has an initial derivative along }t&1; and by (6.10) inductively, $� t&1 and
}t&1 are comparable; hence this initial derivative must also be ( �̀ t&1)&. As
`t=}t 7 $� t and }t | $� t, it follows from (2.4) that `t must have finite out-
come `t&1 along }t, so by (2.7), `t&1�}t&1. By (6.10) inductively,
}t&1/$� t&1, so `t7(`t&1) �*($� t&1) by (2.4). Thus `t=}t 7 *($� t&1) and
`t7(`t&1)�}t, *($� t&1), a contradiction. We thus conclude that $� t�}t.

We next verify (6.11)(ii) and (6.9). By Definition 6.4, we noted in the
hypothesis of the lemma that &̂t weakly controls S t at *($� t&1) with initiator
$� t, and *($� t&1)$$� t. By (6.9) inductively, $� t&1�*t&1('). As St is weakly
controlled at *($� t&1), wt(S t)�wt(*($� t&1)) by Definition 6.7. By (2.11),
for all +t&1 such that $� t&1/+t&1�*t&1(') and *($� t&1){*(+t&1),
wt(*(+t&1))>wt(*($� t&1))�wt(St), so by (6.4), *(+t&1) cannot be an
initiator for S t, and (*(+t&1))& cannot be a terminator for S t along
*(+t&1). Hence by (6.5)(ii), we have $� t=$� t, verifying (6.11)(ii). Also note,
by (6.7), that $� t is the longest initiator for St at *t(') which has no ter-
minator along *t('). Clause (6.9) now follows from Definition 6.3 and (6.3).

We now verify (6.8). By (6.8) inductively, $t&1�*t&1('&), so by Defini-
tion 6.7 and (2.11), wt(S t)�wt(*($t&1))�wt(*t('&)). As $� t=$� t�}t�
*t('&) and $� t is the initiator for S t at *t(')$}t, it follows from Definition
6.3 that $� t has no terminator along }t; and as }t is *t('&)-free by (2.10),
there is no primary *t('&)-link which restrains }t. It thus follows from
(6.5) that there is an initiator $t for S t at *t('&). Hence by Definition 6.4
and as wt(St)�wt(*t('&)), St is weakly controlled at *t('&). We complete
the proof that (6.8) holds by showing that *($t&1)$$t. Assume to the
contrary, i.e., that $t �3 *($t&1), in order to obtain a contradiction. As
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$t&1�*t&1('&), $t �3 *($t&1), and $t�*t('&), it follows from Lemma 3.1
(Limit Path) that there must be a +t&1 such that $t&1/+t&1�*t&1('&)
and *(+t&1)=$t. But then by Definition 6.7, (2.11), and (6.4), wt(St)�
wt(*($t&1))<wt(*(+t&1))=wt($t)�wt(St), a contradiction. Hence (6.8)
holds.

Finally, we complete the verification of (6.10). Since we have already
shown that $� t=$� t�}t, it remains only to show that }t/$t. As $t is an
initiator at *t('&)$}t, it follows from (6.2) that }t and $t are comparable.
We assume that $t�}t, and obtain a contradiction. By (6.7), the initiator
for a space at a node # is the longest initiator for that space at any node
:�# which has no terminator along #. We showed earlier that $� t=$� t�}t.
Now $t, $� t�}t=*t('&) 7 *t('), $t is the initiator for S t at *t('&), and $� t

is the initiator for St at *t('). By (2.10) or Lemma 4.5 (Free Extension),
any terminator #t for $t along *t('&) ($� t along *t('), resp.) must be �}t.
If #t=}t, then by Definition 6.3, the immediate successor ;t of }t along
*t('&) (*t('), resp.) must be an initiator for S t at ;t, so by (6.7), must have
a terminator along *t('&) (*t('), resp.). But this would imply that there is
a primary *t('&)-link (*t(')-link, resp.) restraining }t, contradicting (2.10)
or Lemma 4.5 (Free Extension). Hence, #t/}t, so #t is the terminator for
$t ($� t, resp.) along both *t('&) and *t('). By (6.7), it must then be the case
that $t=$� t. But then by (6.3), &t=&̂t, so t=p+1 and (6.12)(ii) follows
from (6.2).

As we have noted above throughout the proof, (6.12) also holds. K

We now show that, under the hypotheses and notation of the Alternating
Initiator Lemma, activation (validation, resp.) for &t along *t('&)
corresponds to activation (validation, resp.) for &t+1 along *t+1('&) for
t # [1, p]; and activation (validation, resp.) for &̂t along *t(') corresponds
to activation (validation, resp.) for &̂t+1 along *t+1 for t # [1, p]. Further-
more, the same will be true for t=p+1 if & p is activated along * p('&) iff
&̂ p is validated along * p(') and up(& p)=up(&̂ p). (If the latter fails, then we
will not need the lemma, as correction of axioms will be unnecessary.) We
need to add the hypothesis that no !1 # T 1 such that !1#&1 is switched at ';
if some !1#&1 is switched at ', axioms which are newly weakly controlled by
&̂1 at ' are corrected, so we will not have to use the Outcome Lemma
below. For requirements of type 0, we only need the simpler, but equivalent
condition that no ! such that upt(!1)=upt(&1) for some t�dim(&1) is
switched at '. The more general condition is needed for requirements of
type 2.

Lemma 6.9 (Outcome Lemma). Fix ' # T 0. Suppose that S is weakly
controlled by &1 at *('&) with initiator $1, S is weakly controlled by &̂1 at
*(') with initiator $� 1, no !1 # T 1 such that !1#&1 is switched at ', $1{$� 1,
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and tp(&1) # [0, 2]. For all t # [1, n], let &t=upt(&1) and &̂t=upt(&̂1). Let p
be the smallest t such that &t+1=&̂t+1 if such a t exists, and let
p=dim(&1)&1 otherwise. Then for all t # [1, p], &t is activated along *t('&)
iff &1 is activated along *('&); and &̂t is activated along *t(') iff &̂1 is
activated along *('). If, furthermore, & p is activated along * p('&) iff &̂ p is
validated along * p(') and & p+1=&̂ p+1, then & p+1 is activated along
*p+1('&) iff &1 is activated along *('&), and &̂ p+1 is activated along
*p+1(') iff &̂1 is activated along *(').

Proof. We proceed by induction on t. We will prove the lemma for &t

only (a similar argument yields a proof for &̂t). The lemma is vacuous for
t=1. Fix notation as in Lemma 6.8 (Alternating Initiator). Let q=p+1.
As the Alternating Initiator Lemma cannot be applied if t=q=dim(&1), we
first prove a weak version, (6.15), of (6.8) to cover the case in which
t=q=dim(&1), &q=up(& p)=up(&̂ p)= &̂q, and & p is activated along * p('&)
iff &̂ p is validated along * p('). This weak version of (6.8) will suffice for this
case. (Note that a similar proof will also yield a weak version, (6.16), of
(6.9).) By hypothesis, (6.12)(ii) will not preclude the use of Lemma 6.8
(Alternating Initiator).

Suppose that t=q=p+1=dim(&1) and &q=&̂q. By hypothesis,
&q/*q('&), *q('). Fix $q�*q('&) such that ($q)&=&q and $� q�*q(') such
that ($� q)&=&̂q. We will show that:

(6.15) If &q has finite outcome along *q('&), then &q/$q�*($q&1).

We leave it to the reader to verify with a similar proof that:

(6.16) If &̂q has finite outcome along *q('), then &̂q/$� q�*($� q&1).

We have noted that:

(6.17) &q�}q=*q('&) 7 *q(').

We note that, in the notation of Lemma 6.8 (Alternating Initiator), '
switches }1=*('&) 7*('). By hypothesis, ($� q)&=&̂q=&q=($q)&. By
(6.17), *q('&) 7 *q(')=}q

$&q. Fix ;q&1 such that that &q has finite out-
come ;q&1 along *q('&), let ?q&1=(;q&1)&, and let +q&1 be the initial
derivative of &q along ;q&1. As $q�*q('&) and ($q)&=&q, it follows from
(2.4) that &q7(;q&1) =$q. By Definition 2.1, ?q&1 has infinite outcome
along ;q&1�*q&1('&), and by (6.2) and (6.10), +q&1/}q&1. As ;q&1,
}q&1�*q&1('&), ;q&1 and }q&1 are comparable. It cannot be the case
that ?q&1

#}q&1, else [+q&1, ?q&1] would be a primary *q&1('&)-link
restraining }q&1, so by (2.10), ' could not switch }, contrary to assump-
tion. By hypothesis, ' does not switch any node #&1, so ?q&1{}q&1.
Hence ?q&1/}q&1 and so ;q&1�}q&1. By (2.8), ?q&1 is the longest
derivative of &q along *q&1('&), so all initiators for Sq&1 at nodes
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�*q&1('&) whose corresponding controller is a derivative of &q are
�}q&1. Now no initiator for S q&1 at any node along *q&1('&) can have
?q&1 as its controller via Case 3 of Definition 6.3 unless there is a shorter
initiator for Sq&1 which has ?q&1 as its controller via Subcase 1.1 of
Definition 6.3; and by Case 1 of Definition 6.3, that shorter initiator must
be ;q&1. As &q&1 is activated along *q&1('&) iff &̂q&1 is validated along
*q&1(n) and &q&1 and &̂q&1 are derivatives of &q and are controllers for
sections of Sq&1, it must therefore be the case that ;q&1 is an initiator for
Sq&1 at ;q&1. As *q&1('&)$}q&1

$;q&1, we have $q&1
$;q&1 by Defini-

tion 6.3. So as &q�*($q&1), up(&q&1)=&q and (;q&1)& has infinite out-
come along ;q&1, it follows that *($q&1)$&q7(;q&1)=$q, so (6.15)
holds.

Now consider any t such that 2�t�q. First consider the case where &t

has infinite outcome along *t('&). Then all derivatives of &t along *t&1('&)
must have finite outcome along *t&1('&). In particular, &t&1 has finite out-
come along *t&1('&), so the lemma follows by induction in this case.

Next consider the case where &t has finite outcome ;t&1 along *t('&). By
(2.5), ;t&1�*t&1('&), so by (2.8), (;t&1)& is the longest (and principal)
derivative of &t along *t&1('&); hence &t&1�(;t&1)&. As $t is an initiator
at *t('&) if t<q, and by choice of $t if t=q, &t/$t�*t('&), so
&t7(;t&1) �$t. By (6.8) or (6.15), $t�*($t&1), so by (2.5), ;t&1�$t&1.
Now $t&1 is an initiator for S t&1 and &t&1 at *t&1('&), &t&1�(;t&1)&,
and up((;t&1)&)=up(&t&1). By Lemma 4.3(i)(c),(a), (;t&1)& is restrained
by a primary $t&1-link iff every derivative of &t is restrained by the same
primary $t&1-link; hence by Definition 6.3, the controller &t&1 chosen for
the initiator $t&1 is the longest derivative of &t along $t&1, so &t&1=
(;t&1)&. Thus the lemma follows by induction. K

We now want to show that when the controlling node on T 1 is changed,
then either the new controller inherits axioms with the value it desires, or
the axioms are corrected, allowing the new controller to redefine those
axioms. The situation differs with the type of the requirement, so we prove
different lemmas for each type.

We begin with a requirement R of type 0. The situation will be as
follows. ' will be 1-switching, causing weak control of a space to pass from
&1 to &̂1 on T 1. If '&#&1, then '& will cause something to be placed into
the oracle set for the axioms newly weakly controlled by &̂1, thus allowing
&̂1 to correct the axioms to the value which it predicts. Otherwise, we will
show that both &1 and &̂1 predict the same value for those axioms, so no
correction is necessary. To show that the predictions by &1 and &̂1 agree, we
need to go up to the smallest q such that upq(&1)=upq(&̂1). An analysis of
the situation on T q will enable us to go down to T q&1 and show that
upq&1(&1) is activated along *q&1('&) iff upq&1(&̂1) is activated along
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*q&1('). It will then follow from Lemma 6.9 (Outcome) that &1 is activated
along *('&) iff &̂1 is activated along *(').

Lemma 6.10 (0-Correction Lemma). Fix ' # T 0. Suppose that S is
weakly controlled by &1 at *('&) with initiator $1, S is weakly controlled by
&̂1 at *(') with initiator $� 1, $1{$� 1, and tp(&1)=0. Let }1=*('&) 7*(').
Then one of the following holds:

(i) &1 is activated along $1 iff &̂1 is activated along $� 1.

(ii) ' switches }1/$1 and }1#&1.

Proof. Fix notation as in Lemma 6.8 (Alternating Initiator), and fix the
least q such that &q=&̂q. If q=1, then by hypothesis, either (i) holds or '
must switch &1 and (ii) will hold. So we may assume that q>1. Let
p=q&1.

If & p is activated along * p('&) iff &̂ p is activated along * p('), then (i)
follows from Lemma 6.9 (Outcome) if '&�&1, and (ii) follows if '&#&1.
So we assume that & p is activated along * p('&) iff &̂ p is validated along
*p(').

Suppose that q<dim(&1). By our assumptions, the conditions of (6.12)
fail, so we can apply Lemma 6.8 (Alternating Initiator) with t=q. By
(6.10), }1/$1. As &q=&̂q, it follows from (6.10) that &q=&q 7 &̂q/$q 7 $� q

�}q=*q('&) 7 *q('). Thus the outcome of &q along *q('&) is the same as
the outcome of &̂q along *q('), so &q is activated along *q('&) iff &̂q is
activated along *q('). Clause (i) now follows from the second conclusion of
Lemma 6.9 (Outcome) if '&�&1, and clause (ii) follows if '&#&1.

Suppose that q=dim(&1). By (6.10), $ p 7$� p�} p/$ p 6 $� p. Further-
more, as tp(&1)=0, Subcase 1.2 or Case 2 of Definition 6.3 must be
followed to define controllers and initiators on T p, so & p=($ p)& and &̂ p=
($� p)&. (We note that if Subcase 1.2 is followed, then as, by Subcase 1.1, all
initiators for up(& p)=up(&̂ p) are immediate successors of up(&̂ p), it follows
from Lemma 3.1 (Limit Path) and Lemma 3.3 (*-Behavior) that & p=($ p)&

and &̂ p=($� p)&.) Thus & p 7 &̂ p/} p. It cannot be the case that & p 6 &̂ p
#} p,

else & p 6 &̂ p would be the last node of a primary * p('&)-link or * p(')-link
which restrains } p, contrary to (2.10) or Lemma 4.5 (Free Derivative).
It cannot be the case that & p 6 &̂ p/} p, else $ p 6 $� p�} p. Hence & p 6 &̂ p=
} p, and (ii) holds. K

Suppose R is a requirement of dimension r and type 1 and that the space
X is assigned to R. Control of sections of X along a path 4r&1 is divided
among derivatives of many different nodes of T n. The following lemma,
together with the requirement that the construction of Section 7 respect
implication chains, will ensure that all but finitely many of these sections
are controlled by nodes which are activated along 4r&1, or all but finitely
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many of these sections are controlled by nodes which are validated along
4r&1. The lemma will be used to analyze the situations which can occur
when control of a space is relinquished by _̂r&1 to _r&1. Condition (i) says
that both _̂r&1 and _r&1 want to declare axioms with the same value, so the
axioms declared by derivatives of _r&1 are safe for _̂r&1. Conditions (ii) and
(iv) will be used to show that enough of the axioms declared by derivatives
of _r&1 are corrected when control is interchanged. And condition (iii) will
allow us to show that the set of conflicting axioms is sufficiently thin, and
so will not interfere with the existence of the desired limit. The hypotheses
placed on the lemma are chosen to capture exactly the cases for which the
lemma is used.

Lemma 6.11 (1-Similarity Lemma). Fix an admissible 40 # [T 0] and for
all t�n, let 4t=*t(40). Fix r�n and _r&1/_̂r&1/{r&1/4r&1, such that
_r&1#_̂r&1, up(_r&1){up(_̂r&1), ({r&1)&=_̂r&1, tp(_r&1)=1, dim(_r&1)=r,
and _r&1 and _̂r&1 control (different) sections of a space X at {r&1. Fix
{� r&1/{r&1 such that ({� r&1)&=_r&1 and assume that if _r&1 has infinite
outcome along {� r&1 then there is no derivative of up(_̂r&1) along _r&1. Then
one of the following conditions holds:

(i) _r&1 has finite outcome along {r&1 iff _̂r&1 has finite outcome
along {r&1.

(ii) _r&1 has infinite outcome along {r&1, _̂r&1 has finite outcome
along {r&1, and there is a _r&1-injurious primary {r&1-link [+r&1, ?r&1]
such that ?r&1 # PL(_r&1, {r&1).

(iii) _r&1 has finite outcome along {r&1, _̂r&1 has infinite outcome
along {r&1, and there is a primary {r&1-link which restrains _r&1.

(iv) _r&1 has finite outcome along {r&1, _̂r&1 has infinite outcome
along {r&1, up(_r&1)/up(_̂r&1), there is no primary {r&1-link which
restrains _r&1, but there is a ?r # PL(up(_r&1), *({r&1)) such that
OS(_r&1)�TS(?r).

Proof. Suppose that (i)�(iv) fail, in order to obtain a contradiction.
By choice of r, as _r&1 and _̂r&1 control spaces at {r&1, and by Subcase
1.1 of Definition 6.3, for all i�r&1, the principal derivatives of _r&1 along
outi ({� r&1) and _̂r&1 along outi ({r&1) must be implication-free.

First suppose that _̂r&1 has finite outcome along {r&1. We can assume,
without loss of generality, that _r&1 is the shortest string satisfying the
hypotheses, but not the conclusion of the lemma for _̂r&1. By the failure of
(i), _r&1 has infinite outcome along {r&1. As _r&1 controls a space at {r&1,
it follows from Definitions 6.3 and 6.4 that _r&1 controls a space at {� r&1,
and so that out0({� r&1) is pseudotrue. Thus {� r&1 must be implication-free,
and cannot require extension.
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Let _~ r&1 be the initial derivative of up(_̂r&1) along {r&1, and let {~ r&1 be
the immediate successor of _~ r&1 along {r&1. We show that _~ r&1 controls
a section of X at {~ r&1. If _~ r&1=_̂r&1, then this follows by hypothesis.
Otherwise, it follows from (2.8) that _~ r&1 has finite outcome along {r&1.
Now by Lemma 4.5 (Free Extension), up(_~ r&1)=up(_̂r&1)/*({r&1) and
up(_̂r&1) is *({r&1)-free. Furthermore, up(_̂r&1) must be implication-free,
else by (5.23), _̂r&1 would not be implication-free and would not control
a section of X at {r&1. Hence by Lemma 5.16(iv) (Implication-Freeness),
out0({~ r&1) is pseudotrue. Now by Lemma 4.5 (Free Extension),
upn(_~ r&1)/*n({~ r&1) must be *n({~ r&1)-free, and by (2.9) _~ r&1 is both the
initial and principal derivative of upn(_~ r&1) along {~ r&1. By Lemma
5.17(iii) (Assignment), _~ r&1 is {~ r&1-free and implication-free. Now iterating
Lemma 4.6(i) (Free Derivative) and Lemma 5.16(ii) (Implication-Free-
ness), we see that for all i�r&1, the principal derivative of _~ r&1 along
{~ r&1 is implication-free. It follows from Definitions 6.3 and 6.4 that _~ r&1

controls a section of X at {~ r&1. Hence without loss of generality, we may
assume that _̂r&1=_~ r&1.

As up(_̂r&1) has no derivative along _r&1 and (ii) fails, (5.16) holds;
hence as _r&1 controls a space at {r&1, it follows from Definition 5.2 and
Subcase 1.1 of Definition 6.3 that for some _� r&1�_r&1, ((_� r&1, _̂r&1,
{r&1)) is an amenable (r&1)-implication chain along 4r&1. But this
contradicts Lemma 5.15(i) (Admissibility).

Now suppose that _̂r&1 has infinite outcome along {r&1. As (i) fails,
_r&1 has finite outcome along {r&1. As (iii) fails, it follows from Lemma
4.3(i)(a) (Link Analysis) that up(_r&1)�*({r&1). As _̂r&1=({r&1)&, it
follows from Lemma 4.5 (Free Extension) that up(_̂r&1)�*({r&1). Hence
up(_̂r&1) and up(_r&1) are comparable. Now _̂r&1 has infinite outcome
along {r&1, so _̂r&1 is the principal derivative of up(_̂r&1) along {r&1.
It cannot be the case that up(_̂r&1)/up(_r&1), else by Lemma 3.1 (Limit
Path) there would be no derivative of up(_r&1) which is /_̂r&1, contrary
to the hypothesis that _r&1/_̂r&1. Thus by the above, up(_r&1)/
up(_̂r&1).

We now show that {r&1 requires extension for _r&1. (5.1), (5.2), and
(5.5)(i) follow easily from hypothesis and the observations already made.
The failure of (iii) implies (5.3). We noted, following Definition 6.2, that
every _r&1-injurious primary *({r&1)-link [+r, ?r] is _r&1-correcting.
Suppose that #r=PL(up(_r&1), *({r&1)) and TS(#r) & RS(_r&1){<, in
order to obtain a contradiction. First suppose that (5.13) causes #r to enter
PL(up(_r&1), *({r&1)). Then there is a +r such that [+r, #r] is a primary
*({r&1)-link restraining up(_r&1). Let !r be the immediate successor of #r

along *({r&1). Then #r # PL(!r), so [+r, #r] is up(_r&1)-injurious and
restrains up(_r&1). But then [+r, #r] is up(_r&1)-correcting, contrary to
our assumption that (iv) fails.
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Now suppose that (5.14) causes #r to enter PL(up(_r&1), *({r&1)), but
(5.13) does not. Then there are +r/up(_r&1)/$r=(_r)&/_r�!r such
that _r requires extension but has no primary completion with infinite
outcome along !r, and as (5.13) did not apply, #r # PL($r, !r) _ [$r]. As
out0({r&1) is pseudotrue, it follows from Lemma 5.5(ii) (Completion-
Respecting) that _r has a primary completion }r along *({r&1) which has
infinite outcome along *({r&1). Fix :r�*({r&1) such that (:r)&=}r. By
Definition 5.3 and Lemma 5.1(i), (PL Analysis), #r # PL($r, }r) _ [$r]�
PL(!r). Thus [+r, }r] is up(_r&1)-injurious and restrains up(_r&1). But
then [+r, }r] is up(_r&1)-correcting, contrary to our assumption that (iv)
fails.

We conclude that (5.4) holds, and so that {r&1 requires extension for
some _� r&1�_r&1. By Definition 5.6, {r&1 is not the completion of {r&1 for
_� r&1. Hence by (5.21), {r&1 is implication-restrained, and so out0({r&1) is
not pseudotrue. But then by Subcase 1.1 of Definition 6.3, _̂r&1 is not a
controller for a section of X at {r&1, contrary to hypothesis. K

Because of the finiteness of the number of initiators for a given space X,
we can settle on an initiator which will control a given space along a path.
However, it is possible to have comparable initiators along a given path,
each determining control of sections of the same space at infinitely many
nodes along the approximation to the path. The switching of control is
determined by the terminators. The next lemma will allow us to show that
all but finitely many axioms declared for a space controlled by a node of
type 1 along 41 will have the correct value.

Lemma 6.12 (1-Correction Lemma). Fix an admissible 40 # T 0 and let
41=*(40). Suppose that &1/41 controls the space S along 41 with initiator
$1, and that tp(&1)=1. Assume that '/}/40, wt('&)�wt(S), $1 is the
initiator for S at *('&) and at *(}), but not at any *(#) such that '�#/}.
Then there is a +1 such that for all # # [', }), [+1, (*('))&] is a &1-correcting
primary *(#)-link with +1/$1�(*('))&, and } switches (*('))&. Further-
more, if ! is the shortest pseudotrue node such that }�!/40, then for every
node ;1 # PL(*(')), there is a ; such that }�;�! and ; switches ;1.

Proof. By hypothesis, for all # such that '�#/}, *((')&){*(#). As
wt('&)�wt(S), it follows from (2.11) that wt(*(#))>wt(S) for all # such
that '�#/}. Thus Case 3 of Definition 6.3 must be followed at *(') to
define (*('))& as a terminator for $1, so there is a &1-correcting primary
*(')-link [+1, (*('))&] with +1/$1�(*('))&, and (*('))& has infinite
outcome along *(').

As $1/41, it follows from (2.6) that no # such that '�#/} can switch
any \1/$1. By (2.10), no such # can switch any \1 such that
+1�\1/(*('))&. Hence by (2.10), *(}) and (*('))& must be comparable.
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Also, no # such that '�#/} can switch (*('))&, else by Lemma 3.3
(*-Behavior), (*(#))&=(*('))& and (*(#))& would have finite outcome
along *(#), so $1 would be the initiator for S at *(#). Hence for all # such
that '�#/}, [+1, (*('))&] is a &1-correcting primary *(#)-link which
restrains $1.

Now as } cannot switch any \1/(*('))&, as *(}) and (*('))& are
comparable, and as $1 is the initiator for S at *(}), [+1, (*('))&] cannot
be a primary *(})-link, so } must switch (*('))&. If (*('))& is not a
primary completion, then PL(*('))=[(*('))&]. Otherwise, let (*('))& be
the primary completion of the immediate successor #1 of a node _1 along
*('). Then PL(*('))=PL(_1, *(')) _ [_1]. By Lemma 5.3(ii) (Implication
Chain) and Lemma 5.2 (Requires Extension), } must require extension for
a derivative of _1, and so as ! is pseudotrue, it follows from Lemma 5.5(ii)
(Completion-Respecting) that } must have a primary completion }� /!
which has infinite outcome along !. By (5.19), up(}� )=_1. Hence the
immediate successor of }� along ! switches _1. By Lemma 5.1(ii) (PL
Analysis), PL(_1, *('))�PL(_1, (*('))&) _ [(*('))&]. As } switches
(*('))&, it follows from (2.4) that *(})=(*('))&7(}) , and that (*('))&

has finite outcome along *(}). Hence by Lemma 5.1(iv) (PL Analysis),
PL(_1, *('))=PL(_1, (*('))&). It now follows from Lemma 5.12(i) (PL)
and as } switches (*('))& that every node in PL(_1, *(')) must be switched
by some node in [}, }� ]. K

Suppose that X is a space assigned to a requirement of dimension r and
type 2. When k=r&1, control of sections of X along a path 4r&1 is
divided among derivatives of many different nodes of T n. The following
lemma will allow us to use implication chains to ensure that all but finitely
many of these sections are controlled by nodes which are activated along
4r&1, or all but finitely many of these sections are controlled by nodes
which are validated along 4r&1.

Lemma 6.13 (2-Similarity Lemma). Fix an admissible ' # T 0 and
_r&1/{� r&1�_̂r&1/{r&1�*r&1(') such that _r&1 and _̂r&1 are nodes to
which the requirement R of dimension r and type 2 has been assigned. Assume
that _r&1#_̂r&1, up(_r&1){up(_̂r&1), ({r&1)&=_̂r&1, ({� r&1)&=_r&1,
and _r&1 and _̂r&1 are controllers at {� r&1 and {r&1, respectively. Then one
of the following conditions holds:

(i) _r&1 has finite outcome along {r&1 iff _̂r&1 has finite outcome
along {r&1.

(ii) _r&1 has finite outcome along {r&1, _̂r&1 has infinite outcome
along {r&1, and there is a primary {r&1-link which restrains _r&1.
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Proof. We assume that (i) and (ii) fail, and obtain a contradiction.
We will be showing, under additional assumptions, either that ((_r&1,
_̂r&1, {r&1)) is an amenable implication chain, or that {r&1 requires exten-
sion for _r&1. We begin by showing that certain clauses from (5.1)�(5.12),
(5.15) and (5.16) hold without any additional assumptions. (5.5)�(5.9) and
(5.12) follow from hypothesis.

As _r&1 and _̂r&1 are controllers at {� r&1 and {r&1, respectively, it
follows from Subcase 1.1 of Definition 6.3 that for all i�r&1, the principal
derivatives of _r&1 along outi ({� r&1) and _̂r&1 along out i ({r&1), are
implication-free, and that out0({� r&1) and out0({r&1) are pseudotrue. Hence
(5.1) and (5.10) hold.

We next show that we may assume, without loss of generality, that
_r&1 (_̂r&1, resp.) is the principal derivative of up(_r&1) (up(_̂r&1),
resp.) along {� r&1 ({r&1, resp.). This is clearly the case if _r&1 (_̂r&1,
resp.) has infinite outcome along {� r&1 ({r&1, resp.). Suppose that _r&1

(_̂r&1, resp.) has finite outcome along {� r&1 ({r&1, resp.), and let _~ r&1 be
the initial derivative of up(_r&1) (up(_̂r&1), resp.) along {� r&1 ({r&1,
resp.). By Lemma 5.15(iv) (Implication-Freeness), one of the conclusions
of the lemma must hold for _~ r&1 in place of _r&1 (_̂r&1, resp.). If (i)
holds for _~ r&1 then (i) also holds for _r&1 (_̂r&1, resp.). Suppose that
(ii) holds for _~ r&1 and let [+r&1, ?r&1] be the associated primary
{r&1-link. If up(_~ r&1)�3 *({r&1), then by Lemma 4.3(i)(a) (Link
Analysis) [+r&1, ?r&1] restrains _r&1 (_̂r&1, resp.). Otherwise, by
Lemma 4.3(i)(d) (Link Analysis), +r&1=_~ r&1, so by (2.8) [+r&1, ?r&1]
restrains _r&1 (_̂r&1, resp.).

We next note that tp(_r&1)=tp(_̂r&1)=2, so (5.4) holds, and if _̂r&1 is
a pseudocompletion of _r&1, then _̂r&1 is an amenable pseudocompletion
of _r&1, so (5.16) will follow once the appropriate clauses of (5.6)�(5.12)
are verified.

We now proceed by cases.

Case 1. _̂r&1 has finite outcome along {r&1. Then by the failure of (i),
_r&1 has infinite outcome along {r&1. We will obtain a contradiction in
this case, so may assume without loss of generality that _r&1 has shortest
possible length satisfying the properties of the lemma. Condition (5.11)
follows from the case assumption, so ((_r&1, _� r&1, {� r&1)) is an implica-
tion chain. Now we have assumed that _̂r&1 is the principal derivative of
up(_̂r&1) along {r&1, so as _̂r&1 has finite outcome along {r&1, _̂r&1 is an
initial derivative. Hence up(_̂r&1) has no derivative /_r&1. We have
already noted that (5.16) holds, so ((_r&1, _̂r&1, {r&1)) is an amenable
(r&1)-implication chain. But then by Lemma 5.2 (Requires Extension),
out({r&1) requires extension, so out0({r&1) is implication-restrained, hence
cannot be pseudotrue, yielding a contradiction.
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Case 2. _̂r&1 has infinite outcome along {r&1. We first show that {r&1

requires extension for some _� r&1�_r&1, by showing that (5.1)�(5.5) hold
for _r&1 in place of &k, _̂r&1 in place of $k, and {r&1 in place of 'k. Condi-
tions (5.2) and (5.5)(i) follow easily from hypothesis. Condition (5.1)
follows from Case 1 of Definition 6.3 and the comments at the beginning
of the proof. Condition (5.3) follows from the failure of (ii). And we have
already noted that (5.4) holds. Thus {r&1 requires extension for some
_� r&1�_r&1. But then, by Definition 5.6, {r&1 is implication-restrained, so
out0({r&1) cannot be pseudotrue. Hence by Subcase 1.1 of Definition 6.3,
_̂r&1 cannot be a controller at {r&1, contradicting our assumption. K

The next lemma will be used to show that whenever necessary, axioms
for type 2 requirements which need to be corrected when control is
changed, will be corrected.

Lemma 6.14 (2-Correction Lemma). Fix an admissible ' # T 0. Suppose
that S is weakly controlled by &1 at *('&) with initiator $1, S is weakly
controlled by &̂1 at *(') with initiator $� 1, $1{$� 1, and tp(&1)=2. Let
}1=up('&). Then one of the following holds:

(i) &1 is activated along $1 iff &̂1 is activated along $� 1.

(ii) ' switches }1/$1 and dim(}1)�dim(&1).

Proof. Let r=dim(&1). Fix notation as in Lemma 6.8 (Alternating
Initiator). If &r&1=&̂r&1, then the proof follows as in the third paragraph
of the proof of Lemma 6.10 (0-Correction). Suppose that &r&1{&̂r&1.
We assume that (i) and (ii) fail, and derive a contradiction. As (i) and (ii)
fail, it follows from Lemma 6.9 (Outcome) that &r&1 is activated along
*r&1('&) iff &̂r&1 is validated along *r&1(').

We assume that r is even. A similar proof holds when r is odd. By (6.10)
and Definition 6.3, &r&1 7 &̂r&1/&r&1 6 &̂r&1/*r&1('). Fix {� r&1,
{r&1�*r&1(') such that ({� r&1)&=&r&1 7 &̂r&1, and ({r&1)&=&r&1 6 &̂r&1.
It follows by an easy induction that {� r&1 and {r&1 are initiators for
upr&1(S), else either &r&1 7 &̂r&1 or &r&1 6 &̂r&1 would not be a controller
for upr&1(S). There are two cases.

Case 1. &r{&̂r. By the preceding paragraph, we can apply Lemma 6.13
(2-Similarity), to conclude that there is a primary *r&1(')-link
[+r&1, ?r&1] restraining &r&1 7 &̂r&1. By (2.10) and Lemma 4.5 (Free
Derivative), }r&1 is both *r&1('&)-free and *r&1(')-free; and by (6.10),
&r&1 7 &̂r&1/}r&1. Hence ?r&1�}r&1.

By (6.10), $r&1 6 $� r&1
#}r&1, so by (2.1), wt(}r&1)<wt($r&1 6 $� r&1).

Now ?r&1/3 }r&1, else ?r&1 would be a terminator for {� r&1 along both
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*r&1('&) and *r&1('), so by (6.19) &r&1 7 &̂r&1 could not be a controller
at either of these nodes. Thus ?r&1=}r&1, so by Lemma 3.3 (*-Behavior),
' switches ?r&1. But then ?r&1 is not an initial derivative, so by (2.9),
dim(?r&1)>r&1; so (ii) must hold, yielding a contradiction.

Case 2. &r=&̂r. By (6.10), &r&17&̂r&1/$r&17$� r&1�}r&1/$r&1 6$� r&1.
By the case assumption and as (i) fails, [&r&1 7 &̂r&1, &r&1 6 &̂r&1] must
form a primary ($r&1 7 $� r&1)-link, so by (2.10) or Lemma 4.5 (Free
Extension), }r&1

$&r&1 6 &̂r&1. We now set ?r&1=&r&1 6 &̂r&1, and
proceed as in the last paragraph of Case 1. K

Our final lemma shows that nodes coming from the true path of the
construction control spaces.

Lemma 6.15 (Initial Control Lemma). Fix an admissible 40 # [T 0] and
for all k�n, let 4k=*k(40). Fix `n/4n and r�n such that dim(`n)=r and
tp(`n) # [1, 2], let `r&1 be the principal derivative of `n along 4r&1, and let
`r=up(`r&1). Let S be the space, S`r , assigned to up(`r&1), and fix $r&1/
4r&1 such that ($r&1)&=`r&1. Then:

(i) `r&1 controls S [wt($r&1)] along 4r&1 with initiator $r&1.

(ii) If `r has infinite outcome along 4r, then infinitely many derivatives
of `r control spaces along 4r&1.

Proof. By Lemma 5.17(ii, iii) (Assignment), `r and `r&1 are implica-
tion-free, `r is 4r-free, and `r&1 is 4r&1-free.

By Lemma 4.6(ii) (Free Derivative) and Lemma 5.16(ii) (Implication-
Freeness), we see that if `r has infinite outcome along 4r, then `r has
infinitely many implication-free derivatives which are 4r&1-free. Fix a
4r&1-free and implication-free derivative �̀ r&1 of `r along 4r&1, and fix
!r&1/4r&1 such that (!r&1)&= �̀ r&1. Note that, by definition, for all
i�r&1, the principal derivative of �̀ r&1 along 4i is �̀ i=(outi (!r&1))&.
By repeated applications of Lemma 4.6(i) (Free Derivative) and Lemma
5.16(ii) (Implication-Freeness), we see that for all i�r&1, �̀ i is 4i-free and
implication-free. By Lemma 5.17(iv) (Assignment), !=out0(!r&1) is
pseudotrue.

By Lemma 6.1(iv) (Finite Control), !r&1 is an initiator for S[wt(!r&1)] at
!r&1, with corresponding controller �̀ r&1. As ! is pseudotrue, it follows
from Definition 6.4 that �̀ r&1 controls S [wt(!r&1)] at !r&1 with initiator !r&1.
As �̀ r&1 is 4r&1-free and (!r&1)&= �̀ r&1, !r&1 cannot have a terminator
along 4r&1, else �̀ r&1 would be restrained by a primary 4r&1-link. Hence
by Definition 6.4, �̀ r&1 controls S [wt(!r&1)] along 4r&1. K
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7. Construction and Proof

Fix k�n and (b, c) # Z0, k . In order to show that A (k&1)
c �3 T A (k&1)

b , we
wish to define a partial recursive functional 20, k

b, c which is total on domain
Nk from oracle Ac such that for each e # N. there is an x such that
limu� 8e(Ab ; u� , x){limv� 20, k

b, c(Ac ; v� , x), and for all y, limv� 20, k
b, c(Ac ; v� , y)

exists. 20, k
b, c (Ac ; v� , x) will be the value defined by some ` controlling

(v� , s, x, `) along 40 for some s whenever such a ` exists, where R`=R0, k
e, b, c

for some e. (We recall that there is an additional limit which enters into the
computation, namely, the limit over stages at which we place elements into
Ac and declare axioms, which we must also take into account.) Thus all
axioms declared for such A` will be axioms for 20, k

b, c . We will take addi-
tional steps to ensure that 20, k

b, c is total on oracle Ac by defining this
functional on arguments which are not in spaces being controlled, and will
prove that 20, k

b, c is a well-defined partial recursive functional and 20, k
b, c(Ac)

is total in Lemma 7.2 (Well-Definedness and Totality). Similarly, for
j # [1, 2], the requirement R j, k

e, b, c requires us to define a functional 2 j, k
b, c for

each (b, c) # Zj, k , uniformly in e. We define this functional to contain the
union of all functionals 2` such that ` deals with a requirement for this
fixed (b, c) # Zj, k , and take additional steps to ensure that 2 j, k

b, c is total on
oracle Ac by defining this functional on arguments which are not in spaces
being controlled. We identify 2' with 2! whenever 2' and 2! are
components of the same functional 2 j, k

b, c . (Thus if ' defines an axiom for
2' , then that axiom is in existence for 2! as well.)

The decision about the action taken for a requirement associated with
' # T 0 is based on our ability to force M' to be true. M' will be equivalent
to a 61-sentence with a single unbounded (universal) quantifier which will
be part of a quantifier block _s�wt(') \t�s, which is equivalent to
\t�wt('). (This quantifier will range over stages.)

Definition 7.1. For ' # T 0, we say that M' is potentially true if the
sentence M [wt(')]

' , obtained from M' by dropping the quantifier block
_s�wt(') \t�s and replacing all occurrences of s and t with wt('), is true.

The Construction

We define an admissible path 40 # [T 0] by induction on lh(') for
'/40. We begin by specifying that ( ) /40. Fix '/40. If lh(')=0, then
no axioms are declared and all sets As are empty for s�wt('). Assume that
lh(')�0. We assume, by induction, that ' is admissible and completion-
consistent via ( ). In Step 1, we will determine an admissible node '̂ such
that '/'̂/40. We begin, in Step 1.1, by determining an immediate
successor ; of '. There will be three cases to the definition of ;, designed
to ensure that ; is preadmissible. If ; is completion-consistent via ( ) , then

126 LEMPP AND LERMAN



File: 607J I54727 . By:CV . Date:11:06:96 . Time:16:08 LOP8M. V8.0. Page 01:01
Codes: 2941 Signs: 2324 . Length: 45 pic 0 pts, 190 mm

we will set '̂=;. Otherwise, *k(') will require extension for a unique k,
and we will define '̂ to be the 0-completion of ; in Step 1.2. We will deter-
mine which elements are placed into sets in Step 2, and this will depend on
the path chosen in Step 1. New axioms for our functionals are declared in
Step 3.

Step 1. (Path Definition). We note, by induction, that ' is admissible
and completion-consistent via ( ).

Step 1.1. There are three cases.

Case 1. ' is a primary 0-completion or a pseudocompletion. Set
;='7(�).

Case 2. The previous case is not followed and ' is implication-
restrained. Let ; be a nonswitching extension of '. (We take the activated
extension if both possible extensions are nonswitching, in order to satisfy
(5.17)(ii).)

Case 3. Otherwise. Set ;='7(�)�40 if M' is potentially true, and
;='7(0) �40 otherwise.

It follows from (5.17) and (5.18) that ; is preadmissible, and from
Lemma 5.8 (Completion-Respecting Admissible Extension) that ; is
admissible. If ; is completion-consistent via ( ) , then the induction
hypothesis holds at ;, and we set '̂=; and go to Step 2. Otherwise, by
Lemma 5.8 (Completion-Respecting Admissible Extension) and Lemma 5.6
(Uniqueness of Requiring Extension), there is a unique k, which we fix,
such that *k(;) requires extension. We now go to Step 1.2.

Step 1.2. By Lemma 5.14 (Completion) we can effectively obtain the
0-completion '̂ of *k(;). By (5.19) and Lemma 5.14 (Completion), '̂ is
admissible and completion-consistent via ( ) , so the induction condition
holds. Now go to Step 2.

Step 2. (Set Definition). For each node ? such that '�?/'̂, ? is
validated along '̂, and ? is not the initial derivative of up(?) along '̂, place
wt(up(?)) into Awt(?)+1 for all A # TS(?). For each set A and all s such that
wt(')<s�wt('̂), we let As=Awt(') _ [x : x is placed in Awt(?)+1 for some
? such that '�?/'̂ and wt(?)<s].

Step 3. (Declaration of Axioms). We carry out this step only if '̂ is
pseudotrue. Let :='̂. This step is carried out for each functional 2=2 j, k

b, c

and each (x� , s, x) which is potentially in the domain of 2 such that
x<wt(*(:)), and xi<wt(*(:)) for all coordinates xi of x� . (Note that we
identify functionals whose last coordinates are # , so choose to ignore the
last coordinate. If such an (x� , t, x) is not controlled at : for any t and
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tp(R) # [0, 2], then we will show in Lemma 7.2 (Well-Definedness and
Totality) that (x� , t, x) will not be controlled at any \/40 for any t; hence
it is safe to declare an axiom 2wt(:)(Awt(:); x� , x)=0, and we do so in
Case 3.3. And if tp(R)=1, then terminators will let us correct such axioms
as required.) Let A=Ac be the oracle for 2.

Case 1. 2wt(#)(Awt(:); x� , x) a =q for some q and #/:. Set 2t(Awt(:); x� , x)
= 2wt(#)(Awt(:); x� , x) for all t such that wt(#)<t�wt(:). The use of all
such axioms is the use of the axiom 2wt(#)(Awt(:); x� , x)=q.

Case 2. Case 1 does not apply, and there is a t<wt(:) such that
(x� , t, x) is in the space controlled at :. (Note that we identify functionals
whose last coordinates are # , so choose to ignore the last coordinate.) Fix
the largest such t, and let (x� , t, x) be in the space controlled by & at : with
initiator $. We declare the axiom 2wt(:)(Awt(:); x� , x)=1 if $$&7(�) and
2wt(:)(Awt(:); x� , x)=0 if $$&7(0). The use of each axiom so defined is
wt(*(:))&1.

Case 3. Otherwise. Declare the axiom 2wt(:)(Awt(:); x� , x)=0 with use
wt(*(:))&1.

The construction is now complete. For all r�n, let 4r=*r(40). We note
that as the induction hypotheses are satisfied, 40 is admissible. K

Our first lemma provides upper and lower bounds on the use of any
axiom on a point controlled by some ! # T 0. The upper bound is used to
prove that all functionals are total on the required oracles. The lower
bound is obtained only if tp(!) # [0, 2], and is used to show that axioms are
corrected when necessary. (Recall that correction of axioms is unnecessary
on a thin subspace of the space assigned to a requirement of type 1, so a
lower bound is unnecessary in that case.)

Lemma 7.1 (Use Lemma). Let !/40 be given such that ! is pseudotrue,
and let s=wt(!). Let 2=2 j, k

b, c be a functional, and fix (x� , wt(!), x) poten-
tially in the domain of 2 such that x<wt(*(!)) and for all coordinates xi of
x� , xi<wt(*(!)). Then:

(i) 2s(As
c ; x� , x) converges with some use u<wt(*(!)).

(ii) If *(!)/*(40), then Ac�wt(*(!))=As
c�wt(*(!)).

(iii) If j # [0, 2], &1/$1�*(!) and (x� , s, x) is in the space S such
that &1 controls S at *(!) with initiator $1, then wt(&1)<wt($1)�u, where
u is the use determined in (i).

Proof. (i) By (2.11) and Step 3 of the construction, 2s(As
c ; x� , x) a with

some use u<wt(*(!)).
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(ii) By Step 2 of the construction, if z enters Ac , there is a ?/40

such that z # Awt(?)
c "Awt(?&)

c , ?& is validated along ?, and z=wt(up(?&)).
If wt(up(?&))<wt(*(!)), then as *(!)/*(40), it follows from (2.1), (2.4),
and (2.6) that ?&/! and so that wt(?&)<wt(!). Hence
z # Awt(!)

c �wt(*(!)).

(iii) Suppose that &1/$1�*(!) and (x� , s, x) is in the space S such
that &1 controls S at *(!) with initiator $1. (Note that we identify func-
tionals whose last coordinates are # , so choose to ignore the last coor-
dinate.) By (2.1), wt(&1)<wt($1). Let y=x if k=dim(&1)=1 and j=
tp(&1)=0, and let y=xk&1 if k=dim(&1)>1. By (6.4) and (6.6), wt($1)�
y�wt(*(!)). By Step 3 of the construction, 2t(At

c ; x� , x) diverges unless t�
wt(+) for some +/40 such that wt(*(+))>y. Hence by (2.11) and Step 3
of the construction, all axioms 2t(At

c ; x� , x)=q which are ever declared
have use u�wt(*(+))&1 for some such +, so u�y�wt($1). K

We now begin to show that all requirements are satisfied. We first show
that the functionals which we define are partial recursive, total on the
appropriate oracles, and well-defined.

Lemma 7.2 (Well-Definedness and Totality Lemma). For all j�2,
k�n and (b, c) # Zj, k , 2 j, k

b, c(Ac) is total and 2 j, k
b, c is a well-defined partial

recursive functional.

Proof. By Step 3 of the construction, all functionals are partial recur-
sive, and new axioms are not defined when an axiom from an oracle com-
patible with Ac already exists, so 2 j, k

b, c(Ac) is well-defined. Fix x and x� . Any
axiom 2 j, k

b, c(Ac ; x� , x)=q which is ever declared at ?/40 has use <wt(*(?)),
and furthermore, wt(*(?))>x and wt(*(?))>xi for all coordinates xi of x� .
By Lemma 5.17(v) (Assignment), there are infinitely many nodes ?/40

such that ? is 40-true and pseudotrue, x<wt(*(?)), and xi<wt(*(?)) for
all coordinates xi of x� . By Lemma 7.1(ii) (Use), Ac�wt(*(?))=Awt(?)

c �
wt(*(?)), so as the use of 2 j, k

b, c(Ac ; x� , x)=q is <wt(*(?)), 2 j, k
b, c(Ac ; x� , x)=

2 j, k
b, c(A

wt(?)
c ; x� , x). Thus 2 j, k

b, c(Ac) is total. K

The next lemma establishes the existence of all (iterated) limits except
for the outermost limit, and relates the limiting value to the outcome of a
controller, should the latter exist.

Lemma 7.3 (Convergence and Correctness Lemma). Fix a requirement
R=R j, r

e, b, c , and let 2=2 j, r
b, c be the functional associated with R. Fix

k # [1, r&1]. (Thus we explicitly exclude the case where dim(R)=1.) Let
p=r&k+1. Fix u1 , ..., up&1 , x # N, and let S=[(u1 , ..., up&1)]_Nk_
[(x)] if j # [0, 2] and S=[(u1 , ..., up&1)]_Nk+1_[(x)] if j=1. (Note
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that we use identification of axioms here, so that S=[(u1 , ..., up&1)]_
Nk_[(x, !)] or [(u1 , ..., up&1)]_Nk+1_[(x, !)] for some !.) Then:

(i) If tp(R) # [0, 2], then limup } } } limur&1
2(Ac ; u1 , ..., ur&1 , x) a #

[0, 1], and if tp(R)=1, then limup } } } limur 2(Ac ; u1 , ..., ur , x) a # [0, 1]. In
both cases, define this value to be L(u1 , ..., up&1 , x).

(ii) If &k controls S along 4k, then L(u1 , ..., up&1 , x)=1 iff &k is
validated along 4k.

(iii) If S is not controlled along 4k and only finitely many sections of
S are controlled along 4k&1, then L(u1 , ..., up&1 , x)=0.

Proof. We proceed by induction on k, considering various cases.

Case 1. k=1 (so p=r).

Subcase 1.1: j=1. By clause (iii) of Lemma 6.1 (Finite Control), there
are only finitely many initiators for S on T 1. Suppose first that S is
controlled along 41. By (6.7), we can fix &1/$1�{1/41 such that for all
\1/41 with \1

${1, S has controller &1 and initiator $1 at \. By
Lemma 3.1 (Limit Path), we can fix '/40 such that *(')={1. Suppose
that ur�wt(') and an axiom 2wt(!)(Awt(!)

c ; u1 , ..., ur , x)=q is declared at !
where '�!/40. If S has controller &1 and initiator $1 at *(!), then we set
q=0 if &1 is activated along $1, and q=1 if &1 is validated along $1.

If the controller of S at *(!) is not &1 or the initiator for S at *(!) is not
$1, then by Lemma 6.12 (1-Correction), there is &1-correcting *(!)-link
[+1, ?1] such that +1/$1�?1. By the construction and (2.1), any axiom
2wt(!)(Awt(!)

c ; u1 , ..., ur , x)=q declared at ! (but not in existence at !&) has
use wt(*(!))&1�wt(?1). As S is controlled by &1 with initiator $1 along
41, it follows from Lemma 3.1 (Limit Path) that there is a shortest \#!
such that S is controlled by &1 with initiator $1 at *(\), and note \ that is
pseudotrue. By Lemma 6.12 (1-Correction) and the construction, as
[+1, ?1] is a primary &1-correcting link, there is a ;1�?1 such that
Ac # TS(;1) and wt(;1) is placed in Ac at some # such that !/#�\.
Furthermore, when axioms are changed on a fixed argument at any node
'~ /40, the use of the axiom declared at '~ is wt(*('~ ))&1, so by (2.11) and
(2.1), if an axiom 2wt(!)(Awt(!)

c ; u1 , ..., ur , x)=q is in existence at #&, then
it has use �wt(?1)�wt(;1). But this allows us to define a new axiom
2wt(\)(Awt(\)

c ; u1 , ..., ur , x)=q, where q=0 if &1 is activated along $1, and
q=1 if &1 is validated along $1. By Lemma 7.2 (Well-Definedness and
Totality), we see that (i) and (ii) hold in this case.

Suppose that S is not controlled along 41 and only finitely many
sections of S are controlled along 40. We note that by Lemma 5.17(v)
(Assignment), there are infinitely many pseudotrue nodes /40. By
Lemma 6.1(iii) (Finite Control), there are only finitely many initiators for
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S on T 1, and as S is not controlled along 41, every initiator for S at some
node /41 has a terminator along 41. Thus there is an '/40 such that for
all :/40 such that :#', S has no controller at *(:); so every initiator
$� /40 for a section of S at any node along 40 must satisfy $� �'. As only
finitely many sections of S are controlled along 40 and there are infinitely
many pseudotrue nodes along 40, each such $� has a terminator along 40.
If '/'� /40 and '� properly extends each such terminator, then no section
of S is controlled at any node along 40 which extends '� , so by (6.6), if S [i]

is controlled along 40, then i�wt('� ). Clauses (i) and (iii) now follow from
Case 3 of Step 3 of the construction.

Suppose that S is not controlled along 41 but infinitely many sections of
S are controlled along 40. As in the preceding paragraph, we see that there
are only finitely many initiators for sections of X along 40. As infinitely
many sections of S are controlled along 40, there is a longest initiator, for
a section of S, along 40 which has no terminator along 40. Let & be the
controller corresponding to this initiator. Then by (6.7), for all but finitely
many sections Y of S, & will control Y at all sufficiently long pseudotrue
\/40. So for all but finitely many ur , the axioms 2wt(!)(Awt(!)

c ; u1 , ...,
ur , x)=q which are declared have value q determined by the outcome of
& along 40. Clause (i) now follows.

Subcase 1.2: j # [0, 2]. (Note that no limit is being computed, and
L(u1 , ..., ur&1 , x) just gives the value of an axiom.) Recall that, by (6.7),
a space is controlled by a node along a path iff it is controlled by that
node at all sufficiently long pseudotrue nodes along the path. If S is not
controlled along 41 and no section of S is controlled along 40, then as
controllers are never terminated along 40, all axioms 2wt(!)(Awt(!)

c ; u1 , ...,
ur&1 , x)=q will be declared in Case 3 of Step 3 of the construction and
will set q=0, so (i) and (iii) follow from Lemma 7.2 (Well-Definedness and
Totality). If S is not controlled along 41 but some section of S is controlled
along 40, then (i) follows from Lemma 7.2 (Well-Definedness and
Totality). As controllers are never terminated along 40, infinitely many
sections of S will be controlled along 40, so the hypothesis of (iii) fails.

In order to complete the verification of (i) and (ii) for j{1, it suffices to
verify the following condition, under the assumption that S is controlled
along 41:

(7.1) For all ' and &1, if '/40 is pseudotrue and &1 controls S at
*('), then 2wt(')(Awt(')

c ; u1 , ..., ur&1, x)=1 iff &1 is validated along 41.

We proceed by induction on lh(') for ' pseudotrue. Given ur&1 , let '0

be the shortest string for which 2wt('0)(Awt('0)
c ; u1 , ..., ur&1 , x) a , and note

that by Step 3 of the construction, '0 is pseudotrue. If '='0 , then by the
construction, we define 2wt(')(Awt(')

c ; u1 , ..., ur&1 , x)=q for some q, and the
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value chosen for q is the one satisfying (7.1) if there is a &1 which controls
S at *('). Suppose, by induction on lh(') with ' pseudotrue, that (7.1)
holds for \, where '0�\ and \ is the longest pseudotrue node /'. By
Lemma 6.7 (Loss of Control), (7.1) will hold at ' through the absence of
a controller, unless there is a controller &1 and initiator $1 for S at *(\);
so we may fix such &1 and $1. Let u be the use of the axiom
2wt(\)(Awt(\)

c ; u1 , ..., ur&1 , x)=q, and note that by Lemma 7.1(iii) (Use),
wt($1)�u.

If $1�*('), then by Lemma 6.6 (Constancy of Initiator), &1 controls S
at *(') with initiator $1, so (7.1) follows by induction. Suppose that
$1 �3 *('), and fix the shortest ; such that \/;�' and $1 �3 *(;), and fix
}1 such that ; switches }1. By Lemma 6.7 (Loss of Control), (7.1) will hold
for ' if S does not have an initiator and controller at *(;); thus we may
fix an initiator $� 1 and controller &̂1 for S at *(;), and note that, by our
assumption, $1{$� 1. By (6.10), $� 1�*(;)&/*(;&), so $� 1�}1/$1. Hence
we may apply Lemmas 6.10 or 6.14 (Correction).

If conclusion (i) of the relevant Correction Lemma holds, then (7.1)
follows by induction. If conclusion (ii) of the Correction Lemma holds
and tp(&1)=0, then ;&#&1 and we place wt(}1) # Awt(;)

c "Awt(;&)
c . And if

conclusion (ii) of the Correction Lemma holds and tp(&1)=2, then
dim(;&)�dim(&1) and by Lemma 2.2(iv) (Interaction), we place
wt(}1) # Awt(;)

c "Awt(;&)
c . As }1/$1, it follows from (2.1) that

wt(}1)<wt($1)�u, and so that Awt(')
c �u{Awt(\)

c �u. Now axioms are only
defined at pseudotrue nodes, so the construction declares a new axiom
2wt(')(Awt(')

c ; u1 , ..., ur&1 , x) a to satisfy (7.1).

Case 2. k>1. By induction, the lemma holds for k&1.

Subcase 2.1: S is controlled by &k along 4k. By Lemma 6.3 (Thick
Control), a thick subset of S is controlled along 4k&1 by derivatives of &k

which are validated along 4k&1 if &k is validated along 4k, and are
activated along 4k&1 if &k is activated along 4k. Clauses (i) and (ii) now
follow by induction.

Subcase 2.2: S is not controlled along 4k and only finitely many
sections of S are controlled along 4k&1. By Lemma 6.5(iii) (Non-Control),
there are only finitely many i such that a section of S [i] is controlled along
4k&2. Clauses (i) and (iii) now follow inductively from (i) and (iii) for
k&1.

Subcase 2.3: S is not controlled along 4k, but infinitely many sections
of S are controlled along 4k&1. By Lemma 6.4 (Indirect Control), all
but finitely many sections of S are controlled by a fixed node along 4k&1.
Clause (i) now follows from (i) and (ii) inductively. K
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The next lemma relates the outcomes of nodes which are critical for
axiom definition, to the truth of the sentences assigned to those nodes.

Lemma 7.4 (Accuracy Lemma). Fix k # n and !k/4k such that
k�dim(!k) and !k is 4k-free and implication-free. Then !k is validated along
4k iff M!k is true.

Proof.

Case 1. k=0. Let !=!0. Recall that M! is a 61-sentence beginning
with a block of bounded quantifiers and followed by _s�wt('1) \t�s S,
where S is quantifier-free and '1=up(!).

Case 1.1. ! is validated along 40. We first show that M! is potentially
true, and all uses in M! are <wt(!), under the weaker assumption that
!/40 is implication-free. We proceed by induction on lh(!). There are two
cases.

Case 1.1.1. ! is not a primary 0-completion or an amenable pseudo-
completion. Then by the construction, M! , is potentially true, and by (0.1),
all uses in M! are <wt(!).

Case 1.1.2. ! is a primary 0-completion or an amenable pseudo-
completion. Thus tp(!) # [1, 2]. If ! is a primary completion, fix ' such
that ! is a primary completion of ', and let #='&. And if ! is a pseudo-
completion, fix the shortest # such that ! is a pseudocompletion of #, and
fix '�! such that '&=#. By (5.5)(ii) and Lemma 5.13 (Amenable
Implication Chain) if dim(!)>1 and by (5.1) or (5.10)(i) if dim(!)=1, #
is implication-free.

By (5.2) or (5.11)(i), # is validated along !, so it follows by induction
that M# is potentially true, and by (0.1) and (2.1), all uses in M# are
�wt(#)<wt(!). First suppose that ! is a primary 0-completion. By
Lemma 5.12(i) (PL) and (5.19), all nodes ;1 of T 1 which are switched by
nodes in (', !] are in PL(up(!), *(')). If dim(!)=1 (and hence tp(!)=1),
it follows from (5.4) that TS(;1) & RS(!)=< for each such ;1. Suppose
that dim(!)=r>1. Then by (5.5)(ii), there is an amenable 1-implication
chain ((_ j, _̂ j, { j): r&1�j�1) such that out({1)='. By Lemma 5.12
(ii, iii) (PL), [upr&1(;1) : ;1 # PL(up(!), *('))]=PL(_r&1, {r&1), and if
we fix {� r&1/{r&1 such that ({� r&1)&=_r&1, then either _̂r&1 is a pseudo-
completion of _r&1, or {� r&1 requires extension. If {� r&1 requires extension,
then by (5.11)(ii), _̂r&1 has finite outcome along {r&1, so by Lemma 5.1(iv)
(PL Analysis) and Lemma 5.12(ii) (PL) and (5.19), [up(?r&1): ?r&1 #
PL(_r&1, {r&1)] = [up(?r&1): ?r&1 # PL(_r&1, _̂r&1)] = PL(up(_̂r&1),
*({� r&1)). Hence by Definition 5.4 if _̂r&1 is an amenable pseudocompletion
and by (5.4) otherwise, TS(;1) & RS(!)=< for each such ;1. Thus by
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Lemma 2.2(i) Interaction) and the construction, M! must be potentially
true, and all uses in M! are <wt(!).

Now suppose that ! is an amenable pseudocompletion. By (5.11)(i), # is
the principal derivative of up(#) along !. Hence by (2.11), (2.2), and (2.4),
any element �wt(#) placed in a set at any ? # (', !] is of the form
wt(up(?)) with up(?)/up(#), and ? is validated along !. By Lemma 3.1(i)
(Limit Path), there must be a +/! such that [+, ?] is a primary !-link
which restrains #. As ! is an amenable pseudocompletion of #, TS(?) &

RS(!)=< for each such ?. Thus by Lemma 2.2(i) (Interaction) and the
construction, M! must be potentially true, and all uses in M! are <wt(!).

For both Subcase 1.1.1 and Subcase 1.1.2, we note that elements placed
into sets are of the form z=wt(up(&)) for &/40, and z is first placed in a
set As+1 when s=wt($) and up(&) is validated along *($) but not along
*($&). Hence by Lemma 3.1 (Limit Path), M! will be true if no element
<wt(!) is first placed in any A # RS(!) by any &$! such that &/40. By
Lemma 2.2(i) (Interaction), ! does not place elements into any set in
RS(!). Fix ?/40 such that ?&=!. By Lemma 3.1 (Limit Path), it follows
that *(?)&=up(!) and for all & such that ?�&/40, *(&)$*(?).
Hence the elements placed into sets by &#! are of the form wt(:),
where up(&)=:$*(?). By (2.1) and (2.2), wt(up(&))�wt(*(?))>
wt(out(*(?)))=wt(?)>wt(!). Hence M! is true.

Case 1.2. k=0 and ! is activated along 40. M! cannot be potentially
true, else the action taken for ! would force ! to be validated along 40.
Hence M! cannot be true.

Case 2. k>0. By induction, we may assume that the lemma holds for
k&1. Let & be the principal derivative of ! along 4k&1. It follows from
Lemma 4.6 (Free Derivative) and Lemma 5.16(ii) (Implication-Freeness),
that & is 4k&1-free and implication-free, and if ! has infinite outcome along
4k, then ! has infinitely many 4k&1-free, implication-free derivatives +
along 4k&1.

Suppose that k is odd. By Definitions 2.9 and 2.10, M! is a sentence of
the form Q1 y1 } } } Qp yp_z� P( y� , z� ) where P is 6k , and the Qj are bounded
quantifiers, and M& is Q1y1 } } } Qpyp_z� �wt(&) P( y� , z� ). If M& is true, then
M! is true. But then by induction, & is validated along 4k&1, i.e., & has
infinite outcome along 4k&1, so by the definition of the function *, ! has
finite outcome along 4k and ! is validated along 4k. If M& is not true, then
as & is the principal derivative of ! along 4k&1, it follows from (2.4) that
all derivatives of ! along 4k&1 are activated along 4k&1, i.e., have finite
outcome along 4k&1. Hence by induction, for every derivative + of ! along
4k&1 which is 4k&1-free and implication-free, M+ is not true. For each
such +, M+ is Q1y1 } } } Qpyp_z� �wt(+) P( y� , z� ) As there are infinitely many

134 LEMPP AND LERMAN



File: 607J I54735 . By:CV . Date:11:06:96 . Time:16:09 LOP8M. V8.0. Page 01:01
Codes: 3318 Signs: 2692 . Length: 45 pic 0 pts, 190 mm

such +, wt(+) is unbounded as we range over these +. Thus M! is not true.
By induction, + has finite outcome along 4k&1 for each such +, so by the
definition of the function *, ! has infinite outcome along 4k, so ! is
activated along 4k.

Suppose that k is even. We proceed as in the preceding paragraph, inter-
changing universal and existential quantifiers, 6 and 7, and true and not
true. K

We now show that all requirements are satisfied.

Lemma 7.5 (0-Satisfaction Lemma). Every requirement of type 0 is
satisfied.

Proof. Fix a requirement R=R0, r
e, b, c of type 0, and let 2=20, r

b, c be
the functional for the requirement R as described at the beginning of this
section. By Lemma 5.17(i, ii, iv) (Assignment), R is assigned to a unique
_r/4r such that _r is 4r-free and implication-free, and if {r is the immediate
successor of _r along 4r, then out0({r) is pseudotrue.

First assume that r=1. Let x=wt(_1). By Lemma 7.2 (Well-Definedness
and Totality), we can fix q such that 2(Ac ; x)=q. Let & (?, resp.) be the
initial (principal, resp.) derivative of _1 along 41 and let ; ($, resp.) be the
immediate successor of & (?, resp.) along 40. By Lemma 5.17(iv) (Assign-
ment), $ is pseudotrue, and by Lemma 5.17(iii) (Assignment), ? is $-free
and implication-free. By Lemma 5.16(iv) (Implication-Freeness), ; is
pseudotrue and & is implication-free, and by Lemma 4.5 (Free Extension),
& is ;-free. By Definition 6.4 and the construction, we declare an axiom
2wt(;)(Awt(;)

c ; x)=z for some z # [0, 1] with use wt(*(;))&1, where z=0
iff & is activated along ;. As _1/41, it follows from (2.6) that no : such
that ;/:/40 can switch any \1/_1. Hence by Lemma 7.1(ii) (Use) and
(2.1), 2(Ac ; x)=z unless ?#&, i.e., *(;)/3 41. Suppose this to be the case.
Then the construction places wt(_1) into Awt($)

c . By (2.1), wt(_1)�
wt(*(;))&1, so we define a new axiom 2wt($)(Awt($)

c ; x)=1 with use
wt(*($))&1, and & is activated along $/41. As _1/41, it follows from
(2.8) and (2.6) that no : such that $/:/40 can switch any \1�_1, so
*($)/41. Hence by Lemma 7.1(ii) (Use) and (2.1), 2(Ac ; x)=1. Hence _1

is activated along 41 if z=0, and _1 is validated along 41 if z=1. By
Lemma 7.4 (Accuracy), _1 is validated along 41 iff M_1

is true. Hence if
M_1

is true then z=1, and if M_1
is not true then z=0. Thus R is satisfied

in this case.
Now assume that r>1. Fix a space S=Nr_[x] in the domain of the

functional 2. First suppose that S is not controlled along 4r. If infinitely
many sections of S are controlled along 4r&1, then by Lemma 6.4 (Indirect
Control), cofinitely many sections of S are controlled along 4r&1 by the
same node &r&1, so by Lemma 7.3(i, ii) (Convergence and Correctness)
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applied separately to each section of S, limu1
} } } limur&1

2(Ac ; u1 , ...,
ur&1 , x)=L exists, L=0 if &r&1 is activated along 4r&1, and L=1 if &r&1

is validated along 4r&1. Otherwise, by Lemma 6.5(iii) (Non-Control) and
Lemma 7.3(iii) (Convergence and Correctness) applied separately to each
section of S, limu1

} } } limur&1
2(Ac ; u1 , ..., ur&1 , x)=0.

Now suppose that S=S#r for some #r/4r associated with 2 such that
#r controls S along 4r. Then by Lemma 6.3 (Thick Control) either
cofinitely many sections of S are controlled, along 4r&1, by derivatives of
#r which are activated along 4r&1, or cofinitely many sections of S are
controlled, along 4r&1, by derivatives of #r which are validated along 4r&1.
It now follows from Lemma 7.3(i, ii) (Convergence and Correctness)
applied separately to each section X of S#r that limu1

} } } limur&1
2(Ac ; u1 , ...,

ur&1 , wt(#r))=L(wt(#r)) exists, and that #r is validated along 4r iff
L(wt(#r))=1.

Recall that R is assigned to a _r/4r such that _r is 4r-free and implica-
tion-free, and that if {r is the immediate successor of _r along 4r, then
out0({r) is pseudotrue. Hence by Definition 6.4, _r controls S along 4r.
By the preceding paragraph, limu1

} } } limur&1
2(Ac ; u1 , ..., ur&1 , wt(_r))=

L(wt(_r)) exists, and _r is validated along 4r iff L(wt(_r))=1. By
Lemma 7.4 (Accuracy), _r is validated along 4r iff M_r is true. Hence if M_r

is true then L(wt(_r))=1, and if M_r is not true then L(wt(_r))=0. Thus
R is satisfied. K

Lemma 7.6 (1-Satisfaction Lemma). Every requirement of type 1 is
satisfied.

Proof. Fix a requirement R=R1, r
e, b, c of type 1, and let 2=21, r

b, c be the
functional for the requirement R as described at the beginning of this
section. By Lemma 7.3(i) (Convergence and Correctness) for r>1,
L(i, e)=limu2

} } } limur 2(Ac ; i, u2 , ..., ur , e) exists and takes a value in [0, 1]
for all e, i # N.

By Lemma 5.17(i, ii) (Assignment), R is assigned to a unique }r/4r

such that }r is 4r-free and implication-free. Let &r&1 be the principal
derivative of }r along 4r&1, and fix $r&1/4r&1 such that ($r&1)&=&r&1.
By Lemma 6.15(i) (Initial Control), &r&1 controls [wt($r&1)]_Nr_[e]
with initiator $r&1 along 4r&1. By Case 1.1 of Definition 6.3, $r&1 is also
the initiator for [i]_Nr_[e] at $r&1 for all i�wt($r&1). Now if
i�wt($r&1), then [i]_Nr_[e] is controlled along 4r&1 iff there is
an initiator #r&1/4r&1 for [i]_Nr_[e] such that there is no &r&1-
correcting primary 4r&1-link [+r&1, ?r&1] with +r&1/#r&1�?r&1; and
by (6.7), if [i]_Nr_[e] is controlled along 4r&1, then the initiator for
[i]_Nr_[e] along 4r&1 is the longest such #r&1. As &r&1 is 4r&1-free,
$r&1 is such a #r&1. Hence for all i�wt($r&1), [i]_Nr_[e] is controlled
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along 4r&1, and if [i]_Nr_[e] is controlled at any #r&1/4r&1 with
initiator $r&1

i , then $r&1
i $$r&1.

Fix i and $r&1
i as in the preceding paragraph such that $r&1

i has no
terminator along 4r&1. Let &r&1

i be the controller corresponding to $r&1
i .

As &r&1 is 4r&1-free and implication-free, it follows from (4.1) and Case 3
of Definition 6.3 that &r&1

i $&r&1.
First suppose that &r&1 has infinite outcome along 4r&1. We note that

as &r&1 is 4r&1-free, there is no primary 4r&1-link restraining &r&1.
Furthermore, by Lemma 5.17(v) (Assignment), there are infinitely many
{r&1/4r&1, such that out0({r&1) is pseudotrue, so by (5.28), every node
along 4r&1 which requires extension has a primary completion along 4r&1

which has infinite outcome along 4r&1; hence every component of
PL(&r&1, !r&1) for some !r&1/4r&1 gives rise to a primary 4r&1-link
which restrains &r&1, so no such component can exist. If up(&r&1)=
up(&r&1

i ), then by (2.8), &r&1=&r&1
i ; so &r&1

i has infinite outcome along
4r&1. And if up(&r&1){up(&r&1

i ), then as &r&1 is 4r&1-free, it follows from
Lemma 6.11 (1-Similarity, with _r&1=&r&1 and _̂r&1=&r&1

i ) that &r&1
i has

infinite outcome along 4r&1.
Suppose that &r&1 has finite outcome along 4r&1. If up(&r&1)=

up(&r&1
i ), then as &r&1 is the principal derivative of }r along 4r&1, it

follows from (2.4) that &r&1
i has finite outcome along 4r&1. Suppose that

up(&r&1){up(&r&1
i ), and let 'r&1

i be the immediate successor of &r&1
i along

4r&1. By Subcase 1.2 of Definition 6.3, out0('r&1
i ) must be pseudotrue, else

&r&1
i would not be a controller at 'r&1

i , so could not be a controller at any
node extending 'r&1

i . We note that as &r&1 is 4r&1-free, there is no
primary 4r&1-link restraining &r&1. Furthermore, by Lemma 5.17(v)
(Assignment), there is a 4r&1-free node !r&1/4r&1 such that out0(!r&1)
is pseudotrue and 'r&1

i �!r&1. Fix the shortest such !r&1. We show that
there is no \r # PL(up(&r&1), *('r&1

i )) such that OS(&r&1)�TS(\r). For
suppose that such a \r exists, in order to obtain a contradiction. By
hypothesis, &r&1 is 4r&1-free, so up(&r&1) is 4r-free. By (4.1) and
Lemma 4.3(iii) (Link Analysis), there are no primary *(!r&1)-links
restraining up(&r&1). Hence we may apply Lemma 5.18(ii) (Nonamenable
Backtracking) (with !k=!r&1, ('k)&=&r&1

i , 'k+1=*('r&1
i ), $k+1=

up(&r&1), and 'k='r&1
i ) to conclude that PL(up(&r&1), *('r&1

i ))�
[up(#r&1) : #r&1 # PL(&r&1

i , !r&1)]. Hence we may fix \r&1 #
PL(&r&1

i , !r&1) such that up(\r&1)=\r.
As out0(!r&1) is pseudotrue and by Definition 5.3, there are +r&1

i /
\r&1�?r&1

i /;r&1
i �!r&1 such that (;r&1

i )&=?r&1
i , [+r&1

i , ?r&1
i ] is a

primary !r&1-link, and \r&1 # PL(;r&1
i )�PL(&r&1

i , !r&1). Furthermore,
either PL(;r&1

i )=[?r&1
i ] and [+r&1

i , ?r&1
i ] restrains &r&1

i , or by Defini-
tions 5.3 and 6.2, ?r&1

i is the primary completion of some node for +r&1
i

and +r&1
i /&r&1

i /?r&1
i . As &r&1

i is a principal derivative along !r&1, it
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follows that +r&1
i /&r&1

i in both cases. Hence as OS(&r&1)=OS(&r&1
i )�

TS(\r)=TS(\r&1), [+r&1
i , ?r&1

i ] is a &r&1
i -injurious link. By the

comments following Definition 6.2, [+r&1
i , ?r&1

i ] is a &r&1
i -correcting link.

Recall that 'r&1
i is the immediate successor of &r&1

i along !r&1. Now
?r&1

i is a terminator for 'r&1
i along !r&1. By Case 3 of Definition 6.3, when

a terminator for 'r&1
i is found at :r&1/4r&1, it is a terminator for all

initiators for &r&1
i which are /:r&1, and so &r&1

i cannot be a controller at
any :~ r&1 such that :r&1�:~ r&1/4r&1. Thus by Case 3 of Definition 6.3,
&r&1

i cannot control a space along 4r&1 contrary to assumption. This
contradiction shows that there is no \r # PL(up(&r&1), *('r&1

i )) such that
OS(&r&1)�TS(\r).

It now follows from Lemma 6.11 (1-Similarity, with _r&1=&r&1 and
_̂r&1=&r&1

i ) that &r&1
i has finite outcome along 4r&1. We thus conclude

that for all i�wt('r&1
i ), &r&1

i is validated along 4r&1 iff &r&1 is validated
along 4r&1. There are two cases:

Case 1. r>1. By Lemma 7.3(ii) (Convergence and Correctness), &r&1
i

is validated along 4r&1 iff L(i, e)=1. But as &r&1 is the principal derivative
of }r along 4r&1, it follows from (2.4) that &r&1 is validated along 4r&1 iff
}r is validated along 4r. By Lemma 7.4 (Accuracy), }r is validated along
4r iff M}r is true. Hence if M}r is true then L(i, e)=1 for cofinitely many
i, and if M}r is not true then L(i, e)=0 for cofinitely many i. Thus R is
satisfied.

Case 2. r=1. First suppose that M}1 is true. For all _1, {1 # T 1, if
_1#{1#}1 then M_1=M{1 . Hence for all sufficiently long !/40, if !#}1

then M! , is potentially true, so 2(Ac ; i, e)=1 for cofinitely many i.
Suppose that M}1 is not true. By Lemma 7.4 (Accuracy), &=&0 is the

initial derivative of }1 along 40 and & has finite outcome along 40. By the
last sentence of the paragraph preceding Case 1, &i=&0

i has finite outcome
along 40. But then by the construction, 2(Ac ; i, e)=0 for cofinitely
many i, and R is satisfied. K

Lemma 7.7 (2-Satisfaction Lemma). Every requirement of type 2 is
satisfied.

Proof. Fix a requirement R=R2, r
e, 1, c of type 2, and let 2=22, r

1, c be the
functional for the requirement R as described at the beginning of this
section. By Lemma 7.3(i) (Convergence and Correctness), L(i, e)=
limu2

} } } limur&1
2(Ac ; i, u2 , ..., ur&1 , e) exists and takes a value in [0, 1] for

all i # N.
By Lemma 5.17(i, ii) (Assignment), R is assigned to a unique }r/4r

such that }r is 4r-free and implication-free. Let &r&1 be the principal
derivative of }r along 4r&1, and fix $r&1/4r&1 such that ($r&1)&=&r&1.
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By Lemma 6.15(i) (Initial Control) and Definition 6.3, &r&1 controls
[wt($r&1)]_Nr&1_[e] with initiator $r&1 along 4r&1 and $r&1 is also
the initiator for [i]_Nr&1_[e] at $r&1 for all i�wt($r&1). Now if
i�wt($r&1), then [i]_Nr&1_[e] is controlled along 4r&1 iff there is an
initiator #r&1/4r&1 for [i]_Nr&1_[e] such that there is no primary
4r&1-link [+r&1, ?r&1] with +r&1/#r&1�?r&1; and if :r&1/4r&1 and
(:r&1)&=?r&1, then wt(:r&1)�i. (By Lemma 2.2(iv) (Interaction), every
primary 4r&1-link is &r&1-correcting.) Also, if [i]_Nr&1_[e] is con-
trolled along 4r&1, then the initiator for [i]_Nr&1_[e] along 4r&1 is
the longest such #r&1. As &r&1 is 4r&1-free, $r&1 is such a #r&1. Hence for
all i�wt($r&1), [i]_Nr&1_[e] is controlled along 4r&1 and if
[i]_Nr&1_[e] is controlled at any #r&1/4r&1 with initiator $r&1

i , then
$r&1

i $$r&1. Fix such an i and let &r&1
i be the controller corresponding to

the initiator $r&1
i for [i]_Nr&1_[e] at #r&1. As &r&1 is 4r&1-free, it

follows from Case 3 of Definition 6.3 that &r&1
i $&r&1.

If up(&r&1)=up(&r&1
i ), then as &r&1 is the principal derivative of }r

along 4r&1 and &r&1
i $&r&1, it follows from (2.8) and (2.4) that &r&1

i has
finite outcome along 4r&1 iff &r&1 has finite outcome along 4r&1. And if
up(&r&1){up(&r&1

i ), then we note that as &r&1 is 4r&1-free, there is no
primary 4r&1-link restraining &r&1; hence by Lemma 6.13 (2-Similarity,
with _r&1=&r&1 and _̂r&1=&r&1

i ), &r&1
i has finite outcome along 4r&1 iff

&r&1 has finite outcome along 4r&1. Thus for all i�wt($r&1), &r&1
i is

validated along 4r&1 iff &r&1 is validated along 4r&1. By Lemma 7.3(ii)
(Convergence and Correctness), &r&1

i is validated along 4r&1 iff L(i, e)=1.
But as &r&1 is the principal derivative of }r along 4r&1, it follows from
(2.4) that &r&1 is validated along 4r&1 iff }r is validated along 4r. By
Lemma 7.4 (Accuracy), }r is validated along 4r iff M}r is true. Hence if M}r

is true then L(i, e)=1 for cofinitely many i, and if M}r is not true then
L(i, e)=0 for cofinitely many i. Thus R is satisfied. K

Our main theorem is now immediate from the definition of the
functionals 2 j, k

b, c , Lemmas 1.1 and 2.1, Lemma 7.2 (Well-Definedness and
Totality), and Lemmas 7.5�7.7 ( j-Satisfaction for j�2).

Theorem 7.8. Fix m # N, and let P=(P0 , �0 , P1 , � 1 , f1 , ..., Pm ,
� m , fm) be a finite m-jump poset such that P0 has least element 0 and
greatest element 1. Then there is a finite set G0 of r.e. degrees, and there are
finite sets Gk=[d : _a # G0(a(k)=d)] for each k # [1, m] such that the
diagram in Fig. 2 commutes.

Furthermore, the embedding maps 0 # P0 to 0 and 1 # P0 to 0$.

We have the following corollary, as proved in the introduction.
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Figure 2.

Corollary 7.9. The existential theory of R(<|)=(R, 0, 0$, �, � 1 , ...,
� n , ...) is decidable.

If J is any recursively presented <|-jump-poset, then we can modify
our construction to embed I into R(<|). Requirements are listed as
before, and form a recursive list. Each requirement has a well-defined
dimension. We assign a given requirement to a tree of the correct dimension.
As only finitely many trees will have been defined at any stage of the
construction, and when a new tree T k+1 is needed, we assign the finitely
many requirements already assigned to T k and which need to be assigned
to T k+1 in the same order that the requirements were assigned to T k. All
lemmas now can be proved as before. It is also not difficult to show
that there is a countable universal recursively-presented <|-jump poset.
Hence:

Theorem 7.10. Let P=(P0 , �0 , P1 , � 1 , f1 , ..., Pm , � m , fm , . . .) be
a countable <|-jump poset such that P0 has least element 0 and greatest
element 1. Then for all m, (Pm , �m) can be embedded isomorphically into
R[0(m), 0(m+1)] so that Fig. 2 commutes for all m # N. Furthermore, the
embedding maps 0 # P0 to 0 and 1 # P0 to 0$.

Slaman and Sui have noted that the methods of proof of Theorem 7.8
should work for <|-jump usls in place of posets, and that we can add
joins at all levels to our language and decide the corresponding _-theory if
1 is removed from the language. The construction need not be modified.
The fact that the target sets are complements of prime ideals suffices to
show that joins are preserved.
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The methods presented in this paper will carry over to other priority
arguments, if certain basic properties are satisfied. One can weaken the
requirement assignment process to simultaneously assign requirements, and
their derivatives, to the trees at all levels. Each requirement will have a
basic module on each tree, which will be a segment of the tree of finite
height. This assignment should provide the sentences generating action at
each node of each tree. To study the interaction between requirements, an
injury analysis similar to that provided by Lemma 2.2 (Interaction) is
needed. A notion of control, different for each requirement, will be needed
to determine how axioms are to be declared and elements placed into sets,
and implication chains will be needed whenever a requirement needs to act
off the true path. One can isolate a guiding principle for the definition of
implication chains. Thus implication chains are to be built (and control
relinquished) when there is a primary link which, if later switched, corrects
any action for the requirement.
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