
Abstract

We show the decidability of the existential theory of the recursively

enumerable degrees in the language of Turing reducibility, Turing re-

ducibility of the Turing jumps, and least and greatest element.

The Existential Theory of the Poset

of R.E. Degrees with a Predicate for

Single Jump Reducibility

Ste�en Lempp

�

Department of Mathematics

University of Wisconsin

Madison, WI 53706

Manuel Lerman

y

Department of Mathematics

University of Connecticut

Storrs, CT 06269

October 10, 1997

�

Research partially supported by NSF Grants DMS-8701891, DMS-8901529, and INT-

8722296 as well as by the Mathematical Sciences Research Institute.

y

Research partially supported by NSF Grants DMS-8521843 and DMS-8900249 as well

as by the Mathematical Sciences Research Institute.

1

1 Introduction

An important topic in classical recursion theory is the decidability of (frag-

ments of) �rst-order theories of recursion-theoretic degree structures. The

problem has been completely solved for the poset of the Turing degrees

D = hD;�i: Lachlan [9] showed the undecidability of the theory; Simpson

[19] characterized the theory as being recursively isomorphic to second-order

arithmetic; and Shore [16] and Lerman [13] showed that the 89-theory is

decidable whereas Schmerl (cf. [13]) showed that the 989-theory is undecid-

able. Similar sharp results have been obtained for the poset of the �

2

-degrees

D(� 0

0

) = hD(� 0

0

);�i (by Epstein [4] and Lerman [13]; Shore [17]; Lerman

and Shore [14]; and Schmerl (cf. [13])); as well as for some other structures.

For the recursively enumerable (r.e.) degrees, gaps remain. The theory

of the poset of r.e. degrees R = hR;�i was shown to be undecidable by

Harrington and Shelah [6] and to be of degree 0

(!)

by Harrington and Sla-

man [7]. While these results actually show the four-quanti�er theory to be

undecidable (personal communication), only the existential theory is known

to be decidable by an easy modi�cation of the Friedberg-Mu�cnik Theorem

[5, 15]. The major obstacle to closing the gap is the characterization of all

�nite lattices embeddable into the r.e. degrees (cf. Ambos-Spies and Lerman

[1, 2]).

Apart from Turing reducibility, the Turing jump operator is the most

important symbol in any language of degree structures. The jump is de�nable

from the partial order by Cooper [3], however not by an 89-de�nition by

Lerman and Shore [14]. Thus the study of the Turing degrees with both

partial order and jump is more complex. By an easy observation of Jockusch

and Soare (cf. [13]), the theory of the Turing degrees with only the jump

operator hD;

0

i is decidable; and by a recent forcing argument of Hinman

and Slaman [8] outside the hyperarithmetic degrees, the existential theory

of the Turing degrees with both partial order and jump D

0

= hD;�;

0

i is

decidable.

Our approach to including the jump operator in the language has been to

use priority arguments. A natural �rst candidate is to show the decidability of

the existential theory of the r.e. degrees in the language of partial order, least

and greatest element, and predicates for nth jump reducibility (a

(n)

� b

(n)

).

(Note that a

(n)

and b

(m)

are always comparable for r.e. degrees a and b if

n 6= m.) The argument for this requires a new framework for 0

(n)

-priority

2

arguments for arbitrarily large n (cf. [10]), and we hope to present it in a

future paper [11]. Our subsequent goal is to use the n-REA degrees to show

the decidability of the existential theory of the Turing degrees with partial

order, jump, and least element.

Here, we present a partial result, requiring only a traditional-style priority

argument, namely the decidability of the existential theory of the r.e. degrees

hR;�;�

0

; 0; 1i in the language of partial order, Turing reducibility of the

jumps (i.e. a �

0

b i� a

0

� b

0

), and least and greatest element.

Our notation is standard and follows Soare's book [20], especially its

Chapter XIV, except that we de�ne the use as the largest number actually

used in a computation and denote the use function of a functional �

X

by the

corresponding lower-case letter ' (and similarly for other Greek letters).

2 The Theorems

We consider the r.e. degrees R in the language L = f�;�

0

; 0; 1; g where the

symbols denote in turn Turing reduciblity, Turing reducibility of the jumps

(i.e. a �

0

b i� a

0

� b

0

), and least and greatest element.

The main result of this paper is the following

Theorem 1. The existential theory of hR;�;�

0

; 0; 1i is decidable.

We prove this result by showing that all existential sentences not trivially

false are actually true. The trivial restrictions are that � and �

0

are partial

orderings, that � is a sub-partial ordering of �

0

, and that 0 and 1 denote the

(distinct) least and greatest elements, respectively, in both partial orderings.

More precisely, we use the following

De�nition. A jump poset is a 5-tuple hP;�; P

0

;�

0

; fi such that hP;�i and

hP

0

;�

0

i are partially ordered sets with (distinct) least and greatest element

and f is a poset homomorphism from P onto P

0

preserving least and greatest

elements.

It is now easy to see that the proof of Theorem 1 can be reduced to

proving the following

Theorem 2. Any �nite jump poset hP;�; P

0

;�

0

; fi can be embedded by maps

e and e

0

in the following way: e is a poset embedding of P into R, e

0

is a

3

poset embedding of P

0

into the degrees REA in 0

0

(i.e., r.e. in and above 0

0

),

both e and e

0

preserve 0 and 1, and for all p 2 P , e(p)

0

= e

0

(f(p)).

3 Intuition for the Proof (of Theorem 2)

Our �rst inclination would be to �rst embed P

0

into the degrees REA in 0

0

and

then to invert the jump to construct an embedding of P . This works in some

cases, for example if P is a linearly ordered set; but the Shore Noninversion

Theorem [18] provides an easy counterexample: It is not always possible to

invert the jump on an embedding of P

0

= f0; a; b; c; 1g where a; b < c and

a j b, if P = P

0

and f is the identity.

Thus we have to build an embedding of P into the r.e. degrees and control

the jumps so as to ensure an embedding of P

0

. To simplify our notation,

we will from now on denote the r.e. set of degree e(p) (for p 2 P) by A

p

.

Furthermore, without loss of generality (by possibly enlarging P), we can

assume the following two conditions:

jP j � 4; and (1)

9p 2 P8q 2 P (q 6= 0; 1; p! f(p) j

0

f(q)): (2)

(These conditions will reduce the number of di�erent strategies needed.)

We now set A

0

= ; and A

1

= ;

0

. We will have to satisfy four types of

requirements (for p; q 2 P):

1. p � q implies A

p

�

T

A

q

: This is only necessary for p 6= 0 and q 6= 1. In

that case, any number x targeted for A

p

will be greater than any other

number used up to the time when x is picked, and when x later enters

A

p

it will simultaneously enter A

q

. This strategy ensures A

p

�

T

A

q

.

(Technically, we achieve A

p

= A

q

\R for a recursive set R.)

2. q 6� p implies A

q

6�

T

A

p

. By (1) and (2), it su�ces to ensure this only

for fp; qg \ f0; 1g = ;. We use the strategy introduced by Friedberg

[5] and Mu�cnik [15] to ensure A

q

6= �

A

p

for each partial recursive (p.r.)

functional �. Namely, we pick a (big) witness x, wait for �

A

p

(x)#= 0,

and when and if that happens, we put x into A

q

and restrain A

p

j('(x)+

1).

4

For the other two types of requirements, we will use the Limit Lemma,

which states that X �

T

A

0

i� X = lim

s

X

s

for a uniformly A-recursive

sequence fX

s

g

s2!

.

3. f(q) 6�

0

f(p) implies A

0

q

6�

T

A

0

p

: By (1) and (2), it su�ces to ensure this

only for fp; qg \ f0; 1g = ;. We use the strategy introduced by Lempp

and Slaman [12] in their solution to the deep degree problem, con-

structing a p.r. functional � such that lim

s

�

A

q

(�; s) 6= lim

t

	

A

p

(�; t)

for any p.r. functional 	. First of all, we have to ensure that �

A

q

is

total and that lim

s

�

A

q

(x; s) exists for all x. Furthermore, given 	, we

pick a (big) witness x and start setting �

A

q

(x; s) = 0 for larger and

larger s with some �xed large use u. Whenever we �nd a (new) t such

that 	

A

p

(x; t)#= 0 then we restrain A

p

j((x; t) + 1), put u into A

q

, re-

set �

A

q

(x; s) = 1 for the \old" s (for which �

A

q

(x; s) had been de�ned

before), and keep setting �

A

q

(x; s) = 0 for the new s with new, even

larger �xed use. In the absence of any injury, we thus achieve that

9

1

t(

A

p

(x; t) = 0)! 8s(�

A

q

(x; s) = 1); and (3.1)

9

<1

t(

A

p

(x; t) = 0)! a.e. s(�

A

q

(x; s) = 0) : (3.2)

(We remark here that this strategy makes A

p

low

2

.

1

)

4. f(p) �

0

f(q) implies A

0

p

�

T

A

0

q

: We distinguish two cases:

4.1 f(p) <

0

1

0

. In this case, we build a p.r. functional � ensuring A

0

p

=

lim

s

�

A

q

(�; s). For each x, we start setting �

A

q

(x; s) = 0 for larger

and larger s until we �nd a stage s at which fxg

A

p

(x)#. Then we

restrain A

p

j(u(A

p

; x; x) + 1) and start setting �

A

q

(x; s) = 1 with

some �xed large use u.

4.2 f(p) = 1

0

. In this case, we make A

q

high by building a p.r.

functional � ensuring Inf = lim

s

�

A

q

(�; s) where Inf = fx j

W

x

in�niteg is the canonical �

2

-complete set. For each x, we

start setting �

A

q

(x; s) = 0 for larger and larger s with some �xed

large use u. Whenever a new element enters W

x

we put u into A

q

,

reset �

A

q

(x; s) = 1 for the \old" s, and keep setting �

A

q

(x; s) = 0

for the \new" s with new, even larger �xed use. In the absence of

any injury, we thus achieve that

1

The authors would like to thank the referee for pointing this out.

5

x 2 Inf ! 8s(�

A

q

(x; s) = 1); and (4.1)

x 62 Inf ! a.e. s(�

A

q

(x; s) = 0) : (4.2)

When putting these strategies on a tree of strategies, there are three types

of conicts between strategies that go beyond conventional in�nite-injury tree

constructions:

A. Let � and � be two strategies where � is of lower priority than � and

guesses that the restraint imposed by � tends to in�nity. This can

only be if � works on a requirement A

0

q

6�

T

A

0

p

, and � may want to

put numbers into a set A

r

�

T

A

p

while � wants to restrain A

p

and

thus also A

r

. We resolve this conict by allowing � to injure � \in a

controlled way", namely so that possibly in�nitely many computations

	

A

p

(x; t) = 0 that � wants to preserve are injured but we ensure at the

same time that in�nitely many of these are preserved. This is achieved

formally by \deactivating" � whenever � needs to �nd more permanent

computations 	

A

p

(x; t) = 0 (which must happen under �'s guess on �)

and \activating" � when it would be allowed to injure a computation

	

A

p

(x; t) = 0 found by � now. If �'s guess about � is correct, � will

be activated in�nitely often and still be able to satisfy its requirement.

B. Let � and � be two strategies where � is of lower priority than �

and guesses that � puts in�nitely many numbers into a set. Then �

must work on a requirement A

0

q

6�

T

A

0

p

or Inf �

T

A

0

q

, and � may want

to restrain a set A

r

�

T

A

q

while � wants to put numbers into A

q

and thus also into A

r

. Notice that � puts an increasing sequence of

numbers into A

q

and that � knows, at any given stage, the lower bound

for any future numbers put into A

q

by �. We thus resolve this conict

by \delaying" � whenever it would restrain a set A

r

�

T

A

q

above the

current lower bound for any future numbers put into A

q

by �. Since

� wants to restrain to preserve some speci�c computation it assumes

to be de�ned, the use of that computation must eventually be below

the lower bound for any future numbers put into A

q

by � (unless the

computation is unde�ned) if �'s guess about � is correct. (This feature

is actually only necessary when combined with the next feature.)

(The above two conicts already appeared in Lempp and Slaman [12];

the third type of conict is new and more complicated to handle.)

6

C. Fix a requirement of the form A

0

p

(x) = lim

s

�

A

q

(x; s). Since �'s de�ni-

tion must be uniform, several strategies on the tree (in fact a maximal

antichain of such strategies) all de�ne �

A

q

(x;�) for the same x. It is

conceivable that computations fxg

A

p

(x) (which would make us change

�

A

q

(x;�) from 0 to 1) only appear when the �

A

q

(x;�)-strategy whose

guess currently seems correct is really to the right of the true path,

so that its restraint to preserve fxg

A

p

(x) may later be injured while

its de�nition �

A

q

(x; s) = 1 may remain. If this happens in�nitely of-

ten then �

A

q

(x; s) = 1 for in�nitely many s while fxg

A

p

(x)". To get

around this problem, we introduce the \leftmost initialization feature".

It consists of letting the leftmost �

A

q

(x;�)-strategy � that is currently

not delayed act even if a di�erent �

A

q

(x;�)-strategy

^

� 6= � currently

has the correct guess. This way,

^

� can have � act in its place with �'s

higher-priority restraint to protect fxg

A

p

(x).

We are now in a position to present the formal proof of Theorem 2.

4 The Construction

We �rst de�ne the requirements, keeping in mind the simplifying restrictions

(1) and (2) above. Let

Z

0;0

= fhp; qi 2 (P � f0; 1g)

2

j q 6� p & f(q) �

0

f(p)g ;

Z

0;1

= fhp; qi 2 (P � f0; 1g)

2

j f(q) 6�

0

f(p)g ;

Z

1

= fhp; qi 2 P

2

j p 6� q & f(p) �

0

f(q) & f(p) 6= 1

0

g ;

Z

2

= fh1; qi 2 P

2

j q 6= 1 & f(q) = 1

0

g :

For each hp; qi 2 Z

0;0

and each p.r. functional �, we require

A

q

6= �

A

p

: (5)

For each hp; qi 2 Z

0;1

, we build a p.r. functional � = �

hp;qi

and require for

each p.r. functional 	

lim

s

�

A

q

(�; s) 6= lim

t

	

A

p

(�; t) : (6)

For each hp; qi 2 Z

1

, we build a p.r. functional � = �

hp;qi

and require for

each x

lim

s

�

A

q

(x; s) = A

0

p

(x) : (7)

7

For each h1; qi 2 Z

2

, we build a p.r. functional � = �

h1;qi

and require for

each x

lim

s

�

A

q

(x; s) = Inf(x) : (8)

Finally recall that we automatically ensure for each hp; qi 2 P

2

with p < q

9 a recursive set R(A

p

= A

q

\R) : (9)

Conditions (5) through (9) now ensure the embedding in Theorem 2.

We e�ectively !-order all requirements (5) through (8) (for all �, 	, and x,

respectively) as fR

i

g

i2!

. We let T = 2

<!

, the full binary tree, be the tree of

strategies, ordered lexicographically, and assign requirement R

i

to all nodes

� 2 T of length i. We call the nodes � of T strategies, and say � works for

requirement R

j�j

. For each � working on a requirement (5), (6), or (8), we

de�ne a set of target sets T

�

as follows:

If � works on a requirement (5) then

T

�

= fA

r

j r � qg :

If � works on a requirement (6) then

T

�

= fA

r

j f(r) �

0

f(q)g :

If � works on a requirement (8) then

T

�

= fA

r

j f(r) = 1

0

g :

(T

�

is unde�ned for � working on a requirement (7).) The set of target sets

is the collection of sets A

r

into which � will put numbers.

From time to time, strategies of T may be initialized by letting all their

parameters (witness, restraint, etc.) be unde�ned. Note, however, that the

functionals �

hp;qi

and �

hp;qi

are global and thus never discarded. When a

strategy � is eligible to act it is allowed to act only if it is activated and not

delayed. A strategy � working on a requirement (5) or (6) is deactivated upon

each initialization. � becomes activated when its priority parameter P (�)

(de�ned in the construction) is de�ned and less than the counting parameter

i

�

(also de�ned in the construction) of any � with � ^h0i � � working on a

requirement (6). (A strategy working on a requirement (7) or (8) is always

activated.)

8

A strategy working on a requirement (5) through (7) is delayed if it would

restrain a set A

p

2 T

�

for some strategy � working on a requirement (6) or

(8) for which � ^h0i � � and the A

p

-restraint would be at least as big as

� 's parameter u

�

(de�ned in the construction). (A strategy working on a

requirement (8) is never delayed.)

A parameter is de�ned big by setting it equal to a number larger than

any number used thus far in the construction.

The rest of this section now describes the action at each stage of the

construction.

At stage 0, all strategies are initialized.

Each subsequent stage, s + 1, say, has substages t � s. (Possibly, stage

s+1 may be ended before reaching substage s.) At each substage t, a strategy

� of length t is eligible to act and then determines a strategy � � � to be

eligible to act next (unless t = s or the stage is ended).

At substage t of stage s+1, we �rst check if the strategy � eligible to act

is allowed to act. If not then de�ne P (�) big (if now unde�ned) and end the

substage by letting �^h1i be eligible to act next.

If � is deactivated or delayed then we end the substage by letting �^h1i

be eligible to act next; otherwise, we distinguish cases depending on which

requirement � works for:

Case 1: � works on a requirement (5). If �'s witness x is unde�ned then

de�ne it big; in that case, or if �'s witness x is already in A

q

or not �

A

p

(x)#=

0, end the substage by letting �^h1i be eligible to act next. Otherwise, i.e.

if �

A

p

(x)#= 0 = A

q

(x), put x into every set A

r

2 T

�

; restrain A

p

j('(x) + 1),

initialize all strategies � > �, and end the substage by letting �^h1i be

eligible to act next.

Case 2: � works on a requirement (6). If �'s witness x is unde�ned, then

de�ne it big; for all s

0

� s for which �

A

q

(x; s

0

)", set �

A

q

(x; s

0

) = 0 with �xed

big use �(x; s

0

) = u

�

, say; set the counting parameter i

�

= 0; and end the

substage by letting �^h1i be eligible to act next.

Otherwise, check if any of �'s A

p

-restraint was injured. If so then let i

�

take the value it had just before � imposed the least injured A

p

-restraint.

(Recall that i

�

counts the number of uninjured computations 	

A

p

(x; t) #=

0 that � is currently preserving.) Next, check if there is a t > i

�

such

that 	

A

p

(x; t)#= 0. If not then, for all s

0

� s for which �

A

q

(x; s

0

)", set

�

A

q

(x; s

0

) = 1 with previous use (if previously de�ned to equal 1), or set it

9

= 0 with use u

�

(where u

�

is the same as before if u

�

=2 A

q

, and is chosen

big otherwise); and end the substage by letting �^h1i be eligible to act next.

Otherwise, i.e. if there is such a t, then restrain A

p

j((x; t) + 1); put u

�

into

every A

r

2 T

�

; for all s

0

� s for which �

A

q

(x; s

0

)", set �

A

q

(x; s

0

) = 1 with

previous use (if previously de�ned) or with use u

�

(otherwise); make the

priority parameter P (�) unde�ned; increment the counting parameter i

�

by

+1; and end the substage by letting �^h0i be eligible to act next.

Case 3: � works on a requirement (7). Check if fxg

A

p

(x)#. If not then

set �

A

q

(x; s

0

) = 0 with use 0 for all s

0

� s for which �

A

q

(x; s

0

) is unde�ned

and end the substage by letting �^h1i be eligible to act next. Otherwise,

i.e. if fxg

A

p

(x) #, then let � be the leftmost strategy with j� j = j�j that

has been eligible to act (since the last injury to a computation fxg

A

p

(x))

and is currently not delayed. If this is the �rst time that � acts for this

computation fxg

A

p

(x) (since the last injury to a computation fxg

A

p

(x)) then

� restrains A

p

j(u(A

p

; x; x) + 1); sets �

A

q

(x; s

0

) = 0 with use 0 for all s

0

< s

(for which �

A

q

(x; s

0

) is unde�ned); sets �

A

q

(x; s) = 1 with big use; initializes

all strategies � > � ; and ends the stage. Otherwise, � sets �

A

q

(x; s

0

) to the

previous value with previous use (for s

0

< s); sets �

A

q

(x; s) = 1 with big use;

and ends the substage by letting �^h1i be eligible to act next.

Case 4: � works on a requirement (8). If i

�

is unde�ned then de�ne it big.

If u

�

is unde�ned then de�ne it big. Check if there is an element y > i

�

in W

x

. If not then set �

A

q

(x; s

0

) (for s

0

< s) as previously de�ned with

previous use; set �

A

q

(x; s) = 0 with use (x; s) = u

�

; and end the substage

by letting �^h1i be eligible to act next. Otherwise, i.e. if there is such a y,

put u

�

into every A

r

2 T

�

; for all s

0

� s for which �

A

q

(x; s

0

) is unde�ned set

�

A

q

(x; s

0

) = 1 with use 0; rede�ne u

�

big; increment the counting parameter

by +1; and end the substage by letting �^h0i be eligible to act next.

At the end of stage s + 1, i.e. after all substages, initialize all strategies

� > the strategy � that was last eligible to act; and de�ne �

A

q

(x; s

0

) for all

x; s

0

� s for which it is now unde�ned as follows: If �

A

q

(x; s

0

) was previously

de�ned then rede�ne it to the same value with the same use. Otherwise, if

there is a (greatest) s

00

< s

0

such that �

A

q

(x; s

00

) was previously de�ned then

de�ne �

A

q

(x; s

0

) to the same value with the same use as for s

00

. Otherwise,

i.e., if there is no such s

00

, de�ne it equal to 0 with use 0.

This ends the description of our construction for Theorem 2.

10

5 The Veri�cation

We de�ne the true path f 2 [T] by induction as usual, namely if � = f jn then

f(n) = 0 if �^h0i is eligible to act in�nitely often, and f(n) = 1 otherwise.

We �rst prove a basic lemma:

Lemma 1 (True Path Lemma). For each n, f jn is initialized at most

�nitely often, is eligible to act in�nitely often, and is activated at in�nitely

many of the stages at which it is eligible to act. Furthermore, if � = f jn is

a strategy working on a requirement (6) or (8), then lim

s

i

�

exists (possibly

=1), and it is in�nite i� f(n) = 0.

Proof: We proceed by induction on n. The �rst half of the claim is trivial for

n = 0, so we assume the claim for all n

0

� n and set � = f jn in order to show

the �rst half of the claim for � = f j(n + 1). First, suppose � is initialized

in�nitely often. Then � = �^h1i. There cannot be strategies �

0

� �^h0i

working on a requirement (7) that cause initialization to � in�nitely often

since there are only �nitely many stages (and �nitely many such �

0

) at which

any �

0

is eligible to act. Furthermore, the initialization of � cannot be caused

by �

0

� � by the inductive hypothesis. Thus � must initialize � in�nitely

often. Since �^h0i 6� f , � must work on a requirement (7). Thus � must be

injured in�nitely often, necessarily by strategies �

0

with �

0

^h0i � �. These �

0

must work on a requirement (6) or (8). But note that u

�

0

is a lower bound for

any number �

0

may put into any set in the future, and by the delay feature,

� will not try to restrain any set in T

�

0

on a number � u

�

0

.

This also shows that � must be eligible to act in�nitely often since oth-

erwise � would end the stage almost every time it is eligible to act, thus

initializing � , which contradicts the above. Finally, suppose � is activated

only at �nitely many of the stages at which it is eligible to act. Then P (�)

must come to a limit, but lim

s

i

�

=1 for all � with �^h0i � � working on a

requirement (6) or (8), yielding the desired contradiction.

Finally, we need to show for all � � f that, assuming the claim for all

� � � , if � is a strategy working on a requirement (6) or (8) then lim

s

i

�

exists and is in�nite i� � ^h0i � f . Clearly lim

s

i

�

= 1 i� � ^h0i � f if

lim

s

i

�

exists. Furthermore, lim

s

i

�

clearly exists if � is a strategy working

on a requirement (8) since then i

�

is nondecreasing in s. So assume � is a

strategy working on a requirement (6). It su�ces to show for each �xed i,

that if i

�

> i at in�nitely many stages then i

�

> i at co�nitely many stages.

11

For the sake of a contradiction assume that each of i

�

> i and i

�

� i holds at

in�nitely many stages, respectively. By induction, we may assume i

�

� i at

co�nitely many stages, say always after some (least) stage s, and say s

0

> s

is the least stage at which i

�

> i. By the way we de�ne P (�), there are

only �nitely many strategies � at stage s

0

with P (�) � i. By the activation

feature, only those � can cause i

�

� i, and each can do so at most once and

will then become deactivated. When P (�) is rede�ned it will be de�ned big,

and so this � can no longer injure the ith computation 	

A

p

(x; t) that � �nds.

Thus eventually always i

�

> i, yielding the desired contradiction. 2�

Lemma 2 (Convergence Lemma). All �

A

q

and �

A

q

are total, and

lim

s

�

A

q

(x; s) exists for all � and x.

Proof: Since the use of �

A

q

(x; s) (or �

A

q

(x; s)), once de�ned, never increases

and �

A

q

(x; s) (or �

A

q

(x; s)) is de�ned at the end of almost every stage, all

�

A

q

(and �

A

q

) must be total.

Now �x �

A

q

and x. We will show that lim

s

�

A

q

(x; s) must exist. This is

clear if almost all de�nitions of �

A

q

(x; s) (for any s) are made at the end of

stage s. Otherwise, a unique strategy � makes de�nitions of �

A

q

(x; s) (for

some s) in�nitely often, and necessarily � � f . If �^h1i � f then clearly

lim

s

�

A

q

(x; s) = 0. On the other hand, if �^h0i � f then, by �'s action at

stages when it puts some u into A

q

, �

A

q

(x; s) will be set to 1 for almost all

s. 2�

Lemma 3 (Reducibility Lemma). For all p; q 2 P , if p < q then

A

p

�

T

A

q

.

Proof: The claim is trivial for p = 0 or q = 1. Otherwise, any number x

entering A

p

must be appointed at a stage s < x. When x later enters A

p

then it also enters A

q

, which establishes the claim. 2�

Lemma 4 (Non-Reducibility Lemma). For any p; q 2 P , if q 6� p then

A

q

6�

T

A

p

.

Proof: If f(q) 6�

0

f(p) then we will show the (stronger) statement A

0

q

6�

T

A

0

p

in the next lemma. If q = 1 (or p = 0) then, by (1) and (2), we may pick an

r 2 P � f0; 1g with r 6� p (or q 6� r), and the following proof will establish

the (stronger) statement A

r

6�

T

A

p

(or A

q

6�

T

A

r

, respectively). Thus we

may assume hp; qi 2 Z

0;0

and, for each p.r. functional �, the existence of a

strategy � � f working on A

q

6= �

A

p

.

12

Since � is initialized at most �nitely often, it will eventually work with

a �xed witness x. So suppose �

A

p

(x)#. Then � is not delayed at almost all

stages since x and '(x) are eventually �xed but lim

s

i

�

=1 for any � with

� ^h0i � � working on a requirement (6) or (8) by Lemma 1. Thus clearly

�

A

p

(x) 6= 0 if x 62 A

q

.

So suppose � puts x into A

q

at some stage s + 1. Then �

A

p

(x)#= 0 at

that point, so suppose some y � '

s+1

(x) is later put into A

p

by some � . By

initialization by �, we must have � < �; and since � keeps x forever and

is thus not initialized after stage s + 1, we even have � ^h0i � �. But then

� works on a requirement (6) or (8), so '

s+1

(x) < u

�;s+1

. But any number

� puts into any set after stage s + 1 must be � u

�;s+1

contradiction. Thus

�

A

p

(x)#= 0 as desired. 2�

Lemma 5 (Jump Non-Reducibility Lemma). For any p; q 2 P , if

f(q) 6�

0

f(p) then A

0

q

6�

T

A

0

p

.

Proof: If q = 1 (or p = 0) then, by (1) and (2), we may pick an r 2 P�f0; 1g

with f(r) 6�

0

f(p) (or f(q) 6�

0

f(r)), and the following proof will establish

the (stronger) statement A

0

r

6�

T

A

0

p

(or A

0

q

6�

T

A

0

r

, respectively). Thus we

may assume hp; qi 2 Z

0;1

and, for each p.r. functional 	, the existence of a

strategy � � f working on lim

s

�

A

q

(�; s) 6= lim

t

	

A

p

(�; t).

Since � is initialized at most �nitely often, it will eventually work with

a �xed witness x. So suppose 	

A

p

(x; t) #= 0 or 1 (for all t) and that

lim

t

	

A

p

(x; t) exists.

If �^h1i � f , then, after stage s, say, i

�

is constant, say equal to i

0

.

Suppose there is a t > i

0

such that 	

A

p

(x; t)#= 0. Then x and (x; t) are

eventually �xed but lim

s

i

�

= 1 for any � with � ^h0i � � working on a

requirement (6) or (8) by Lemma 1; thus i

�

would eventually be greater than

i

0

, a contradiction. So �^h1i � f implies not lim

t

	

A

p

(x; t) = 0, and, by the

proof of Lemma 2, it also implies lim

s

�

A

q

(x; s) = 0.

If �^h0i � f then lim

s

i

�

= 1; so by the injury feature, there are

in�nitely many t such that 	

A

p

(x; t) #= 0. Thus �^h0i � f implies not

lim

t

	

A

p

(x; t) = 1, and, again by the proof of Lemma 2, it also implies

lim

s

�

A

q

(x; s) = 1. 2�

Lemma 6 (Jump Reducibility Lemma). For any p; q 2 P , if f(p) �

0

f(q)

then A

0

p

�

T

A

0

q

.

13

Proof: If p � q then we have already established the (stronger) statement

A

p

�

T

A

q

by Lemma 3. The claim is trivial for f(p) = 0

0

or f(q) = 1

0

. So we

may assume p 6� q, f(p) 6= 0

0

, and f(q) 6= 1

0

. We now distinguish two cases:

Case 1: f(p) 6= 1

0

. Then hp; qi 2 Z

1

, and for each x there is a strategy

� � f working on lim

s

�

A

q

(x; s) = A

0

p

(x). Let � not be initialized after a

(least) stage s

0

. If � (or some �

0

<

L

� with j�j = j�

0

j) �nds a computation

fxg

A

p

(x)# (and is not initialized afterwards) while it is not delayed then it

will initialize all strategies � > � (or � > �

0

, respectively). By the delay

feature and initialization, that computation fxg

A

p

(x)# will not be injured,

and by the construction �

A

q

(x; s) = 1 for almost all s.

On the other hand, if � (or some �

0

<

L

� with j�j = j�

0

j) never �nds such

a computation then fxg

A

p

(x) # is impossible since then u(A

p

; x; x) would

eventually be �xed while lim

s

u

�

=1 for all � working on a requirement (6)

or (8) with � ^h0i � �. So suppose some strategy � >

L

� sets �

A

q

(x; s) = 1

at a stage s > s

0

while � is delayed. Then � is delayed because u

�

�

u(A

p

; x; x; s) for some � working on a requirement (6) or (8) with � ^h0i � �.

Since � ^h0i � � � f , � will later put u

�

into A

p

and thus also into A

q

(by

f(q) �

0

f(p)). Since (x; s) > u(A

p

; x; x; s), this will destroy �'s de�nition

of �

A

q

(x; s) = 1. Thus �

A

q

(x; s) = 0 for almost all s.

Case 2: f(p) = 1

0

. Then h1; qi 2 Z

2

, and for each x there is a strategy

� � f working on lim

s

�

A

q

(x; s) = Inf(x). Let � not be initialized after a

(least) stage s

0

. By the construction, it is easy to see that �

A

q

(x; s) = 0 for

almost all s if W

x

is �nite.

On the other hand, if W

x

is in�nite then � will in�nitely often reset

�

A

q

(x;�) from 0 to 1. Let s

1

be the �rst stage after stage s

0

at which � is

eligible to act. Then, for any s

0

� s

1

and at any stage � s

1

, (x; s

0

) � u

�

or

�

A

q

(x; s

0

) = 1; so whenever � resets �

A

q

(x;�) we have �

A

q

(x; s

0

) = 1 for all

s

0

with s

1

� s

0

� the current stage. Thus �

A

q

(x; s) = 1 for almost all s as

desired. 2�

The above lemmas conclude the proof of Theorem 2 and thus also of

Theorem 1.

14

6 Final Remarks

The above construction contains three features distinguishing it from \usual"

in�nite-injury priority arguments: �rstly the activation/deactivation feature;

secondly the delay feature; and thirdly the leftmost initialization feature.

These features seem strangely ad hoc but they are actually quite nat-

ural in a more general framework such as the one developed by us for the

general result, including higher jump reducibility predicates. The activa-

tion/deactivation feature, controlling the injury by a lower-priority strategy

� to a higher-priority strategy � with � ^h0i � �, is merely a tool to assign

relative priority to the substrategies of � and � , each performing a single

action, in such a way that each substrategy has only �nitely many substrate-

gies (of both � and �) of higher priority. It reects the priority ordering on

T

1

, the \�nite-injury tree".

The delay feature, preventing a lower-priority strategy � from being in-

jured by a higher-priority strategy � with � ^h0i � �, is a tool to assert

the priority of � (as a whole) over � in spite of the controlled injury by �-

substrategies to � . It reects the priority ordering on T

2

, the \in�nite-injury

tree".

Finally, the leftmost initialization feature, enabling a �nitary strategy �

to act even while it is not currently on the true path, is a tool to \force �

back on the true path" since it may be too late for � to act when it returns

to the true path. It reects forcing a strategy currently on the true path

of T

1

to be put back on the true path of T

2

. This feature will be a crucial

component of our general general framework.

All three features should become clearer in our forthcoming paper [11],

to be written in our new general framework for priority arguments.

15

References

[1] K. Ambos-Spies, M. Lerman, Lattice embeddings into the recursively

enumerable degrees, J. Symbolic Logic 51 (1986), 257{272.

[2] K. Ambos-Spies, M. Lerman, Lattice embeddings into the recursively

enumerable degrees, II, J. Symbolic Logic 54 (1989), 735{760.

[3] S. B. Cooper, The jump is de�nable in the structure of the degrees of

unsolvability, preprint.

[4] R. L. Epstein, \Degrees of Unsolvability: Structure and Theory", Lec-

ture Notes in Mathematics No. 759, Springer-Verlag, Berlin, Heidelberg,

New York, 1979.

[5] R. M. Friedberg, Two recursively enumerable sets of incomparable degrees

of unsolvability, Proc. Natl. Acad. Sci. USA 43 (1957), 236{238.

[6] L. Harrington, S. Shelah, The undecidability of the recursively enumer-

able degrees, Bull. Amer. Math. Soc. (N. S.) 6 No. 1 (1982), 79{80.

[7] L. Harrington, T. A. Slaman, Interpreting arithmetic in the Turing de-

grees of the recursively enumerable sets, to appear.

[8] P. G. Hinman, T. A. Slaman, Jump embeddings into the Turing degrees,

J. Symbolic Logic 56 (1991), 563{591.

[9] A. H. Lachlan, Distributive initial segments of the degrees of unsolvability,

Z. math. Logik Grund. Math. 14 (1968), 457{472.

[10] S. Lempp, M. Lerman, Priority arguments using iterated trees of strate-

gies, in \Recursion Theory Week", K. Ambos-Spies, G.H. M�uller, G.E.

Sacks (eds.), Springer-Verlag, Berlin, 1990, pp. 277-296.

16

[11] S. Lempp, M. Lerman, The decidability of the existential theory of the

poset of the recursively enumerable degrees with jump relations, in prepa-

ration.

[12] S. Lempp, T. A. Slaman, A limit on relative genericity in the recursively

enumerable degrees, J. Symbolic Logic 54 (1989), 376{395.

[13] M. Lerman, \Degrees of unsolvability", Perspectives in Mathemati-

cal Logic, Omega Series, Springer-Verlag, Berlin, Heidelberg, New York,

Tokyo, 1983.

[14] M. Lerman, R. A. Shore, Decidability and invariant classes for degree

structures, Trans. Amer. Math. Soc. 301(2) (1988), 669{692.

[15] A. M. Mu�cnik, On the solvability of the problem of reducibility in the

theory of algorithms, Dokl. Akad. Nauk SSSR, N.S. 108 (1956), 194{197.

[16] R. A. Shore, On the 89-sentences of �-recursion theory, in: \Generalized

Recursion Theory II", J. E. Fenstad, R. O. Gandy, G. E. Sacks (eds.),

Proceedings of the Second Symposium on Generalized Recursion Theory,

Oslo, 1977, North Holland, Amsterdam, New York, Oxford, 1978, pp. 331{

354.

[17] R. A. Shore, On homogeneity and de�nability in the �rst-order theory

of the Turing degrees, J. Symbolic Logic 47 (1982), 8{16.

[18] R. A. Shore, A non-inversion theorem for the jump operator, Ann. Pure

Appl. Logic 40 (1988), 277{303.

[19] S. G. Simpson, First-order theory of the degrees of recursive unsolvabil-

ity, Ann. Math. (2) 105 (1977), 121{139.

[20] R. I. Soare, \Recursively enumerable sets and degrees", Perspectives in

Mathematical Logic, Omega Series, Springer-Verlag, Berlin, Heidelberg,

New York, London, Paris, Tokyo, 1987.

17

