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ON THE COMPUTABILITY-THEORETIC COMPLEXITY OF

TRIVIAL, STRONGLY MINIMAL MODELS

BAKHADYR M. KHOUSSAINOV, MICHAEL C. LASKOWSKI, STEFFEN LEMPP,
AND REED SOLOMON

Abstract. We show the existence of a trivial, strongly minimal (and thus

uncountably categorical) theory for which the prime model is computable and
each of the other countable models computes 0

′′. This result shows that the
result of Goncharov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03] is best
possible for trivial strongly minimal theories in terms of computable model
theory. We conclude with some remarks about axiomatizability.

Both vector spaces and algebraically closed fields have the property that the
uncountable structures in these classes are determined up to isomorphism by their
cardinality. Model theory provides a general framework in which to study this
behavior. A first order theory T is called κ-categorical (for an infinite cardinal κ)
if A ∼= B whenever A,B |= T and |A| = |B| = κ. Morley [Mo65] proved that
if T is categorical in some uncountably cardinality, then it is categorical in all
uncountable cardinalities. (We assume here and for the rest of this paper that the
language is countable.) Therefore, any ω1-categorical theory has a unique model of
each uncountable cardinality.

Baldwin and Lachlan [BL71] showed that for an uncountably categorical theory
T , either there is a unique countable model of T , or the countable models of T
form an elementary chain of length ω + 1: A0 ≺ A1 ≺ · · · ≺ Aω, where A0 is the
prime (or atomic) model and Aω is the countably saturated model. The examples
of vector spaces (over a fixed countable field) and algebraically closed fields fall into
this second category, with the models in the elementary chain determined by the
cardinality of a basis and by the transcendence degree. It is this case of uncountably
categorical but not ω-categorical theories that we are interested in.

Together, Morley’s Categoricity Theorem and the Lachlan-Baldwin Theorem
give a good algebraic picture of the infinite models of an uncountably categorical
theory T . However, there are additional questions to consider about the complexity
of such theories and models. For example, from a model-theoretic point of view, one
can ask about the complexity of sentences required to axiomatize these theories,
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and from a computability-theoretic point of view, one can ask about the complexity
of constructing the models of such a theory.

To address the latter question, we recall that a countable model is said to be
decidable if it has an isomorphic copy with universe ω for which the elementary
diagram forms a computable set of formulas; and computable if the open diagram
of some such copy forms a computable set of formulas. (We assume that we are
working in a computable language, i.e., that the arity of each relation and function
symbol in the language is uniformly computable. Note that these notions eas-
ily relativize to the notions of “d-decidable” and “d-computable” for any Turing
degree d.)

Harrington [Ha74] and Khisamiev [Kh74] showed that all countable models of a
decidable uncountably categorical theory are decidable. It follows trivially from the
definitions that if an uncountably categorical theory has a decidable model then
the theory is decidable, and so all its countable models are decidable.

In contrast, Goncharov [Go78] first exhibited an uncountably categorical the-
ory for which one but not all countable models are computable; for his theory, the
prime model is computable while all other countable models are only 0′-computable.
More examples of uncountably categorical theories for which some but not all
countable models are computable were found by Kudaibergenov [Ku80], Khous-
sainov/Nies/Shore [KNS97], Nies [Ni99] and others. These theories have three
properties in common: They use infinite languages, they are trivial and strongly
minimal (defined below), and all the countable models are computable from 0′.

Herwig/Lempp/Ziegler [HLZ99] showed that the use of an infinite language is not
essential by constructing a theory in a language of three binary relation symbols
for which the prime model is computable but all nonprime models are only 0′-
computable. Moreover, they showed that for any Turing degree a ≤ 0′, there is a
trivial strongly minimal theory T in this language such that the prime model of T
is computable while (the open diagrams of) all the nonprime models have copies in
exactly the degrees ≥ a, i.e., the nonprime models all “code” the degree a.

The second common property of these theories is that each example is trivial and
strongly minimal. A theory T is called strongly minimal if every definable subset
(with parameters) of each model A |= T is either finite or cofinite. Such a model
A |= T is trivial (or has trivial pregeometry) if the algebraic closure of any subset
D ⊆ A, denoted by acl(D), is the union of the algebraic closures of the elements of
D. (This property depends only on the theory of A. An element a ∈ A is algebraic

over D if there are parameters d ∈ D and a formula ψ(x, d) such that A |= ψ(a, d)
and the set of all b ∈ A for which A |= ψ(b, d) is finite. The algebraic closure of D is
the set of all elements which are algebraic over D. In the case of algebraically closed
fields and vector spaces, acl(D) is the algebraic closure of the subfield generated
by D, and the span of D, respectively. Buechler [Bu96] is a good reference on
strongly minimal theories.) Strong minimality implies uncountable categoricity, so
this property shows that it is possible to get the behaviors described above within
a restricted class of uncountably categorical theories.

The third property is our main concern in this paper. Although all of the mod-
els in the examples above are 0′-computable, it was not clear for several years why
there should be any fixed arithmetic bound on the complexity of these models.
The existence of such an upper bound was given by a purely model-theoretic result
by Goncharov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03]: If T is a trivial



ON THE COMPLEXITY OF TRIVIAL, STRONGLY MINIMAL MODELS 3

strongly minimal theory, M |= T and Th(MM ) denotes the theory of M in the
expanded language which includes a constant symbol for each element of M, then
Th(MM ) is model complete, and hence ∀∃-axiomatizable (see, e.g., Chang/Keisler
[CK90, pp. 186-187]). Therefore, if M |= T is computable, then both Th(MM ) and
Th(M) = T are 0′′-decidable. By the relativized version of the theorem of Har-
rington [Ha74] and Khisamiev [Kh74], all countable models of T are 0′′-decidable.
(This statement is stronger than saying they are 0′′-computable; it says that each
model has an isomorphic copy in which the elementary diagram (and not just the
open diagram) is 0′′-computable.)

There is a computability-theoretic gap between the results of Goncharov [Go78]
(in which the countable nonprime models of T are computable in 0′) and of
Goncharov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03] (in which the upper
bound of 0′′ is given). Is it possible for a trivial strongly minimal theory to have a
computable model and another countable model which is only 0′′-computable? In
this paper, we give an affirmative answer and thereby show that the result of Gon-
charov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03] is best possible in terms
of computable model theory (i.e., the complexity of the countable models).

Theorem 1. There is a trivial, strongly minimal (and thus uncountably categor-
ical) first-order theory T such that the prime model of T is computable and 0′′ is
computable from the atomic diagram of any nonprime countable model of T .

We prove this theorem in section 1. As a corollary to this theorem, we can also
conclude that the ∀∃-axiomatization of the theory of a strongly minimal model in
the expanded language naming constants is optimal, i.e., there is no axiomatiza-
tion by Boolean combinations of ∀-formulas. However, this can be seen already
from much simpler examples, e.g., the theory of an equivalence relation with all
equivalence classes of size two. Section 2 contains some general remarks about ax-
iomatizability by ∀∃-formulas, ∀-formulas, and Boolean combinations of ∀-formulas.

1. The proof of Theorem 1

We begin by defining the type of family of sets which we will code into our theory.

Definition 2. An infinite family F of finite subsets of ω is an almost everywhere

(or a.e.) family if for every n ∈ ω, either n ∈ X for all but finitely many X ∈ F
or n 6∈ X for all but finitely many X ∈ F . Such a family F has an infinite limit

if the set

IF = {n ∈ ω | n ∈ X for all but finitely many X ∈ F}

= {n ∈ ω | n ∈ X for infinitely many X ∈ F}

is infinite.

To code this type of family, we generalize the notion of “cubes” introduced by
Khoussainov/Nies/Shore [KNS97]. Fix a language L consisting of binary relation
symbols Fi (for i ∈ ω), which we will all assume to be symmetric and irreflexive
and to have in-degree and out-degree ≤ 1, so we can think of them as coding
permutations fi of order 2 on subsets of the model. (If we used function symbols fi

in our language rather than relation symbols, then by the comments in Section 2,
the theory Th(MM ) for a model M |= TF (defined below) would have a quantifier-
depth 1 axiomatization and hence the most we can code into such a model is 0′.)
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Before giving the formal definition of an S-cube (for S ⊆ ω), we give several
concrete examples. Suppose S = {n0}. In this case, an S-cube consists of two
elements a0 and b0 such that Fn0

(a0, b0) (and hence Fn0
(b0, a0) by symmetry) and

¬Fm(a0, b0) for all m 6= n0 (and hence ¬Fm(b0, a0) by symmetry). Notice that the
function fn0

induced by Fn0
and defined by fn0

(a0) = b0 and fn0
(b0) = a0 gives an

L-automorphism of the S-cube.
Next, suppose S = {n0, n1}. To construct the S-cube, we begin with two {n0}-

cubes consisting of the elements a0 and b0 connected by Fn0
(a0, b0) and the elements

a1 and b1 connected by Fn0
(a1, b1). We join these two {n0}-cubes by adding the

relations Fn1
(a0, a1) and Fn1

(b0, b1) and no other relations (except those forced by
symmetry). Notice that the function fn1

induced by Fn1
and defined by fn1

(ai) =
a1−i and fn1

(bi) = b1−i for i ≤ 1 is both an L-isomorphism between the two {n0}-
cubes and an L-automorphism of the S-cube. Similarly, the function fn0

induced
by Fn0

is an L-automorphism of the S-cube. Combining these automorphisms, it
is clear that any two elements of the S-cube are automorphic. (We could get an
isomorphic S-cube by starting with two {n1}-cubes and connecting them using Fn0

.
Therefore, the roles played by n0 and n1 are actually symmetric.)

For one last example, suppose S = {n0, n1, n2}. To construct the S-cube, we
begin with two {n0, n1}-cubes given by a0, a1, b0 and b1 (with relations as above)
and by a′0, a

′
1, b

′
0 and b′1 (with relations defined similarly). We join these two cubes

by adding the relations Fn2
(ai, a

′
i) and Fn2

(bi, b
′
i) for i ≤ 1 and no other relations

(except those forced by symmetry). As above, the function fn2
induced by Fn2

is both an L-isomorphism between the {n0, n1}-cubes and an L-automorphism of
the S-cube. Similarly, the functions fn0

and fn1
induced by Fn0

and Fn1
are L-

automorphisms of the S-cube. Combining these automorphisms, it is clear that
any two elements of the S-cube are automorphic.

We now give the formal definition of an S-cube.

Definition 3. Given a nonempty (finite or infinite) subset S ⊆ ω, we let S =
{n0 < n1 < . . . } be a (not necessarily effective) enumeration of S in order, and set
Sk = {n0, . . . , nk} (for k < |S| if S is finite). We define the notion of an S-cube by
induction on k.

An S0-cube is a 2-element subset {x, y} of an L-model such that Fn0
(x, y) (coding

fn0
(x) = y and fn0

(y) = x) and ¬Fn(x, y) for all n 6= n0.
An Sk+1-cube is the disjoint union of two Sk-cubes C0 and C1 such that Fnk+1

induces an L-isomorphism between C0 and C1, and such that ¬Fn(x0, x1) for all
n 6= nk+1, all x0 ∈ C0 and all x1 ∈ C1.

For infinite S, we define an S-cube to be the “limit” of the Sk-cubes, i.e., an
infinite subset A of an L-model such that for all k ∈ ω, every element x ∈ A is an
element of a unique Sk-cube ⊂ A and such that any two elements x0, x1 ∈ A are
connected by a finite chain of Fi-relations.

Notice that if X ( Y , then any Y -cube contains X-cubes. We will use the
term X-component to refer to an X-cube which is not contained in a larger cube.
(Intuitively, an X-component is a connected component of the model viewed as a
graph.) There are two important properties of an S-component. First, any two
elements of an X-component are automorphic. Second, if x is an element of an
S-component, then there exists a y such that Fn(x, y) if and only if n ∈ S.

For the rest of this paper, F denotes an a.e. family of finite subsets of ω with
an infinite limit IF . We code such a family into an L-theory as follows. Let A0,F
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denote the L-structure consisting of a single X-component for each X ∈ F and
let TF be the theory of this structure. We first examine some model theoretic
properties of such a theory.

Lemma 4. A0,F is the atomic model of TF . Furthermore, for any nonatomic
model M |= TF and any m ∈ M \ A0,F , m sits inside an IF -component. (Thus
any model of TF can be denoted as Aκ,F and is the disjoint union of the atomic
model and κ many IF -components.)

Proof. To show that A0,F is the atomic model of TF , fix a ∈ A0,F and X ∈ F such
that a is an element of the X-component in A0,F . Since IF is infinite, we can fix
i ∈ IF \ X . Since F is an a.e. family, there are finitely many Y ∈ F such that
i 6∈ Y , and we let X0, X1, . . . , Xk−1 list these elements of F which are not equal to
X . For each 0 ≤ j < k, fix nj such that either nj ∈ X \Xj or nj ∈ Xj \X . Let
ψa(x) be the formula that says ∃y(Fm(x, y)) for each m ∈ X , ¬∃y(Fi(x, y)) for our
fixed element i ∈ IF \X , and ¬∃y(Fnj

(x, y)) for each 0 ≤ j < k such that the fixed
element nj satisfies nj ∈ Xj \X .

Clearly, a satisfies ψa(x). Moreover, if b ∈ A0,F and b is not in the X-component,
then we claim that b does not satisfy ψa(x). Fix Y ∈ F such that b is in the Y -
component of A0,F . If i ∈ Y , then b fails to satisfy ¬∃y(Fi(x, y)). Suppose Y = Xj

for some 0 ≤ j < k. If nj ∈ X \Xj , then b fails to satisfy the ∃y(Fnj
(x, y)) conjunct

in ψa(x). If nj ∈ Xj \X , then b fails to satisfy the ¬∃y(Fnj
(x, y)) conjunct in ψa(x).

Therefore, the only elements of A0,F which satisfy ψa(x) are the elements of the
X-component.

Thus, for each k 6∈ X , TF contains the sentence ¬∃x, y(ψa(x)∧Fk(x, y)). Hence,
if M is any model of TF and b ∈ M satisfies ψa(x), then b is an element of an
X-component. Since M must contain such an element b, we have that M contains
an X-component. It follows that A0,F embeds into M, so A0,F is the prime (and
hence atomic) model of TF . Furthermore, because TF says that there are exactly
2|X| many elements which satisfy ψa(x), the principal type satisfied by an element
of an X-component is algebraic over ∅.

Next, we show that if M |= TF is a nonprime model and m ∈ M \ A0,F , then
m is contained in an IF -component. Let IF = {i0 < i1 < i2 < · · · } be a (not
necessarily effective) enumeration of IF . For each k ∈ ω, we let Ck denote the
Y -cube where Y = {i0, i1, . . . , ik}.

We think of M containing an edge between any elements a and b if Fi(a, b) holds
for some i and we use graph-theoretic language. We define a modified notion of
“open balls” in M. For any a ∈ M and k ∈ ω, B(a, k) is the set of all b ∈ M such
that the distance between a and b as measured by the relations F0, . . . , Fik

is ≤ k.
By the properties of F , for any fixed k ∈ ω, almost all a ∈ M satisfy B(a, k) ∼=

Ck. For each k ∈ ω, the same finite number of exceptional points a for which
B(a, k) 6∼= Ck exist in M as in A0,F and hence these exceptional points all come
from the finite components of A0,F sitting inside M. Since any point a ∈ M\A0,F

satisfies B(a, k) ∼= Ck for all k ∈ ω, each such a sits inside an IF -component.
Furthermore, since any two points in an IF -component are automorphic, any two
elements in M\A0,F satisfy the same 1-type. Thus, there is a unique nonprincipal
(and nonalgebraic) 1-type in M for any nonprime model M of TF . �

Lemma 5. TF is trivial and strongly minimal.
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Proof. To see that TF is strongly minimal, let ψ(x) be any formula, possibly with
parameters b from a model M |= TF . We need to show that either {m ∈ M′ |
M′ |= ψ(m)} or {m ∈ M′ | M′ |= ¬ψ(m)} is finite for any elementary extension
M′ of M. Let Lb be the restriction of our language to those edge relations occurring
in ψ(x). Then the reduct M′ � Lb is the disjoint union of (maximal) X-cubes for
various finite sets X containing only indices of edge relations from the finite set of
indices I0 of edge relations mentioned in ψ(x), and all but finitely many of these
cubes are X0-cubes for X0 = IF ∩ I0 and do not contain a parameter from b. Since
the stabilizer of b in the automorphism group of M′ � Lb is 1-transitive on the union
U0 of all those X0-cubes, U0 is a cofinite subset of M′ which is completely contained
in either {m ∈ M′ | M′ |= ψ(m)} or {m ∈ M′ | M′ |= ¬ψ(m)}, establishing our
claim of strong minimality.

It remains to show that TF is trivial, or in other words, that acl(A) =
⋃

a∈A acl(a)
for all A ⊆ M with M |= TF . We have already pointed out that acl(∅) is equal
to the set of all finite X-components in M. (That is, acl(∅) = A0,F ≺ M.) We
claim that acl(A) is equal to the set of all finite X-components in M together with
the set of all IF -components in M which intersect A. The fact that TF is trivial
follows immediately from this claim.

To see the claim, notice that if b ∈ M is in the same IF -component as a ∈ A,
then there is a path in M from a to b (using various relations Fi) and that b is the
unique point at the end of such a path. Therefore, the set of all IF -components
which intersect A are contained in acl(A). Furthermore, if b is in an IF -component
which does not intersect A, then for any other c in the same IF -component as b,
there is an automorphism of M which sends b to c and fixes the finiteX-components
and the IF -components which intersect A. Therefore, b and c realize the same type
over A, this type is not algebraic over A and neither b nor c is in acl(A). �

We next examine some computability-theoretic properties of models of TF .

Definition 6. A c.e. enumeration of a countable family G of subsets of ω is a
uniformly c.e. sequence of sets Xi such that G = {Xi | i ∈ ω}. If i 6= j implies
Xi 6= Xj , then we call this enumeration a c.e. Friedberg enumeration of G.
(We note that in Russian terminology, a c.e. enumeration is frequently called a
computable numbering.)

Lemma 7. If there is a c.e. Friedberg enumeration of F , then TF has a computable
prime model.

Proof. Given a c.e. Friedberg enumeration of F , we construct a computable prime
model of TF by building the X-component for each X ∈ F as it is enumerated.
That is, we do not need to specify all of the X-component at once, but can build
it in stages as the (finitely many) elements of X appear. �

The following lemma gives the key property for verifying that theories TF for
appropriate families F can code additional information into their nonprime models.

Lemma 8. If A is a nonprime model of TF , then IF is c.e. relative to the atomic
diagram of A.

Proof. Fix an element c in one of the IF -components in A. Using the atomic
diagram of A, we enumerate the numbers n ∈ ω such that there exists an element
x in A which is related to c by Fn. By the definition of the IF -component, this
procedure enumerates IF . �
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By Lemma 8, we can code 0′′ into the nonprime models of F by making 0′′

computable from any enumeration of IF . We do this by making IF code the graph
of a function which grows fast enough to compute 0′′.

We develop a suitable computable approximation to 0′′. Fix the canonical uni-
formly c.e. sequence of all c.e. sets Wn for n ∈ ω so that {n | Wn is finite } ≡T 0′′.
We let Wn,s denote the elements of Wn that have been enumerated by stage s. Let
f(n) be the least s such that the finite sets amongW0, . . . ,Wn have been completely
enumerated by stage s.

Lemma 9. For any function g which dominates f , 0′′ ≤T g ⊕ 0′.

Proof. Let k ∈ ω be such that f(x) ≤ g(x) for all x ≥ k. To determine whether
n ∈ 0′′ for n ≥ k, ask 0′ whether Wn gets an element after stage g(n). The answer
to this question is no if and only if n ∈ 0′′. �

Lemma 10. There is a computable function f(n, s) which satisfies the following
properties.

(1) f(n) = lim infs f(n, s).
(2) For every k > f(n), there is a stage sk such that for all t ≥ sk either

f(n, t) = f(n) or f(n, t) > k.

Proof. The following procedure to define f(n, s) is uniform in n and takes place in
stages s. Fix n, let Ij , j < 2n+1, list the subsets of [0, n] and let I∗ = {j ≤ n |
|Wj | = ∞}. We think of each Ij as a potential guess at I∗.

At stage s, consider each Ij . If a new element is enumerated into Wi at stage s
and i ∈ Ij , then we declare i ∈ Ij to be checked in Ij . (Once i is checked in Ij , it
remains checked in Ij at future stages until Ij acts and we explicitly declare i to be
unchecked in Ij .) If all of the elements of Ij are checked in Ij , then we declare Ij
to be ready. Notice that the empty set is ready at every stage.

Let j denote the index such that Ij is ready and Ij has acted least recently. (This
index is unique unless there is more that one j such that Ij is ready and Ij has
never acted. In that case, let Ij be the least such index.) We let Ij act at stage s
as follows. Define

G(n, s) = max{t < s |Wn,t 6= Wn,t+1}

f(n, s) = max{G(k, s) | k ≤ n ∧ k 6∈ Ij}

Declare Ij unready and uncheck each i ∈ Ij . (If i ∈ Ik is checked in Ik for k 6= j,
then i remains checked in Ik.)

This completes the description of f(n, s). It remains to verify Properties 1 and 2.
Let S∗ = {s | Ij = I∗ acts at s}. By the construction, S∗ is infinite and

lim
s∈S∗

f(n, s) = f(n).

To verify lim infs f(n, s) = lims∈S∗ f(n, s) and Property 2, we need to consider
what happens when each Ij 6= I∗ acts. We split this analysis into two cases: when
∃i(i ∈ Ij − I∗) and when Ij ⊆ I∗ but ∃i(i ∈ I∗ − Ij).

First, suppose ∃i(i ∈ Ij − I∗). Since i 6∈ I∗, Wi is finite and hence i ∈ Ij is only
checked finitely often in Ij . Therefore, Ij only acts finitely often and has no effect
on f(n, s) for large enough values of s.

Second, suppose Ij ⊆ I∗ and ∃i(i ∈ I∗ − Ij). Let Sj = {s | Ij acts at s}. Since
Ij ⊆ I∗, Sj is infinite. Since i ∈ I∗, Wi is infinite and lims G(i, s) = ∞. Since
i 6∈ Ij , at each s ∈ Sj, f(n, s) ≥ G(i, s). Therefore, lims∈Sj

f(n, s) = ∞.
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Properties 1 and 2 follow easily from these observations. �

We need to add one further piece to our approximation of 0′′. (By appealing
to the s-m-n theorem, we could have skipped this step, but it is perhaps easier to
continue the theme of dominating functions.) We let h(n) be the least stage s for
which Ks � n + 1 = K � n + 1. (Here, K = {e | ϕe(e) halts} denotes the usual
halting set for the partial computable functions.) Since h(n) is a ∆0

2-function, it
has a computable approximation h(n, s) such that lims h(n, s) = h(n). Finally, let
a(n, s) be the computable function defined by a(n, s) = max{f(n, s), h(n, s)}.

Lemma 11. The computable function a(n, s) satisfies the following properties.

(1) a(n) = lim infs a(n, s) exists and for all n, a(n) ≥ f(n), h(n).
(2) For every k > a(n), there is a stage sk such that for all t ≥ sk, either

a(n, t) = a(n) or a(n, t) > k.
(3) For any function b(n) dominating a(n), 0′′ ≤T b. In particular, 0′′ ≤T a.

Proof. Properties 1 and 2 follow from Lemma 10 and the fact that h(n) =
lims h(n, s). Property 3 follows from the fact that if b(n) dominates a(n), then b(n)
dominates both h(n) and f(n). The fact that b(n) dominates h(n) gives 0′ ≤T b.
Combining this fact with Lemma 9 gives 0′′ ≤T b. �

We use the function a(n, s) to prove Theorem 1. We start by fixing a particular
family F .

Definition 12. From now on, we fix the family F to be the set {Xs | s ∈ ω} where
Xs is the set of all pairs 〈n,m〉 such that n ≤ s and

∃t ≥ s [a(n, t) = m ∧ ∀u(s ≤ u ≤ t→ a(n, t) ≤ a(n, u))].

Let IF = {〈n,m〉 | a(n) = m}.

Lemma 13. F is an a.e. family of finite subsets of ω with infinite limit IF .

Proof. Each Xs is finite because 〈n,m〉 ∈ Xs implies that n ≤ s and m ≤ a(n, s).
Therefore, F is a family of finite sets. Furthermore, IF is clearly infinite. It remains
to show that F is an a.e. family with limit IF .

On the one hand, assume that 〈n,m〉 ∈ IF . We show that 〈n,m〉 ∈ Xs for
almost all s. By the definition of IF , a(n) = m. By Lemma 11, we can fix s0 such
that for all s ≥ s0, a(n, s) ≥ a(n). For every s ≥ s0, there is a t ≥ s such that
a(n, t) = a(n) and hence the pair 〈n, a(n)〉 is eventually enumerated into Xs for
each s ≥ s0.

On the other hand, assume that 〈n,m〉 6∈ IF . We show that 〈n,m〉 ∈ Xs for only
finitely many s. By the definition of IF , a(n) 6= m. Since a(n) = lim infs a(n, s), this
claim is clear in the case when m < a(n). If a(n) < m, then by Lemma 11, there is
a stage sm such that for all s ≥ sm, either a(n, s) = a(n) or a(n, s) > m. Therefore,
for all s ≥ sm, a(n, s) 6= m. It follows that 〈n,m〉 6∈ Xs for any s ≥ sm. �

By Lemma 5, the family F generates a theory TF which is trivial and strongly
minimal.

Lemma 14. There is a c.e. Friedberg enumeration of F .

Proof. This lemma follows because a(n, s) is a computable function and hence the
definition of Xs is uniformly Σ0

1. �
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By Lemma 7, TF has a computable prime model.

Lemma 15. If A is a nonprime model of TF , then 0′′ is computable from the
atomic diagram of A.

Proof. By Lemma 8, we can enumerate IF from the atomic diagram of A and hence
we can enumerate the graph of a(n) from the atomic diagram of A. Therefore, we
can compute the function a(n) from the diagram of A and thus can compute 0′′ by
Lemma 11. �

This completes the proof of Theorem 1.

2. Some remarks on axiomatizability

We now conclude with some remarks on axiomatizability by formulas of various
quantifier-complexity.

Definition 16. An L-theory T has a quantifier-depth 1 axiomatization if T is equiv-
alent to a set S of sentences, each of which is a Boolean combination of universal
sentences.

Definition 17. An L-theory T is Skolemized if for every L-formula ϕ(x, y) there
are finitely many terms τ1(y), . . . , τn(y) such that

T |= ∀y[∃xϕ(x, y) →
∨

i

ϕ(τi(y), y)]

The Tarski-Vaught criterion for being an elementary substructure, coupled with
an easy compactness argument, entails that T is Skolemized if and only if every
substructure of every model of T is an elementary substructure. Recalling that a
theory T has a universal axiomatization if and only if the class of models of T is
closed under substructures, it follows immediately that any Skolemized theory has
a universal axiomatization, and the converse holds whenever the theory is model
complete.

Lemma 18. The following are equivalent for any structure M such that Th(MM )
is model complete:

(1) Th(MM ) has a quantifier-depth 1 axiomatization;
(2) Th(MM ) has a universal axiomatization;
(3) Th(MM ) is Skolemized.

Proof. (2) ⇒ (1) is trivial and (3) ⇔ (2) follows from our comments above. Finally,
(1) ⇒ (2) holds for any structure M. Indeed, suppose (1) holds for M and choose
M′ |= Th(MM ) and any LM -substructure N of M′. We may assume that M ⊆
N ⊆ M ′ and M � M′. It suffices to show that N |= Th(MM ). Let σ be any
universal LM -sentence. Clearly, if N |= σ, then M |= σ as well. Conversely, if
M |= σ, then M′ |= σ by elementarity, hence N |= σ as well. Thus, M and N
agree on all universal LM -sentences, hence on all Boolean combinations of universal
LM -sentences, so N |= Th(MM ) by (1). �

By adding dummy variables as needed, it is easily verified that for any L-
structure M, Th(MM ) is Skolemized if and only if for every L-formula ϕ(x, y)
there are finitely many L-terms τ1(y, z1) . . . , τn(y, zn) such that

Th(M) |= ∃z1 . . .∃zn∀y[∃xϕ(x, y) →
∨

i

ϕ(τi(y, zi), y)]
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Thus, the property of Th(MM ) being Skolemized is preserved under elementary
equivalence.

Proposition 19. The following are equivalent for any trivial, strongly minimal
(complete) L-theory T :

(1) Th(MM ) has a quantifier-depth 1 axiomatization for some M |= T ;
(2) Th(MM ) has a quantifier-depth 1 axiomatization for all M |= T ;
(3) For all M ⊆ A ⊆ M ′ such that M � M′ are models of T , and for every

b ∈ aclM′(A), there are an L-term τ(y) and a ∈ A with M′ |= τ(a) = b.

Proof. Recall from Goncharov/Harizanov/Laskowski/Lempp/McCoy [GHLLM03]
that Th(MM ) is model complete for every model M of T . Combining this with the
preservation of being Skolemized under elementary equivalence, (1) ⇔ (2) follows
from the Lemma.

Now assume that (2) holds. Choose M,M′, A, b as in (3) and let N be the
smallest substructure of M′ containing A∪{b}. Since Th(MM ) is model complete,
Lemma 18 implies that Th(MM ) is Skolemized, hence N � M′. Thus aclM′(A) =
aclN (A) = N , so (3) is satisfied.

Finally, suppose (3) holds and fix M |= T . We show that Th(MM ) has a
universal axiomatization by choosing M′ � M and N such that M ⊆ N ⊆ M ′

as L-structures. By (3), N is infinite and algebraically closed in the LM -structure
M′

M , which has a strongly minimal theory. Thus N |= Th(MM ) as required. �
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